
Object grammars and random generation

I. Dutour�

LaBRI, Université Bordeaux I,

Unité associée au C.N.R.S. no 1304,

351 cours de la Libération, 33405 Talence Cedex, France.

J.M. Fédouy

I3S-ESSI, Univesité de Nice,

Unité associée au C.N.R.S. no 1376,

650 Route des Colles, B.P. 145, 06903 Sophia-Antipolis Cedex, France.

September 8, 1997

Abstract

This article presents a new systematic approach for the uniform random

generation of combinatorial objects. The method is based on the notion

of object grammars which give recursive descriptions of objects and gen-

eralize context-free grammars. The application of particular valuations to

these grammars leads to enumeration and random generation of objects

according to non algebraic parameters.

1 Introduction

An object grammar de�nes classes of objects by means of terminal objects and

certain types of operations applied to the objects. It is most often described

with pictures. For instance, the standard decomposition of complete binary

trees is an object grammar (Figure 1). The formalism given here for object

grammars [6, 7] generalizes the one for context-free grammars. An important

application of these grammars is a systematic approach for the speci�cation of

bijections between sets of combinatorial objects (see [7]).

The paper outlines another important application of the object grammars:

a systematic method for generating combinatorial objects uniformly at random.

The work lies in the recursive method framework ; this method is to generate re-

cursively random objects by endowing a recurrence formula with a probabilistic

interpretation. This generation process has been �rst formalized by Nijenhuis

and Wilf [11, 14, 15]. They have a general approach. They base the recur-

sive procedure on an acyclic directed rooted graph with a terminal vertex and

numbered edges, graph which depends on the family of objects. The recursive

method has been also formalized by Hickey and Cohen in the special case of

�

e-mail : dutour@labri.u-bordeaux.fr

y

e-mail : fedou@unice.fr

1

Figure 1: Complete binary trees.

context-free languages [10] and by Greene within the framework of the labelled

formal languages [9].

Recently, Flajolet, Zimmermann and Van Cutsem have given a systematic

approach for this method with speci�cations of structures by grammars in-

volving set, sequence and cycle constructions [8]. The methods that they have

examined enable to start from any hight level speci�cation of decomposable

class and compile automatically procedures that solve the corresponding ran-

dom generation problem. They have presented two closely related groups of

methods : the sequential algorithms (linear search) which have worst case time

complexity O(n2), when applied to objects of size n, and the boustrophedo-

nic algorithms (bidirectional fashion) which have worst case time complexity

O(n logn).
The present work is a continuation of the research of these authors. It is a

systematization of the recursive method based on the object grammars. It then

extends the �eld of structures which can be generated using such method. An-

other important contribution of this work is to consider the random generation

of objects according to several parameters simultaneously, and to consider not

only algebraic parameters (i.e. that lead to algebraic generating functions), but

also parameters that lead to generating functions satisfying q-equations. The

other methods have rarely dealed with these latest parameters.

In section 2, we review the necessary de�nitions for object grammars. We

then provide in section 3 the notion of q-linear valuations. They formalize the

behaviour (on objects de�ned by an object grammar) of parameters that lead

automatically to q-equations satis�ed by the corresponding generating func-

tions.

Section 4 introduces our systematic random generation method. Given an

unambigous object grammar and a corresponding q-linear valuation, it allows

to construct automatically the enumeration and uniform generation procedures

according to the valuation. These procedures use sequential algorithms and

have worst case time complexity O(kl(k + l)), when applied to objects of val-

uation xkql, assuming the enumeration tables have been computed once for all

in O(k2l2) time (see [6] for the general case of valuation). If one only consid-

ers an algebraic parameter (xk), the complexity is the same as in [8] and the

boustrophedonic search can be used.

The path taken here is eminently praticable and the method has been imple-

mented in the Maple language (package named qAlGO). Section 5 gives some

results obtained with this program concerning the uniform random generation

of convex polyominoes according to the area and planar trees according to the

internal path length. The package CombStruct, written by P. Zimmermann,

can not study these objects and this type of parameter. The packages qAlGO

2

Figure 2: A parallelogram polyomino.

φ2φ1

φ3
,

Figure 3: Object operations on parallelogram polyominoes.

and CombStruct complement each others. In section 6, we �nish by discussing

some ideas and directions of research.

2 Object grammars

Let E be a family of sets of objects. An object operation (in E) is a mapping

� : E1 � : : :� Ek �! E, where E 2 E and Ei 2 E for i in [1; k]. It describes
the way of building an object of E from k objects belonging to E1; : : : ; Ek

respectively.

The domain of � is E1 � : : :� Ek, denoted by dom(�), the codomain is E,

denoted by codom(�) and the image is denoted by Im(�). The i-th projection

Ei of dom(�) is called a component of �.

Example 2.1 : A parallelogram polyomino can be de�ned as the surface lying

between two North-East paths that are disjoint, except at their common

ending points (see Figure 2) [5]. Let Epp be the set of parallelogram

polyominoes.

The mappings �1, �2 and �3 illustrated in Figure 3 are object operations

in E = fEppg. The operations �1 and �2 are operations of arity 1 (Epp �!

Epp). The operation �1 glues a new cell at the left of the lowest cell of

the �rst column of a polyomino. The operation �2 adds a new cell at the

bottom of each column of a polyomino. The operation �3 is an operation

of arity 2 (Epp � Epp �! Epp) ; it takes two polyominoes as argument,

applies �2 to the �rst one and glues them by one cell: the top-cell of

the last column of the �rst polyomino facing the bottom-cell of the �rst

column of the second.

De�nition 2.1 An object grammar is a 4-tuple < E ; T ;P ; S > where :

3

E = fEigi2I is a �nite family of sets of objects. (I is a �nite

subset of IN).

T = fTEi
gi2I is a �nite family of �nite subsets of sets of E,

TEi
� Ei, whose elements are called terminal

objects.

P is a set of object operations � in E.

S is a �xed set of E called the axiom of the

grammar.

The dimension of an object grammar is the cardinality of E .

Remark : Sometimes a 3-tuple < E ; T ;P > is called also object grammar. The

axiom is chosen later in E .

In the following, the terms grammar and operation will often be used for object

grammar and object operation respectively.

The construction of an object can be described by its derivation tree : inter-

nal nodes are labelled with object operations and leaves with terminal objects.

These derivation trees are comparable to the abstract trees within the theory

of Compiling.

Let G =< E ; T ;P > be an object grammar and E 2 E a set of objects. An

object o is said to be generated in G by E, if there is a derivation tree of G on

E (i.e. the codomain of the label of the root is E) whose evaluation is o.

The set of objects generated by E in G is denoted by OG(E). If S in E is chosen

as the axiom of G, then OG(S) is called the set of objects generated by G.

Example 2.2 : Let's note 2 the one-cell polyomino. Here are two examples of

object grammars:

G1 = < fEppg; ff2gg; f�1; �2g; Epp >

and G2 = < fEppg; ff2gg; f�1; �2; �3g; Epp > .

The parallelogram polyomino of Figure 2 belongs to OG2
(Epp), its deriva-

tion tree in G2 is given in Figure 4. The set OG2
(Epp) is the set of

parallelogram polyominoes.

The set OG1
(Epp) is the set of Ferrers diagrams ; it is a proper subset of

parallelogram polyominoes.

By analogy to context-free grammars, an object grammarG is unambiguous

if every object in OG(S) has exactly one derivation tree. Unambiguity is an

important property for building bijections.

One can also de�ne several normal forms for object grammars: reduced, 1-2

or complete. The reduced and 1-2 forms extend usual normal forms of context-

free grammars: the reduced and Chomsky normal form. A grammar is said

to be reduced if every set of objects E in E is accessible from the axiom and

OG(E) 6= ; ; it is said to be in 1-2 form if all its operations are of arity 1 or 2.
The complete form is speci�c for object grammars. A grammar is said to be

complete if OG(E) = E for every set of objects E in E (generally OG(E) � E).

For example, the grammar G2 previously de�ned is complete while G1 is not.

4

φ2 φ3

φ3

φ1

φ1 φ3

Figure 4: A derivation tree in G2.

Figure 5: Schematic object grammar for parallelogram polyominoes.

The details on transformations of object grammars into normal forms are given

in [6].

Another de�nition

A complete, unambiguous object grammar G =< E ; T ;P ; S > can be described

as a system of equations � involving sets of objects, terminal objects and object

operations, or as a system of graphic equations. The equations describe the

decomposition of a set of objects into a disjoint union of terminal objects and

images of operations :

� =

8<
:Ei =

X
ei2TEi

ei +
X

codom(�)=Ei

�(Ei1;� ; : : : ; Eik;�)

9=
;
i=1;:::;n

.

For example, the equation for the grammar G2 generating parallelogram poly-

ominoes previously de�ned is

Epp = 2+ �1(Epp) + �2(Epp) + �3(Epp; Epp):

A schematic representation of this grammar is given in Figure 5.

Expanded 1-2 form

The automatic method of random generation presented in the paper is based

on the expanded 1-2 form of object grammars.

An object grammar G =< E ; T ;P > is called in expanded 1-2 form if, for

every E in E , the equation that de�nes it has one of the forms

E = e ; E = E1 +E2 ; E = �(E1) ; E = �(E1; E2).

5

Proposition 2.2 Every object grammar has an equivalent expanded 1-2 form.

Proof :

In order to transform an object grammar into an expanded 1-2 form, it su�ces

to change all the sums and domains of the object operations having arity > 2
by adding sets of objects and identity object operations of arity 2. Thus, the

equation E = �(E1; : : : ; Ek) is replaced by the set of equations

E = �E1
(E1; FE2

), FE2
= �E2

(E2; FE3
), . . . , FEk�1

= �Ek�1
(Ek�1; Ek).

2

In the following, we will often use the term 1-2 form for expanded 1-2 form.

3 Enumeration

Let K be a ring and X = fx1; : : : ; xng a set of variables. Then K[X] (resp.
K[[X]]) denotes the set of polynomials (resp. formal power series) in the vari-

ables x1; : : : ; xn having coe�cients in K.

Given a set of objects E, an object valuation (on E) is a mapping VE : E �!

K[X] satisfying

8 (k1; : : : ; kn) 2 INn; fe 2 E= < x1
k1 : : :xn

kn ; VE(e) > 6= 0g is �nite.

Consequently, the generating function associated with E,
X
e2E

VE(e), is a formal

power series which lies in K[[X]]. It will be denoted by VE(E).

Theorem 3.1 Let G =< E ; T ;P > be a complete, unambiguous object gram-

mar, and � = fVE : E �! K[X]; E 2 Eg a set of object valuations. For all E

in E, from its equation in G

E =
X
e2TE

e +
X

codom(�)=E

�(Ei1;� ; : : : ; Eik;�) , (1)

one can directly obtain the following equation :

VE(E) = VE(TE) +
X

codom(�)=E

VE(�(Ei1;� ; : : : ; Eik;�)) . (2)

Proof :

The object grammarG is unambiguous and complete, given equation (1). Equa-

tion (2) is obvious, since we have disjoint unions.

2

The objective is to obtain a system of equations for the generating functions

of the sets of the grammar. Then, one has to express VE(�(Ei1;� ; : : : ; Eik;�)) in
terms of VEi1;�

(Ei1;�), . . . , VEik;�
(Eik;�). This depends on the nature of object

valuations considered.

6

Example 3.1 : Let Epp be the set of parallelogram polyominoes and consider

the following valuation :

Vwa : Epp �! IN[x; q]

e 7�! xwidth(e)qarea(e)

It is well-known that the generating function Vwa(Epp), denoted here by

fwa(x; q), satis�es the q-equation (see for example [3])

fwa(x; q) = xq + xqfwa(x; q) + fwa(xq; q) + fwa(xq; q)fwa(x; q) .

The object valuation Vwa is called q-linear. The general de�nition of such

a valuation is detailed below.

q-linear object valuations

Let X = fx1; : : : ; xng and Q = fq1; : : : ; qrg be two disjoint sets of variables.

Notations : x denotes the n-tuple (x1; : : : ; xn) and q the r-tuple (q1; : : : ; qr). If
A is a matrix having coe�cients in IN (A = (aij), 1 � i � n, 1 � j � r), then

� xqA = (x1q1a11 : : : qra1r ; : : : ; xnq1an1 : : : qranr),

� for f(x; q) 2 K[[X;Q]], f(x; q)jx xqA = f(xqA; q) .

Let E;E1; : : : ; Ek be sets of objects, VE; VE1
; : : : ; VEk

object valuations on

E;E1; : : : ; Ek respectively, and � an object operation with codom(�)=E and

dom(�) = E1 � : : :�Ek.

VE is called q-linear with respect to � if it exists a polynomial �� in K[X;Q]
and matrices Ai

� for i 2 [1; k] such that

VE(�(e1; : : : ; ek)) = ��

kY
i=1

VEi
(ei)jx xqAi

� , for every (e1; : : : ; ek) 2 dom(�):

If � is injective, then :

VE(�(E1; : : : ; Ek)) = ��

kY
i=1

VEi
(Ei)jx xqAi

� :

Corollary 3.2 If all the object valuations of � are q-linear, equation (2) of

Theorem 3.1 becomes :

VE(E) = VE(TE) +
X

codom(�)=E

��

ik;�Y
i=i1;�

VEi
(Ei)jx xqAi

� . (3)

This is a system of q-equations were the unknowns are the generating functions

VE(E) for the sets E in E .

Example 3.2 : The object valuation Vwa is q-linear with respect to the object

operations �1, �2 and �3. Then the equation

Vwa(Epp) = Vwa(2) + Vwa(�1(Epp)) + Vwa(�2(Epp)) + Vwa(�3(Epp; Epp))

becomes the q-equation seen before (fwa(x; q) = Vwa(Epp))

fwa(x; q) = xq + xqfwa(x; q) + fwa(xq; q) + fwa(xq; q)fwa(x; q) .

7

Special case : linear object valuations

The linear object valuations are q-linear object valuations such that, for every

object operation � and all i, Ai
� = (0). These linear valuations are exactly

in the DSV methodology framework [2, 13], they yield algebraic generating

functions (see [6]).

Object valuations and 1-2 form

The proof of Proposition 2.2 has shown how to reduce object grammars in 1-

2 form. The q-linear object valuations are very well preserved through this

transformation.

Proposition 3.3 If � is a set of q-linear object valuations associated with an

object grammar, it is possible to construct an equivalent set of object valuations

associated with its 1-2 form.

Proof :

Recall that an equation E = �(E1; : : : ; Ek) in the grammar is replaced by the

set of equations

E = �E1
(E1; FE2

), FE2
= �E2

(E2; FE3
), . . . , FEk�1

= �Ek�1
(Ek�1; Ek).

Concerning the object valuations, if we have

VE(�(E1; : : : ; Ek)) = ��

kY
i=1

VEi
(Ei)j

x xq
A
�

i

;

then we de�ne :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

VE(�E1
(E1; FE2

)) = �� VE1
(E1)j

x xq
A
�
1

: VFE2 (FE2
)

for i = 2 : : :k � 2;
VFEi (FEi

) = VFEi (�Ei
(Ei; FEi+1

))

= VEi
(Ei)j

x xq
A
�

i

: VFEi+1 (FEi+1
)

VFEk�1
(FEk�1

) = VFEk�1
(�Ek�1

(Ek�1; Ek))

= VEk�1
(Ek�1)

���
x xq

A
�

k�1

: VEk
(Ek)j

x xq
A
�

k

2

4 Enumeration and random generation procedures

Not all object grammars G and possible corresponding sets of functions � lead

to random generation. The couples (G; �) considered here are well-founded,

i.e. each set of objects generates at least one object, and it generates a �nite

number of objects having the same valuation's value (it is the de�nition of an

object valuation). An algorithm performing this task is detailed in [6]. It is

inspired by works of Zimmermann [16].

8

In the following, the study is limited to the case of q-linear object valuations

having values in the set of monomials denoted by Mon[X;Q]. Moreover, X and

Q contain only one variable: X = fxg and Q = fqg. The complete case is

detailed in [6].

4.1 Enumeration procedures

Let G =< E ; T ;P > be an object grammar in expanded 1-2 form and � = fVE :
E �!Mon[x; q]; E 2 Eg a set of q-linear valuations such that the couple (G; �)
is well-founded.

The generating function of a set of objects E is denoted by

VE(E) =
1X

K;L=0

cE(K;L) x
KqL:

Theorem 4.1 (i) The coe�cients cE(K;L) are given by the following formu-

las :

� E = e, then

if VE(e) = xKqL then cE(K;L) = 1 else 0;

� E = E1 +E2, then

cE(K;L) = cE1
(K;L) + cE2

(K;L);

� E = �(E1) with VE(�(E1)) = xk0ql0 VE1
(E1)jx xqa1 , then

cE(K;L) = cE1
(K � k0; L� l0 � (K � k0):a1);

� E = �(E1; E2) with VE(�(E1; E2)) = xk0ql0 VE1
(E1)jx xqa1 VE2

(E2)jx xqa2 ,

then

cE(K;L) =
KX
i=0

LX
j=0

cE1
(i; j):cE2(K�k0�i; L�l0�i:a1�(K�k0�i):a2�j):

(ii) The computation of all the coe�cients up to the value xkql needs O(k2l2)
arithmetic operations.

Proof :

The details of the algorithm computing the coe�cients in O(k2l2) time are given

in [6]. 2

9

4.2 Generation procedures

With each set of objects E of the grammar is associated a procedure gE having

parameters k and l, and generating (uniformly at random) an object of E having

the valuation xkql. More precisely, this procedure constructs the derivation tree

in the grammar. It depends on the form of the equation which de�nes E in the

object grammar:

� E = e. The procedure gE is trivial :

gE :=Proc(k,l)
If VE(e) = xkql Then Return e

End Proc

� E = E1+E2. The procedure gE must generate an object belonging either

to E1 or to E2. The probability that this object belongs to E1 is equal to

cE1
(k; l)=cE(k; l) :

gE :=Proc(k,l)
U := Uniform([0; 1]);
If U < cE1

(k; l)=cE(k; l) Then Return gE1
(k; l)

Else Return gE2
(k; l)

End Proc

� E = �(E1), with VE(�(E1)) = xk0ql0VE1
(E1)jx xqa1 . Then the procedure

gE is very simple. It returns an object of E obtained by � from an object

of E1 having the valuation xk�k0ql�l0�(k�k0):a1 :

gE :=Proc(k,l)
kk := k � k0; ll := l � l0;

Return �(gE1
(kk; ll� kk:a1))

End Proc

� E = �(E1; E2), with VE(�(E1; E2)) = xk0ql0 VE1
(E1)jx xqa1 VE2

(E2)jx xqa2 .

The procedure gE must generate an object of E obtained by � from an

object of E1 and an object of E2 which respect the de�nition of the val-

uations. The probability for the object of E1 having the valuation xKqL

and those of E2 having the valuation xk�k0�Kql�l0�K:a1�(k�k0�K):a2�L is

cE1
(K;L):cE2(k � k0 � K; l� l0 �K:a1 � (k � k0 �K):a2 � L)=cE(k; l).

The procedure is :

gE :=Proc(k,l)
kk := k � k0; ll := l � l0;

S := cE1
(0; 0):cE2

(kk; ll� kk:a2)=cE(k; l);
K := 0;
U := Uniform([0; 1]);
While U > S Do

K := K + 1;

10

Random generation algorithm :

Input : a couple (G; �).
Output : procedures for generating the objects generated by G at random.

? Transform G into 1-2 form =) (G0; �0).
? Verify that (G0; �0) is well-founded, else error.

? For each set of objects E in G0, create the enumeration procedure cE,

then compute all the coe�cients up to rank (k; l).
? For each set of objects E in G0, create the generation procedures gE
as indicated above.

Figure 6: A random generation procedure.

T := ll�K:a1 � (kk �K):a2;
L := 0;
While U > S And L � l Do

L := L+ 1;
S := S + cE1

(k; l):cE2
(kk �K; T � L)=cE(k; l);

End While

End While

Return �(gE1
(k; l); gE2

(kk �K; T � L))
End Proc

Theorem 4.2 The worst case time complexity of the generation procedures is

of O(kl(k+ l)) arithmetic operations.

Proof :

A random generation procedure consists in constructing recursively a derivation

tree in G. This tree is binary because G is in 1-2 form. The size of the derivation

tree of an object having the valuation xkql is proportionnal to k + l. The

generation of a vertex of the tree has a maximal cost of O(kl) (the loops of the
procedure). Thus, the complexity of the generation of the derivation tree in the

worst case is O(kl(k+ l)). 2

4.3 Algorithm for uniform random generation

One can now describe an uniform random generation procedure for the objects

of an object grammar according to a set of q-linear object valuations (Figure 6).

The obtained generation procedures give the derivation trees of objects in

G0, but not directly in G. A simple transformation (linear cost in O(k+l)) gives
the derivation trees in G. This postprocessing does not a�ect the conclusions

of the complexity studies. Futhermore, at the expense of some programming

e�ort, it can be e�ected �on the �y�.

11

5 Maple package qAlGO

The program qAlGO (in Maple language) implements the method developed in

the previous sections. The package qAlGO builds automatically the enumera-

tion and generation procedures from a unambiguous object grammar and a set

of corresponding q-linear valuations (see the annex of [6] for syntax and use).

The automatic nature of the software qAlGO gives a very useful tool which

makes easy the experimental study of various statistics on combinatorial ob-

jects. In the following, we present relevant examples of random generation.

Convex polyominoes according to the area

Here is an example of experimental studies using qAlGO. It concerns the

random generation, according to the area, of di�erent classes of convex poly-

ominoes: parallelogram polyominoes, convex directed polyominoes and convex

polyominoes.

First, the example of parallelogram polyominoes. It su�ces to give as in-

put to qAlGO an object grammar that generates them and the corresponding

object valuations: the grammar in Figure 5 and the valuation Vwa de�ned in

example 3.1. Thus one obtains the enumeration and the uniform generation

according to the width (in x) and the area (in q).

> with(qalgo);

[compile, countgo, drawgo, drawgoall]

definition of the object grammar and valuations

> paralgo := { P = cell + phi1(P) + phi2(P) + phi3(P,P) }:

> paralval := [[cell, 1, 1], [phi1, 1, 1, [0]],

[phi2, 0, 0, [1]], [phi3, 0, 0, [1, 0]]]:

construction of the procedures

> compile(paralgo, paralval, qlinear, Identity):

We are then able to generate these objects at random. More precisely,

qAlGO returns the derivation tree of a random parallelogram polyomino. For

example,

generation of a polyomino having area 10

> drawgo(paralgo, paralval, qlinear, P, 10);

phi3(phi1(phi2(phi2(phi2(cellp)))), phi1(phi2(cellp)))

It then su�ces to evaluate this derivation tree according to the object oper-

ations, and to write the polyomino under a form understood by the interface

XAnimal of CalICo1 [4, 12] ; so we can visualize the polyomino Figure 7.

For the convex polyominoes, we use a much more complicated object gram-

mar (of dimension 9 and with 34 object operations !), but the principle is exactly

the same as before for the parallelogram polyominoes.

1CalICo o�ers a software environment for manipulations and visualizations of combinatorial

objects ; it allows the communication of graphical interfaces and computer algebra software

such as Maple.

12

Figure 7: A parallelogram polyomino of area 10.

Figure 8: Random parallelogram and convex polyominoes of perimeter 100.

Such experiments showed us how thin the random convex polyominoes ac-

cording to the area is. According to the perimeter, they look more thick. Ex-

amples of such polyominoes are given Figures 8 and 9. We also �nd out that

convex polyominoes, random according to the area, have either a north-east, or

north-west orientation (as Figure 9), with same probability one half.

In order to understand the thin look of such random polyominoes according

to the area, we computed experimentally the average value of two parameters:

the height of a column and the gluing number between two adjacent columns,

which is the number of cells by which two adjacent columns are in contact. After

generating 1000 convex polyominoes having area 100 and 1000 parallelogram

polyominoes having area 200, we obtain the following average values: 2; 37 for

the height of the columns, and 1; 37 for the gluing number between two adjacent

columns.

Figure 9: Random parallelogram and convex polyominoes of area 100.

13

Figure 10: An object grammar for planar trees.

Figure 11: A random planar tree of size 100.

Remark : The result for the average height of a column (2; 37) coincides exactly
with what Bender [1] has obtained using asymptotic analysis methods.

The di�erence of 1 between these two average parameters can be explained

simply by noticing that this di�erence has for limit the quotient between the

height and the width of the polyomino, which is 1 by symmetry.

Planar trees according to the internal path length

A simple unambiguous object grammar for the planar trees is given in Figure 10.

The internal path length (ipl) of a tree is the sum of the distances of all its

nodes from its root. The q-linear valuation Vipl : e 7�! xnodes(e)qipl(e) leads to

the following q-equation for the generating function

T (x; q) = x+ T (xq; q)T (x; q) .

Setting q to 1, we obtain the linear valuation for the size of the trees (the

number of nodes).

Using qAlGO with the above grammar and these two valuations, we are able

to generate at random planar trees according to the size (see Figure 11), and

also, according to the internal path length (see Figure 12). The latter have a

remarkable look: they have a very small height.

6 Conclusions and perspectives

The interest of our approach lies in its generality and simplicity. Time complex-

ity are �computable� and, at the same time, one gains access to the random

14

Figure 12: A random planar tree of internal path length 100.

generation of arbitrarily complex objects according to several parameters, alge-

braic or not. In the precedent section, we showed how it is possible to use the

package qAlGO in order to get conjectures on some parameters of objects. A

lot of studies can be done for other objects as paths (according to the area), dif-

ferent classes of trees (according to the internal path length),. . . The automatic

nature of qAlGO makes such studies easy.

Concerning the decomposable structures, Flajolet, Zimmermann and Van

Cutsem [8] have shown that the generation of a structure of size n is in O(n logn)
by using a boustrophedonic algorithm instead of O(n2) by using a sequential one.
It would be interesting to make a similar analysis to see if the boustrophedonic

principle can improve the complexity of our algorithms of generation in the

same way. But we have here more than one parameter, then the strategy is not

obvious to determine (and to analyse).

Acknowledgements

The authors thank Jacques Labelle and the anonymous referee for very helpful

comments.

References

[1] E.A. Bender. Convex n-ominoes. Discrete Math., 8:219�226, 1974.

[2] M. Delest. Langages algébriques : à la frontière entre la Combinatoire et

l'Informatique. In Actes du 6
�eme Colloque Séries Formelles et Combinatoire Al-

gébrique, pages 69�78, DIMACS, Rutgers University, USA, 1994.

[3] M. Delest and J.M. Fédou. Attribute grammars are useful for combinatorics.

Theoretical Computer Science, 98:65�76, 1992.

[4] M. Delest, J.M. Fédou, and N. Rouillon. Human Interaction for Symbolic Com-

putation, chapter Computation and Images in Combinatorics, To appear. Texts

and Monographs in Symbolic Computation. Springer-Verlag, 1996.

[5] M. Delest and X.G. Viennot. Algebraic languages and polyominoes enumeration.

Theoretical Computer Science, 34:169�206, 1984.

[6] I. Dutour. Grammaires d'objets : énumération, bijections et génération aléatoire.

PhD thesis, Université Bordeaux I, 1996.

[7] I. Dutour and J.M. Fédou. Object grammars and bijections. Technical Report

1164-97, LaBRI, Université Bordeaux I, 1997. Submitted to Theoretical Computer

Science.

15

[8] P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random

generation of combinatorial structures. Theoretical Computer Science, 132:1�35,

1994.

[9] D.H. Greene. Labelled formal languages and their uses. PhD thesis, Stanford

University, 1983.

[10] T. Hickey and J. Cohen. Uniform random generation of strings in a context-free

language. SIAM. J. Comput., 12(4):645�655, 1983.

[11] A. Nijenhuis and H.S. Wilf. Combinatorial algorithms. Academic Press, 1975.

(2nd ed. 1978).

[12] N. Rouillon.Calcul et Image en Combinatoire. PhD thesis, Université Bordeaux I,

1994.

[13] X.G. Viennot. Enumerative combinatorics and algebraic languages. In L. Budach,

editor, Proceedings FCT'85, pages 450�464, 1985. Lecture Notes in Computer

Science 199.

[14] H.S. Wilf. A uni�ed setting, ranking, and selection algorithms for combinatorial

objects. Advances in Mathematics, 24:281�291, 1977.

[15] H.S. Wilf. A uni�ed setting for selection algorithms (II). Annals of Discrete

Mathematics, 2:135�148, 1978.

[16] P. Zimmermann. Séries génératrices et analyse automatique d'algorithmes. PhD

thesis, Ecole Polytechnique de Palaiseau, 1991.

16

