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Abstract. We describe a method for automatically obtaining object representations suitable for retrieval from

generic video shots. The object representation consists of an association of frame regions. These regions provide

exemplars of the object’s possible visual appearances.

Two ideas are developed: (i) associating regions within a single shot to represent a deforming object; (ii) associating

regions from the multiple visual aspects of a 3D object, thereby implicitly representing 3D structure. For the

association we exploit temporal continuity (tracking) and wide baseline matching of affine covariant regions.

In the implementation there are three areas of novelty: First, we describe a method to repair short gaps in tracks.

Second, we show how to join tracks across occlusions (where many tracks terminate simultaneously). Third, we

develop an affine factorization method that copes with motion degeneracy.

We obtain tracks that last throughout the shot, without requiring a 3D reconstruction. The factorization method is

used to associate tracks into object-level groups, with common motion. The outcome is that separate parts of an

object that are not simultaneously visible (such as the front and back of a car, or the front and side of a face) are

associated together. In turn this enables object-level matching and recognition throughout a video.

We illustrate the method on the feature film “Groundhog Day.” Examples are given for the retrieval of deforming

objects (heads, walking people) and rigid objects (vehicles, locations).

Keywords: 3D object retrieval in videos, tracking affine covariant regions, independent motion segmentation,

robust affine factorization

1. Introduction

In image and video retrieval applications it is usual to

specify a query by an image of the object of interest.

Such queries enable retrieval of objects with a limited

degree of generalization over viewpoint and deforma-

tion — but specifying the front of a car as a query will

not retrieve shots of the rear of the car. However, shots

in a video do contain examples of objects undergoing

viewpoint changes and deformations. Our objective in

this paper is to use such multiple instances of an object

in a shot in order to enable true object-level retrieval,

including: (i) deformable objects, e.g. a face changing

expression; and (ii) multiple visual aspects of a 3D ob-

ject, e.g. a vehicle seen from the front, side, and back.

Figure 1 shows example shots of a deforming object,

and of multiple visual aspects of a 3D object.

The approach we take is to automatically asso-

ciate regions of frames of the shot into object-level

groupings. This is carried out using both motion

and appearance consistency throughout the shot.

The technology we employ is that of affine covari-

ant regions (Matas et al., 2002; Mikolajczyk and

Schmid, 2002; Schaffalitzky and Zisserman, 2002;

Tuytelaars and Van Gool, 2000). These regions deform

with viewpoint so that their pre-image corresponds to

the same surface patch.

To achieve object-level grouping we have devel-

oped the state of the art in two areas: first, the affine

covariant regions are used to repair short gaps in
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Figure 1. Two example shots from the film ‘Groundhog Day’ [Ramis, 1993]. (a) Frames from a shot of an actor turning her head and speaking.

Tracks of affine covariant regions are used to associate multiple exemplars of the face (from different viewpoints and with different expressions)

for retrieval. (b) Frames from a shot where the camera pans to follow a van passing by. Tracks are used to associate the three visual aspects

(back, side and front) of the van which are never visible simultaneously in a single frame.

tracks (Section 3), and also to associate a set of tracks

when the object is partially or totally occluded for

a period (Section 6). The result is that regions are

matched throughout the shot whenever they appear.

Second, we develop a method of independent motion

segmentation using robust affine factorization (Sec-

tion 5) which is able to handle degenerate motions

(Torr et al., 1998) in addition to the usual problems of

missing and mis-matched points (Aanaes et al., 2002;

De la Torre and Black, 2003; Jacobs, 1997; Shum et al.,

1995).

The task we carry out differs from that of layer ex-

traction (Torr et al., 2001), or dominant motion detec-

tion where generally 2D planes are extracted, though

we build on these approaches. Here the object may be

3D, and we pay attention to this, and also it may not

always be the foreground layer as it can be partially or

totally occluded for part of the sequence.

Approaches for matching and representing 3D ob-

jects using local patches include that of Rothganger

et al. (2003) where a 3D object model is built from

still images and that of Lowe (2001) and Ferrari

et al. (2004a), where a 3D object is modelled as a

collection of images with known multiple view region

correspondences. In our case we do not enforce global

3D consistency — the 3D object is represented implic-

itly by a set of exemplar images and this loose coupling

allows a degree of deformation (e.g. for facial expres-

sions). Also, we build this object model automatically

from video shots despite background clutter. Recently,

a similar idea of object model building from video

has appeared in Rothganger et al. (2004) but the fo-

cus is more on model building rather than matching,

recognition and retrieval, and only rigid objects are

considered.

Other approaches to building appearance models

from video include that of Mahindroo et al. (2002),

where optic-flow based motion segmentation is used to

extract objects from video, and that of Wallraven and

Bulthoff (2001) where an object is modelled by select-

ing keyframes (using point tracking) from sequences

of single objects (some of which are artificial).

The rest of the paper is organized as follows: Sec-

tions 2 and 3 review affine region detection and de-

scribe the region tracking algorithm. We then give two

retrieval applications. First, Section 4, using region

tracks alone to associate exemplars for a deforming

object — this enables retrieval of the deforming ob-

ject (a person talking and turning their head). Sec-

ond, Section 7, using region tracks and independent

motion segmentation to associate exemplars for dif-

ferent aspects of a 3D object — this enables object-

level retrieval. The independent motion segmentation

requires a rigidity grouping, and an algorithm for this

is described in Section 5. Section 6 shows how wide

base-line matching is used to associate repeated ap-

pearances of an object within a shot. The performance

of the object-level retrieval is assessed against ground

truth in Section 7.1. Finally, in Section 8 the proposed

method and its possible extensions are discussed.

We illustrate the method on objects in the feature

film ‘Groundhog Day’ [Ramis, 1993]. The film has

145K frames and 752 shots. This object-level matching

naturally extends the frame based matching of ‘Video

Google’ (Sivic and Zisserman, 2003). This paper is an

extended version of Sivic et al. (2004).
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2. Region Detection and Basic Tracking

In this section we describe how regions are detected

and tracked (associated) through a shot. Affine covari-

ant regions are detected independently in each frame.

The tracking then proceeds sequentially, looking at

only two consecutive frames at a time. The objective

is to obtain correct matches between the frames which

can then be extended to multi-frame tracks. Two match-

ing constraints are used here: first, incorrect matches

can be removed by requiring consistency with multi-

ple view geometric relations, second, the regions can be

matched on their appearance. The first matching con-

straint is based on the motion of rigid objects, and the

robust estimation of these relations for point matches

is mature (Hartley and Zisserman, 2000). The con-

straint is applied here to the region centroids. The sec-

ond matching constraint is on the image appearance

within the segmented region. It is here that we ben-

efit significantly from using affine covariant regions.

This constraint is far more discriminating and tolerant

to viewpoint change than the usual cross-correlation

over a square window used in interest point trackers,

since the correct support for the cross-correlation is

used here.

2.1. Affine Covariant Regions

Two types of affine covariant region detector are used:

one based on interest point neighbourhoods (Mikola-

jczyk and Schmid, 2002), the other based on the “Max-

imally Stable Extremal Regions” (MSER) approach of

Matas et al. (2002). In both cases the detected region

is represented by an ellipse. The region segmentation

is designed so that the pre-image of the region cor-

responds to the same surface region, i.e. their image

shape is not fixed, but automatically adapts based on

the underlying image intensities so as to always cover

the same physical surface. The regions are called affine

covariant because the segmentation commutes with

the viewpoint transformation between images (and

the transformation is locally an affinity). Implemen-

tation details of these two methods are given in the

citations.

It is beneficial to have more than one type of re-

gion detector because in some imaged locations a

particular type of feature may not occur at all. Here

we have the benefit of region detectors firing both at

points where there is signal variation in more than

one direction (e.g. near “blobs” or “corners”), as well

Figure 2. Example of affine covariant region detection. (a) Frame

20 from the van shot. (b) Ellipses formed from 722 affine covariant

interest points. (c) Ellipses formed from 1269 MSER regions. Note

the large number of regions detected in a single frame, and also that

the two types of region detectors fire at different and complementary

image locations.

as at high contrast extended regions. These two im-

age areas are quite complementary. Their union pro-

vides a good coverage of the image provided it is at

least lightly textured, as can be seen in Fig. 2. The

number of regions and coverage depends of course

on the visual richness of the image. Typically a total

of between 1000 and 2000 regions are obtained per

frame.
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Figure 3. Region tracking: (a) six frames from the van shot. The camera is panning right, and the van moves independently. (b) Frames with

the basic region tracks superimposed (before repair). Each frame shows affine covariant regions tracked in that frame. For each tracked region

shown, the tracked path of its centroid over the whole life time of the track (i.e. backwards and forwards in time) is shown by its (x, y) position.

The path of the region centroid indicates the temporal extent of the track. (c) After short range repair. Note the much longer tracks on the van

after applying this repair. For presentation purposes, only tracks lasting for more than 10 frames are shown. Note that the background is not

tracked in the middle of the shot due to severe motion blur. A detail of a single region track is shown in Fig. 6.

2.2. Tracker Implementation

In a pair of consecutive frames, detected regions in

the first frame are putatively matched with all detected

regions in the second frame, within a disparity thresh-

old of 50 pixels. Many of these putative matches will

be wrong and an intensity correlation computed over

the area of the elliptical region removes all putative

matches with a normalized cross correlation below

0.90. The 1-parameter (rotation) ambiguity between

regions is assumed to be close to zero, because

there will be little cyclo-torsion between consecutive

frames. All matches that are ambiguous, i.e. those that

putatively match several features in the other frame,

are eliminated.

Finally epipolar geometry is fitted between the two

views using RANSAC (Fischler and Bolles, 1981)

with an inlier threshold of 3 pixels. This step is very

effective in removing outlying matches whilst not

eliminating the independent motions which occur

between the two frames.

The results of this tracking on a shot from the movie

‘Groundhog Day’ are shown in Fig. 3b. This shot is

used throughout the paper to illustrate the stages of the
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Figure 4. Histograms of track lengths for (a) the face shot, (b) the van shot shown of Fig. 1 for the basic tracking (Section 2) before and after

short range track repair (Section 3). Note the improvement in track length after repair. In both cases the weight of the histogram shifts to the

right after repair. The step at around frame 45 after repair in (b) is due to the rich background of trees which lasts for about 45 frames at the

beginning of the shot.

object-level grouping. Note that the tracks have very

few outliers.

It is worth remarking on how this approach compares

to the more conventional method of tracking interest

points alone. There are two clear advantages in the re-

gion case: first, the appearance is a strong disambigua-

tion constraint, and consequently far fewer outliers are

generated at every stage; second, far more of the image

can be tracked using (two types of) regions than just

the area surrounding an interest point. The disadvan-

tage is the computational cost, but this is not such an

issue in the retrieval situation where most processing

can be done off-line.

3. Short Range Track Repair

The simple region tracker of the previous section can

fail for a number of reasons most of which are common

to all such feature trackers: (i) no region (feature) is

detected in a frame — the region falls below some

threshold of detection (e.g. due to motion blur); (ii) a

region is detected but not matched due to a slightly

different shape; and (iii) partial or total occlusion.

The causes (i) and (ii) can be overcome by short

range track repair using motion and appearance, and

we discuss this now. Cause (iii) can be overcome by

wide baseline matching on motion grouped objects

within one shot, and discussion of this is postponed

until Section 6.

3.1. Track Repair by Region Propagation

The goal of the track repair is to improve tracking

performance in cases where region detection or the

first stage tracking fails. The method will be explained

for the case of a one frame extension, the other short

range cases (2–5 frames) are analogous.

The repair algorithm works on pairs of neighbouring

frames and attempts to extend already existing tracks

that terminate in the current frame. Each region which

has been successfully tracked for more than n (=3)

frames and for which the track terminates in the current

frame is propagated to the next frame. The propagat-

ing transformation is estimated from a set of k (=5)

spatially neighbouring tracks. In the case of successive

frames only translational motion is estimated from the

neighbouring tracks. In more detail, the tx and ty com-

ponents of the translation are estimated as median val-

ues of the k translations txi and tyi suggested by the k

spatially nearest tracks i continuing to the next frame.

Figure 5 shows an example. In the case of more sepa-

rated frames the full affine transformation imposed by

each tracked region should be employed.

The refinement algorithm of Ferrari et al. (2003) is

used to fit the propagated region locally in the new

frame (this searches a hypercube in the 6D space of

affine transformations by a sequence of line searches

along each dimension). If the refined region correlates

sufficiently with the original region in the previous

frame the region track should continue to the new

frame. It is here that the advantage of regions over

interest points is manifest: this verification test takes

account of local deformations due to viewpoint change,

and is very reliable.

The standard ‘book-keeping’ cases then follow: (i)

no new region is instantiated (e.g. the region may be

occluded in the frame); (ii) a new region is instantiated,
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Figure 5. Illustration of the track repair by region propagation. A region track finishing in frame (a) is extended to the following frame (b).

The region from the first frame (close-up shown in (c)) is first transformed to the next frame (dashed ellipse in (d)) and then aligned to the image

intensities (solid ellipse in (d)). The initial propagation transformation (translation in this case) is estimated from the five (spatially) nearest

already existing basic stage tracks. These are shown in (e) and (f). The lines in (e) show the centroid motion of each of the five tracked regions.

See text for more details.

in which case the current track is extended; (iii) if the

new instantiated region matches (correlates with) an

existing region in its (5 pixel) neighbourhood then this

existing region is added to the track; (iv) if the matched

region already belongs to a track starting in the new

frame, then the two tracks are joined.

Figure 4 gives the ‘before and after’ histogram of

track lengths for the two example shots of Fig. 1. The

results of this repair are shown in Figs. 3 and 8. Detail

of a single region track after the repair stage is shown

in Fig. 6.

As can be seen, there is a dramatic improvement in

the length of the tracks — as was the objective here.

The success of this method is due to the availability

and use of two complementary constraints — motion

and appearance.

Note also that the region propagation can develop

tracks on deforming objects where the between-frame

region deformation can be modelled by an affine

geometric transformation. Figure 9 shows an exam-

ple of such a track on the mouth of a speaking

person.
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Figure 6. Detail of a single region track after repair. Note the significant change in viewpoint. Top row: Five frames from the shot of Figure 3

with the tracked affine covariant region superimposed. Bottom row: Corresponding close-ups of the tracked region. The solid line denotes

regions detected by the affine covariant region detector. The dashdot line denotes regions filled-in by propagation. This particular track extends

over 52 frames and consists of 4 basic tracks (a total of 18 detected regions) connected by 34 filled-in regions (including 4 regions which were

detected but not associated with any basic track).

4. Application I: Using Multiple Exemplars

for Retrieval

The goal here is for a user to be able to specify an

object of interest in a single frame, by defining a query

region delineating the object, and this to be suffi-

cient input to retrieve all shots containing instances

of that object throughout the movie, even though

the object may deform or be imaged from a differ-

ent visual aspect than that of the query frame (see

Section 7).

To achieve this, tracks of affine covariant regions

throughout the shot are used to automatically asso-

ciate multiple image exemplars of the object — query

regions in other frames — and use the associated ex-

emplars to enhance the original user specified query.

The idea is illustrated in Fig. 7.

In detail a query region is ‘transported’ from the

query frame to other frames in the shot as follows: the

set of affine covariant regions enclosed by the query

region is determined; the tracked regions then deter-

mine a corresponding set in each frame of the shot; in

turn the rectangular bounding box (or union) of this set

determines a query region for that frame. Matching is

then carried out for all query regions using the Video

Google method (reviewed below).

Figure 10 shows an example of an enhanced query.

A user outlines a query rectangle in a single frame, as

shown in Fig. 10a (top). Tracks on affine covariant re-

gions passing through the user outlined rectangle then

define associated query rectangles in other frames. The

tracks are shown in Fig. 8. Tracking objects with a lim-

ited amount of deformation is possible since the region

tracking described in Sections 2 and 3 allows a covari-

ant region to undergo affine geometric transformation

between consecutive frames of the video. A detail of a

Figure 7. Conceptually, we extend the standard paradigm of image

based retrieval (a), where the query is defined by a region within a

single image, to retrieval at an object-level (b) where an object is

defined over multiple images. A query region in the (shaded) query

frame acts as a portal to all the keyframes and search regions within

a shot associated by the tracked affine regions.

single region track on a deforming mouth is shown in

Fig. 9.

The deforming and rotating object (actor’s head talk-

ing and turning) is represented automatically by mul-

tiple exemplars (instances over multiple frames within

one shot). The following sub-sections give implemen-

tation details.

4.1. Retrieval on a Single Image Query — Video

Google

This is a brief overview of the Video Google

shot retrieval method described in Sivic and Zisser-

man (2003). The goal is to efficiently and accurately

match the object specified by a query region through-

out a video. The object is represented by the set of

affine covariant regions within the query region (their

appearance and position).

In order to match affine covariant regions effi-

ciently each region is first represented as a 128-

dimensional vector using the SIFT descriptor devel-

oped by Lowe (1999). The SIFT descriptors are then



196 Sivic, Schaffalitzky and Zisserman

Figure 8. Tracking deforming objects. (a) Eight frames (of 133) for the head turning shot. (b) Tracked viewpoint covariant regions on the

actor’s head. The tracks are selected in one frame by a user query (see text). Only tracks longer than 10 frames are shown here. A detail of the

mouth track is given in Fig. 9.

Figure 9. Detail of a region track in 10 consecutive frames covering the deforming mouth whilst the actor speaks. This track extends over

28 frames.

vector quantized using K-means clustering. The clus-

ters are computed from 474 frames of the video,

with 6,000 clusters for regions based on interest point

neighbourhoods (Schaffalitzky and Zisserman, 2002;

Mikolajczyk and Schmid, 2002), and 10,000 clus-

ters for Maximally Stable Extremal Regions (Matas

et al., 2002). All the descriptors for each frame of the

video are assigned to the cluster centre nearest to their

SIFT descriptor. Vector quantizing brings a huge com-

putational advantage because descriptors in the same

clusters are considered matched, and no further match-

ing on individual descriptors is then required.

The retrieval proceeds in two stages, first keyframes

(every 25th frame) are ranked based on the histograms

of occurrences of the quantized descriptors, and the

top ranked set selected. This set is then re-ranked by a

local spatial consistency check which requires that spa-

tially close regions in the query frame map to spatially

close regions in the retrieved frame. This spatial consis-

tency requires that a putative affine region match has a

supporting match within its nearest spatial neighbours

(Schmid, 1997; Sivic and Zisserman, 2003). The num-

ber of supporting matches defines the similarity score

between two frames. This is quite a loose spatial con-

straint, and allows object deformation between frames.

4.2. Collating Search Results from Multiple Queries

The goal here is to collate search results from multiple

associated query frames representing the object level
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Figure 10. Retrieving a deformable object using multiple exemplars. (a) The user outlined query region (top) in a single frame, and (bottom)

5 (out of 19) automatically associated keyframes and query regions from within the same shot. The associated query regions are obtained as

rectangular bounding boxes of the tracks (shown in Fig. 8) passing through the user outlined rectangle in the query frame. Note that full profile

views, three quarter views and frontal views with different expressions are associated with the original query frame. (b) The top row shows

example of retrieved frames from different shots by searching on only the user outlined query region. The bottom two rows show example

retrieved frames by searching on the associated query regions as well. Note that the extended query enables the retrieval of full profile views

which would be almost impossible by the original user outlined query. In the first twenty retrieved shots there are five mismatches for other

faces and one mismatch for a non-face.

query in order to return a ranked list of shots. In more

detail we want to compute a retrieval score �l for shot

l, given a set of query frames Sq = {qi} (with query

regions), the set of keyframes Sl = {kj} belonging to

shot l and keyframe scoring function φ(q, k) returning

similarity score between the query region of the query

frame q and keyframe k (as explained in Section 4.1).

Two strategies are used for collating results from

multi image queries: (i) votes for a particular shot are

accumulated across all the associated query frames and

retrieved keyframes, i.e.

�l =

|Sq |
∑

i=1

|Sl |
∑

j=1

φ(qi , k j ), (1)

or (ii) the best matching keyframe from each shot is

used to score the whole shot

�l = max
i, j

φ(qi , k j ). (2)

The advantage of the first method (Eq. (1)) is that a

shot can accumulate votes from multiple query frames,

whereas false positives tend not to be consistent. For

example, if both the query and retrieved shots have

profile and frontal view of a face, then the face shot

can accumulate votes from both the profile and frontal

query frames whereas the false positives would not be

the same for the frontal and profile views and would

therefore receive lower score. The advantage of the

second strategy (Eq. (2)) is that it does not overcount

scores for longer shots. In the matching examples of

Figs. 10, 21 and 24 the first strategy was used. In the

matching example of Fig. 25 the second strategy was

used.

5. Object Extraction by Robust Sub-Space

Estimation

The previous section used tracked affine covariant re-

gions to associate multiple exemplars of an object.
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However, the method is limited in that it can’t ‘see

around corners.’ For example, if we select the three-

quarter view of the van in Fig. 3(a) (second row), only

the side and front of the van will be associated, not

the back of the van, because only tracks originating in

the original three-quarter view are used. In this sec-

tion we take the grouping a stage further and partition

the tracks into groups with coherent motion. In other

words, things that move together are assumed to belong

together. For example, in the shot of Fig. 3 the ideal

outcome would be the van as one object — grouping

the front, side and back even though these are not visi-

ble simultaneously in any single frame. We would also

expect to obtain several groupings of the background.

The grouping constraint used here is that of common

rigid motion, and we assume an affine camera model

so the structure from motion problem reduces to lin-

ear subspace estimation. For a 3-dimensional object,

our objective would be to determine a 3D basis of tra-

jectories bi
k, k = 1, 2, 3, (to span a rank 3 subspace)

so that (after subtracting the centroid) all the trajecto-

ries xj
i associated with the object could be written as

(Zelnik-Manor and Irani, 1999):

xi
j =

(

bi
1, bi

2, bi
3

)

(X j , Y j , Z j )
⊤

where xi
j is the measured (x, y) position of the jth point

in frame i, and (Xj, Yj, Zj) is the 3D affine structure.

The maximum likelihood estimate of the basis vec-

tors and affine structure could then be obtained by

minimizing the reprojection error

∑

i j

∥

∥ni
j

(

xi
j −

(

bi
1, bi

2, bi
3

)

(X j , Y j , Z j )
⊤
)
∥

∥

2
(3)

where ni
j is an indicator variable to label whether the

point j is (correctly) detected in frame i, and must also

be estimated. This indicator variable is necessary to

handle missing data.

It is well known (Torr et al., 1998) that directly

fitting a rank 3 subspace to trajectories is often unsuc-

cessful and suffers from over-fitting. For example, in a

video shot the inter-frame motion is quite slow so us-

ing motion alone it is easy to under-segment and group

foreground objects with the background.

We build in immunity to this problem from the start,

and fit subspaces in two stages: first, a low dimensional

model (a projective homography) is used to hypothe-

size groups — this over-segments the tracks. These

groups are then associated throughout the shot using

track co-occurrences. The outcome is that trajectories

are grouped into sets belonging to a single object. In

the second stage 3D subspaces are sampled from these

sets, without over-fitting, and used to merge the sets

arising from each object. These steps are described in

the following sub-sections. The complete algorithm is

summarized in Fig. 19. This approach differs funda-

mentally from that of Aanaes et al. (2002) and De la

Torre and Black (2003) where robustness is achieved

by iteratively re-weighting outliers but no account is

taken of motion degeneracy.

5.1. Basic Motion Grouping Using Homographies

To determine the motion-grouped tracks for a partic-

ular frame, both the previous and subsequent frames

are considered. The aim is then to partition all tracks

extending over the three frames into sets with a com-

mon motion. To achieve this, homographies are fitted

to each pair of frames of the triplet using RANSAC.

In each RANSAC iteration, a four-tuple of tracks ex-

tending over the three frames is sampled and three

homographies (H12, H13, H23) are computed. The set

of inlying tracks is computed based on image repro-

jection error averaged over the three frames. The inlier

threshold is set to a generous number of pixels (around

3 here). The inlying set is removed, and RANSAC is

then applied to the remaining tracks to extract the next

largest motion grouping, etc. This procedure is applied

to all triplets of consecutive frames in the shot, i.e. the

neighbouring triplets share two frames. In the next step

motion groups are linked throughout the shot into an

object.

5.2. Aggregating Segmentation over Multiple

Frames

The problem with fitting motion models to pairs or

triplets of frames are twofold: (i) a phantom motion

cluster corresponding to a combination of two indepen-

dent motions grouped together can arise (Torr, 1995),

and (ii) an outlying track will be occasionally, but not

consistently, erroneously grouped together with one of

the motion groups. In our experience these ambigui-

ties tend not to be stable over many frames, but rather

occasionally appear and disappear. To deal with these

problems we devise a voting strategy which groups

tracks that are consistently segmented together over

multiple frames.
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Figure 11. Aggregating segmentation over multiple frames. (a) The track co-occurrence matrix for a ten frame block of the shot from Fig. 3.

White indicates high co-occurrence. (b) The thresholded co-occurrence matrix re-ordered according to its connected components (see text). (c)

(d) The sets of tracks corresponding to the two largest components (of size 1157 and 97). The other components correspond to 16 outliers.

The basic motion grouping of Section 5.1 provides

a track segmentation for each triplet of consecutive

frames. The goal is to pull out sets of tracks which

are consistently grouped together over a wider base-

line. This is achieved by a simple clustering algorithm

which operates on a track-to-track similarity matrix,

where the track-to-track similarity is based on tempo-

ral consistency between the two tracks, i.e. the number

of frames over which the two tracks co-occur together

in one motion segment (which is given by the basic

homography based motion grouping).

In more detail the shot is divided into blocks of

frames over a wider baseline of n frames (n = 10 for ex-

ample) and a track-to-track co-occurrence matrix W is

computed for each block. The element wij of the matrix

W accumulates a vote for each frame where tracks i and

j are grouped together. Votes are added for all frames in

the block. In other words, the similarity score between

two tracks is the number of frames (within the 10-frame

block) in which the two tracks were grouped together.

The task is now to segment the track voting matrix

W into temporally coherent clusters of tracks. This is

achieved by finding connected components of a graph

corresponding to the thresholded matrix W. To prevent

under-segmentation the threshold is set to a value larger

than half of the frame baseline of the block, i.e. 6 for

the 10 frame block size. This guarantees that each track

cannot be assigned to more than one group. Only com-

ponents exceeding a certain minimal number of tracks

are retained. Figure 11 shows an example of the voting

scheme applied on a ten frame block from the shot of

Figure 3. This simple scheme segments the matrix W

reliably and overcomes the phantoms and outliers.

The motion clusters extracted in the neighbouring

10 frame blocks are then associated based on the com-

mon tracks between the blocks. This is achieved by

gradually progressing through frame blocks in the shot

starting from the first block and associating motion

clusters which are connected by a significant num-

ber of tracks. Significance is measured relative to the

number of tracks in both the motion clusters, i.e. two

motion clusters in the neighbouring blocks have to

share at least 50% tracks to be associated. The result

is a set of connected clusters of tracks which corre-

spond to independently moving objects throughout the

shot.
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Figure 12. Motion grouping example I: Four dominant objects extracted from the van shot of Fig. 3. (a), (b) The first two objects corresponds

to the van before (a) and after (b) the occlusion by the post. Note the billboard post right behind the van in the top left image of (b). This post

partially occludes the van in 21 frames. (c), (d) The other two objects correspond to the background at the beginning (a) and the end (b) of the

shot. The background in the middle of the shot was not tracked due to severe motion blur.

5.3. Object Extraction

The previous track clustering step usually results in no

more than 10 dominant (measured by the number of

tracks) motion clusters larger than 20 tracks. The goal

now is to identify those clusters that belong to the same

moving 3D object. This is achieved by grouping pairs

of track-clusters over a wider baseline of m frames (m >
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Figure 13. The sparsity pattern of the tracked features (after the

short range track repair) in the van shot of Fig. 5. The tracks are

sorted according to the frame they start in and coloured according to

the independently moving objects, that they belong to, as described

in Section 5. The two gray blocks (track numbers 1-1808 and 2546-

5011) correspond to the two background objects. The red and green

blocks (1809-2415 and 2416-2545 respectively) correspond to the

van object before and after the occlusion.

10 here). To test whether to group two clusters, tracks

from both sets are pooled together and a RANSAC

algorithm is applied to all tracks intersecting the m

frames. The algorithm robustly fits a rank 3 subspace

as described in Eq. (3).

In each RANSAC iteration, four tracks are selected

and full affine factorization is applied to estimate

the three basis trajectories which span the three

dimensional subspace of the (2m dimensional)

trajectory space. All other tracks that are visible in

at least five views are projected onto the space. A

threshold (1.5 pixels) is set on reprojection error

to determine the number of inliers. To prevent the

grouping of inconsistent clusters a high number

of inliers (90%) from both sets of tracks is re-

quired. When no more clusters can be paired, all

remaining clusters are considered as separate objects.

Figure 14. Trajectories following object-level grouping. Top: A

selection of 110 region tracks (out of a total of 429 between these

frames) shown by their centroid motion. Bottom: Five region tracks

shown as spatio-temporal “tubes” in the video volume. The frames

shown are 68 and 80. Both figures clearly show the foreshortening

as the car recedes into the distance towards the end of the shot. The

number and quality of the tracks is evident: the tubes are approaching

a dense epipolar image (Bolles et al., 1987), but with explicit corre-

spondence; the centroid motion demonstrates that outlier ‘strands’

have been entirely ‘combed’ out, to give a well conditioned track set.
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Figure 15. Motion grouping example II: object-level grouping for a 35 frame shot. Top row: The original frames of the shot. Middle and

bottom row: The two dominant (measured by the number of tracks) objects detected in the shot. The number of tracks associated with each

object is 721 (car) and 2485 (background).

The rigidity based grouping is currently applied only

to pairs of track-clusters. Complex objects made of

more than two track-clusters could be handled by iter-

ative merging pairs of clusters into larger groups.

5.4. Object Extraction Results

Figure 12 shows the four grouped objects for this ex-

ample shot. Two of the objects correspond to the van

(before and after the occlusion by the post, see Fig. 20

in Section 6) and two correspond to the backgrounds

at the beginning and end of the shot. The number

of tracks associated with each object are 607 (van

pre-occlusion), 130 (van post-occlusion), 1808 (back-

ground start) and 2466 (background end). The sparsity

pattern of the tracks belonging to different objects is

shown in Fig. 13. Each of the background objects is

composed of only one motion cluster. The van (pre-

occlusion) object is composed of two motion clusters

of size 580 and 27 which are joined at the object ex-

traction RANSAC stage. The quality and coverage of

the resulting tracks is visualized in the spatio-temporal

domain in Fig. 14.

Two additional examples of rigid object extraction

from different shots are given in Figs. 15 and 16. Fig-

ures 17 and 18 show examples of slowly deforming

objects. This deformation is allowed because at the

first homography based stage rigidity is only applied

over a short baseline of three frames.

Computation time: To give some idea of how long the

object-level grouping takes we have recorded compu-

tation times for the example van shot of Fig. 3. This

shot has a total of 187 frames. The region detection and

descriptor computation took on average 11 seconds per

frame. The basic tracking took 16 minutes (∼5 seconds

per frame). The track repair by region propagation took

304 minutes (∼97 seconds per frame). The track repair

is currently implemented in Matlab and is the bottle-

neck of the algorithm. The motion grouping algorithm

took 56 minutes of which stage 4a took 12 mins, 4b 23

mins and 4c 21 mins. The different stages refer to the

algorithm summary in Fig. 19. The motion grouping

algorithm is also entirely implemented in Matlab. All

timings are on a 2 GHz machine.

6. Long Range Track Repair

The object extraction method described in the previ-

ous section groups objects that are temporally coherent.

The aim now is to connect objects that appear several

times throughout a shot, for example an object that dis-

appears for a while due to occlusion. Typically a set of

tracks will terminate simultaneously (at the occlusion),

and another set will start (after the occlusion). The sit-

uation is like joining up a cable (of multiple tracks)

that has been cut.

The set of tracks is joined by applying standard wide

baseline matching (Matas et al., 2002; Schaffalitzky

and Zisserman, 2002; Tuytelaars and Van Gool, 2000)

to a pair of frames that each contain the object. There

are two stages: first, epsilon-nearest neighbour search

on a SIFT descriptor (Lowe, 1999) for each region,

is performed to get a set of putative region matches,

and second, this set is disambiguated by a local spatial
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Figure 16. Motion grouping example III: Object-level grouping for a 153 frame shot where the camera is tracking a van followed by another

car. (a) Seven frames of the shot. (b)—(d) The three extracted objects correspond to (b) the van (1108 tracks), (c) the background (4481 tracks)

and (d) the other car (210 tracks). The trajectory of the regions is not shown here in order to make the clusters visible.

consistency constraint: a putative match is discarded

if it does not have a supporting match within its k-

nearest spatial neighbours (Schmid, 1997; Sivic and

Zisserman, 2003). Since each region considered for

matching is part of a track, it is straightforward to

extend the matching to join tracks. The two objects

are deemed matched if the number of matched tracks

exceeds a threshold. Figure 20 shows two examples

of long range repair on shots where the object was

temporarily occluded.

7. Application II: Object-Level Video Matching

The objective here is to retrieve shots within the film

containing the object, even though the object may be

imaged from a different visual aspect than in the query

image region.

Having computed object-level groupings for shots

throughout the film, we are now in a position to re-

trieve object matches given only one visual aspect of

the object as a query region. As in the application en-
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Figure 17. Motion grouping example IV: object-level grouping for a 83 frame shot. Top row: The original frames of the shot. Middle and

bottom row: The two dominant (measured by the number of tracks) objects detected in the shot. The number of tracks associated with each

object is 225 (landlady) and 2764 (background). The landlady is an example of a slowly deforming object.

Figure 18. Motion grouping example V: object-level grouping for a 645 frame shot. Top row: The original frames of the shot where a

person walks across the room while tracked by the camera. Middle and bottom row: The two dominant (measured by the number of tracks)

objects detected in the shot. The number of tracks associated with each object is 401 (the walking person) and 15,053 (background). The object

corresponding to the walking person is a join of three objects (of size 114, 146 and 141 tracks) connected by a long range repair using wide

baseline matching, see Fig. 20b. The long range repair was necessary because the tracks are broken twice: once due to occlusion by a plant

(visible in frames two and three in the first row) and the second time (not shown in the figure) due to the person turning his back on the camera.

The trajectory of the regions is not shown here in order to make the clusters visible.

gineered in Section 4, a query region in one frame acts

as a portal to a set of associated query regions — but

here the association is on common 3D motion as de-

scribed in Section 5. (In fact since the object has been

segmented it is only necessary for the user to ‘click’

on the object in one frame).

The associated query regions form an implicit rep-

resentation of the 3D structure, and are sufficient for

matching when different visual aspects or parts of the

object are seen in different frames of the shot. As shown

in Figs. 21 and 24, associated frames naturally span the

object’s visual aspects contained within the shot.

Examples of object-level matching throughout a

database of 5,641 keyframes of the entire movie

‘Groundhog Day’ is shown in Figs. 21, 24 and 25. In

all cases false positives were also retrieved. Retrieval

performance for two of the examples is discussed in

more detail in the following section.
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Figure 19. Object-level grouping algorithm. Associate indepen-

dently moving objects within a shot using rigid motion consistency.

7.1. Retrieval Performance

The van query: Ground truth was obtained for the

van query in Figure 21 by marking all keyframes and

shots where the van appears in the movie. In order to

be deemed present in a frame, the van was required to

be at least 100 pixels across (in frames that are 720 ×

576 pixels).

Precision-recall curves on the shot level for the

object-level matching example from Fig. 21 are shown

in Fig. 22. In the case of precision-recall curves (a) and

(b) where multiple images were used as query frames,

each query frame was used to place a separate query

and the results from all queries were then pooled to-

gether. Retrieved shots were ranked as described in

Section 4.2, Eq. (1).

Note that the user outlined query frame (curve (c) in

Fig. 22) recalls only 27% of all the ground truth shots

containing the van. This is because the query frame

contains only the side of the van (see Fig. 21(a) (top))

and therefore it is possible to retrieve only shots where

the side of the van is visible. When the object is rep-

resented by a set of keyframes naturally spanning its

visual aspects (curve (b) in Fig. 22) the recall jumps

to 73%. This is because shots containing the front and

back of the van are also retrieved. Representing the ob-

ject by all the frames in the shot (curve (a) in Fig. 22)

brings the recall to 97%. The slight improvement in

precision of curve (a) is mainly due to score accumu-

lation as described in Section 4.2.

False positives responsible for lower precision at

higher recall levels (e.g. 35% precision for 60% recall

in Fig. 22(a)) are mainly due to (i) the spatial consis-

tency check failing e.g. on the sparse textured area on

the side of the van (where there is a large spatial sepa-

ration between the individual features) (ii) motion blur,

which affects the affine covariant region matching, and

(iii) generally low number of good matches on the

van.

The precision could be improved further by the

removal of false positives based on a more thor-

ough (and more expensive) verification, e.g. by

the image exploration algorithm of Ferrari et al.

(2004b).

Figure 20. Two examples of long range repair on (a) shot from Fig. 3 where a van is occluded (by a post) which causes the tracking and

motion segmentation to fail, and (b) shot from Fig. 18 where a person walks behind a plant. First row: sample frames from the two sequences.

Second row: wide-baseline matches on regions of the two frames. The green lines show links between the matched regions. Third row: region

tracks on the two objects that have been matched in the shot.
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Figure 21. Object-level video matching I. (a) Top row: the query frame with the query region (side of the van) selected by the user. (a) Second

row: 5 (out of 6) associated frames and outlined query regions. The query frame acts as a portal to the frames (and query regions) associated

with the object by the motion-based grouping. (b) Top row: example frames retrieved from the entire movie when only the original user selected

frame with user outlined region is used. (b) Rows 2–4: Example frames retrieved from the entire movie by the object-level query (second row

of (a)). Note that views of the van from the back and front are retrieved. This is not possible with wide-baseline matching methods alone using

only the side of the van visible in the query image. In this figure, only true positives are shown. Precision recall curves for this query are shown

in Fig. 22.

Examples of frames from bottom ranked and missed

shots are shown in Fig. 23. They represent very chal-

lenging examples for the current object matching

method.

The Dining room query : Here the match is on the back-

ground location, rather than on the foreground moving

object. Ground truth for the query of Fig. 25 was ob-

tained by marking all shots in the movie which are

taken in the hotel dining room. The precision-recall

curve is shown in Fig. 26. The improved recall of

(a) and (b) over (c) is due to the object-level query

retrieving shots from the same location but with dif-

ferent background than the original query frame. The

improved performance of (a) over (b) is due to bet-

ter sampling of background in the beginning of the

shot with large camera motion where keyframes (ev-

ery 25th frame) miss some parts of the background.

A better keyframe selection technique (Osian and Van

Gool, 2004) based on motion within the shot could be

used here.
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Figure 22. Object-level video matching I. Precision recall curve

for the van query at the shot level. Examples of retrieved frames

are shown in Fig. 21. (a) All frames in the query shot are used as

query frames. (b) 6 frames in the shot are used as query frames. (c)

A single frame (the original frame with user outlined region) is used

as a query frame. Note the limited recall of (c). This is because only

shots where the side of the van is visible are retrieved.

Note that some shots from the dining room are still

not retrieved. This is because in the missed shots the

camera looks at the other side of the room which is

not covered in the query shot. To retrieve these shots

a higher level reasoning might be required e.g. the

temporal editing structure of shots can be used to group

shots into scenes (Goedeme et al., 2005; Kender and

Yeo, 1998). An alternative method of matching only

background locations using wide baseline matching is

given in Schaffalitzky and Zisserman (2003). In our

work the user has a choice of whether to search on

foreground or background object(s).

8. Discussion and Extensions

We have demonstrated that information available in

video shots can be harnessed to enable object-level

grouping and retrieval. This is different in spirit to

query enhancement techniques in text retrieval (Baeza-

Yates and Ribeiro-Neto, 1999), where the high ranked

documents are used to enhance the original query. In

our case we do not use the retrieved shots or frames

to enhance the query but rather we make use of the

temporal continuity of the shot. The enhanced query

is then performed by making a sequence of associated

queries and collating the results.

There are several other research issues: First, in the

matching stage of the current method we plan to rep-

resent the shot by entire region tracks (‘video tubes’)

rather than the set of separate query frames/keyframes

currently used. Using entire ‘video tubes’ could help to

determine the required density of association: Imagine

a close-up shot of a speaking person. Deforming region

Figure 23. Example frames from low ranked (a–c) and missed (d) shots for the van query (Fig. 21). The altered appearance due to snow in

(a, b), and partial occlusion (c, d) affects the affine covariant region extraction and matching methods.
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Figure 24. Object-level video matching II. (a) Top row: the query frame with query region selected by the user. (a) Bottom row: The associated

keyframes. Note that in the associated keyframes the person is visible from the front and also changes scale. See Fig. 18 for the corresponding

object segmentation. (b) Example frames retrieved from the entire movie by the object-level query.

Figure 25. Object-level video matching III. The goal is to retrieve shots in the same location (the hotel dining room). (a) Top row: the query

frame with the query region selected by the user. Bottom row: 5 (out of 25) associated keyframes. The object here is the extended background

from the object-level grouping example of Fig. 18. The query area in each associated frame is the union of the motion grouped background

regions. (b) Top row: Example frames from shots retrieved just by the user selected query frame. Bottom row: Example frames from shots

retrieved by the object-level query. Query by the extended background retrieves shots which are from the same location but do not share

background with the user selected query frame. The precision-recall curve for this query is shown in Fig. 26.
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Figure 26. Object-level video matching III. Precision-recall curve

for the dining room query. Examples of retrieved frames are shown

in Fig. 25. (a) Every fifth frame in the query shot is used as a query

frame (127 frames in total). (b) 25 keyframes used as query frames.

(c) A single frame (the original frame with the user outlined region)

is used as a query frame.

tracks on the person’s face would be represented by

several different appearance descriptors correspond-

ing to different expressions, e.g. open and closed eyes,

whereas region tracks on the (rigid) background would

have just one appearance descriptor. ‘Video tubes’

should provide a complete but at the same time concise

representation of video for recognition.

Second, a limitation of the current method is that

multiple aspects/deformations have to be present in

the query shot. The next step is to use available region

tracks within the (correctly) retrieved shots to perform

the associations. For example, if the user supplies a

query still image of a frontal view of an actor’s face.

Querying by this image alone will only return close to-

frontal views of the face with similar facial expressions.

However, region tracks in the retrieved shots can be

used to associate other views of the face and different

expressions, which can then be used in a second set of

queries. This process can be iterated. This would have

to be done with some care in order to avoid a ‘chain

reaction’ by matching on retrieved false positives.
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