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ABSTRACT

We study the problem of image aesthetic assessment (IAA) and aim

to automatically predict the image aesthetic quality in the form of

discrete distribution, which is particularly important in IAA due to

its nature of having possibly higher diversi�cation of agreement for

aesthetics. Previous works show the e�ectiveness of utilizing object-

agnostic attention mechanisms to selectively concentrate on more

contributive regions for IAA, e.g., attention is learned to weight

pixels of input images when inferring aesthetic values. However,

as suggested by some neuropsychology studies, the basic units of

human attention are visual objects, i.e., the trace of human attention

follows a series of objects. This inspires us to predict contributions

of di�erent regions at object level for better aesthetics evaluation.

With our framework, region-of-interests (RoIs) are proposed by

an object detector, and each RoI is associated with a regional fea-

ture vector. Then the contribution of each regional feature to the

aesthetics prediction is adaptively determined. To the best of our

knowledge, this is the �rst work modeling object-level attention

for IAA and experimental results con�rm the superiority of our

framework over previous relevant methods.
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1 INTRODUCTION

Image aesthetic assessment (IAA) aims to automatically assess aes-

thetic value of photographs. It can be applied to various applications,

e.g. image editing [35], image recommendation [21], image retrieval
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Figure 1: Left: proposed object-level attention with la-

bels (object category and attention weights). Right: object-

agnostic attention [39, 40, 48]. Both use higher brightness to

denote more important regions. The object-agnostic atten-

tion roughly highlights the person’s face, while the object-

level attention clearly distinguishes face, eyes, and nose, and

assigns them with di�erent weights. Object-level attention

allows IAA model to determine the contributions of di�er-

ent regions in a �ner granularity.

[27], photo management [14], etc. Three types of IAA tasks have

been investigated in the previous relevant works: 1) binary classi-

�cation, 2) score regression, and 3) rating distribution prediction.

Binary classi�cation [25] divides images into high aesthetic class

and low aesthetic class according to their average scores, and tries to

build a model to predict the binary labels. Score regression task [6],

however, aims at directly predicting the average scores. Recently,

a more challenging task, aesthetic rating distribution prediction

(ARDP) [32], attracts increasing attention of the research commu-

nity, because not only it better aligns with the uncertainty nature

of IAA, but also the results of ARDP can be easily converted to

the form of aesthetic scores or binary aesthetic labels. More impor-

tantly, this enables a true re�ection on the nature of IAA, i.e., the

possibly higher diversi�cation of agreement among the population

toward aesthetics, due to the well-known fact that beauty is in the

eye of the beholder. Therefore, we focus on the ARDP task in this

work.

Early deep learning based IAA methods [19, 20] comprised each

input by combining a resized image with several small patches

randomly cropped from the resized image. Due to the e�ectiveness,

many later methods [10, 22, 30, 32, 48] adopted a similar strategy

and utilized one or multiple patches selected from holistic images

as part of the model input. However, for the human visual system,

patches selected from di�erent regions contribute di�erently to
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overall aesthetics, which forms a natural requirement for selec-

tively concentrating on more contributive regions when inferring

aesthetic values. Recent methods address this issue by adopting at-

tention mechanisms. Sheng et al. [30] adopted attention mechanism

to dynamically adjust the weight on each randomly selected patch

during training. Zhang et al. [48] proposed a two-stream model

that takes a global view and a local view as input, where the local

view is selected according to pixel-level spatial attention learned

from the global view. Yang et al. [39] proposed a multi-task learning

framework that explicitly predicted human �xations for weighting

CNN outputs.

As some studies on neuropsychology [29] suggested, the basic

units of human attention are visual objects. For example, when ap-

preciating a portrait, the trace of human attention usually follows

a series of objects: face, eyes, nose, mouth, etc, and each of these

objects contribute di�erently to the overall aesthetics. However,

none of the previous methods considers objectness when predicting

attention. As a result, the attention of these object-agnostic meth-

ods can only roughly predict the contributions of di�erent regions,

while they cannot clearly distinguish the objects making up of

these regions and assign the constituent object-level regions with

di�erent weights. To enhance the �exibility of the attention mod-

eling, we introduce a framework that learns the weighting of the

object-level regions subject to IAA. Fig.1 shows examples of object-

level attention and object-agnostic attention. As demonstrated, the

object-agnostic attention map can only roughly highlight the face

region. It fails to distinguish eyes and nose and assign them with

di�erent weights. While the object-level attention map can clearly

distinguish face, eyes, nose and hands, and weigh them di�erently.

Thus, the proposed framework has more �exibility when an atten-

tive region is composed of several potential objects. The attentive

region is further broken down into object-level regions, and their

contributions can be individually and adaptively determined ac-

cording to the learning task.

To this end, we address the challenge of learning IAA-driven

object-level attention with a bottom-up approach. We take advan-

tage of a general object detector, which aims to detect a large diver-

sity of objects in a �ne granularity. Once a reliable object detector

is built, the detected region-of-interests (RoIs) are used as the basis

for modeling IAA-driven attention. Speci�cally, for proposing RoIs,

a Faster-RCNN [28] trained on Visual Genome dataset [11] is lever-

aged to detect general objects in the images from the largest IAA

dataset, AVA dataset [25]. Qualitative analysis shows the chosen ob-

ject detector can robustly detect most objects in those images, and

therefore it provides a reasonable base for verifying the proposed

concept of object-level attention. Since multiple RoIs are needed

to be considered for modeling object-level attention, and learn-

ing end-to-end directly from images is impractical due to the high

computational cost, we tackle the problem by adopting features

extracted from ImageNet pretrained network for training our IAA

model. For modeling IAA-driven object-level attention, pretrained

features are �rstly extracted from both holistic images and RoIs.

Given the extracted features, the attention-based regional feature

fusion (ARFF) module in the proposed model dynamically learns

the contribution of di�erent object-level RoIs in the feed-forward

process of inferring aesthetic value. Finally, regional features are

weighted by predicted attention weights and fused for ARDP.

Experimental analysis on the most commonly-used AVA dataset

demonstrates our framework is superior to the previous relevant

methods in terms of ARDP. Apart from the improvement in �exibil-

ity of attention modeling, an extra bene�t of training based on RoIs

detected by Faster-RCNN is that it better maintains the semantic

integrity of the selected regions. In a nutshell, our contributions

can be summarized as follows:

• A framework for learning task-speci�c object-level at-

tention inspired by the relatedneuropsychological �nd-

ings. The proposed framework infers IAA-driven object-

level attention in a bottom-up manner by �rstly recognizing

RoIs with a generic object detector and secondly modeling

IAA task-driven attention based on RoIs. This goes one step

beyond previous attention-based IAAmethods and improves

the �exibility of attention modeling. Experimental results

con�rm the impact of the proposed framework on predicting

aesthetic rating distribution. To the best of our knowledge,

this is the �rst attempt to investigate object-level attention

for IAA.

• Extensive analysis on IAA-driven object-level atten-

tion. Since RoIs detected by a generic object detector can be

treated as task-free salient regions, and the IAA-driven atten-

tion is constructed with those task-free salient regions, this

work is the �rst attempt to bridge the gap between task-free

attention and task-speci�c attention in the context of IAA.

In addition, we also investigate the connections between

human �xations and IAA-driven object-level attention.

2 RELATEDWORKS

2.1 Attention-based Deep Learning Model

We�rstly clarify two similar concepts, attentionmodel and attention-

based deep learning model. Attention models are a class of mod-

els that aim to predict task-free saliency, including human �x-

ation prediction [8, 12, 17, 33, 40] and salient object detection

[13, 34, 36, 45, 47]. While attention-based deep learning models

are deep learning models that aim to enhance their representa-

tional power by predicting weights of intermediate features in a

task-speci�c context. The e�ectiveness of attention-based deep

learning models has been shown in various computer vision tasks,

including image classi�cation [7, 37], image captioning [1, 3, 18, 38],

and image quality assessment [39], etc. For example, channel-wise

attention [3, 7, 37] learns weighting of di�erent channels of CNN

outputs. Spatial attention [3, 37, 39] re-weights CNN outputs at

di�erent spatial locations. Although task-free attention and task-

speci�c attention are modeled for di�erent purposes, connection

between them do exist. We notice that task-free attention has been

successfully used for facilitating the prediction of task-speci�c

attention in image captioning [1] and image quality assessment

[39]. However, the connection has been rarely explored for IAA.

Regarding region-of-interests (RoIs) as task-free salient regions,

our framework also adopts those task-free salient regions to help

predict IAA-driven attention in a �ner granularity. To further inves-

tigate the connection between task-free and task-speci�c attention,

we compare the IAA-driven attention maps with human �xation

predictions. Results show task-speci�c attention in IAA aligns with



human �xation in most cases, while other exceptional cases suggest

potential data bias in the training set.

2.2 Image Aesthetic Assessment (IAA)

IAA aims to automatically predict the aesthetic quality of any given

image. Early methods adopt low-level hand-crafted features for

training IAA models. For example, features for tone, colorfulness,

luminance, composition, texture, sharpness, clarity, visual saliency

[4, 9, 26, 31, 46] and even generic descriptors such as SIFT [43],

Bag-of-Visual-Words and Fisher Vector [24] have been adopted in

early works. However, such low-level hand-crafted features are

hard to generalize to a large diversity of content.

With the renaissance of deep learning, CNNhas beenwidely used

in recent works [10, 20, 22, 30, 32, 35, 48] and achieves promising

results. From the perspective of model inputs, most methods use

image patches as a part of their model inputs. Particularly, Lu et

al. [20] proposed a model that takes multiple small patches from

one image with shared CNN columns for feature extraction and

aggregates them for further prediction. Kong et al. [10] trained an

AlexNet based model with 227 × 227 image crops from 256 × 256

rescaled images. Talebi et al. [32] trained VGG16, MobileNet or

Inception-v2 basedmodels with 224×224 image crops from 256×256

rescaled images. Though widely used, these methods su�er from

two major drawbacks. First, single randomly selected patch usually

cannot be a good representation of a holistic image because part

of the information is missing. Although multiple patches may be

combined as model input, since objectness is not a consideration

when image patches are selected, the combination of those patches

can still lack semantic integrity. Second, when multiple patches

are taken, all patches are assumed to equally contribute to the

�nal aesthetic, in contrast to the human attention mechanism that

di�erent regions have di�erent contributions.

To overcome the aforementioned drawbacks, Ma et al. [22] de-

signed a heuristic process. It learned both layout information and

�ne-grained details from those carefully selected patches. Most

recently, the attention mechanism has been used to overcome the

drawbacks. Zhang et al. [48] selected patches of local views ac-

cording to feed-forward attention learned via IAA. Yang et al. [39]

weighted CNN outputs with human �xation prediction. Sheng et

al.’s work [30] adopted attention mechanism to dynamically adjust

the weight on each randomly selected patches during training. Com-

pared to previous attention-based methods, our method takes one

step further. Our attention is built upon object-level RoIs, which in-

troduces clearer boundaries between di�erent object-level regions,

and the attention can be learnt with a �ner granularity.

3 OUR APPROACH

Given an image, the proposed framework aims to predict its aes-

thetic rating distribution (ARD) (Section 3.1). The overall design

of the proposed framework is shown in Fig.2. The framework is

designed to infer ARD in two separate stages. In the �rst stage

(Section 3.2), global and regional visual features are extracted with

a pretrained network from holistic images and region-of-interests

(RoI). In the second stage (Section 3.3), a neural network with the

attention-based regional feature fusion (ARFF) module predicts

ARD from global and regional features.

3.1 Problem Formulation

The task aesthetic rating distribution prediction (ARDP) aims to

predict the ARD of a given image. The raw ARD of the 8-th image

in the training set can be expressed as 28 = {2
9
8 }
 
9=1, where 2

9
8 is

the number of votes in the 9-th score bucket of the 8-th image and

 is the number of score buckets. In practice, we use AVA dataset

and  = 10 in this case. All raw ARD labels are normalized by

being divided by the total number of votes in all buckets. Therefore,

normalized ARD of the 8-th image is given by:

?8 = {?
9
8 }
 
9=1 = {2

9
8 /

 ∑

9=1

2
9
8 }
 
9=1, (1)

then the training set with normalized ARD as labels can be denoted

by {(I8 , ?8 )}
#
8=1, where # is the number of images in the training

set. If we denote the predicted ARD by ?̂8 , then the optimization

process for learning parameter \ of the neural network model for

IAA can be expressed as:

\ = argmin
\

#∑

8=1

L(?8 , ?̂8 ) (2)

where L(·) is the loss function. For the loss function, we follow

previous works [32] and use the normalized Earth Mover Distance

(EMD) loss. The normalized EMD loss is given by:

L(?8 , ?̂8 ) =

√√√
1

=

=∑

:=1

|���?8 (:) −���?̂8 (:) |
2, (3)

where���?8 and���?̂8 are cumulative density function for ground-

truth ARD ?8 and predicted ARD ?̂8 respectively, and = is their

length.

3.2 Feature Extraction

In this work, ourmodel is designed to build upon pretrained features

for higher computational e�ciency. The pretrained feature should

satisfy several requirements. First, considering IAA involves both

low-level aspects such as image degradations and high-level aspects

such as semantic information, the pretrained feature should contain

both low-level and high-level information. Second, the high-level

components of the pretrained feature should cover a large diversity

of content so that the derivative IAA model will not work only on

a speci�c category of content.

Based on aforementioned considerations, we adopt multi-level

spatially pooled (MLSP) [6] features. As shown in Fig.3, MLSP

features are extracted from InceptionResNet-v2 [2] CNN pretrained

on ImageNet. To obtain an MLSP feature, �rstly, the output from

each convolution block is pooled into a �xed spatial size. Second, the

pooled feature maps are sequentially concatenated into an MLSP

feature. The original work [6] provided two pooling strategies. The

�rst one resized each feature map into 5 × 5 as shown in Fig.3(a),

while the second one directly applied global average pooling (GAP)

to each feature map as shown in Fig.3(b). Results generated with

the former and latter strategies are called Wide MLSP feature and

Narrow MLSP feature, respectively.

We believe that the MLSP feature satis�es our basic require-

ments for the following reasons. First, the model is pretrained on
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Figure 2: The diagram of the proposed framework. Dimension of features produced by each module is given as (G,~). The

model infers ARD in two separate stages. In the �rst (feature extraction) stage, features are extractedwith ImageNet pretrained

InceptionResNet-v2 from a full-resolution image and its RoIs detected by Faster-RCNN. In the second (inference) stage, with

the help of the attention-based regional feature fusion module, the model predicts the contributions of di�erent RoIs, and

regional features are weighted and fused according to the predicted attention weights for inferring ARD.

ImageNet subject to general classi�cation task, which covers a

large diversity of content. Second, the features are extracted from

original-sized images, so that the integrity of low-level details can

be better maintained. Third, the feature combines the output from

each convolution block of the backbone model, and therefore the

concatenated feature contains both low-level and high-level infor-

mation. Therefore, our global and regional feature extractors in

Fig.2 are designed to extract MLSP features from holistic images

and RoIs, respectively.

Suppose the selected regions from image I is given as {I; }!
;=1

,

where ! is the number of selected regions, the global and regional

feature extraction is represented by:

v6 = "6;>10; (I) (4)

EA = {v;A }
!
;=1

= "A468>=0; ({I
; }!
;=1

) (5)

where v6 ∈ '�6 represents global feature and v
;
A ∈ '�A represents

MLSP feature extracted from the ;-th selected region, and �6 and

�A are the length of the global and regional features, respectively.

Global feature extraction. The global features directly ex-

tracted from full-resolution images are needed to provide overall

information such as layout. Then the dimension of the global fea-

ture is reduced for improving computational e�ciency. After that,

the dimension reduced global feature is merged with dimension

reduced regional features for attention prediction as shown in Fig.2.

We consider both narrow and wide MLSP settings for global feature

extraction, and their performance is discussed in Section 4.2.

Regional feature extraction. Our regional features are MLSP

features extracted from RoIs generated by Faster-RCNN [28], as

shown in Fig.2. Faster-RCNN is a two-stage object detector, which

localizes the instances of objects by bounding boxes in the �rst

stage, and assigns semantic labels to each detected instance in the

second stage. The main consideration for choosing the object de-

tector is that it should cover a large diversity of objects, and the

granularity of detection should be as �ne as possible. Fine granu-

larity is especially important for predicting object-level attentions

of close-view images. Take portrait for example, we not only ex-

pect the object detector can outline the subject’s face, but also his

eyes, nose, etc. Although Faster-RCNN trained on MS COCO [16]

or Pascal VOC [5] dataset are the most commonly-used versions,

both of them still lack granularity of detection that we desired.
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Figure 3: Narrow and wide MLSP feature extraction [6].

Table 1: Speci�cation of FCN used in the proposed model

FCN-based module name Speci�cation

Global feature

dimensional reduction [FC(16928, 6144), ReLU]

Regional feature

dimensional reduction [FC(16928, 256), ReLU]

Attention predictor [FC(8704, 4096), BN, ReLU]

[FC(4096,10), Sigmoid]

Distribution predictor [FC(2560, 10), Softmax]

Therefore, we adopt the version trained on Visual Genome [11],

which covers a much larger object categories than MS COCO [16]

or Pascal VOC [5] (76,340 vs. 91 and 20). The e�ectiveness of this

version has been veri�ed on image captioning and visual question

answering [1, 41, 42]. Then we apply this Faster-RCNN to all im-

ages in AVA dataset. For each image, we select the top 10 region

proposals by con�dence because we empirically �nd 10 bounding

boxes are enough for covering the majority of the areas of the

images (average 82% areas are covered). For the consideration of

computational e�ciency, we only extract narrow MLSP features

from each individual region rather than wide MLSP features.

3.3 Network Architecture

The core part of the network used in the inference stage is the

attention-based regional feature fusion (ARFF) module. Taking a

global feature and a set of regional features as input, the ARFF

module weights and passes down the regional features to the dis-

tribution predictor. Given a global feature v6 and a set of regional

features {v;A }
!
;=1

, the dimensions of features are �rst reduced with

the global and regional feature dimensional reduction (FDR) mod-

ules respectively. When using the wide MLSP setting for global

2048
1x1	conv

2048
3x3	conv

3x3	avg	pool
2048

1x1	convBatch	norm
ReLU

Batch	norm
ReLU Batch	norm

ReLU

Dimension	reduced	global	MLSP	features	(5x5x6144)

Dimension	reduced global	MLSP	features	(1x1x6144)

GAP

Global	MLSP features	(5x5x16928)

Figure 4: CNN-based global feature dimensional reduction

(FDR) module for wide MLSP features.

feature extraction, the architecture of the FDR module is shown in

Fig.4. It is constructed with 3 di�erent convolution modules, where

each module reduces the channel dimension of wide MLSP features

from 16928 to 2048 while maintaining its size of spatial dimension.

Therefore, by concatenating the outputs of the 3 convolution mod-

ules, the 5 × 5 × 16928 feature is downsized to 5 × 5 × 6144. Then

its spatial dimension is further reduced by global average pooling

(GAP), which generates the �nal 1 × 1 × 6144 dimension reduced

global feature. When adopting the narrow MLSP setting, the FDR

modules for global features or regional features are fully-connected

network (FCN) based. The speci�cation of FCN-based FDR mod-

ules are shown in Table 1. After dimensional reduction, the size

of a global feature is reduced to 6144 and the size of each regional

feature is reduced to 256.

Since there are ! RoIs for each image in practice, there are !

corresponding regional features. Suppose E = {v; }!+1
;=1

is the set of

dimension reduced global and regional features, where v!+1 ∈ R
6144

is the dimension reduced global feature and the remaining are

dimension reduced regional features v; ∈ R
256 and ; ∈ [1, !]. Since

we take ! = 10 in practice, all of the features are concatenated

into one 8704-length feature vector and passed to the attention

predictor. The target of the attention predictor 50CC4=C8>= (·) is to

predict the contribution of each regional feature. Therefore, we

implement the attention predictor 50CC4=C8>= (·) with an FCN that

takes an 8704-length input and produces a 10-length attention

vector a. The speci�cation of the FCN-based attention predictor is

presented in Table 1. Because the attention predictor adopts sigmoid

activation at its output layer, the scale of predicted weights is (0, 1).

The inference of the attention weights can be summarized as:

a = 50CC4=C8>= (
!+1
⊕
;=1

v
; ), (6)

where ⊕ represents the concatenation operation and a ∈ R
L is the

attention vector predicted by the attention predictor 50CC4=C8>= (·).

Finally, each of the regional feature is weighted by applying corre-

sponding attention weight:

Ẽ = {ṽ; }!
;=1

= {a; · v
; }!
;=1
, (7)



Model name Attention predictor SRCC (mean) PLCC (mean) SRCC (std. dev) PLCC (std. dev) Accuracy

Model 1 - 0.652 0.654 0.225 0.233 78.10%

Model 2 Regional 0.675 0.678 0.270 0.279 78.98%

Model 3 Regional + narrow global 0.735 0.738 0.338 0.347 81.11%

Model 4 Regional + wide global 0.751 0.753 0.353 0.363 81.67%

Table 2: Ablation study. Best results are shown in bold face.

Method SRCC (mean) PLCC (mean) SRCC (std. dev) PLCC (std. dev) Accuracy

Talebi et al. (TIP 2018) [32] 0.636 0.612 0.233 0.218 81.51 %

Zhang et al. (TMM 2019) [48] 0.690 0.704 - - 81.81%

Hosu et al. (CVPR 2019) [6] 0.740 0.742 0.333 0.344 80.97%

Li et al. (TIP 2020) [15] 0.677 - - - 83.70%

Zeng et al. (TIP 2020) [44] 0.719 0.720 0.241 0.247 80.81%

Ours 0.751 0.753 0.353 0.363 81.67%

Table 3: Peer comparison. Top 2 results on each metric are shown in bold face.

where Ẽ is the set of weighted regional features. Finally, theweighted

regional features are further concatenated and passed to the FCN-

based distribution predictor (Table 1) to infer the �nal ARD.

4 EXPERIMENT AND ANALYSIS

4.1 Experimental Setup

Our experiment is conducted on the o�cial split of AVA dataset as

previous works [6, 15, 20, 23, 44, 48]. It consists of ∼ 250: images,

and o�cially divided into a training set with ∼ 230: and a testing

set with ∼ 20: images. It provides ground truth ratings for each

image in forms of raw rating distribution and average scores on

a scale of 1 ∼ 10. Since some images are not available, there are

235,574 images for training and 19,928 images for testing in practice.

The evaluation on ARDP task follows [32]. Ground truth ARD

and predicted ARD results are converted to average scores and

standard deviations. Given a normalized ARD {? 9 }109=1, the average

score is computed as ` =

10∑
9=1

9 · ? 9 and the standard deviation is

computed as f =

√
10∑
9=1

( 9 − `)2 · ? 9 . We adopt two commonly-used

metrics, Spearman rank order coe�cient (SRCC) and Pearson linear

correlation coe�cient (PLCC), for evaluating the goodness of �tting

of average scores and standard deviations. We also convert ARD to

binary labels with 5 as the cut-o� threshold as previous works and

then accuracy is computed.

4.2 Ablation Study

We �rst conduct an ablation study to investigate the e�ectiveness

of the attention-based regional feature fusion (ARFF) module in

di�erent settings. We set up 4 di�erent models and the detailed

settings of the evaluated model are listed below:

• Model 1: Model 1 is the baseline model without the ARFF

module. Taking regional features as model inputs, the model

directly concatenates all dimension reduced regional features

and �nally passes them for ARD prediction. Therefore, all

regional features are treated equally in this setting.

• Model 2: Compared to Model 1, Model 2 also only takes re-

gional features as model input, while ARFF module is added

to model attention weights for weighting regional features.

Speci�cally, the attention predictor learns attention weights

from dimension reduced and concatenated regional features.

• Model 3: Compared to Model 2, in addition to regional fea-

tures, Model 3 also takes global features as inputs, while it

adopts the narrowMLSP setting as mentioned in Sec.3.2. The

attention predictor learns attention weights from both di-

mension reduced global and regional features for weighting

regional features.

• Model 4: Compared to Model 3, Model 4 adopts the wide

MLSP setting for global feature extraction instead of taking

the narrow MLSP setting. The dimension of global features

is reduced by the CNN-based global FDR module.

All models are trained on the o�cial training set for 10 epochs

with Adam optimizer and then evaluated on the testing set. The

learning rate is set to 3e-5 for the �rst 2 epochs, and divided by 10

every 3 epochs. The results of the ablation study are shown in Table

2. We can observe all measurements are improved as the model

setting is upgraded. Treating Model 1 as the baseline, the last three

models with the ARFF module achieve higher performance in all

selected measurements. This con�rms that the proposed attention

module can e�ectively improve the representational power of the

deep IAA model by weighting object-level regional features in a

learnable process. By comparing Model 2 with the last two models

with global features for attention prediction, we can observe a

prominent performance gain when global features are cooperated.

This indicates global features can provide valuable information for

guiding the attention prediction. We believe this phenomenon also

aligns with the nature of human vision that it is hard for humans to

judge which region is more attractive without looking at the overall

structure and layout of the image. By comparing the last twomodels,

we can see adopting the wide MLSP setting can further improve the

performance, which demonstrates spatially pooling MLSP features

directly with global average pooling can lose necessary information

and leaving more spatial information to the learning process can

e�ectively increase the model performance.
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Figure 5: Three representative successful cases ((a)-(c)) and a typical failed case ((d)). Row 1: region-of-interests with projected

IAA-driven object-level attention; numbers in the labels are attention weights, and higher brightness indicates a higher at-

tention level. Row 2: task-free pixel-level �xation maps which also use higher brightness for a higher attention level. Row 3:

histograms for ground-truth (GT) and predicted (Pred) aesthetic rating distribution and the corresponding average scores.

4.3 Peer Comparison

We have also compared our model with previous relevant works.

We choose the results of Model 4 from ablation studies to compare

with 5 recent relevant works. For the 4 methods by Talebi et al. [32],

Zhang et al. [48], Li et al. [15] and Zeng et al. [44], we refer to the

results from their original papers. For the work by Hosu et al. [6],

since the original work is trained subject to score regression, we

have modi�ed the model by replacing its output layer with a 10-way

softmax layer and re-trained it with normalized EMD loss (Eq.(3))

on the ARDP task with the AVA trainset. The evaluation results on

the AVA testset of the altered version is reported. All results are

presented in Table 3 and the top 2 results on each measurement are

shown in bold face.

As shown, we can observe our model outperforms all selected

methods in terms of SRCC and PLCC of average scores and standard

deviations. This indicates our model is superior to other selected

models in ARDP. To be speci�c, compared to Zhang et al.’s model

[48] which adopts pixel-level feed-forward attention for selecting

the most important regions, our model is superior in terms of SRCC

and PLCC of average scores. We interpret the superiority of our

model by the e�ectiveness of object-level attention. With the help

of object-level attention, the model can learn attention with �ner

granularity, and semantic integrity of selected regions are better

preserved. We also notice that our accuracy is not the best among

all presented methods. We argue that accuracy is not a suitable

metric for the ARDP task, because the binary classi�cation results

are very sensitive to predictions around the cut-o� threshold, while

insensitive to predictions far away from the threshold. For example,

the scores 5.01 and 9 can both fall into the high aesthetic class when

we set 5 as the cut-o� threshold although these are two distinct

scores, while the scores 5.01 and 4.99 can fall into two di�erent

classes although these two scores are very close.

4.4 Further Analysis

We have chosen three representative successful cases for demon-

strating the e�ectiveness of our framework, including a long shot

(Fig.5(a)), a close-up shot (Fig.5(b)), and a medium shot (Fig.5(c)).

We also present a typical failed case of our framework (Fig.5(d)).

For each example, we present its object-level attention map (row 1

in Fig.5), �xation map (row 2 in Fig.5) and histograms of predicted

ARD (row 3 in Fig.5). For object-level attention maps, the number

in each bounding box label re�ects the attention weight of the cor-

responding region. The attention weight is on a scale of 0 ∼ 1, and

a higher value means stronger attention and higher contribution

to the �nal ARD prediction. The attention weights are projected

to the corresponding bounded regions in ascending order so that

low-attention regions will be covered by high-attention regions

when there is any overlapping. The �xation maps are generated

with Yang et al.’s work [40].



Figure 6: IAA-driven object-level attention maps (labels are

omitted) that do not fully align with human attention. Feets

of all the birds are highly attentive to the learned model,

which implies a potential data bias.

Fig.5(a) shows a long shot taken in the distance for a beautiful

scene of seaside in the sunset. Long shots such as landscape or

cityscape typically have unbounded regions like sky and water. As

shown, the object detector recognizes and outlines the components

of the scene, including trees, pier, sky, sunset, water, and wave. This

implies although some objects do not have a clear boundary (sunset,

sky, water and wave), the object detector can still roughly outlines

the region. And the objects inside those regions such as trees and the

pier can be further detected. Comparing to the �xation prediction,

our model can predict the attention weight of each individual object

and learn attentive regions similar to the �xation map (trees, sunset,

and water around the pier receive higher attention).

Fig.5(b) shows a close-up shot of a dog. For close-up shots like

portrait, the photographer usually wants to show a close look at the

subject’s facial features and each has a di�erent contribution to the

overall aesthetics. As the example shows, our model can account for

the aesthetic contribution of each individual facial feature, whereas

the �xation prediction can only roughly highlight the face region.

Medium shots are very similar to the sight of the human and

are widely used for street photographs. One common characteristic

of street shots is that they are usually taken without any plan,

because things on the street are constantly changing. This means

street photographers merely have a chance to carefully control the

shutter speed and the use of light, and therefore distortions like

under-exposure and motion blur are commonly seen in street shots.

Fig.5(c) presents a typical example of a medium shot of street. As

shown, the photograph is obviously under-exposed and things on

the streets can be hardly seen. Nevertheless, our framework can

still recognize the pedestrians and the lights in the dark and predict

corresponding attention weights. The resulting attentive regions

are similar to the �xation map, while our model can analyze the

attention in �ner granularity.

Although the chosen object detector works well in the above

cases, it cannot work so well when the subject is extremely abstract

or obscured. Fig.5(d) shows a puma whose face is obscured by the

cage. In this case, the object detector in use fails to recognize the

overall face of the puma, and only detects its eyes and whiskers.

Since only partial information is considered for the ARDP, the result

is not accurate. Thus, we believe development of a better object

detector is important, but it is beyond the scope of this research.

However, such failed cases are rare in the AVA dataset. There are

17,848 (out of 255,502; <7%) images labelled as abstract ones by AVA

dataset. Dealing with abstract images, the chosen object detector

can still de�ne objects by their shapes or forms in most cases,

e.g. line, circle, dot, rim, light, shadow, re�ection, etc. We have

evaluated the proportion of area covered by bboxes for each image

to discover those potentially ‘failed detected cases’. If we take 0.3 as

the threshold for determining a failed detected case (i.e., less then

30% of area is covered by bboxes), 245 such cases are founded in

abstract images.

Although in most cases the predicted IAA-driven object-level

attention roughly aligns with task-free �xation, we do observe some

cases where IAA-driven attention is paid to some minor regions.

As shown in Fig.6, one of the phenomena is that the model tends

to pay too much attention to the birds’ feet. We interpret this

phenomenon by data bias. We observe that AVA trainset contains

a large amount of close-up shots of birds (roughly 2,317 images)

and most of them are of high aesthetics (1,885 out of 2,317 images

of birds have average scores larger than 5). The model tends to

memorize that close-up shots of birds are of high aesthetics. Thus,

when making predictions of high aesthetic images, the model tends

to �nd whether an image is a close-up shot of a bird. Since birds can

be easily recognized by their feet, the model then tends to focus on

the birds’ feet. Therefore, the model learns the data bias, and such

bias is re�ected on the IAA-driven object-level attention maps.

5 CONCLUSION

In this work, we have proposed a neuropsychologically-inspired

object-level attention-based framework for aesthetic rating distri-

bution prediction (ARDP). The proposed framework dynamically

learns contribution of features extracted from object-level regions

de�ned by a generic object detector. This allows our framework

to have more �exibility in attention modeling in the cases when

an attentive region is composed of several constituent objects. Ex-

tensive experimental analysis over the most commonly-used AVA

dataset demonstrates our model is superior to previous relevant

methods and ablation study con�rms the e�ectiveness of the use of

object-level attention. Qualitative analyses comparing IAA-driven

object-level attention with task-free pixel-level �xation shows IAA-

driven object-level attention roughly aligns with task-free pixel-

level �xation, while the former one can model attention with a �ner

granularity. Apart from its e�ectiveness, IAA-driven object-level

attention can also serve as a tool for interpreting our deep IAA

model. To the best of our knowledge, this is the �rst attempt to

model object-level attention for IAA and we believe this opens a

new research direction on object-level attention based IAA model.
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