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ABSTRACT

Software engineering evolved significantly in the past decades and is definitively

established as an engineering discipline. However, the past years completely changed

the nature of the software industry. The Internet, information appliances,

entertainment and e-commerce are today large industry segments, often dominated

by startups or small companies that work in turbulent environments and face intense

competition. Moreover, today there is an increasing diversity of computing devices

that are becoming ubiquitous and reaching a growing number of users. In many

situations users experience the user-interface of a software intensive system before

they commit to purchasing a product or service. Therefore, usability is increasingly

becoming an important issue in software development.

This thesis explores how object modeling can contribute to integrate usability

engineering into modern software development providing benefits for both

disciplines. The Wisdom UML-based approach presented here promotes a lightweight

software development method encompassing three major aspects. The Wisdom

process enables a new understanding of an UML-based process framework and

provides an alternative to the Unified Process specifically adapted to promote a rapid,

evolutionary prototyping model, which seamlessly adapts non-classical development

lifecycles required by small software development teams. To accomplish this the

Wisdom process relies on a new model architecture that promotes a set of UML-based

models to support user-centered development and user-interface design. The Wisdom

model architecture introduces new models to support user-role modeling, interaction

modeling, dialogue modeling and presentation modeling. In addition, we propose a

new analysis-level architecture that supports the integration of architectural

significant user-interface elements. Finally, the Wisdom notation is a subset and

extension of the UML that reduces the total number of concepts required to develop

interactive systems. The Wisdom notation simplifies the application of the UML and

defines a new set of modeling constructs necessary to support the Wisdom process

and architecture.

This thesis also demonstrates how object modeling can benefit usability engineering

by leveraging the UML tool support and interoperability. We describe how the

Wisdom notation can drive automatic generation of appliance independent user-

interfaces and promote artifact change between task modeling tools and UML

modeling tools. We also discuss how the Wisdom notation can promote user-interface

patterns by providing an abstract notation for documenting recurring solutions in

interaction design.
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RESUMO

A engenharia de software desenvolveu-se significativamente nas últimas décadas

afirmando-se hoje definitivamente como uma disciplina da engenharia. Todavia, os

últimos anos alteraram por completo a natureza da indústria de software. A Internet,

os dispositivos de informação, o entretenimento e o negócio electrónico são hoje

mercados importantes, muitas vezes dominados por pequenas empresas que

trabalham em ambientes turbulentos e extremamente competitivos. A crescente

diversidade e ubiquidade dos sistemas computacionais serve hoje um número

crescente de utilizadores que, muito frequentemente, experimentam a interface dos

sistemas de software antes mesmo de se comprometerem a adquirir os produtos ou

serviços. Desta forma, a “usabilidade” (facilidade de utilização) dos sistemas

informáticos tornou-se uma questão central para a engenharia de software.

A presente tese explora a forma como a modelação por objectos pode contribuir para

integrar métodos e técnicas da usabilidade no desenvolvimento moderno de software,

permitindo benefícios para ambas as disciplinas. O método Wisdom, aqui

apresentado, é uma nova proposta de um método de desenvolvimeno de software

simplificado que compreende três aspectos importantes. O processo Wisdom define

uma alternativa ao Processo Unificado especialmente adaptada ao desenvolvimento

de software por pequenos grupos de pessoas de uma forma rápida e assente num

modelo controlado de prototipificação evolutiva. O modelo de desenvolvimento

subjacente ao processo Wisdom assenta numa nova arquitectura de modelos UML

que suporta o desenvolvimento centrado nos utilizadores e o desenho de interfaces

com o utilizador. A arquitectura Wisdom introduz novos modelos UML que

suportam a modelação de perfis de utilizadores, da interacção, do diálogo homem-

máquina, e das questões de apresentação, bem como, propõe um novo

enquadramento dos elementos estruturais de análise UML, os quais permitem a

integração de aspectos relacionados com a interacção. Finalmente, a notação Wisdom

é um subconjunto e extensão do UML que reduz significativamente o número total de

conceitos necessários para o desenvolvimento de sistemas interactivos. Por um lado

simplifica a utilização do UML e, por outro, define um novo conjunto de elementos de

modelação que suportam o processo e a arquitectura Wisdom.

A presente tese demonstra, igualmente, como a modelação por objectos pode

beneficiar os métodos e técnicas da usabilidade potenciando o suporte de ferramentas

UML e a sua interoperabilidade. Esta dissertação ilustra que a notação Wisdom

permite a geração automática de interfaces com o utilizador para múltiplos

dispositivos de informação e a troca de informação entre ferramentas UML e

ferramentas de modelação de tarefas. É também aqui discutido como a notação

Wisdom pode descrever padrões de desenho de interfaces com utilizador recorrendo

a uma notação abstracta e normalizada.
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I.  INTRODUCTION

"People Propose, Science Studies, Technology Conforms"

Donald Norman person-centered motto for the 21st

century [Norman, 1993]

Software engineering conventionally targeted large, contract-based development for

the defense and industry sectors. Although the software engineering discipline

achieved significant improvements in that area, today modern software development

faces completely different problems. The past years completely changed the nature of

the software industry. The increasing diversity of computing devices, the Internet,

and entertainment are today large industry segments, often dominated by startups or

small companies that work under intense competition. Software engineering is faced

today with the problem of adapting conventional methods, techniques and

technologies to work in evolutionary, rapid, extreme and other non-classical styles of

software development.

There is substantial evidence that attention to usability dramatically decreases the

costs and increases productivity of software intensive systems. Nevertheless,

developers rarely employ usability engineering methods and techniques in real-life

projects. One important reason that usability engineering is not used in practice is the

assumption that usability methods and techniques are costly and can only be used by

large companies. However, the requirements for the next generation of user interfaces

are quite different. The increasing diversity and connectivity of computing devices,

and the new consumers of computing technology will have a profound effect on the

future of user-interfaces.

Like for software engineering there is no silver bullet to make user-centered

development and user interface design easy. Software engineering and usability
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engineering are today established fields; decades of research provided significant

contributions that can help with the new and envisioned problems. The approach

followed in this thesis is to bridge both fields taking advantage of what they best have

to offer. The underlying principle is that some of the problems that software

engineering faces today are the essence of what usability engineering promoted for

years. Conversely, some of the problems that usability engineering currently faces are

already successfully solved in the software engineering field.

This thesis explores the bridges between software engineering and usability

engineering. Taking one of the most recent and important developments in software

engineering – the Unified Modeling Language (UML) – we explore how the benefit of

a standard non-proprietary language can help introduce usability engineering

methods and techniques into the software development lifecycle.
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I.1. MOTIVATION

"We see computers everywhere but in the productivity

statistics"

Attributed to Robert Solow [Landauer, 1997]

There are several well-documented examples of cost savings from employing

usability engineering methods and techniques in software development. Studies

consensually point out the evidence that usability engineering dramatically reduces

costs (including training, support, errors, maintenance and late changes) and increases

the benefits (including productivity and sales). It is not our remit here to make an

extensive survey of studies about cost-justifying usability engineering, instead we

summarize some references that motivate the need for usability engineering.

In a study about the impact of Information Technology (IT) in labor productivity,

Landauer [Landauer, 1997] found out that the low return on investment from IT

appears to be the missing piece in the post-war productivity slowdown puzzle. The

author demonstrates this hypothesis through an extensive review of productivity

statistics that clearly point out that: “the downturn of productivity growth over time

coincident with widespread computerization, the concentration of growth failure in

industries most heavily involved, the failure of labor productivity in services to

respond positively to lavish information technology, the long term lack of correlation

of business success with investment in this new technology” [Landauer, 1997]. This

interpretation of the productivity statistics is sustained by the fact that computers are:

(i) often used to support tasks that are irrelevant or detrimental to true productivity,

and (ii) frequently not helpful when intended to increase worker or process efficiency

[Landauer, 1997]. According to the author, the reason behind this problem is

“foremost is reliance on traditional design and engineering methods that are not

sufficient for the development of tools for intellectual work” [Landauer, 1997]. A shift

towards user-centered design and usability engineering methods and techniques is

predicted by Landauer to increase white-collar work efficiency by 40% per year,

against 5% only applying conventional methods [Landauer, 1997].

Landauer’s prediction about the impact of user-centered design and usability

engineering is sustained by several concrete studies. One study reported savings from

usability engineering of $41,700USD in a small application used by 23,000 marketing

personnel, and $6,800,000 or a large business application used by 240,000 employees
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[Karat, 1990]. Contatine and Lockwood refer an Australian study of hidden usability

problems to be between $6,000AD and $20,000AD per year for each workstation

[Constantine and Lockwood, 1999]. A mathematical model based on 11 studies

suggests that usability engineering saves $39,000USD in a small project, $613,000USD

in a medium project, and $8,200,000USD in a large project.  In an entire book devoted

to the theme of cost-justifying usability [Bias and Mayhew, 1994], Mayhew and

Mantei estimate a complete planned usability-engineering program (for a large

company in a large project) to cost $132,186USD and the benefits to be $209,490USD

for an internal developer organization and $592,635 for a vendor company [Bias and

Mayhew, 1994].

The studies mentioned before are usually associated with large companies and large

projects. For instance, the cost estimated by Mayhew and Mantei for a usability-

engineering program exceeds several times the entire development cost of most small

companies. Recognizing the problem that usability engineering is perceived by small

companies as expensive (and thus not cost-effective), Nielsen argued that the initial

estimate of $132,186USD could be cut to $65,330USD if discount usability engineering

methods where used [Nielsen, 1994]. An additional study of the usability budgets of

31 development projects confirmed the assumption that usability costs scale down

with project size. Nielsen estimates that two person-years is the mean usability

engineering effort in a project and that four person-years would be sufficient for most

projects [Nielsen, 1994].

The impact of usability engineering in Internet economy is expected to be of even

greater importance. As Nielsen points out “the web reverses the picture. Now, users

experience the usability of a site before they have committed to using it and before

they have spent any money on potential purchases.” [Nielsen, 2000]. Moreover, on the

web the competition is not limited to other companies in the same industry: “With all

the other millions of sites out there, you are in competition for the user’s time and

attention, and web users get their expectations from the very best of all these other

sites.” [Nielsen, 2000].

Finally, usability engineering is also expected to rise in importance with the advent of

information appliances and ubiquitous computing. Users are expected to interact with

small-specialized information devices that have the ability to share information

among themselves [Norman, 1998]. As Norman points out “we’re moving from a

technology-centered youth to a consumer-centered maturity” [Norman, 1998].

According to the needs-satisfaction curve of technology [Norman, 1998], in the

beginning technology cannot meet all the needs of customer and, thus, the early

adopters that need the technology are willing to suffer inconvenience and high cost.

As technology matures and reaches the point where it satisfies the basic needs

customers change their behavior. In the maturity level customers seek efficiency,

reliability, low-cost and convenience. Moreover, the new customers that enter the

market are more pragmatic, conservative and skeptic [Norman, 1998]. In the words of
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Norman: “changing times require changing behavior. The entire product

development process must change. The strategy of the industry must change. No

longer can sheer engineering suffice. Now, for the first time, not only must the

company take marketing seriously, it must introduce yet a third partner to the

development process: user experience” [Norman, 1998].
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I.2. PROBLEM STATEMENT

The hypothesis of this thesis is that the Unified Modeling Language (UML) can be

used to effectively integrate usability engineering into software development with

increasing benefits for the development of modern highly interactive software

intensive systems. We claim that the same argument that drove the adoption of the

UML – to enable tool interoperability at semantic level and provide common language

for specifying, visualizing and documenting software intensive systems – applies to

bridging the gap between usability engineering and software engineering. In addition,

we claim that the problems that software engineering faces with non-classical styles of

software development can be solved applying usability engineering methods and

techniques.
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I.3. SUMMARY OF CONTRIBUTIONS

The main contributions of this dissertation are as follows:

•  It describes principles and theories of usability engineering and object-oriented

software engineering in terms understandable and relevant to modern interactive

system development (see Chapter II);

•  It describes the state-of-the-art in object modeling for user-centered development

and user interface design. Discusses the useful models for object-oriented user

interface design and reviews the integrated user-centered object-oriented methods

(see Chapter III);

•  It proposes an original process framework that provides an alternative to the

Unified Process specifically adapted to promote a rapid, evolutionary prototyping

model, which seamlessly adapts the requirements of small software development

teams that typically work chaotically (see Chapter IV).

•  It proposes an original UML model architecture defining a set of UML models

required to build interactive system according to the best practices of object

modeling for user-centered development and user-interface design (see Chapter

IV). The Wisdom model architecture supports all the artifacts required for user-

centered development and user-interface design, in particular user role modeling,

interaction modeling, dialogue modeling and presentation modeling;

•  It proposes an original extension of the UML analysis framework (the Wisdom

user-interface architecture) that enables the integration of architectural significant

user-interface elements in the conventional object-oriented analysis framework

(see Chapter IV);

•  It proposes a set of UML compliant modeling notations (the Wisdom notation),

specifically adapted to develop interactive systems (see Chapter IV). The Wisdom

notation adapts several recent contributions in the field of OO-UC to the UML

style and standard; and also proposes new notations to support effective and

efficient user-centered development and user-interface design. The original

notational contributions introduced in the Wisdom notation enable the description

of user profiles, user-interface architectures, presentation and dialogue aspects of

interactive systems;

•  It demonstrates how the Wisdom process, architecture and notation collectively

support a user-centered object-oriented software development method (the

Wisdom method). The Wisdom method is specifically adapted for small teams of

developers required to develop high-quality interactive software systems in non-

classical environments The Wisdom method is particularly innovative because it

combines a controlled evolutionary and rapid prototyping process model (the
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Wisdom process), with the best practices defined in usability engineering. Wisdom

enables small groups of developers to work in highly turbulent and competitive

environments taking advantage of what best characterizes them: enhanced

communication, flexibility, fast reaction, improvisation and creativity (see Chapter

IV);

•  It demonstrates the successful application of the Wisdom method for appliance-

independent user interface design, taking advantage of the UML tool interchange

infrastructure (see Chapter V). It also demonstrates how the Wisdom models can

effectively be used to automatically generate user interfaces rendered on multiple

devices;

•  It proposes a new envisioned tool environment for appliance independent user-

interface design, using flexible model-based automatic generation of user-

interfaces capable of being rendered on multiple platforms. It discusses how such

an environment could leverage the UML tool interchange format and concentrate

on highly focused user-centered tools that help developers on their tasks (see

Chapter V);

•  It demonstrates how the Wisdom notation can be used to represent the solution

underlying user-interface patterns in an abstract way that is independent of a

particular design or implementation (Chapter V).
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I.4. ORGANIZATION OF THE THESIS

This dissertation consists of six chapters. The next chapter reviews the main theories

and practical approaches in usability engineering and object-oriented software

development, drawn from the human-computer interaction and software engineering

journals and books.

Chapter III describes the recent developments in the field of object modeling and user

interface design. The chapter starts with a brief historical perspective and carries on to

a discussion of the useful models in object oriented user interface design. The chapter

ends with a review of the methods that apply object-oriented principles for user-

centered and user-interface design. From the review we present a new proposal for an

integrated user-centered object-oriented process framework.

Chapter IV presents the Whitewater Interactive System Development with Object

Models (Wisdom) method. The chapter starts discussing the application context of

Wisdom (small software companies). The chapter continues presenting the three main

contributions underlying the Wisdom method: the Wisdom process, architectural

models and notation. Chapter IV ends with a detailed presentation of the Wisdom

method for each major software development workflow: requirements, analysis and

design. During the presentation specific techniques are discussed and examples

provided.

Chapter V describes practical experiences of applying the Wisdom method in

different aspects related to user interface design and specifically the impact regarding

tool support. In this chapter we demonstrate how Wisdom can be used to

automatically generate appliance-independent user interfaces. We then discuss how

the Wisdom notation can take advantage of the UML interchange format. The chapter

ends with a discussion of the Wisdom notation as a means of representing user-

interface patterns.

 Chapter VI presents the conclusions and future developments.
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II.  BACKGROUND: A BRIEF SURVEY OF
USABILITY ENGINEERING AND
OBJECT MODELING

“The ideal engineer is a composite ... He is not a scientist, he is

not a mathematician, he is not a sociologist or a writer; but he

may use the knowledge and techniques of any or all of these

disciplines in solving engineering problems.”

—N. W. Dougherty (1955)

This chapter reviews the main theories and practical approaches in usability

engineering and object-oriented software development. The main theories described

in this chapter are drawn from the human-computer interaction and software

engineering journals and books.

The chapter starts presenting the definition of usability drawn from the user-centered

design standard. Usability is then put into the wider context of system acceptability

and characterized in terms of a set of attributes (learnability, efficiency, memorability,

error prevention and satisfaction) that enable a systematic approach to usability as an

engineering discipline. From the definition of usability we then describe the major

theoretical frameworks of usability, mainly drawn from the cognitive psychology

perspective. From the description of the model human processor framework we

present the Goals, Operators, Methods and Selection-rules (GOMS) family of models,

one of the most widely accepted theoretical models to predict and evaluate human

performance. Although many of these theories are widely accepted, none of them are

irrefutable. Therefore we present new developments in the field and describe the

major drawbacks of theoretical approaches that describe human behavior using the

computer metaphor. One complementary approach, that overcomes the problem of
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extracting quantitative measures from a qualitative model, is the notion of mental and

conceptual models. A definition of mental and conceptual models is provided and

related to Norman’s cycle of interaction – another widely used cognitive framework of

usability. The cycle of interaction and the gulfs of execution and evaluation, are finally

used to review a list of usability heuristics commonly used as principles and rules of

user-interface design.

Since the goal of this chapter is to present usability in the context of software

development, the remainder surveys recent developments in object modeling as the

unifying paradigm of software development. We start from a broad definition of

object modeling, as a technique for organizing knowledge, and its application to

develop software intensive systems. We then address the nature and importance of

modeling in software development, including the major aspects, such as semantic

information (semantics), visual presentation (notation) and context. From this broad

perspective we shift the focus to object-oriented analysis and design, the field that

lead to the Unified Modeling Language de facto standard. We present a brief historical

perspective of object-oriented analysis and design and use Martin and Odell

foundation of object-oriented modeling to introduce the UML standard. Since the

UML is a de facto standard, this section is focused on other less known aspects

(language architecture and extension mechanisms) that are important for the

contributions described in later chapters. The section ends emphasizing the

independence of the UML from methodological background and presenting the major

process framework of the UML – the Unified Process. Key aspects in this topic are

related to architectural descriptions and patterns used in the Unified Process.

The chapter ends with the relationships between usability and software development.

In the final sections we briefly describe the most recent and complete proposal for a

usability engineering lifecycle. The description includes the tasks required to redesign

the software development lifecycle and introduce usability techniques and methods.

From this detailed lifecycle we introduce the broader standard for user-centered

design, describing the main principles and activities involved. From these two broad

process-centric frameworks we briefly describe three areas of usability in software

development that had significant developments in the last twenty years. The field of

participatory design is presented using a taxonomy that related different techniques

that are commonly used in software development, for instance prototyping. The

second field concerns conceptual and implementation software architectures for

interactive systems that had a major impact during the 80s and early 90s in the

implementation of user-interface toolkits. Finally we present a brief overview of

model-based design of interactive systems with a special focus in task-based

approaches, recognized to be the most influential in the field.



Background: A Brief Survey of Usability Engineering and Object Modeling

13

II.1. USABILITY OF SOFTWARE INTENSIVE SYSTEMS:

DEFINITION, THEORIES, MODELS AND PRINCIPLES

This section discusses usability of software intensive system, its definition and major

theories, models and principles. For the purpose of this thesis we are concerned with

usability in the context of the application of engineering principles to systematically

build usable and economically viable interactive systems that support real work in an

effective and efficient way that promotes satisfaction in use. However, this definition

of usability engineering arises from the wider perspective of human-computer

interaction (HCI), which is the discipline concerned with the design, evaluation and

implementation of interactive computing systems for human use and with the study

of major phenomena surrounding them [ACM, 1992].

Figure II.1 – The discipline of human-computer interaction (HCI) according to the
ACM Special Interest Group in HCI (SIGCHI) [ACM, 1992]

Figure II.1 depicts the ACM SIGCHI vision of HCI. As we can see from this

illustration, HCI concerns are much wider than those directly influencing usability

engineering. Whenever applicable we use the term usability engineering to stress the

focus of this thesis on the theories, models, principles, methods and techniques  that

are important for systematically building interactive systems.

II.1.1.Definition of Usability

The usability of a product is defined in the ISO 9241 standard, part 11 as:
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“the extent to which a product can be used by specific users to achieve specific

goals with effectiveness, efficiency and satisfaction in a specific context of use”.

[ISO, 1998]

This definition relates to the quality of the interaction between the person who uses

the product to achieve actual work and the product itself. The important features of

the interaction are effectiveness, efficiency and satisfaction. Effectiveness concerns

how well the user accomplishes the goals he wants to achieve with the system.

Efficiency relates to the resources consumed in order to achieve the goals. Finally,

satisfaction concerns how the user feels about the use of the system.

Usability has multiple components and is not a single one-dimension property of a

user interface. According to Nielsen [Nielsen, 1993] usability is traditionally

associated with the following attributes:

•  Learnability – the system should be easy to learn, enabling even inexperienced

users to perform rapidly the supported tasks;

•  Efficiency – the system should be efficient in use, so that once the user has learned

the system he should be able to achieve a high level of productivity;

•  Memorability – the system should be easy to remember, allowing casual users to

reuse the system without having to learn the system again;

•  Error prevention – the system should prevent users from making errors, in

particular, errors that damage users work must not occur. The system should

enable users to recover from errors;

•  Satisfaction – The system should be pleasant to use, fostering subjective

satisfaction in use.

The precise definition of such usability attributes enables a systematic approach to

usability as an engineering discipline. The components described above can be

improved, measured and evaluated, and hence, constitute an alternative to

speculative approaches to usability.

Usability is typically measured by testing a number of representative users

performing a predetermined set of tasks. To determine the system overall usability we

can take a mean value of the scores of a set of usability measures, or, recognizing that

users are different, considering the entire distribution of usability measures [Nielsen,

1993]. Furthermore a number of methods for analyzing user interfaces quantitatively

are also available, such as GOMS (and its variations) [Card et al., 1983], Hick’s law,

Fitt’s law and Raskin’s measure of efficiency [Raskin, 2000] (see section II.1.2.2).

Constantine and Lockwood also provide a set of five rules of usability that point out

the general direction towards usability. They provide a general framework for the

effectiveness of modern user interfaces in the form of the following usability rules

[Constantine and Lockwood, 1999]:
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•  Access rule – the system should be usable without help, prior experience or

instruction by an experienced user in the application domain;

•  Efficacy rule – the system should not interfere or impede efficient use by an

experienced and skilled user;

•  Progression rule – the system should accommodate and facilitate continuous

advancement in knowledge, skill and facility as the user gains experience;

•  Support rule – the system should support real work by making it simpler, faster,

easier and more fun for the users to perform the tasks they are trying to

accomplish and by creating new possibilities;

•  Context rule – the system should be suited to the operational context (real

conditions and environment) within which it will be deployed.

II.1.1.1.Usability and other Considerations

In the words of Nielsen: “Usability is a narrow concept compared to the larger issue of

system acceptability” [Nielsen, 1993]. System acceptability concerns the wider extend

to which a system satisfies all the needs and requirements of the user and other

potential stakeholders directly or indirectly influenced by the system. Acceptability is

a combination of social and practical attributes. Given that a system is socially

acceptable – meaning that it conforms to the existing social, cultural and moral

guidelines – we can enumerate a number of practical acceptability attributes. One

example of such attributes is illustrated in Figure II.2.

System

Acceptability

Social

Acceptability

Practical

Acceptability

Usefulness

Utility

Usability

Cost

Compatibility

Reliability

Easy to learn

Efficient to use

Easy to remember

Few errors

Subjectively pleasing

Figure II.2– Nielsen’s model of attributes of system acceptability [Nielsen, 1993]

II.1.2.Cognitive Frameworks of Usability

The dominant frameworks used in HCI to understand and represent how humans

interact with computers are based on the cognitive psychology perspective. Cognitive

psychology is a theoretical perspective that focuses on how human beings achieve

their goals in terms of cognitive tasks that involve transforming and processing

information from the sensory input.

The models and theories summarized in the following sections are grounded in the

assumption - from the cognitive psychology perspective - that humans can be
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characterized as information processors. This approach resembles the ones used to

describe computer systems in terms of memories, processors, their parameters and

interconnections. This description is approximate in the sense that it only intends to

predict human-computer interaction and not to explain the physiological processes

that happen in the brain.

II.1.2.1.The Model Human Processor

The Model Human Processor is an extension of the basic information-processing

model that sees the human mind as a series of ordered processing stages [Preece,

1995]. This simplified model starts with the sensory input stimuli and comprises a

four-stage model of encoding, comparison, response selection, response execution,

and finally ends with the output.

The two main extensions of the basic information-processing model are the inclusion

of attention and memory processes. They form the basis of the Model Human

Processor (see Figure II.3) which consists of three interacting systems: the perceptual

system, the motor system and the cognitive system – each with it’s own memory and

processor [Card et al., 1983].

Long-term Memory

Working Memory

Visual image

store

Auditory

image store

Perceptual

processor

Motor

processor

Cognitive

processor

Figure II.3 – The Model Human Processor – adapted from Card et al [Card et al.,
1983]

The perceptual system carries sensations from the physical world through sensors

(eyes, ears, etc.) and buffers that information while its being symbolically coded. The

most important buffers are depicted in Figure II.3 as the visual and auditory stores.
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The cognitive system connects the inputs from the perceptual system to the right

outputs of the motor system. The process consists in receiving symbolic coded

information from the working memory, eventually combining that information with

previously coded information in the long-term memory, and decides how to respond.

Since most of the human tasks are complex and involve learning, retrieval of facts, or

problem solving; the memories for the cognitive system are more complicated. The

working memory holds the intermediate products of thinking and the symbolic

representations produced by the perceptual system. The working memory consists of

a subset of the symbolic elements (chunks) in the long-term memory that are active to

support the mental operations. The most important characteristics of the working

memory are its limited capacity to hold information, in amount and time. The long-

term memory holds the available mass of knowledge in the form of a network of

related chunks accessed associatively from the contents of the working memory. The

contents of the long-term memory comprise facts, procedures and history.

Information in the long-term memory must be encoded in symbolic form – there is no

direct way of storing information from the sensory inputs into the long-term memory.

The motor system is responsible for carrying out responses to the sensory inputs.

Thought is transferred into action, using information in the working memory, by

activating patterns of voluntary muscles.

The Model Human Processor as a Framework for Estimating and Evaluating User Interfaces

The Model Human Processor framework, presented in Figure II.3 and briefly describe

before, provides a means of characterizing the various cognitive processes that are

assumed to underlie the performance of a task. From this conceptual model several

approaches were developed to translate qualitative descriptions into qualitative

measures – they are known as GOMS (goals, operations, methods and selection rules)

family of models [Card et al., 1983].

The GOMS family of models is based on a set of parameters that describe memories

and processors. The most important parameters for memories are [Card et al., 1983]:

•  µ - The storage capacity, in items;

•  δ - The decay time of an item, and

•  κ - The main code type (physical, acoustic, visual, semantic, etc.).

Conversely the most important parameter for processors is:

•  τ - The cycle time.

The parameters describing memories and processors can be experimentally estimated

according to the physiological characteristics of human beings. Figure II.4 summarizes

different estimates for the perceptual, cognitive and motor systems.
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Parameter Perceptual System Cognitive System Motor System

Memories

µ µVIS = 17(7~17) letters
µAIS = 5(4.4~6.2) letters

µWM(pure) = 3(2.5~4.1) chunks
µWM(effective) = 7(5~9) chunks

δ δVIS = 200(90~1000) msec.
δAIS = 1500(900~3500) msec.

δWM(1 chunk) = 73(73~226) sec.
δWM(3 chunks) = 7(5~34) sec.
δLTM = ∞

κ κVIS = physical
κAIS = physical

κWM = acoustic or visual
κLTM = semantic

Processors

τ τP = 100(50~200) msec. τC = 230(70~700) msec. τM.= 70(30~100)
msec.

Figure II.4– Typical Values for Parameters Describing Memories and Processors in
the Model Human Processor (source: [Card et al., 1983])

Furthermore, the parameters obey a set of principles, called the principles of

operation, which enable qualitative predictions and measurements of user behavior.

The principles of operation for the Model Human Processor are summarized in Figure

II.5.

The Model Human Processor Principles of Operation

•  P0. Recognize-act Cycle of the Cognitive Processor – on each cycle of the cognitive processor,

the contents of the working memory initiate actions associatively linked to them in long-term

memory, these actions in turn modify the contents of the working memory.

•  P1. Variable Perceptual Processor Rate Principle – the perceptual processor cycle time τP varies

inversely with stimulus intensity.

•  P2. Encoding Specificity Principle – specific encoding operations performed on what is

perceived determine what us stored, and what is stored determines what retrieval cues are

effective in providing access to what is stored.

•  P3. Discrimination Principle – the difficult of memory retrieval is determined by the candidates

that exist in memory, relative to the retrieval cues.

•  P4. Variable Cognitive Processor Rate Principle – The cognitive processor cycle time τ c i s

shorter when greater effort is induced by increased task demands or information loads, it also

diminishes with practice.

•  P5. Fitt’s law – the time Tpos to move the hand to a target of size S which lies a distance D away

is given by: T I D Spos M= +log ( / . )2 0 5 , where I m bitM =100 70 120[ ~ ] sec/ .

•  P6. Power Law of Practice – the time Tn to perform a task on the nth trial follows a power law:

T T nn = −
1

α , where α = 0 4 0 2 0 6. [ . ~ . ].

•  P7. Uncertainty Principle – decision time T increases with uncertainty about the judgment or

decision to be made: T=ICH, where H is the information-theoretic entropy of the decision and

IC=150(0~157) msec/bit. For n equally probable alternatives (called Hick’s Law)

H n= +log ( )2 1 , for n alternatives with different probabilities, pi, of occurrence,

H p pi ii
= +∑ log ( / )2 1 1 .

•  P8. Rationality Principle – a person acts so as to attain his goals through rational actions, given

the structure of the task and his inputs of information and bounded by limitations on his

knowledge and processing ability: Goals + Task + Operators + Inputs + Knowledge + Process-

limits → Behavior.

•  P9. Problem Space Principle – the rational activity in which people engage to solve a problem

can be described in terms of: (i) a set of states of knowledge, (ii) operators for changing one

state into another, (iii) constraints on applying operators, and (iv) control knowledge for

deciding which operator to apply next.

Figure II.5 – The Model Human Processor Principles of Operation [Card et al.,
1983]
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II.1.2.2.The GOMS Family of Models

Since Card and colleagues presented the original concept of GOMS, several authors

extended the original method [John and Kieras, 1996a; Kieras, 1988; John, 1990; John

and Gray, 1995]. They also outlined several significant gaps in cognitive theory to

address some HCI concerns - for instance fatigue, user-acceptance and fit to

organizational life [John and Kieras, 1996a ]. Despite that, the GOMS model is one of

the few widely known HCI conceptual theories and it has been widely discussed,

experimented and tested.

GOMS is a method for describing a task and the user’s knowledge of how to perform

the task in terms of Goals, Operators, Methods and Selection rules [John, 1995]. Since

the concepts underlying the GOMS model are widely used in the HCI field –

sometimes with different meanings – it is useful to conceptualize those terms. Here

we adapt the definitions from the three level structure proposed by Preece et al

[Preece, 1995] (see Figure II.6).

Goal

Task

Action

Concept Definiton Example

Device

The sate of the system the

human whishes to achieve

The set of activities required, used

or believed to be necessary to

achieve a goal.

An internal task that involves no

problem solving or control structure

component.

Instrument, method, agent, tool,

technique, skill...

Write a letter

Edit text, print letter, ...

Enter text, move cursor, ...

Mouse, keyboard, direct-

manipulation, ...

GOMS

Goal

(sub)Goal

Operators,

methods

Figure II.6 – Definitions for a three level Goal-Task-Action Framework

A goal can be defined as the state of the system that the human whishes to achieve. A

goal, sometimes called an external task, can be achieved using some instrument,

method, agent, tool, technique, skill, or generally, some device that enables the human

to change the system to the desired state. A task (or more specifically an internal task)

is defined as the activities required, used or believed to be necessary to achieve a goal

using a particular device. A task is, hence, a structured set of sequential activities that

a human has to do (or thinks he as to do) in order to accomplish a goal. Finally an

action is defined as an internal task that involves no problem solving or control

structure component.

In GOMS, goals are what the humans want to accomplish with the software, since

they involve problem solving and control structure, they relate to goals and tasks in

the conceptual hierarchy depicted in Figure II.6. Conversely operators are the actions

that the software allows the user to perform. Operators are actions in the conceptual

hierarchy of Figure II.6 and they usually map to typed commands, menu selection,

button presses, gestures or spoken commands in concrete user interfaces. Methods are
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well-learned sequences of sub-goals and operators that can accomplish a goal. A

classic example of a method is deleting a paragraph in a word processor – place the

cursor at the beginning of the paragraph, drag to the end of the paragraph, release

highlighting the paragraph and press the delete key. Finally, if there is more than one

method to accomplish the same goal, selection rules apply, that is, decide what

method to use in a particular circumstance [John, 1995 ].

There are at least four different versions of the original GOMS method that achieved a

broad use [John, 1995 ]. The original formulation proposed by Card et al [Card et al.,

1983], which is a loosely defined demonstration of how to express a goal hierarchy,

methods and operators, and to formulate selection rules. A simplified version, also

defined by Card and colleagues, that uses only keystroke level operators and no goals,

methods and selection rules. The simplified version is called the Keystroke-Level

Model (KLM) and enables simple calculations through lists of keystrokes and mouse

movements, supported with a set of simple heuristics used to “place mental

operators”. A more rigorous version, called NGOMSL and proposed by Kieras

[Kieras, 1988], presents a procedure for identifying all GOMS components, expressed

in a form similar to an ordinary programming language. NGOMSL includes rules-of-

thumb about how many steps can be in a method, how goals are set and terminated,

and what information needs to be remembered by the user while doing a task [John

and Kieras, 1996a ]. Finally John [John, 1990; John and Gray, 1995] proposed a parallel

activity version, called CPM-GOMS, which uses cognitive, perceptual and motor

operators in a PERT chart to show how activities can be performed in parallel.

Different versions of the GOMS model produce quantitative and qualitative

predictions of how people will use a proposed system. The different types of

applications of GOMS are skilled performance time, method-learning time, and the

likelihood of memory errors. Therefore GOMS can be effectively used to complement

other system cost-estimation methods, enabling quantitative estimation of human

related costs (costs to train people, costs operating the systems, and costs from

possible errors and error recovery) [John, 1995 ]. However, GOMS analysis is limited

to situations in which users will be expected to exhibit skilled performance, that is, it

doesn’t contemplate problem solving or hunting around – very common in creative or

non-repetitive tasks [John, 1995 ]. Figure II.5 reviews different uses of different

versions of the GOMS method.
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Version of
GOMS

Type of
System

Predictions Uses of
Analysis

Task Domain

Original Single-user
passive

Operator, sequence.
Performance time.
Working memory
errors.
Learning time.

Method
verification.
Comparison of
systems.
Documentation
design.

Text editor.
Operating system.
VLSI CAD.
Spreadsheet.
Hypercard.
Videogames.

Keystroke-
Level Model
(KLM)

Single-user
passive

Performance time. Method
verification.
Redesign
justification.

Text editor.
Spreadsheet.
Map digitizer.

NGOMSL Single-user
passive

Operator sequence.
Performance time.
Learning time.
Working memory
errors.

Method
explanation.
Method
verification.
Redesign.

Text editor.
Ergonomic CAD.

CPM-
GOMS

Single-user
passive,
surrogate user

Performance time. Comparison of
systems.
Method
verification.

Telephone
operator
workstation.
Airline schedule.

Figure II.7– Review of GOMS Family of Methods (adapted from [John, 1995 ])

II.1.2.3.Recent Developments in Cognitive Psychology Frameworks

Theoretical approaches that describe the activity of the brain using the computing

metaphor, and its’ underlying concepts (buffers, memories, processors, etc.), were

popular and appealing until the 80s. The popularity of these approaches was related

to the possibility of testing those models. Since the 80s different approaches have

evolved in the HCI field. The new approaches are commonly known as the

connectionist and computational approaches [Preece, 1995].

The computational approaches continue to adopt the computer metaphor as the main

theoretical framework. However, the emphasis has shifted from the information-

processing framework (where the information is processed) to modeling human

performance in terms of when information is processed.

The connectionist approaches adopt the brain metaphor in which cognition is

represented as a set of interconnected nodes in the form of a neural network or

parallel distributed processing framework. Hence, cognitive processes are viewed as

activations of nodes in the network and the connections between them instead of the

process of manipulating and processing information.

The increasing importance of modeling and analyzing the way people work and

interact in the real world, leveraged yet another emerging theoretical framework

known as distributed cognition. Distributed cognition aims at providing an

explanation of how cognitive activities are embodied and situated in the work context

in which they occur. This involves describing cognition as a set of distributed people,

computer systems and other cognitive artifacts; and the way they connect to each

other in the environmental setting in which they are situated. Distributed cognition

has been used mainly in safety critical systems, for instance, air traffic control systems

and ship navigation [Hollan et al., 2000].
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II.1.2.4.Mental and Conceptual Models

One of the problems of extracting a quantitative model, such as GOMS, from a

qualitative description of user performance is ensuring that the two are connected. In

particular, Barnard [Barnard, 1987], noted that the form and content of the GOMS

family of models is relatively unconnected with the Model Human Processor. One

way of dealing with such oversimplified conceptualizations of human-behavior

concerns conceptual or mental models.

Mental models refer to representations people construct in their minds of themselves,

others, objects and the environment to help them know what to do in current and

future situations [Preece, 1995]. When such models refer to software or physical

systems they are usually known as conceptual models. A good conceptual model

allows humans to predict the effects of their actions: “without a good (conceptual)

model we operate by rote, blindly; we do operations as we were told to do them; we

can’t fully appreciate why, what effects to expect, or what to do if things go wrong

(…)” [Norman, 1988].

Norman defines a conceptual user model, in the context of HCI, as “the model people

have of themselves, others, the environment, and the things with which they interact.

People form mental models through experience, training and instruction” [Norman,

1988].

There are different mental models with respect to the development of interactive

systems (see Figure II.8). The design model is the designers’ mental model of the

system, it reflects the model that designers’ build when developing the system. The

user model is the mental model humans develop when interacting with the system,

through experience, training and instruction. Finally, the system image is the physical

(perceivable) structure of the actual system built. Since all communication of the users

with the system happens through the system image, if the system image doesn’t

reflect clearly and consistently the design model there is a good change that users will

form wrong mental models.

Design

Model

Designer User

iMac

User's Model

System

Image

Figure II.8 – Conceptual Models

Different studies discussed whether people actually have and use mental models

when interacting with devices and systems [Preece, 1995]. Although this is in sharp

contrast with the prescriptive advice in HCI, the utility of conceptualizing the users’
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knowledge can be very productive helping designers construct an appropriate model

of the system. Furthermore, conceptual models can provide a good heuristic tool.

Examples of such utility are evident, for instance, in several usability heuristics

described in the following sections.

II.1.2.5.Norman’s Cycle of Interaction

Norman’s Cycle of Interaction is another well-known cognitive framework of HCI

[Norman and Draper, 1986]. This model provides a way of identifying the main

phases in a user interaction - the seven stages of action. The author claims that, since

the stages are not discrete entities, the cycle forms an approximate model and not a

complete psychology theory. This model provides a structured framework for design

and evaluation of interactive systems. The seven stages of action are:

•  Forming the goal

•  Forming the intention

•  Specifying an action

•  Executing the action

•  Perceiving the state of the world

•  Interpreting the state of the world

•  Evaluating the outcome

Goals

Intention

Specification

Execution

Evaluation

Interpretation

Perception

iMac

Mental

Physical

Gulf of

Evaluation

Gulf of

Execution

Figure II.9 – Norman’s Cycle of Interaction: The Seven Stages of Action and the
Gulfs of Execution and Evaluation (adapted from [Norman and Draper, 1986])

Norman’s Cycle of Interaction involves two sets of stages related to a common goal -

the state of the system we want to achieve (section II.1.2.2). The stages of execution (at

the left-hand side of Figure II.9) translate the initial goal into an intention to do

something. The intention is then translated into an action sequence (a set of actions
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that can be performed to satisfy the intention) that is still a mental event. Finally the

actions are executed, that is, performed upon the physical world.

The stages of evaluation (at the right-hand side of Figure II.9) start with the perception

of the world. This perception of the physical world is interpreted according to the

expectations and then evaluated, that is, compared with respect to the intentions and

goals (part of the stages of execution). The Cycle of Interaction corresponds to the

coupling of both sets of stages with the common goal.

The Gulfs of Execution and Evaluation

The model reflected by Norman’s cycle of iteration enables the identification of

several gulfs that separate mental intentions and interpretations from physical actions

and states. Each gulf indicates a potential problem for the users since it reflects the

distance between the mental representations of the users (conceptual model) and the

physical components and states of the environment (physical model) [Norman and

Draper, 1986].

•  The gulf of execution – “The gulf of execution is the difference between the

intentions of the user and the allowable actions the system provides”;

•  The gulf of evaluation – “The gulf of evaluation reflects the amount of effort that

the person must exert to interpret the physical state of the system and to determine

how well the expectations and intentions have been met”;

Some of Norman’s stages correspond roughly to Foley and Van Dam’s separation of

concerns [Foley et al., 1990]. The user forms a conceptual intention, reformulates it

into the semantics of several commands, constructs the required syntax, and

eventually produces the lexical tokens.

II.1.3.Usability principles and rules

Many sources define general rules and principles for usability. Those principles and

rules, also called usability heuristics, provide design guides for interactive system

development and can be effectively used in discount usability engineering heuristic

evaluation [Nielsen, 1993].

In a study of the impact of the explanatory power of usability heuristics, Nielsen

performed a factor analysis of the scores of 249 usability problems with respect to a

list of 101 usability heuristics [Nielsen, 1994]. From this statistical analysis the author

derived a candidate set of 10 heuristics providing a broad coverage of the usability

problems found in common interactive applications. This candidate set of heuristics

includes the following principles:

H1. Visibility of system status – the system should always keep users informed

about what is going on, through appropriate feedback within reasonable

time;
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H2. Match between system and real world – the system should speak the users’

language with concepts familiar to the user in a logical and natural order,

rather then system-oriented terms;

H3.  User control and freedom – provide ways for the user to escape from

unwanted states without going through extended dialogues. Support undo

and redo;

H4. Consistency and standards – avoid different terms, situations and actions

with the same meaning. Follow platform conventions, standards and

guidelines;

H5. Error prevention – design the system carefully to prevent problems from

occurring in the first place;

H6. Recognition rather than recall – make objects, actions and options visible.

The user should not have to recall information from one part of the dialogue

to another. Instructions for use of the system should be visible and

retrievable whenever appropriate;

H7. Flexibility and efficiency of use – accommodate different experience levels

providing accelerators for expert users that are invisible to novices. Allow

users to tailor frequent actions;

H8. Aesthetic and minimalist design – avoid information in dialogues which is

irrelevant and rarely needed, hence diminishing the visibility of relevant

information;

H9. Helping users recognize, diagnose and recover from errors – error messages

should be expressed in simple language, precisely indicating the problem

and constructively suggesting a solution.

H10. Help and documentation – documentation and help, when required, should

be focused on user tasks and easy, concise and easy to search.

In the following sections we present some of the most important usability principles

found in the literature. The aim here is not to survey all of the published usability

principles, but rather to complement Nielsen’s candidate set of heuristics with design-

oriented advice. For a complete review of usability heuristics for evaluation and

design purposes refer to [Baecker, 1995]. We then relate those principles and rules

with the candidate set of heuristics proposed by Nielsen.

II.1.3.1.Norman’s Principles of Design for Understandability and Usability

Norman’s seven stages of action can be used as design aids or heuristics, because they

provide a basic checklist to ensure the gulfs of execution and evaluation are bridged

[Norman and Draper, 1986]:

•  Provide a good conceptual model (H2) – a good conceptual model allows users to

predict the effects of their actions, what to expect and how to react when things go

wrong. The conceptual model provided by the designers should result in a

consistent and coherent system image;
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•  Make things visible (H1) – the users should have no problems perceiving the

system state and the alternatives for action;

•  The principle of mapping (H6) – the users should clearly determine the

relationship between the actions and results, the controls and their effects and

between the system state and what is visible;

•  The principle of feedback (H1) – the users should receive continuous and

informative feedback of the result of their actions;

II.1.3.2.Constantine & Lockwood Design Principles

Constantine and Lockwood provide a set of design principles that complement the

general rules for usability described in section II.1.1 [Constantine and Lockwood,

1999].

•  Structure (H2) - Organize the user interface purposefully, in meaningful and useful

ways based on clear, consistent models that are apparent and recognizable to

users;

•  Simplicity (H7) - Make simple, common tasks simple to do, communicating clearly

and simply in the user’s own language and providing good shortcuts that are

meaningfully related to longer procedures;

•  Visibility (H1) - Keep all needed options and materials for a given task visible

without distracting the user with extraneous or redundant information;

•  Feedback (H1) - Keep users informed of actions or interpretations, changes of state

or condition, and errors or exceptions that are relevant and of interest to the user

through clear, concise, and unambiguous language familiar to users;

•  Tolerance (H3 and H5) - Be flexible and tolerant, reducing the cost of mistakes and

misuse by allowing undoing and redoing while also preventing errors wherever

possible by tolerating varied inputs and sequences and by interpreting all

reasonable actions reasonably;

•  Reuse (H4 and H6) - Reuse internal and external components and behaviors,

maintaining consistency with purpose rather than merely arbitrary consistency,

thus reducing the need for users to rethink and remember;

II.1.3.3.Shneiderman’s Eight Golden Rules of Interface Design

Shneiderman provides a set of eight golden rules for interface design derived

heuristically from experience [Shneiderman, 1998]

•  Strive for consistency (H4) – consistent sequences of actions, terminology, color,

layout, capitalization, fonts, and so on, should be required in similar situations.

Exceptions should be comprehensible and limited in number.
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•  Enable frequent users to use shortcuts (H7) – abbreviations, special keys, hidden

commands and macro facilities should be used to reduce the number of actions

required as the frequency of use increases.

•  Offer informative feedback (H1) – provide system feedback for every user action.

For frequent and minor actions provide modest responses and for infrequent and

major actions provide substantial response.

•  Design dialogs to yield closure (H1 and H3) – sequences of actions should be

organized into groups with a beginning, middle and end. The informative

feedback at the completion of a group of actions provides satisfaction of

accomplishment.

•  Offer error prevention and simple error handling (H5 and H9) – as much as

possible design the system such that users cannot make serious errors. If the users

make an error, the system should detect the error and offer simple, constructive,

and specific instructions for recovery.

•  Permit easy reversal of actions (H3) – as much as possible actions should be

reversible, relieving anxiety and encouraging exploration.

•  Support internal locus of control (H1 and H3) – provide users with the sense that

they are in charge of the system and that the system responds to their actions.

•  Reduce short-term memory load (H8) – conform to the seven-plus or minus-two

chunks of information.

II.1.3.4.Usability Design Principles and the Candidate Set of Heuristics

Figure II.10 depicts the usability heuristics described in the previous section and their

relationship with respect to Nielsen’s candidate set of heuristics. The illustration

suggests that there are five main clusters of heuristics corresponding to the following

concerns:

•  The importance of matching the user’s conceptual model with the system image,

thus leveraging on the previous experience the users acquired in the application

domain. This clusters involves the heuristics related to providing good conceptual

models, that yield well-structured user-interfaces based on clear mappings

between the actions and representations of the user-interface;

•  Visibility and feedback as major factors enabling users to perceive the system state

and the alternatives for action through clear, concise and unambiguous language.

This cluster involves the heuristics related to feedback, visibility and closure that

enable the users to feel in control of the user-interface.

•  Flexibility and efficiency enabling the system to accommodate different user

experience levels. This cluster involves heuristics related to providing infrequent

users with simple user-interfaces, while leveraging shortcuts for frequent users.

•  Consistency as a way of avoiding different situations, actions and terms with the

same meaning. This cluster involves heuristics related to following standards,
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guidelines and platform conventions that should be reused with purpose to avoid

arbitrary consistency.

•  Error prevention, tolerance and reversibility of actions as a way to reduce the cost

of mistakes, errors and misuse. This cluster involves heuristics related to error

prevention, error handling, undoing, redoing and tolerance to varied input

sequences.

Figure II.10 – Relationship between usability heuristics
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II.2. A BRIEF HISTORICAL PERSPECTIVE OF OBJECT-

ORIENTED MODELING

Modeling in software development began with the use of flowcharts and related

techniques to model procedures and algorithms for “traditional” programming

languages, such as Cobol and Fortran. Modeling for analysis and design purposes

emerged in the 70s with Structured Analysis and Structured Design [Yourdon and

Constantine, 1979] and became widespread in the 80s, notably for large software

development environments. Analysis and design models have since become

fundamental in both teaching and practical experience in the fields of computer

science and software engineering.

However there are many different ways to specify, document and implement

software intensive systems. Traditional approaches based on programming languages

or pseudo-programming languages, are popular for many situations but far from

being the best and only way. Different modeling approaches go from rules and logic

to neural nets, genetic algorithms, Petri nets, structured techniques, entity-relationship

and many others. In the words of Martin and Odell: “there are many development

approaches: there always will be and always should be (…) different tasks can have

different characteristics that require different kinds of approaches” [Martin and Odell,

1998]. Object orientation is then a mechanism that organizes and interconnects many

different development approaches, bringing coherence to the myriad that modern

software based development faces. Object orientation is not an approach that models

reality but the way people understand, process and manipulate reality [Martin and

Odell, 1998].

Software engineering

Network engineering

Organization and Methods

engineering

Product engineering

Robotics, Manufacturing,

Control...

Object Orientation

Object-oriented
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Figure II.11 – Object orientation, object-oriented analysis and design and object-
oriented programming languages (adapted from Martin and Odell [Martin and
Odell, 1998])
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Object orientation is a technique for organizing knowledge, that is, to organize the

way we think about the world. This organization is expressed in terms of types of

things (object types), their attributes, operations, relationships, rules that drive their

behavior and collaborations. Although object-orientation has been exclusively

associated with programming languages, its scope is far broader than

implementations of object-oriented principles and even of any kind of implementation

technology. Another common misconception about object-orientation concerns its

limitation to information systems. Although information is an important part of

software intensive systems, there are also other concerns involved in developing

moderns software system, such as business process engineering (including those that

are not automated by software), organization and methods engineering, network

engineering, hardware engineering and software engineering. Thus object orientation

can be used effectively for engineering any kind of system. See Figure II.11 for some

examples of applicability of object-orientation.

II.2.1.The nature and Importance of Modeling

A model is a representation in a certain medium of the important aspects of the thing

being modeled with a certain purpose and from a certain point of view. Thus models

simplify and enhance the ability to reason about the thing being modeled by omitting

certain aspects. Moreover, models are represented in media, involving the semantics

and notation, which is suitable for communicating the understanding of modelers in a

way that is succinct and unambiguous.

Models of software intensive system encompass three major aspects: semantic

information (semantics), visual presentation (notation) and context [Rumbaugh et al.,

1999 ]. Semantics capture the meaning of the model and includes the syntactic

structure, well-formedness rules and execution dynamics. In object-oriented modeling

semantics are captured through a network of logical constructs (classes, associations,

states, use-cases, etc.). The semantic elements are used to generate workable products,

validity checking, metrics and so on. The visual presentation shows semantic

information in a form that can be seen and manipulated by humans. Presentation

elements form the notation and they are responsible for guiding the understanding of

the model in a usable way. Presentation elements derive their own semantics from

semantic model elements. However, they are not completely derived by semantics,

the arrangement - and other aesthetic properties - can convey human meaningful

semantic information that is too weak or ambiguous to be formalized in the semantic

elements.

Models of software intensive systems are developed in a larger context that conveys

their true meaning. This context includes the internal organization of the model that

involves decomposition for manageability or cooperative work; annotations and other

non-semantic information regarding the development process itself (for instance,

versioning, permissions, etc.); a set of defaults, assumptions and customizations for
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element creation and manipulation; and finally relationships to the environment in

which they are used, including modeling and development tools and other

development constraints (operating systems, project management, etc.).

Models in software development have many uses and advantages and serve different

purposes. The following are some of the most important ones adapted from

[Rumbaugh et al., 1999 ].

•  To capture and precisely state the requirements and domain knowledge in order to

foster understanding and agreement among the different stakeholders;

•  To foster exploration of different design decisions, aiming at devising an accurate

overall architecture before going into detailed design;

•  To capture design decisions in a mutable form separate from the requirements,

thus fostering separation of concerns between the external behavior (including the

real world information involved) and the internals that implement them;

•  To generate usable work products, even if not complete and executable, or to aid

and guide the process of generating workable products;

•  To organize, find, filter, retrieve, examine, and edit information about the systems

using different views that project parts of the complete model for a certain

purpose;

•  To explore multiple solutions economically by permitting to deal with complexity

that otherwise is difficult to master directly, thus enabling simulation, change

impact, exploration of dependencies, etc.

Another important characteristic of models is that they can represent the system at

different levels of abstraction. Abstraction plays a central role in modern software-

based development. Abstraction allows modelers to defer thinking about details, thus

fostering exploration and innovation. According to Rumbaugh and colleagues

[Rumbaugh et al., 1999 ] the amount of detail represented in different models must be

adapted to the following purposes.

•  Models that guide the though process start at a high-level capturing requirements

and enable exploration of different options and generation of ideas before

converging on the right solution. Early models are ultimately replaced with more

accurate models until the detail and precision of an implementation model is

reached. Although the different versions of early models are not required to be

preserved, whenever a model reflects a complete view at a given abstraction level,

it should be preserved.

•  Abstract specifications of the essential structure of the system reflect the key

concepts and mechanisms of the eventual system and are intended to evolve to

implementation models. Essential models focus on key semantic intent properties

and traceability to final models must assure that those properties are correctly

incorporated in the end-system.
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•  Models that fully specify a final system include not only the logical semantics of

the system (including data structures, algorithms, etc.) but also organizational

decisions about the system artifacts necessary for cooperative work by humans

and processing tools.

•  Exemplars of typical or possible systems give insight to humans and can validate

system specifications and implementations. An example model includes instances

rather than general descriptions.

•  Models can represent complete or partial descriptions of systems. Partial

descriptions of distinct, discrete units of a system are a common way to ensure

reuse since they can be combined in different ways to form different systems.

A model can also be seen as a type of potential configurations of a system. The model

extent (or set of instances) is thus the possible systems that are consistent with the

originating model. The meaning (or intent) of the model is then the description of the

generic structured capable of generating different instances. Models can vary in

abstraction and detail, they can be prescriptive or descriptive and they are subject to

different interpretations.

II.2.2.Object-Oriented Analysis and Design

Object-oriented analysis and design concerns the use of object orientation for the

purpose of analyzing and designing software-based systems. In an attempt to

formalize object-oriented analysis and design, Martin and Odell define analysis and

design as follows [Martin and Odell, 1998]: “Analysis is a process that maps from a

perception of the real world to a representation of that perception”. Conversely the

authors define, design as a “process that maps from an analysis representation to an

expression of implementation”. Both processes are different because the perception

aims at understanding the problem, and design drives the eventual implementation of

a solution.
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Figure II.12 – Historical Perspective of Object-Oriented Analysis and Design
Methods

Object-oriented analysis and design methods emerged from the early efforts of using

object orientation in programming languages. The first object-oriented language is

generally acknowledged to be Simula-67. Although Simula didn’t have a significant

following, it largely influenced subsequent developments in the field – particularly

enhancing the scope of object-orientation in software development. The object-

oriented movement became active with the widespread availability of Smalltalk and
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other object-oriented languages in the 80s. The impact of object-oriented languages as

an implementation technology shifted the focus to development methods in the late

80s. The first methods were published in the late 80s and early 90s. Figure II.12

illustrates the major contributions for object-oriented analysis and design methods,

from the initial proposal of Simula to the so-called second-generation methods that

formed the basis of the Unified Modeling Language.

From the initial first-generation methods emerged a plethora of different extensions

and new proposals that presented some new and interesting ideas, but also a

multitude of similar concepts, notations, definitions and terminology. One of the

justifications for this activity, in the early 90s, was the impact of object-orientation in

software development as a means of coping with the increasingly complexity of

modern software products. On the other hand, a good number of the first and second-

generation methods included not only semantics and notation but also process issues

(thus the name methods). Hence, most of the approaches were in fact object-oriented

methods in the sense that they also provided specific guidance for carrying out a

particular task (or set of tasks) in the context of software development. Furthermore,

some of the approaches focused or where particularly strong on different application

domains (for instance real-time systems) or specific phases in the development

lifecycle (for example analysis or design).

II.2.3.The Unification Effort

In the middle 90s the idea of unifying different approaches emerged and was first

suggested by Booch in a meeting at OOPSLA’93 [Martin and Odell, 1998]. Although

the initial efforts toward standardization failed, the successive hiring of Booch,

Rumbaugh and Jacobson for Rational Corporation enabled the development of what

was first known as the unified method (presented in 1995 at OOPSLA). By the same

time the Object Management Group (OMG) revived a group known as the Object

Analysis and Design Task Force (OA&DTF) which issue the first Request for Proposal

(RTF) in June 1996 for what is currently known as the Unified Modeling Language

(UML). The initial RTF was the first step towards a standard, non-proprietary and

general-purpose object-oriented modeling language. In the requirements of the RFP

were included: a meta-model representing the semantics of models; an interface

description language (IDL) for tool interoperability; a set of notations for representing

models; and finally a mechanism to accommodate evolution of models and

incorporation of additional semantics.
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Figure II.13 – UML Genealogy and Roadmap (sources: [Kobryn, 1999] and [Martin
and Odell, 1998])

Figure II.13 illustrates the evolution of the Unified Modeling Language from the early

first and second-generation methods to the proprietary unification efforts and the

subsequent standardization under the OMG’s supervision.

II.2.4.Martin and Odell Foundation of Object-Oriented Modeling

Martin and Odell provide a foundation of object-oriented modeling consisting of the

ideas that are fundamental to capture the way people think and understand reality.

This approach is based on the claim that the better way to specify system

requirements’ is to document the way people think about the system.
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Figure II.14 – Martin and Odell Foundation of Object-Oriented Modeling (adapted
from Martin and Odell [Martin and Odell, 1998]
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Figure II.14 illustrates the foundation for object-oriented modeling. The framework is

divided into three levels, and aims at providing a formal foundation that provides a

way to precisely and unambiguously build systems that perform consistently and

correctly.

The basic foundation level consists of the ideas that are fundamental to thinking about

the structure and behavior [Martin and Odell, 1998]. Structure refers to a static and

spatial metaphoric vision of how objects are laid out in space. Structured can be used

to specify various object configurations. In contrast, behavior refers to how the world

changes over time. Behavior can be used to specify the processes that query or modify

objects. The blocks in the basic foundation are independent of notation, thus they can

be represented in graphical or textual form. Furthermore, they can be used to specify

structure or behavior from a conceptual or implementation standpoint, independent

of the techniques used to express the implementations. For instance, programming

languages, database definition languages or data manipulation languages.

The extended level is constructed from the twelve basic blocks of the foundation level

and extends them to include more advanced structures that provide a way to describe

and specify the system with increased ease and power [Martin and Odell, 1998].

The application level is where we make use of the foundation through representations

of the structures in the previous levels. The representations can appear at the

specification or implementation levels and include different notations, programming

languages and other ways to communicate the basic and extended constituents of the

foundation [Martin and Odell, 1998].
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II.3. THE UNIFIED MODELING LANGUAGE

The Unified Modeling Language is a language for visualizing, specifying,

constructing and documenting software intensive systems. In a short period of time

the UML emerged as the dominant modeling language in the industry. It has found

widespread use in many different application domains, from avionics and real-time

systems to e-commerce and computer games. It applies to the different modern

requirements to build and document software-based systems. It is used for business

process modeling, to describe software architectures and patterns, and maps to many

different middleware architectures, frameworks and programming languages. The

UML is also recognized to have influenced the CASE tool industry, improving the

quality and availability of high-end case tools, in particular for modeling purposes.

The word unified has several relevant meanings for the UML [Rumbaugh et al., 1999

]. The UML combined the commonly accepted concepts from many first and second-

generation object-oriented analysis and design methods (including those described in

section II.2.2). The UML is also seamless across the development lifecycle, from

requirements to deployment, in a way that is consistent with the object modeling

foundation depict in Figure II.14. Besides it interconnects internal concepts in a way

that permits representing the underlying relationships capturing them in a broad way

applicable to many known and unknown situations. In addition, the UML

successfully supports different application domains. Although special-purpose

languages are still useful in many circumstances, the UML incorporates the

interconnection characteristic illustrated in Figure II.11. Furthermore, the standard

language has proved capable of supporting different implementation languages and

platforms, including programming languages, databases, fourth-generation languages

(4GLs), firmware, middleware, and so on. This characteristic is again consistent with

the application level of the foundation framework presented in section II.2.4. Finally

the UML is detached from any methodological background, that is, it doesn’t include

a detailed description of a specific development process.

II.3.1.Goals and Definition of the UML

There were a number of goals behind the development of the UML. Some of them are

present in the original (and subsequent) RTFs issued by the OMG as mentioned in

section II.2.3. Furthermore because the UML is an OMG standard it is nonproprietary

and, hence, can be used and implemented freely by developers and vendors.

The primary goals of the UML, according to the OMG [OMG, 1999], are as follows:
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•  To provide users with a ready-to-use and expressive visual modeling language to

exchange and develop meaningful models based on a common and familiar set of

concepts;

•  To provide extensibility and specialization mechanisms to extend the core concepts

enabling tailoring for newly discovered needs or specific application domains;

•  To support specifications that are independent of particular implementations

technologies and development methods or processes;

•  To provide a formal basis for understanding the language that is both precise and

approachable. This is achieved using meta-modeling facilities and expressing the

operational meaning in both natural language and a formal Object Constraint

Language (OCL);

•  To encourage the growth of the object tool market by providing a common set of

concepts that can be interchanged between tools and users without loss of

information;

•  To support higher level development concepts - such as frameworks, components

and patterns – supporting the full benefit of object modeling and fostering reuse;

•  To integrate best practices in the domain of object modeling, like different views

based on levels of abstraction, domains, architectures, life cycle states and so on.

The UML is defined by a set of documents controlled by the OMG and containing the

following sections [Cook, 2000]:

•  UML Summary – overview of the language, history, acknowledgements, etc.

•  UML Semantics – definition of the UML abstract syntax in the form of a set of

UML packages. The language is defined using a four-level meta-modeling facility

(see section II.3.2). An English description is provided for each class in the meta-

model and well-formdness rules are provided for each model in OCL.

•  UML Notation Guide – describes the pictorial elements that make up the UML

diagrams and how they fit together to form the UML notation. Mappings between

the notation and the meta-model are provided.

•  UML Standard Profiles – a brief introduction to two standard profiles (variants of

the UML): the UML profile for software development processes, and the UML

profile for business modeling.

•  UML Corba Facility Interface Definition – defines an interface to a repository for

creating, storing and retrieving UML models in the CORBA Interface Definition

Language (IDL).

•  UML XMI DTD Specification – the XML Metadata Interchange (XMI) defines an

alternate physical specification of the UML in eXtensible Markup Language (XML)

specifically for interchanging UML models between tools and/or repositories.

•  Object Constraint Language Specification – introduces and defines the OCL that is

used to formulate well-formdness rules in the UML specification.
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The current definition of the UML is recognized to have several problems, in

particular, regarding the precise definition of the semantics. According to Cook [Cook,

2000] the semantics of the UML is informally specified and the existing specification is

scattered in a number of places. The UML semantics contains English prose and

additional information in OCL about the meaning of the different constructs. Since

English prose is subject to different interpretations, it is not possible to enforce or

check a particular mapping of the UML for a specific purpose. Furthermore, the UML

definition is uneven at the level of abstraction at which it defines semantics. The meta-

model also contains significant redundancy, introducing concepts that are identical

from the well-formdness perspective and that only differ in the English description

and notation. Finally, the UML defines a set of diagram types but doesn’t give a

functional mapping between the meta-model and the notational elements, hence,

compromising diagram interoperability at the syntactical level.

II.3.2.The UML Metamodel

UML is defined using meta-modeling facilities of a four-level architecture (depict in

Figure II.15) where the relationships between layers are of the type instance-of. The

four-layers of the OMG architecture are as follows.

•  M3 – Meta-meta model or Meta object facility (MOF) – defines the basic concepts

from which specific meta-models are created at the meta (M2) level. The MOF also

contains a set of rules that specify the interoperability semantics and interchange

format for any of its meta-models. M3 is defined using itself; hence, obviating the

need for subsequent levels (M4, M5, etc.).

•  M2 – Meta-model – defines the different specific meta-models of the OMG

standards, which share the common meta-object facility. Examples of such meta-

models are the UML, the Common Warehouse Model (CWM), Enterprise Java

Beans (EJB), and so on.

•  M1 – Model of the domain specific information – instances of domain specific

information reside at M1 and usually correspond to class instances (or objects) or

runtime data.

•  M0 – Domain specific information – is where the users’ models reside by

instantiation of the different technology standards defined at M2. For instance, the

model of a specific accounting software system in the UML and a potential

implementation model of the application in EJB, both reside in M0.
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Figure II.15 – The OMG meta-modeling architecture

The MOF, and the corresponding OMG 4 layer architecture, bridge the gap between

dissimilar meta-models by providing a common basis for interoperability and

interchange. Furthermore, if different standards are MOF compliant they can reside in

the same repository.

II.3.3.Extension Mechanisms and Future Development for UML Variants

Version 1.4 of the UML only provides two techniques to define UML variations.

Profiles are defined in the UML standard as a predefined set of stereotypes, tagged

values, constraints and notation icons that collectively specialize and tailor the UML

for a specific domain or process [OMG, 1999].

A UML stereotype is a way of classifying UML elements as if they were instances of

new meta-model concepts. This technique effectively provides a way of extending the

UML meta-model at the M2 level (as illustrated by myProfile in Figure II.15). A

stereotype may specify additional constraints and tagged-values that apply to its

instances (residing at the M1 level) [Cook, 2000]. A stereotype is commonly used to

indicate a difference in meaning or usage between two elements with identical

structure. A UML tagged value is a pair (tag and value) that allows arbitrary

information to be attached to any UML model element. A UML constraint enables

new semantics to be specified linguistically (whether in natural language or OCL) to

different model elements [Cook, 2000].

Collectively the three concepts described above offer a means of extending the UML

with new kinds of modeling elements. The profiling extension mechanism is usually

considered a lightweight extension mechanism because tools easily support it without
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requiring “meta-tool” facilities, and also because it doesn’t impact the interchange

formats [Cook, 2000]. This so-called lightweight extension mechanism is recognized to

be insufficient as a general way of extending the UML, because every new concept

introduced must be represented either directly by an existing UML M2-class or by

stereotyping an existing UML M2-class. Notably, the extension can only occur if a

UML M2-class provides the basis for the new concept and if such extension is

consistent with existing UML semantics [Cook, 2000].

A more heavyweight extension mechanism to the UML is provided, by using the

OMG’s meta-object facility (MOF) directly to create additional concepts at the M2-

level. This mechanism is actually the approach taken by the OMG to define other

standards such as the CWM and the EJB depict in Figure II.15. This approach is

significantly more flexible than the existing profiling mechanism since it enables new

M2-classes to be provided as subclasses of the UML M2-classes or as new M2-classes

with associations to the UML definition. However there are a number of drawbacks,

as pointed out by Cook [Cook, 2000]. Remarkably, the UML meta-model is not yet

MOF compliant and there are no rules regarding the notational mappings and the

semantics when the meta-model is extended.

To overcome the mentioned problems, with existing UML extension mechanisms,

several authors have new approaches for extension facilities. Cook et al [Cook et al.,

1999] proposed the concept of UML prefaces as a more general extension mechanism.

A preface is a document that defines a UML extension by specializing, tailoring and

extending collectively the meta-model, the abstract syntax, the semantics, the concrete

syntax and the allowed transformations and generations. According to the authors,

the adoption of a preface extension mechanism would be a substantial wide-ranging

instrument covering a wide variety of subject matters. For a complete list of the

coverage of the UML preface proposal refer to [Cook et al., 1999].

Atkinson and Kuhne proposed another approach that overcomes the obligation of

defining modeling elements solely at the meta-model level (M2) through meta-

instantiation. This approach, known as strict profiles, is consistent with the rules of

strict meta-modeling and enables the placement of model elements at the instance-of

hierarchical level they most naturally fit. Strict profiles enable the usage of regular

M1-level inheritance, as well as meta-instantiation, and enables users to build upon

the existing set of predefined constructs. Hence, strict profiles provide a way to

distribute elements in the meta-modeling architecture avoiding some of the problems

with semantic distortions and inflexibility with the current “meta=predefined”

principle that underlines the UML standard [Atkinson and Kuhne, 2000].
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II.4. OBJECT-ORIENTED PROCESS AND METHODS: THE

UNIFIED PROCESS

As we saw in the previous sections the UML is detached from any methodological

background, that is, it doesn’t provide any specific guidance to a software

development process or lifecycle. The methodological directions, methods and

techniques involved in the originator methods of the UML - in particular those

proposed by Booch, Rumbaugh and Jacobson - are now included in the Unified

Process [Jacobson et al., 1999]. Other methodological contributions, apart from notable

exceptions, pertain as individual techniques or methods that have been adapted to the

UML notation.

A software process is defined by Fuggetta [Fuggetta, 2000] as the coherent set of

policies, organizational structures, technologies, procedures and artifacts required to

conceive, develop, deploy and maintain a software product. This broader vision of

software development as a process is different from that of a software lifecycle, which

defines the different stages in the lifetime of a software product.

A software process involves a number of different contributions and concepts, as

follows [Fuggetta, 2000]:

•  Software development technology – the technological support used in the process,

for instance, tools, infrastructures, etc.

•  Software development methods and techniques – the guidelines on how to use

technology to accomplish software development activities;

•  Organizational behavior – the coordination and management of people within the

organizational structure;

•  Marketing and economy – the context in which the software must be sold and

used, for instance, the customers, the market settings, etc.

Viewing software development as a process, and clearly distinguishing the lifecycle

stages, has helped identify the different problems that need to be addressed in order

to establish effective software development practices. Those practices include the

activities that need to be accomplished to achieve the process goals; the roles that

people play in the process; the structure and nature of the artifacts that need to be

created and maintained; and finally the tools to be used.

The Unified Process is an UML-based process framework that originated from the

initial Ericsson approach by Jacobson and colleagues in the 70s. The Ericsson

approach introduced the ideas of software interconnected blocks (subsystems and
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components in the UML) and traffic cases (use-cases in the UML). Those fundamental

ideas were improved in the 80s with the Objectory commercial software process, also

known for the name of the seminal book from Jacobson and colleagues Object-

Oriented Software Engineering (OOSE) [Jacobson, 1992]. Objectory established the

concept of use-cases driving development and supporting traceability throughout the

lifecycle. The workflows defined in the Objectory process supported different models

(requirements, analysis, design, implementation and test), corresponding to different

stages in the lifecycle.

The Rational Objectory Process emerged with the acquisition of Objectory by Rational.

The initial concepts of the Objectory process merged with the architecture-centric and

iterative incremental nature of the Rational Approach. The architecture-centric style of

development was based on a representation involving 4+1 views: the logical view, the

process view, the physical view and the development view, plus an additional view

that illustrates the first four views with use-cases and scenarios [Kruchten, 1995]. The

iterative and incremental nature was based on a four-phase model (inception,

elaboration, construction and transition) devised to better structure and control

progress. The Unified Process, and its companion commercial version (the Rational

Unified Process), gained their final designation with the advent of the UML in the late

90s. The UML is used to represent all the models in both versions of the process; it is

also used as a process modeling language (PML) to describe the software

development workflows involved.

II.4.1.Use-case Driven, Architecture-centric, Iterative and Incremental

The Unified Process is considered use-case driven to denote the emphasis on knowing

and understanding what real users want and need to accomplish with the envisioned

system.

The term user in the UP refers to, not only real users, but also other systems. The

actual description is “the term user represents someone or something (…) that

interacts with the system being developed” [Jacobson et al., 1999 ]. The users, as

described in the UP, interact with the system through a sequence of actions that

provide a result of value. A sequence of meaningful actions is considered a use case,

which the authors of the UP describe as “a piece of functionality in the system that

gives a user a result of value” [Jacobson et al., 1999 ]. A use-case model is then the

collection of all the use-cases that describe the complete functionality of the system.

Hence, the use-case driven nature of the UP, is grounded on two basic assumptions.

On the one hand, the use-case strategy forces developers to think in terms of real

value to the users and not just in terms of functionalities. On the other hand, use-cases

drive the development process because they are used to understand the requirements,

they drive the development and review of the analysis and design level models, and
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they also facilitate testing of the implementation components for conformance with

the requirements.

While use-cases drive development, their selection process should take place in the

contexts of the overall system architecture. This characteristic is known in the UP as

architecture-centric. The software architecture, in UP terms, refers to the most

significant static and dynamic aspects of the system. The architecture grows out of

use-cases but involves many other factors, such as platform restrictions, the existing

reusable components, deployment considerations, legacy systems, and so on. Use-

cases and the architecture correspond to the function and form of the software system

and must evolve in parallel. The use-cases define the system functionalities and the

architecture focuses on understandability, resilience to future changes and reuse.

The final main characteristic of the Unified Process concerns the iterative and

incremental development strategy. In the UP the overall development process is

divided into several mini-projects. Each mini-project comprises a selection of use-

cases for implementation and deals with the different risks involved. Hence, mini-

projects correspond to controlled and planned iterations that result in increments to

the end product [Jacobson et al., 1999 ]. The goal of the iterative and incremental

development strategy in the UP is to reduce the risks involved in single increments,

thus, increasing the likelihood of achieving the planned budget and time to market.

II.4.2.The Unified Process Lifecycle

The lifecycle of the Unified Process consists of four phases per cycle, with each cycle

ending with a product release. The four phases defined in the UP are as follows

[Jacobson et al., 1999 ]:

•  Inception – this phase defines the scope of the project and develops the vision of

the end product and it’s business case. During this phase a simplified use-case

model containing the most critical use-cases is built and a tentative architecture

outlined. The most important risks are also identified and prioritized leading to

rough estimate of the overall project.

•  Elaboration – during this phase most of the product’s use-cases are specified in

detail and the system architecture is designed. During elaboration architecture is

expressed in terms of views of all the models of the system [Kruchten, 1995] and

the most critical use-cases are realized leading to the architecture baseline. At the

end of this phase the project manager should be able to plan the activities and

estimate the resources required to complete the project.

•  Construction – during this phase the product is built from the architecture baseline

developed in the previous phase. Construction encompasses the bulk of

development to implement all the use-cases agreed for the next candidate release.

During construction minor architectural adjustments can happen and the

developed product can still contain minor deficiencies.
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•  Transition – this phase covers the period from the initial tests with end-users

(commonly known as beta release) to the actual deployment for the larger user

community. The main activity during this phase is concentrated on reporting and

correcting deficiencies in the product. However other activities such as

manufacturing, training, help-line assistance and post-delivery defect correction

happen during transition.
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Figure II.16 – The Unified Process Lifecycle (adapted from [Jacobson et al., 1999 ])

Figure II.16 illustrates the Unified Process software lifecycle. The figure shows the

development lifecycle in terms of the software development phases described above

and also the core workflows and effort involved as time goes by. The iterative nature

of the process is evident from the different iterations depicted in the time axis.

II.4.3.Architectural Representations in the Unified Process

One of the more important goals in software development is to establish the

architectural foundation of the envisioned system. According to [Shaw and Garlan,

1996] a software architecture involves: “the description of elements from which

systems are built, interactions among those elements, patterns that guide their

composition, and constraints on these patterns”.

Software architecture is represented by software architecture descriptions. Shaw and

Garland [Shaw and Garlan, 1996] proposed an approach for architectural

representation based on a generic ontology of seven entities: components, connectors,

configurations, ports, roles, representations and bindings. The basic elements in the

proposed ontology (depicted in Figure II.17) are: components that represent the loci of

computations; connectors that represent interconnection between components; and

configurations that define topologies of components. The remaining elements appear

by the need to express interfaces in components and connectors. A component

interface is defined by a set of ports, which define the point of interaction with its

environment. Conversely a connector interface is defined by a set of roles, which
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identify the participants of the interaction. Finally representations enable the

description of the contents of a component or connector, required to represent

hierarchical architectural descriptions.

Configuration

Role

ConnectorBinding

Component

Port

Figure II.17 – Generic Elements of Architectural Descriptions (adapted from Shaw
and Garlan [Shaw and Garlan, 1996])

The concepts proposed in the previous ontology are easily mapped into UML

descriptions because of its inherent syntax based on nodes and arcs. Therefore, many

architectural representations can be described using UML diagrams, views and

models. An UML diagram is defined in the standard as a graphical representation of a

collection of model elements often rendered as a connected graph of arcs

(relationships) and vertices (other model elements) [OMG, 1999]. If a UML diagram

(or a set of diagrams) conveys a coherent abstraction of the system for a certain

purpose, it is considered a model (see section II.2.1). The UML also supports the

notion of view, defined as a projection of a model from a given perspective or vantage

point, often-omitting entities that are not relevant to the given perspective [OMG,

1999].

II.4.3.1.The 4+1 View Model of Architecture

The Unified Process and its commercial version (the Rational Unified Process) suggest

a five-view approach of the overall system architecture (depict in Figure II.18). This

model, originally proposed in [Kruchten, 1995], defines five views as follows

[Kruchten, 1998]:

•  The logical view of the architecture addresses the functional requirements of the

system. It is an abstraction of the design model and identifies the major design

packages, subsystems and classes.

•  The implementation view describes the organization of the static software modules

(source code, data files, components, executables, etc.) in the development

environment, both in terms of the packaging and layering and in terms of

configuration management.

•  The process view addresses the concurrent aspect of the system at runtime (tasks,

threads and processes) and their interactions. It deals with issues of concurrency,



Background: A Brief Survey of Usability Engineering and Object Modeling

46

parallelism, system startup and shutdown, fault tolerance, object distribution,

throughput, response time and so on.

•  The deployment view shows how the various runtime components are mapped to

the underlying platforms or computing nodes. It addresses the overall

interconnection with system engineering and concerns like deployment,

installation and performance.

•  Finally the use-case view, in conformance with the use-case driven nature of the

UP described in section II.4.1, contains the description of the main functionalities

the system should provide to the end-users. The use-case view binds all the other

views in the architecture and is used to validate them.
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Figure II.18 – The 4+1 View Model of Architecture (adapted from [Kruchten, 1995])

The 4+1 view model of architecture is not completely embraced in the Unified Process

as it is in the Rational Unified Process. Instead, the authors of the UP claim that the set

of views in the 4+1 model align well with the major architectural descriptions found

in the UP (the use-case, analysis, design and implementation models). Since a model is

a complete description of the system from a given perspective and for a given

purpose, the corresponding views, that describe the UP overall architecture, include

only the architectural significant elements in the models. Hence, the major

architectural description in the UP is the collection of views that contain the set of

analysis, design, deployment, implementation and test elements which implement the

architectural significant use-cases described in the use-case view.
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Figure II.19 – Overall Architectural Representations in the Unified Process and the
Rational Unified Process

Figure II.19 illustrates one possible evolution of the different models of the UP that

result from the elaboration phase. The architecture description is an extract (view) of

the different models in the architecture baseline. The figure illustrates the completion

process of the architecture baseline during construction (from upper left to right). The

architecture description (from lower left to right) however doesn’t change

significantly since most of the architecture was defined during the elaboration phase.

Only a few minor changes should occur (illustrated by the fill color) [Jacobson et al.,

1999 ].

II.4.3.2.Architectural Patterns in the Unified Process

Besides the previous architectural representations, that define the overall system

architecture, patterns also play a central role in the model-driven perspective of the

Unified Process.

Patterns emerged from the ideas of the architect Christopher Alexander and are used

to systematize important principles and pragmatics in the construction field. Those

ideas have inspired the object-oriented community to collect, define and test a variety

of solutions for commonly occurring design problems. Software patterns follow the

same principle defined by Alexander, “each pattern describes a problem which occurs

over and over again in our environment, and then describes the core of the solution to

that problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice” [Alexander et al., 1977]. A software pattern

is hence, a general solution for commonly occurring design problems.

The Unified Process defines patterns as collaboration templates that can be specialized

for different purposes. One notable example of an architectural pattern is the

boundary-control-entity framework used in the analysis model to structure the
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requirements defined in the use-case model. This architectural framework, initially

proposed in the Object-Oriented Software Engineering (OOSE) approach [Jacobson,

1992], divides analysis classes - into information, behavior and interface - to promote a

structure more adaptable to changes. The underlying goal of this partition is that,

assuming that all systems change, stability will occur in the sense that changes affect

(preferably) only one object in the system (they are local) [Jacobson, 1992]. Therefore,

the analysis framework concentrates changes to the interface and related functionality

in interface (boundary) objects; changes to (passive) information and related

functionality in entity objects; and changes to complex functionality (e.g., involving

multiple objects) in control objects.

This approach is conceptually similar, although at a different granularity level, to the

PAC model (see section II.6). In fact, the PAC distinction between presentation,

abstraction (application) and control relate, conceptually, to the interface, entity and

control objects.

The information space for the OOSE analysis framework defines three dimensions

(depicted in Figure II.20):

•  The information dimension specifies the information held in the system in both

short and long term – the state of the system;

•  The behavior dimension specifies the behavior the system will adopt – when and

how the system’s state changes;

•  The interface dimension specifies the details for presenting the system to the out-

side world.

 

Behaviour

Information

Interface

Figure II.20 - The information space of the OOSE analysis framework

With the advent of the UML, the Unified Process adopted the OOSE analysis

framework. The influence of this approach can also be found in the UML standard, in

the form of an extension profile for software development processes [OMG, 1999]. In

this evolutionary process subtle conceptual and notational changes occurred. The

original interface dimension and the interface object are known in the Unified Process

as, respectively, presentation dimensions and boundary class stereotype.
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II.5. USABILITY AND SOFTWARE DEVELOPMENT

Methodological work about usability engineering and the software development

process started in the 1970s. One of the first references to usability engineering

methodology was provided by Gould and Lewis [Gould and Lewis, 1985] and

described an approach involving three global strategies: early focus on users and

tasks, empirical measurement, and iterative design. Since this initial approach others

have provided general frameworks for usability engineering [Nielsen, 1993;

Shneiderman, 1998]. According to Button and Dourish [Button and Dourish, 1996]

those approaches can be distinguished into three categories, regarding their

integration with the software development process [Mayhew, 1999]:

•  Introducing usability experts to design teams with the aim of providing input to

the development process;

•  Introducing usability engineering methods and techniques that are able to produce

specific work artifacts to the development process;

•  Redesigning the whole development process around usability engineering

expertise, methods and techniques;

From the early focus on introducing usability experts and specific techniques and

methods to the development process, a shift to redesign approaches occurred. This

shift is consistent with the acceptance that usability engineering requires an active

involvement of both usability experts and corresponding methods and techniques

throughout the development lifecycle – from early inception to transition.

II.5.1.The Usability Engineering Lifecycle

The usability engineering lifecycle (UEL) Mayhew [Mayhew, 1999] is one of the most

recent and complete approaches consistent with the principle of redesigning the

software development process to integrate usability engineering. The UEL consists of

several types of tasks, as follows [Mayhew, 1999]:

•  Structured usability requirements analysis;

•  Explicit usability goal setting task, driven directly from requirements analysis data;

•  Tasks supporting a structured top-down approach to user-interface design driven

directly from usability goals and other requirements data;

•  Objective usability evaluation tasks for iterating design towards usability goals;
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The usability engineering lifecycle is divided into three phases each one involving a

set of tasks [Mayhew, 1999]. The lifecycle is illustrated in Figure II.21, where

dependencies between tasks are depicted.
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Figure II.21 – The usability engineering lifecycle (adapted from Mayhew [Mayhew,
1999]

Phase one is called requirements analysis and involves the following tasks:

•  User profile – involves obtaining a description of the specific user characteristics

relevant for user interface design from the intended user population;

•  Contextual task analysis – involves studying the users’ current tasks, workflow

patterns and conceptual frameworks with the aim of producing a description of

current tasks and workflows that underlie the user goals;

•  Usability goal setting – this task involves defining qualitative goals reflecting

usability requirements extracted from the previous tasks; and also quantitative

goals defining minimal acceptable user performance and satisfaction criteria based

on a subset of high-priority qualitative goals;
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•  Platform capabilities and constraints – involves determining and documenting the

user-interface capabilities and constraints that define the scope of possibilities for

user-interface design;

•  General design principles – involves gathering and reviewing relevant user

interface design principles and guidelines.

Phase two is called design/testing/development and divided into three levels each

one dealing with different design issues. Level 1 is concerned with high-level design

issues and contains four tasks:

•  Work reengineering – involves redesigning users tasks at the level of the

organization and workflow to streamline work and exploit the capabilities of

automation;

•  Conceptual Model Design – involves generating high level design alternatives

such as navigational pathways, major display and rules for consistently presenting

work products, processes and actions;

•  Conceptual Model Mock-ups – involves generating paper-and-pencil prototype

mock-ups of high-level design ideas about organization and conceptual model

design;

•  Iterative Conceptual Model Evaluation – involves the evaluation of the prototype

mock-ups, through iterative evaluation techniques such us formal usability testing,

and of real-users attempting to perform representative tasks with minimal training

and intervention.

The second level of the design/testing/development phase involves four additional

tasks as follows:

•  Screen design standards – involves the development of a set of product-specific

standards and conventions, for all aspects of detailed screen design, and based on

mandated industry and/or corporate standards;

•  Screen design standards prototyping – involves applying the screen design

standards, and the conceptual model design to the detailed design of selected

subsets of product functionality, implemented as a prototype;

•  Iterative screen design standards evaluation – involves evaluating the screen

design standards prototype, with an evaluation technique such as formal usability

evaluation, and then iteratively redesigning and re-evaluating until all the major

usability problems are solved;

•  Style guide development – involves capturing in a document the set of standards

and conventions validated and stabilized in the previous tasks.

Finally level 3 of the design/testing/development phase involves three tasks, as

follows:

•  Detailed user interface design – involves designing the complete product user

interface based on the conceptual model and screen design standards documents;
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•  Iterative detailed user interface evaluation – involves evaluating the previously un-

assessed subsets of functionality, using a technique such as formal usability

evaluation, iterating the process until all usability problems are addressed.

The final phase of the Usability Engineering Lifecycle is called Installation and

involves only one task corresponding to user feedback. This task involves gathering

feedback from users working with the product after it has been installed with the aim

of resolving prevalent usability problems, enhancing the design or designing new

releases or products.

There are also some general principles behind the Usability Engineering Lifecycle

approach [Mayhew, 1999]. Notably, in the UEL user requirements and user interface

drive the whole development process because the focus on interactive systems is to

serve the users. Furthermore, the UEL fully adopts the idea that the integration of

usability engineering with software engineering must be tailored in a way that

enables different techniques to overlap and flow in parallel with development tasks.

In addition, UEL fosters an iterative top-down structured process. The

design/test/development phase is divided into three iterative levels where evaluation

feeds-back specification and development. This characteristic is supported by a

flexible and adaptable allocation of alternative usability methods and techniques,

selected in conformance with the characteristics of the project. Finally, the UEL layers

the development lifecycle across subsets of functionality, or in other terms, the

development process progresses incrementally (see section II.4.1).

The UEL approach also provides guidelines for integration with object-oriented

software engineering (OOSE) [Mayhew, 1999]. The integration is based on coupling

OOSE models and workflows [Jacobson, 1992] with UEL tasks. Therefore, the user

profile and contextual task analysis tasks should parallel the development of the

requirements model in OOSE. The work re-engineering task corresponds roughly

with the development of the analysis model. Finally, the actual user interface design,

which starts with the conceptual model design task, enhances the design model. In the

words of Mayhew this kind of integration is necessary because “(…) in OOSE, many

fundamental Usability Engineering goals are still not addressed, and many

fundamental Usability Engineering techniques are still not applied.” [Mayhew, 1999].

II.5.2.User-centered Design

User-centered design is currently defined in the ISO 13407 Standard (Human

Centered Design Processes for Interactive Systems). User-centered design (UCD)

focuses specifically on the process required to build products usable with respect to

the definition of usability described in section II.1.1. The user-centered approach

typically entails involving users in the design and evaluation of the system so that

feedback can be obtained. Therefore, UCD produces software products that are easier

to understand and use; improves the quality of life of users by reducing stress and
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improving satisfaction; and improves the productivity and operational efficiency of

individual users and the overall organization [Daly-Jones et al., 1999].

II.5.2.1.Principles of User-centered Design

The ISO standard for human-centered design processes defines a set of principles that

aim at incorporating the user perspective in the software development process. The

principles are outlined as follows [ISO, 1999]:

•  Appropriate allocation of function between user and system, determining which

aspects of the job or task should be handled by people, and which can be handled

by software and hardware. This division of labor should be based on the

appreciation of human capabilities;

•  Active involvement of users – utilize people who have real insight into the context

in which an application will be used, therefore taking advantage of enhanced

acceptance and commitment to the new software;

•  Iteration of design solutions – entails the early and continuous feedback of end-

users, through different prototyping techniques;

•  Multi-disciplinary teams – fostering a collaborative development process which

benefit from the active involvement of various parties, each of whom have insights

and expertise to share.

II.5.2.2.Key Activities in User-centered Design

According to the ISO 13047 standard there are four essential user-centered design

activities that should be undertaken in order to incorporate usability requirements

into the software development process, as follows [ISO, 1999]:

•  Understand and specify the context of use – the quality of the system, including

user health and safety, highly depends upon the context in which the system will

be used. Aspects that should be understood about the context of use include the

characteristics of the intended users, the tasks the users will perform, and the

environment in which the users will use the system;

•  Specify the user and organizational requirements – the user-centered requirements

should be explicitly stated alongside the technical and functional requirements.

These include, identification of the range of relevant users and other personnel in

the design, provision of a clear statement of design goals, an indication of

appropriate priorities for the different requirements, provision of measurable

benchmarks against which the emerging design can be tested, evidence of

acceptance of the requirements by the stakeholders, acknowledgement of any

statuary or legislative requirements;

•  Produce designs and prototypes – to simulate the design solution(s) using paper or

computer based prototypes from the earliest stages of design as well as during

later stages. Prototyping enhances communication between the design team and
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the end-users and provides an inexpensive way to test and explore design

alternatives;

•  Carry out user-based assessment – to confirm the extent to which user and

organizational objectives have been met, as well as provide further information to

refine the design. Evaluations should be carried out from the earliest opportunity

and involve the following steps: develop an evaluation plan, collect and analyze

data, report the results and recommendations for changes, iterate the activity until

design (and usability) objectives are met, and finally tack changes, maintenance

and follow-up.

II.5.3.Participatory Design

Participatory Design (PD) concerns the assessment, design, and development of

technological and organizational systems that focus on the active involvement of

potential or current users of the system in design and decision-making processes

[Muller et al., 1993]. PD views users as the primary source of innovation, design ideas

and information in the process of designing software intensive systems.

Participatory Design emerged in Europe, especially in the Scandinavian workplace

democracy movement and also in England. The intent of PD was related to the

importance of the social dimension of work, in particular, the concerns related to the

social effects of new technologies in the workplace. From the initial Scandinavian and

English traditions the field emerged in terms of number of practices, extent of

theoretical development, number of practitioners and geographic dispersion. Today

PD practice and research is diverse in perspective, background and areas of concern.

Figure II.22 illustrates Muller’s taxonomy of participatory design practices with

respect to the position of the activities in the development cycle or iteration and the

involvement of stakeholders in the activities [Muller et al., 1993].
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Figure II.22 – A Taxonomy of participatory design practices (adapted from [Muller
et al., 1993]

Participatory techniques share a number of interrelated concerns as proposed by

[Muller et al., 1995]:

•  Representations – participatory techniques depend highly in the low-tech

representations used to provide a concrete common language through which

diverse stakeholders can articulate their views, clarify their disagreements, and

work toward consensus;

•  Group process – participatory techniques depend upon the social processes

involved in the way the materials are used by a group of people – from egalitarian,

collaborative approaches to arbitrary and even exploitive manipulations;

•  Methodological rigor – participatory techniques should be specified with rigor and

precision in order to enable integration with the software development processes.

Participatory design practices span the entire development lifecycle as we can see

from the taxonomy in Figure II.22. Muller and colleagues map the different

participatory techniques directly to the tools and practices involved in software

development as follows [Muller et al., 1995]:

•  Analysis – Participatory teams can manipulate low-tech representations of the

people, objects, and tasks in their work domain to construct scenarios about

existing and envisioned work. Other participants can manipulate, argue, query,

propose and discuss alternatives about such representations;
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•  Design – Participatory teams can create and re-arrange low-tech representations to

develop alternative scenarios for how work processes might be revised, extended

and so on. These scenarios are a motivating basis for design and enable exploration

of applications of different technologies;

•  Assessment – Participatory teams can explore scenarios of how a particular

scenario would impact real or envisioned work processes. This can be done

relatively early in the software lifecycle, before the design is actually implemented.
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II.6. ARCHITECTURES FOR INTERACTIVE SYSTEMS

Work on user interface architecture initially started with concerns about conceptual

architectural models for user-interface objects (or entities). Examples of conceptual

architectural models, depicted in Fig. 1, are MVC [Golberg and Robson, 1983], PAC

[Coutaz, 1987] and the Lisboa Model [Duce et al., 1991]. Those models introduced the

concepts of abstraction and concurrency to the user interface domain, through a set of

collaboration agents (MVC and PAC) or objects (Lisboa). For a discussion and

classification framework of conceptual architectural models refer to [Coutaz, 1993].
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Figure II.23 - Conceptual Architectural Models for User-interface Objects

In the late 1980s and early 1990s several approaches of implementation architectural

models for interactive systems emerged. Unlike conceptual models, implementation

models organize the interactive system as a set of software components and aim at

practical software engineering considerations like reusability, maintainability, and

performance.

The Seeheim model [Bass, 1992] proposes a simple three-layer model (application,

dialogue and presentation) of an interactive system, roughly coupling the semantic,

syntactic and lexical functionality’s of the user interface. The application component

models the domain-specific components, the dialogue component defines the

structure of the dialogue between the user and the application and, finally, the

presentation component is responsible for the external to internal mapping of basic

symbols. The Seeheim model is considered a correct and useful model for

specification of interactive systems [Duce et al., 1991]. However, its support for

distribution, concurrency, resource management and performance is recognized to be

insufficient.
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The Arch model [Pfaff and Haguen, 1985] is a revision of the Seeheim model aimed at

providing a framework for understanding of the engineering tradeoffs, specifically, in

what concerns evaluating candidate run-time architectures. The Arch model proposes

a five-layer approach balanced around the dialogue component. The components of

the Arch model are:

•  The interaction toolkit component implements the physical interaction with the

end-user;

•  The presentation component provides a set of toolkit independent objects;

•  The dialogue component is responsible for task-level sequencing, providing

multiple view consistency, and mapping the between domain specific and user

interface specific formalisms;

•  The domain adapter component implements domain related tasks required but not

available in the domain specific component;

•  The domain specific component controls, manipulates and retrieves domain data

and performs other domain related functions.
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Figure II.24 - The Seeheim and Arch conceptual models

The Arch model provides developers with guidance to tackle the difficult engineering

compromises that affect the development process of interactive systems and the

quality of the end product. On the one hand the user and the functional core play a

symmetric role driving the dialogue component, hence, at high levels of abstraction

there is no a priori imposition on the control of the interaction [Coutaz, 1993]. On the

other hand, both the domain adapter and interaction toolkit components serve as

buffers for the functional core and the user, therefore, isolating and absorbing the

effects of change in its direct neighbors [Coutaz, 1993].

The initial work on user interface architectures, in the late 80s and early 90s, suffered

some refinements with the popularity of User Interface Management Systems (UIMS).

Examples of more recent architectures supporting UIMSs are the Composite Object

Architecture (for the Tube UIMS [Hill and Herrmann, 1987]), the ALV abstraction-
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link-view architecture (ALV) (for the Rendevous UIMS [Hill, 1993]) and the Garnet

architecture (for the Garnet UIMS [Myers et al., 1990]). These architectural models are

usually referred to as concrete models, since they support actual implementations of

UIMSs. However, they are closely related to the conceptual models described before,

for instance PAC and MVC.

With the advent of the Internet, and the raising importance of distributed systems, the

localization of the conceptual components can affect performance significantly. On a

distributed system, like the Web, we have a number of places where computation can

occur, the most obvious being the browser or web-client and the web server [Dix,

1999]. However, as the web evolves other places emerge where computation can take

part, for instance proxy servers, database management systems, middleware servers,

transaction servers and son on. The way an interactive application is split over these

computational nodes affects resources and efficiency but also, and most important,

usability considerations such as response time, feedback, security and so forth [Dix,

1999]. In collaborative systems there is the additional issue that users share views of

the same data, the control over that data, and individual interaction. These issues

inevitably lead to more complex decisions regarding user-interface architectures, both

in terms of the conceptual and implementation models [Dix, 1999].
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II.7. MODEL-BASED DEVELOPMENT OF INTERACTIVE

SYSTEMS

Model-based development of interactive systems aims at identifying high-level

models, which allow developers to specify and analyze the system under construction

at a more semantic oriented level [Paternò, 2000 ]. Model-based systems exploit the

idea of using a declarative interface model to drive the interface development process.

An interface model is a declarative representation of all relevant aspects of a user

interface, including the components and design of that interface [Puerta, 1997].

Interface models typically embody a number of interface related types at different

levels of abstraction: user tasks, domain elements, presentations, dialogues, user types

and design relations. These types are organized into different models within the

overall interface model [Puerta, 1997]. That organization is expressed using an

interface modeling language, which is a language that defines the different

components and relationships of interface models.

The main advantages of model-based development approaches derive from the

underlying declarative models (see section II.2.1). Declarative user-interface models

provide the following advantages:

•  They provide a more abstract description of the user-interface allowing designers

to defer thinking about the low-level details, thus promoting exploration and

innovation;

•  They facilitated the development of methods that support systematic design and

implement the user-interface;

•  They provide the infrastructure required to automate tasks related to the process of

user-interface design and implementation.

The work on model-based development of interactive systems emerged in the early

90s, in close relationships with the appearance of Model-based Interface Development

Environments. Those systems enabled new possibilities, such as help generation,

adaptive user interfaces, automatic user interface generation and multi-user interfaces

over the common internal functionality. Concrete examples of model-based

development environments (MBDE) have proliferated during the 90s, examples

include ITS [Wiecha, 1990], UIDE [Foley et al., 1991], Humanoid [Szekely et al., 1992],

L-CID [Puerta, 1993], Genius [Vanderdonckt and Bodart, 1993], Trident

[Vanderdonckt and Bodart, 1993], Mastermind [Szekely, 1995], Adept [Wilson and

Johnson, 1996], Fuse [Lonczewski and Schreiber, 1996], Tadeus [Stary et al., 1997],

Tactics [Kovacevic, 1994], Mecano [Puerta, 1996], Mobi-D [Puerta, 1997]. An extensive

review of those approaches is provided in [Silva and Paton, 2000].
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II.7.1. Useful Models in Model-based Development Environments

Model-based approaches contrast implementation-oriented approaches, where the

focus goes directly to implementation issues. Thus, model-based approaches benefit

from a higher-level perspective that facilitates the management of the increasing

complexity of interactive applications [Paternò, 2000 ]. This higher-level perspective is

achieved through the use of models (see section II.2.1). The following is a discussion

of the different models typically found in model-based approaches [Puerta, 1997]:

•  Data models – Data models were the first explicit type of models to appear in

model-based approaches, for instance UIDE used data models to produce static

interface layouts. Data models enabled the generation of user-interface

components (widgets) by matching data types with widget types. The main

drawback of data models was that developers could not obtain a specification of

interface behavior from them. Modern model-based approaches use data models

as subcomponents of their interface model;

•  Domain models – Following the advances in software engineering, model-based

approaches started using entity-relationship data models (Genius), enhanced data

models (Trident) and object-oriented data models (Fuse). Eventually, those models

led to fully declarative domain models (Mecano), which effectively express the

relationships among the object in a given context (see section III.3.3 for a more

detailed discussion of domain models). Consequently domain models enabled

partial specification of the dynamic behavior of the interfaces;

•  Application models – although domain models were more elaborate than data

models, they didn’t describe the semantics of the application functional core and

how they are related to the domain types. To address this problem approaches like

UIDE, Trident and Humanoid introduced an application model in various forms.

The aim of the application model was to facilitate the declaration of the interface

behavior, achieved through actions and interaction techniques for which

developers assigned parameters, preconditions and post conditions that enabled

the control of the user-interface at runtime;

•  Task models (or user-task models) – a task model describes the tasks that end-

users perform and dictates what interaction capabilities must be designed. Task

models are crucial in support of user-centered development (see section II.5.2).

Task models involve elements such as goals, tasks and actions (see definitions in

section II.1.2.2). In addition a task model can contain references to domain types

that must be presented to the user to perform actions, tasks and goals. Task-

oriented model-based approaches include Adept, Fuse, Tadeus and Trident, which

use different forms of task models to drive the generation of alternative design

solutions supporting the same interactive task;

•  Dialogue models – the dialogue model describe the conversation between the

human and the computer. It specifies when the end-user can invoke functions

through various interaction techniques (buttons, command, and so on) and media
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(voice, touch, gesture, and so on). It also specifies when the computer can query

the user and present information. Dialogue models can be found in model-based

approaches in various forms: dialog nets in Genius and Tadeus, attributed

grammars in Boss, state-transition diagrams in Trident and dialogue templates in

Humanoid;

•  Presentation models – the presentation model specifies how interaction objects

(e.g. widgets) appear in the different states of the dialogue model. Presentation

models generally consist of a hierarchical decomposition of the possible screen

displays into groups of interaction objects. Dialogue and presentation models are

closely interrelated, thus they are typically considered together in model-based

approaches (e.g. ITS).

All the models described previously are considered partial interface models because

they don’t convey all the relevant aspects of an interface design [Puerta, 1997]. The

models described previously are those commonly found in model-based approaches,

other models emerged over the years but never attained significant use – for instance

platform, user and workplace models. Partial models have led to efforts in trying to

define comprehensive interface models, such as those proposed in Mobi-D and

Mastermind. As Puerta points out, “this evolution has followed that of component

development itself. As interface models have evolved from data models to

comprehensive model-based environments, there has been a corresponding move

from elementary toolkit library components to basic textual or graphical editors, to

prepackaged elements such as ActiveX that can be used to construct interfaces

piecewise” [Puerta, 1997].

The confluence between comprehensive interface models and complex primitives

(widgets and components) forms the basis of modern model-based approaches.

Otherwise model-based approaches would require designers to work at a very low

detail level.

In the following section we discuss task notations, one of the most important

formalisms required to enable designers obtain this higher-level of abstraction.

II.7.2.Task Notations

As we saw previously task and dialogue models emerged from the need to

complement domain and application models in order to convey the information

required to: (i) describe the users tasks (task model) and describe the human-

computer conversation (dialogue model). Task models are fundamental models for

user-centered development because they enable designers to construct user-interfaces

that reflect the real-world requirements of the end-users. In order to design the

concrete user-interface the task model must be decomposed until we reach the basic

tasks (or actions – see section II.1.2.2). When such a level of description is reached, the

task model reflects the human-computer dialogue, thus the dialogue model. This
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process, commonly known as the transition from task to dialogue [Bomsdorf and

Szwillus, 1998], is fundamental for adequate user-interface design.

User-interface development approaches that rely on task modeling are commonly

known as task-oriented approaches. Task-oriented approaches have received

contributions from computer science, cognitive psychology and HCI (as illustrate in

Figure II.25). In the cognitive psychology field the focus is related with the

identification and characterization of human behavior (an activity known as task

analysis). Conversely in the computer science field the focus is shifted towards

finding notations suitable to represent tasks and their relationships to support

interactive system development [Paternò, 2000 ].

Cognitive

Psychology

Human-computer

Interaction

Computer

Science

Task-based

Approaches

Models for Task-

analysis

Models for

performance

evaluation

Descriptive

Models
Design Methods

TIM MOBI-D
User-Action

Notation

ConcurTask

Trees

CPM-GOMS,

KLM
GOMSTKA, MAD, GTA

Lean

Cuisine+
Diane+

Figure II.25 – Different approaches to task models (adapted from [Paternò, 2000 ])

According to Paternò, task-oriented approaches can be classified in three different

dimensions as follows [Paternò, 2000 ].

•  The type of formalism used to represent the model – which varies from formal

grammars to task-action grammars, production systems, knowledge models,

transition networks and Petri nets;

•  The type of information they contain – which can be oriented only to identify the

activities and logical decomposition or also include indications of temporal

relationships, artifacts manipulated and other properties;

•  The type of support they provide – which can include evaluation, user-interface

design, usability evaluation, and so on;

Many notations have been proposed for representing task and dialogue models.

Generally those notations differ in the following aspects: the type of syntax (which can

be textual or graphical), the level of formality (with respect to preciseness of the

semantics), and the richness of operations that they offer to designers, which involves

the capability to express sequential or concurrent operators [Paternò, 2000 ].

Initially task notations were proposed in the context of the model-based development

environments they supported. Examples include hierarchical task analysis (Fuse),

specialized Petri nets (Tadeus and Genius), attributed grammars (Boss), state

transition diagrams (Trident), task knowledge structure (Adept), dialogue templates

(Humanoid), and assorted notations with various levels of formality (Mecano, Mobi-D
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and Mastermind). However, the most popular examples of diagrammatic task

notation were state-transition diagrams (STDs), statecharts and petri nets. State-

transition diagrams provide an easily displayed and manipulable representation

based on a small number of constructs. However, they suffer from a number of

shortcomings. Notably they are based on a “single event/single state” model, which

can lead to an exponential growth in states and transitions in asynchronous dialogues,

thus resulting in large and complex diagrams [Philips and Scogings, 2000]. Statecharts

are basically an extension of STDs based on states developed to describe the behavior

of complex reactive systems. Statecharts, which have been integrated in the UML

(II.3), add a number of concepts to STDs (hierarchy, orthogonality and broadcast

events) that provide increased expressive power at the cost of greater complexity.

Although statecharts are an improvement over STDs, the need to explicitly show

transitions continued to pose problems for task modeling, particularly for modern

modeless interactive applications [Philips and Scogings, 2000]. Finally Petri-nets are

abstract virtual machines, with well-defined behavior that have been mainly used to

specify process synchrony in real-time systems. Like STDs, Petri-nets define possible

sequences of events, but also require transitions to be explicitly shown, thus retracting

and cluttering the diagrams.

The problems with the previous notations and the limitations of model-based

development environments, which lead to their failure in reaching industrial

application [Myers et al., 2000], forced a new perspective for task notations. From an

initial focus on their capability to drive the automatic generation process (motivated

by the purpose of model-based environments), task notations started reflecting the

requirements of the user-interface designers. Thus, the second generation of task

notations is clearly more focused on the usability and expressive power of the

notation to facilitate user-centered development and user-interface design. This

change in the field is evident in the words of Puerta: “Instead of automation, we

looked for ways to support interface designers. Instead of large knowledge bases and

complex inferencing strategies to make design decisions, we built interactive tools for

developers to do what they do best: design interfaces. Instead of using interface

models as a driving mechanism for an expert system, we used them to organize and

visualize interface design knowledge” [Puerta, 1998].

Examples of these second-generation task notations are LeanCuisine+ [Philips, 1995],

Diane+ [Tarby and Barthet, 1996] and ConcurTaskTrees [Paternò, 2000] notations. In

the following we summarize the main characteristics of these notations:

•  LeanCuisine+ is a semi-formal graphical notation for describing the behavior of

event-based direct manipulation graphical user-interfaces [Philips, 1995]. In a

LeanCuisine+ specification the interface is represented primarily as a dialogue

tree. The behavior of the interface is expressed in terms of constraints and

dependencies, which exist between the nodes of the tree (called menenes). The

major advantage of LeanCuisine+ is that task action sequences can be represented
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in the context of the structure of the interface dialogue. Although LeanCuisine+

was not developed in the context of a model-based development environment,

there are reports of automatically generating LeanCuisine+ diagrams from

prototype code. Also, the notation still lacks the support of a modeling tool;

•  Diane+ [Tarby and Barthet, 1996] is actually a design method that embodies a

diagrammatic task-based notation. In the Diane+ notation corresponds to a multi-

level structure of tasks, where the highest level corresponds to procedures

associated with goals. Diane+ procedures are refined through tasks, sequenced

with precedences that express chronological chaining, coupled where required

with constraints. It is partially possible to generate and manage the user interface

and contextual help directly through Diane+. Moreover, a modeling tool

supporting Diane+ and some automation mechanisms is described in [Lu et al.,

1998];

•  ConcurTaskTrees (CTT) [Paternò, 2000] is a notation developed taking into account

the previous experience in model-based approaches and adding new features in

order to obtain an easy-to-use and powerful notation. CTT is a graphical notation

where tasks are hierarchically structured and combined using a set of temporal

operators (see examples in section IV.4.4). The formal semantics of CTT have been

defined [Paternò, 2000] and a modeling tool supporting the development of CTT

models is publicly available (CTT Environment - CTTe). Moreover, CTT is

considered one of the most widely used task notations in the usability-engineering

field.

Despite the importance of task notations for user-centered development and user-

interface design, and the relative success of 2nd generation notation such as CTT, there

is no consensus over a task-modeling notation in the usability-engineering field

[Puerta, 1997]. The UML provides two types of notations that can be used to perform

task or dialogue modeling. UML use-case diagrams to some extent can be used to

perform user-task modeling. However, there is consensus that use-cases pose many

problems has a general notation for modeling the users tasks. Section III.3.1 discusses

those problems in detail. The UML also includes statecharts (UML statechart

diagrams), so there is the possibility of performing dialogue modeling as proposed in

early model-based development environments. However, has we discussed

previously, statecharts are widely recognized to be hard to use for complex interactive

applications.

There is an important benefit in integrating task notations with object-oriented

notations, in particular the UML. Such integration would leverage the communication

between the models describing the application internals and the models describing

the user tasks and the user-interface. Moreover, since the UML benefits from an

increasing tool support and interoperability, task notations could benefit from those

facilities. Different attempts have been carried out in this direction. For instance

conjectures about an integration of LeanCuisine+ with the UML is presented in
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[Philips and Scogings, 2000], and a description of a pragmatic transformation between

Diane+ and UML state diagrams is described in [Lu et al., 1998]. An adaptation of

CTT to the UML was proposed in [Nunes and Cunha, 2000b] and described in section

IV.4.4.
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II.8. CONCLUSION

This chapter presented a survey of usability engineering and object-oriented software

engineering bringing into context the two major research fields addressed in this

thesis.

The main conclusion we can draw from this survey is the insufficient integration of

usability engineering in modern software development practice. Although, usability

engineering has matured as an engineering discipline in the past decade, it is

irrefutable that an appropriate integration with modern software development

processes was not accomplished.

The different usability engineering models and techniques presented in this chapter

are established and enable an effective engineering approach to usability. The

attributes of usability are well known and can be effectively measured, evaluated and

improved. The existing cognitive frameworks of usability enable a precise,

quantitative and qualitative, estimation and evaluation of human-performance.

Decades of experience designing interactive systems are documented in extensive lists

of design heuristics. The main tasks forming the usability engineering lifecycle are

identified and provide a broad framework for introducing different HCI techniques.

Finally, a standard for human-centered design process, describing the principles and

key-activities for effective interactive system development, was approved recently.

Meanwhile, the software engineering community achieved a de jure and de facto

standard for object modeling whose success is unquestionable. The Unified Modeling

Language (UML) is recognized to be the dominant diagrammatic modeling language

in the software industry. It has found widespread use in many different application

domains, from avionics and real-time systems to e-commerce and computer games. It

applies to the different modern requirements to build and document software

intensive systems. It is used for business process modeling, to describe software

architectures and patterns, and maps to many different middleware architectures,

frameworks and programming languages. The UML is also recognized to have

influenced the CASE tool industry, improving the quality and availability of high-end

case tools, in particular for modeling purposes.

Although the UML standard doesn’t provide a methodological background, the

Unified Process, and its’ variations, define a modern iterative and incremental,

architecture-centric and use-case driven software development process, highly

integrated with the UML. Those approaches recognize the importance of user

acceptance and involvement as a key aspect of modern software development.
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Multiple references to real value to the users, user involvement, real-world tasks, business

critical use-cases, are common in UML based processes. However, the importance of

user-centered design and user-interface design is scarce. Constantine, in a keynote

speech to the TOOLs’2000 conference [Constantine, 2000], quantified the impact of

user-interface design in terms of the number of pages in both the UP and RUP

textbooks. The RUP textbook includes 4,5 pages (out of 262) about user interface

design and the UP 12 pages (out of 450) with a sidebar on essential use-cases.

Although this quantification is arguable, it is irrefutable that user-interface design is

not given an adequate importance in modern object-oriented development. In the

same keynote speech Constantine reinforced his point highlighting some quotes of the

mentioned textbooks, as follows:

•  “We care about user interfaces… only if they are architecturally interesting.

However, this is seldom the case.” [Kruchten, 1998]

•  “Based on feedback, we massage the prototype until is satisfies the needs of

users… The prototype them becomes the user interface specification” [Kruchten,

1998]

•  “Designing the user interface is part of the requirements workflow and not

design.” [Jacobson et al., 1999 ]

Despite the lack of integration between usability engineering and software

engineering, some of the problems that both disciplines face are highly

interconnected. Software engineering achieved impressive results in a very limited

amount of time - only 50 years have passed since the invention of the modern

computer and already we’re faced with the ubiquity of computing. Although at the

first time we can consider that usability engineering has been marginal to the

development of software engineering, when we look closely to what has been

accomplished we find many intersection points. Some of the most important

achievements in software engineering are related to research in usability engineering -

irrefutable examples are object-oriented programming, component-based

development, event languages and the current desktop graphical user-interface

[Myers, 1995]. Although usability specialists have conventionally been considered

outsiders in software development, their role has increased significantly in the past

years. From the early focus on product assurance testing (human factor specialist)

they have been evolving to more integrated activities such as integrated product

design and development (usability specialist and user-centered specialists) [Karat,

1997].

More evidence of this close relationship can be found in research challenges that

software engineering faces today. In a recent book about the future of software

engineering, which celebrated the last international conference on software

engineering of the century (ICSE’2000) [Finkelstein and Kramer, 2000], the authors

identified several research challenges. Four out of eight major research challenges are
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very familiar to usability engineering. To illustrate this point we reproduce of those

questions in the following [Finkelstein and Kramer, 2000]:

•  “Change - How can we cope with requirements change? How can we build

systems that are more resilient or adaptative under change? How can we predict

the effect of such changes”

•  “Service-view – How can we shift from a traditional product-oriented view of

software development towards a service view? What effects do new modes of

software service delivery have on software development?”

•  “Non-classical life cycles – How can we adapt conventional software engineering

methods and techniques to work in evolutionary, rapid, extreme and other non-

classical styles of software development?”

•  “Configurability – How can we allow users, in the broadest sense, to use

components in order to configure, customize and evolve systems?”

To different extents all of those issues are related to the fact that software intensive

systems are driven and used by people. For instance, the problem of requirements

change and configurability is a well-known issue in usability engineering [Myers,

1994; Hackos and Redish, 1998; Beyer and Holtzblatt, 1998]. Similarly, techniques

supporting non-classic lifecycles - for instance participatory techniques [Muller et al.,

1993], prototyping [Isensee and Rudd, 1996] and the role of creativity in design

[Laurel and Mountford, 1990] – have been extensively studied in the usability-

engineering field. Finally the shift from a product to a service view is to some extend

motivated by the advent of the increase connectivity of computing [Baecker, 1992] and

information appliances [Norman, 1998]. Obviously, usability engineering is no silver

bullet to those problems [Myers, 1994], but much progress can emerge from

interdisciplinary work.

Conversely, some of the problems that usability engineering faces today can

obviously benefit from previous research in software engineering. The increasing

complexity of modern user-interfaces poses difficult engineering problems that can

only be solved taking advantage of the recent advancements in software engineering

(for instance in the domains of software architecture, software infrastructure, and so

on). In particular, the maturity of object-orientation and the advent of the UML and

associated tools can highly benefit a major problem in usability engineering: the lack

of a non-proprietary standard language that leverages tool support and

interoperability. In the following chapter we discuss the state-of-the-art in this topic of

object modeling for user-centered development and user-interface design.
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III.  STATE OF THE ART: OBJECT
MODELING FOR USER-CENTERED
DEVELOPMENT AND USER
INTERFACE DESIGN

"To steal ideas from one person is plagiarism; to steal from

many is research."

—Unknown

This chapter describes recent developments in the field of object modeling for user-

centered development and user interface design. The aim of this chapter is to review

and discuss recent work related to the main topic of the thesis, therefore justifying

that the research problem is previously unsolved. The next chapter will build on the

definitions, discussions and arguments, presented here, to explain why Wisdom

solves the problem of building usable software intensive systems under the

framework of the UML.

The chapter starts with a brief historical perspective of object modeling and user

interface design. From the initial efforts of achieving usability through consistency

and standards in the 1970s and 1980s to the results of the latest workshops on the

subject of object models for user-interface design held at major HCI and SE

conferences from 1997 to 2000.

The second section of this chapter extends the discussion of the previous section with

a specific focus on the recent developments in object modeling for user-centered

development and user interface design (ranging roughly from 1995 to early 2001).

This review of the state-of-the-art starts presenting different view models for user-
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interfaces and relates them with the existing view models of the UML. A conceptual

framework, developed at the first workshop discussing object models and user

interface design, presents a unifying view model of the different dimensions required

to bridge the gap between HCI and SE. The dimensions are isolated as process,

notation (and semantics) and architecture.

The third section of this chapter presents the useful models identified in the

conceptual framework and required to adequately support user interface design with

object models. We present and discuss the different models in the framework (task,

business process, domain, interaction, user-interface and interactive system models),

contrasting definitions from the various fields involved in the development of

interactive software intensive systems: requirements engineering, human-computer

interaction and OO software engineering.

The fourth section takes the previously defined unifying framework and presents the

recent proposal for integrated user-centered OO methods. We clearly define what

characterizes those new methods and illustrate how they resolve the problems

encountered in conventional OO development methods. We then review three UC-

OO methods that emerged in the late 90s: Ovid, Idiom, and Usage-centered Design.

The section and the chapter end with a description of an encompassing UC-OO

process framework used to illustrate the requirements of an ideal solution for the

problem of bridging HCI and SE with an OO method that takes the best from both

fields and produces highly usable software intensive products.
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III.1. BRIEF HISTORICAL PERSPECTIVE OF OBJECT
MODELING FOR USER-CENTERED DEVELOPMENT
AND USER INTERFACE DESIGN

Until very recently both research and practice didn’t focus on the application of object

orientation to the overall organization and coordination of the different processes,

models, artifacts, behavioral and presentation aspects of interactive systems. Through

the 1970’s and 1980’s there were many efforts to achieve usability through

standardization and consistency. Such principles ultimately gained visibility with the

Xerox “Star” and later the Apple Macintosh, which provided the first commercial

products deploying graphical user interfaces (GUIs) based on the direct manipulation

interface style. Direct manipulation  refers to systems that make visible the objects of

interest to users enabling rapid, incremental and reversible actions on those objects by

direct manipulation instead of complex command language syntax [Shneiderman,

1998]. Direct manipulation is usually confused with the term graphical user interface

(GUI), which refers to a user interface technology that requires bitmapped displays, as

opposed to character-based displays. Hence, direct manipulation describes a style of

interaction, while GUI refers to a specific interface technology.

Figure III.1 - The history of OOUI by Collins [Collins, 1995]

During the 80s, others pioneered the use of object technology describing architectures

for user-interface objects (e.g. MVC and PAC) and logical input devices [Golberg and

Robson, 1983; Coutaz, 1987; Foley et al., 1990] (see also section II.6). However, only in

the late 1980s, the concept of an object-oriented user interface was explored by IBM’s

CUA architecture, and incorporated in IBM and Microsoft products [IBM, 1991].
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One of the first explicit references to object-oriented user interface design was

provided by Collins [Collins, 1995], describing a principled approach that applied

object-orientation to end user-interfaces and the internal system structure that

implements them. Collins elaborated the MVC implementation architecture that

corresponds to a three-way factoring of user interfaces into conceptual model,

presentation language and action language.

But it was not until the 1990’s that the first attempts to use object technology to

support analysis and design of interactive systems emerged. Jacobson and colleagues

introduced the concept of use-cases and defined the entity, interface (boundary in the

UML) and control analysis framework, which in part accomplished the separation of

concerns between internal functionality and the user interface. In his work

[Constantine, 1992] extended use-cases in order to enable the connection between the

structure of use and the structure of the user interface. The three models (user role

model, use-case model and context model) of Constantine’s essential use-cases

provided a way to connect the design of the user interface back to the essential

purpose of the system and the work it supports. Since Constantine’s proposal use-

cases have seen a plethora of definitions and extensions, contributing to its ubiquity in

software development, but also compromising its utility (see [Hurlbut, 1998] for an

extensive review of different approaches for describing and formalizing use-cases).

Different authors addressed the representation of conceptual models using object

technology. Examples include the following methods: STUDIO [Browne, 1993], Idiom

[Harmelen, 1996], GUIDE [Redmond-Pyle and Moore, 1995] and the LUCID approach

[Kreitzberg, 1996]. A notable exception to the use of object-modeling was ERMIA that

used entity-relationship diagrams to express conceptual and perceptual models for

user interface design [Green, 1991; Benyon and Green, 1995]; [Green and Benyon,

1996]. Despite the data modeling nature of ERMIA, the approach addresses common

concerns with its object-oriented counterparts. ERMIA defines conceptual

descriptions of information artifacts (conceptual models) and perceptual descriptions,

which convey access to the conceptual model and employ a method of presentation

from which users may derive information [Sutcliffe and Benyon, 1998].

Also during the late 90s, Roberts and colleagues [Roberts et al., 1998], in the Ovid

method, introduced the concept of an object view and its relationship to user

perceivable objects. Constantine and Lockwood also proposed an object-oriented

based approach for interactive systems design [Constantine and Lockwood, 1999].

Their Usage-centered Design approach expands early work on essential use-cases,

defining a set of essential models for usability: a role model (describing users and user

roles), a task model (describing users’ work and tasks) and a content model

(describing interface contents and navigation). Despite, to some extent, enabling the

use of the UML as their notational basis, both Ovid and Usage-centered Design, are

not fully compatible with the UML standard.
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Between 1997 and 2000, several workshops discussed the role of object models and

task/process analysis in user interface design [Harmelen et al., 1997; Artim et al., 1998;

Nunes et al., 1999; Nunes et al., 2000]. All this work, emerging both from industry and

academia, stressed the importance and the opportunity of using object-technology to

bridge the gap between practice in software engineering and HCI. The framework

develop during the CHI’97 Workshop [Harmelen et al., 1997] at the Computer Human

Interaction (CHI) Conference, was consistently used to depict the problem of using

object models to bridge the gap between SE and HCI. This framework was refined by

Kovacevic [Kovacevic, 1998] and subsequently used in the ECOOP’99 workshop

(WISDOM’99) [Nunes et al., 1999] to identify the dimensions that need to be

considered to effectively bridge the gap between HCI and SE using object models.

The following CHI’98 workshop concentrated on discussing the problem of

incorporating work, process and task analysis into commercial OO software

development [Artim et al., 1998]. The workshop resulted in a set of extensions to the

UML metamodel that aimed at enabling HCI work in close collaboration with object-

oriented development. However, this extension had several problems (as discussed in

section III.3) and failed the purpose of disseminating to the SE community.

The goal of disseminating some of the concerns addressed in the CHI workshops to

the SE community was accomplished in the ECOOP’99 workshop held in 1999 at the

European Conference in Object-Oriented Programming (ECOOP’99) [Nunes et al.,

1999]1. During this workshop, the participants (from the HCI and SE communities)

reviewed and discussed the outcome of the previous CHI workshops. The workshop

succeeded in stressing the importance of using object-technology to integrate SE and

HCI practice. A subset of the revised CHI’97 framework, originally proposed by

Kovacevic [Kovacevic, 1998], was considered and four important dimensions

discussed: process, notation, architecture and traceability. Furthermore, an “ideal”

integrated User-centered Object-Oriented (UC-OO) process framework was discussed

and proposed.

From the community involved in the different workshops, emerged an edited book

proposal that included some of the most important approaches developed during the

90s, including integrated UC-OO methods, OO based techniques for user-interface

design and reviews and discussions about conventional OO approaches to user-

interface design [Harmelen, 2001a].

All this work urged the different contributors in the field to approach the UML

community and propose a UML profile for interactive system development. The

discussion of that proposal was initiated in the Tupis’00 workshop [Nunes et al.,

2000], held in 2000 at the International Conference on the Unified Modeling Language.

                                                            
1  The Workshop on Interactive System Design and Object Models (WISDOM’99), held at the European

Conference on Object Oriented Programming (ECOOP’99), is hereinafter designated ECOOP’99
Workshop to avoid confusion with the Wisdom method (Whitewater Interactive System Development
with Object Models).
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During the Tupis’00 workshop the participants discussed the requirements for an

UML extension for interactive system development. There was consensus that such

extensions required mechanisms that are not currently supported in UML 1.4

standard. However, that problem was shared with other parties involved in different

extensions and is actually one of the greatest requirements for the next major UML

revision (UML 2.0). The fact that the new UML version is moving towards a family of

languages with a common, smaller and semantically well-defined core was

considered appropriate to accommodate the envisioned extensions for interactive

system development.
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III.2. RECENT DEVELOPMENTS IN OBJECT MODELING
FOR USER-CENTERED DEVELOPMENT AND USER
INTERFACE DESIGN

The previous section briefly summarizes some early developments in using object

technology to support user-centered development and user-interface design. Most of

the work until the late 90s concentrated on using object technology to represent

conceptual and perceptual models of user interfaces. This work emerged mainly from

the human computer interaction (HCI) community, which also contributed with

proposals for conceptual and implementation architectures for interactive systems

(summarized in section II.6).

From the perspective of the software engineering community, the most important

contribution is usually recognized to be Jacobson’s concept of use-cases. However,

Martin and Oddel argue that use-cases are actually operations associated with triggers

and events that correspond to interfaces expressed in terms of stimulus and responses

[Martin and Odell, 1998]. This approach, originally described by McMenamin and

Palmer [McMenamin and Palmer, 1984], is used to perform context specification,

which is defined as the expression of relationships between a given system and its

environment [Martin and Odell, 1998]. Context specifications appear in context

diagrams that convey a high-level perspective of the system, enabling the need to

specify all the various structural and behavioral elements of a system on a single

model.

In following sub-sections we present the recent developments in using object

modeling for user interface development. This presentation, not only describes

different approaches, but also provides a critical discussion of the topics related to the

major contributions of the thesis. Therefore, the justification that the problem

addressed in this thesis was not solved previously is given in this section.

III.2.1.Three Views of User Interfaces

In [Sutcliffe and Benyon, 1998] the authors propose a high level perspective of model-

based design of user interfaces corresponding to a three level view of user interfaces.

The three views are as follows [Sutcliffe and Benyon, 1998]:

•  Structural view – focuses on the main entities or objects, which are in the system

and how those object are related. The two main traditions of structural models in

software development are entity-based and object-oriented. Thus, structural

models are usually expressed as object models and entity-relationship models.
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•  Functional view – focuses on how some substance or object moves through the

system. Functional aspects include data flows between processes (workflows),

models of the control flow and movement of physical objects (sequencing of

actions) or the physical actions that people have to undertake and the things they

have to think about and remember. Functional models of interactive systems are

usually expressed with task models or use-cases models.

•  Dynamic view – focuses on how the structure and functioning of the system are

related and the behavior that results. The model of system dynamics concentrates

on the events that occur and the different states that the system can take up

depending on those events. Dynamic models of interactive systems are usually

expressed with statecharts.

Structural View

Structure

Objects and Entities

Dynamic View

End-user
Functionality

Functional View

Dynamics
Behavior

Figure III.2 – The three views of user interfaces

An interesting aspect of the three views of user interface, with respect to the object

modeling approach, is trying to find a clear mapping between the user-interface views

and the views proposed in the different interpretations of the object modeling

approach. The UML standard defines a view as “projection of a model, which is seen

from a given perspective and omits entities that are not relevant to that perspective”

[OMG, 1999]. However, the standard itself doesn’t define specific views, that is, it

omits any reference to structural, dynamic or any other kind of view. This is

consistent with the ideas of Rumbaugh and colleagues that point out that a view “is

simply a subset of UML modeling constructs that represents one aspect of a system”

[Rumbaugh et al., 1999 ]. Thus, views are used arbitrarily to organize concepts and

notational elements in ways that are convenient and intuitive for modelers

[Rumbaugh et al., 1999 ].

Therefore we can find in the literature different views defined for different purposes.

One example is provided in section II.4.3.1 with the logical, implementation, process,

deployment and use-case view of the 4+1 model view of architecture. Another one is

given in [Rumbaugh et al., 1999 ] with the structural, dynamic, model management

and extensibility views. Finally the Unified Process promotes yet another approach

that encompasses the analysis, design, deployment, implementation and use-case

views. They are in fact referred to as models, but are quite consistent with the notion

of a view (as defined before) if we assume that models are at a given point in time
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views until they convey a complete description from the same given perspective (see

section II.4.3.1).

View models also appear, in a different form, in the foundation of object-oriented

modeling described in section II.2.4. Martin and Oddel divide the basic level of their

foundation terms of structural and behavioral specifications, which map consistently

with both the three views of user-interface and two of the views proposed by

Rumbaugh and colleagues. However, Martin and Oddel foundation differs from

Rumbaugh’s approach since it considers use-cases as being part of “other modeling

approaches”, in particular context specification.

III.2.2.A Unifying Framework for Object Modeling for User Interface Design

The ECOOP'99 workshop version of the CHI’97 framework can also be conceived as a

view model of interactive systems, comprising different perspective of interest for

interactive system development. Figure III.3 illustrates the Wisdom’99 revised

framework of the CHI’97 workshop, originally proposed in [Kovacevic, 1998].

 

Internal

Interface

Interactive System

Model

Interaction Model Domain Model

User Interface Functional Core

Implementation

Business ModelTask Model

ArchitectureProcess

TraceabilityNotation

Figure III.3 - The ECOOP’99 version of the CHI’97 framework, including the three
issues – notation, process and architecture [Nunes et al., 1999; Kovacevic, 1998;
Harmelen et al., 1997]

This view model architecture clearly (logically, not necessarily physically) separates

the functional core from the user interface. While the user interface depends on both

the domain and interaction models, the functional core only depends on the domain

model. This view model also supports the separation of the presentation (in the user

interface) from the conceptual specification of the interaction (the interaction model).

The framework in Figure III.3 passed extensive scrutiny in the CHI’97, CHI’98 and

ECOOP’99 workshops. Kovacevic independently defined a set of dimensions for

integrating user-interface design into software development [Kovacevic, 1998]. Those

dimensions were used and explored in the ECOOP’99 workshop and are described in

the following section. In addition, a set of definitions for the different models in the

framework where consensually defined in the ECOOP’99 workshop and included



State of the Art: Object Modeling for User-Centered Development and User Interface Design

80

contributions from both the object-oriented software engineering (OOSE) and the

human-computer interaction (HCI) communities.

III.2.3.Dimensions for Integrating User-Interface Design into Software

Development

The three dimensions for integrating user-interface design into the software

development lifecycle, as illustrated in Figure III.3, are as follows [Kovacevic, 1998]:

•  Notation and Semantics - The same argument that drove adoption of the UML – to

enable tool interoperability at semantic level and provide common language for

specifying, visualizing and documenting software intensive systems – applies to

bridging the gap between user-interface design and OO software engineering. Both

UI and OO developers should collaborate in developing the domain model,

although focusing on different aspects. In addition, OO analysis and design

focuses on refining the domain model toward an implementation of the functional

core. The domain model captures the semantics of the context of the system and

defines the information requirements for the application UI. User interface design

focuses on the interactive model that contains the UI specific information

complementing the domain model. Together the domain and interaction models

define a model of an interactive system. Notation must facilitate this collaboration

by supporting any additional UI related modeling views, and providing the

underlying semantics that tie UI design constructs with OO development

constructs;

•  Architecture – Interactive systems require an architecture that maximizes and

leverages user-interface domain knowledge and reuse. As mentioned in the

previous section, the model in Figure III.3 separates the functional core from the

user-interface, including the presentations aspects and abstract interaction model.

Therefore this model leverages on user-interface domain knowledge by providing

design assistance (evaluation and exploration) and run-time services (UI

management and context-sensitive help).

•  Process – As mentioned in section II.5.1, usability and consequently user-interface

design must be incorporated into a software development process as an integral

part, not an afterthought. Only redesigning the whole development process

around usability engineering requirements we can facilitate collaboration between

usability experts, user-interface designers and software developers.

The approach proposed by Kovacevic leverages a set of benefits that an envisioned

user-interface design tools could support. The benefits described in [Kovacevic, 1998]

are as follows:

•  Evaluation - Different UI designs can be evaluated with respect to specific tasks

and/or given criteria, such as speed and frequency of use, learning time, and

associated costs [John and Kieras, 1996b; Kieras et al., 1997; Sears, 1995];
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•  User-interface generation - A user-interface implementation can be directly

produced from a model according to the model-based tradition [Johnson et al.,

1995; Kovacevic, 1994; Szekely et al., 1996];

•  Help generation - Context-sensitive help, as a run time component of the

application user-interface, can be produced including animations and explanations

[Foley et al., 1991; Sukaviriya and Foley, 1990];

•  Consistency/completeness checks - A user-interface can be evaluated with respect

to completeness and consistency, for instance checking if all user actions can be

reached or enabled [Kovacevic, 1994];

•  Design assistance in exploring the user-interface design space [Foley et al., 1991;

Kovacevic, 1994; Szekely et al., 1992].
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III.3. USEFUL MODELS IN OBJECT MODELING FOR
USER-CENTERED DEVELOPMENT AND USER
INTERFACE DESIGN

In the following sub-sections we use the ECOOP’99 workshop version of the CHI’97

framework to present, define, contrast and discuss different interpretations of the

models encompassing that framework (depict in Figure III.3). The presentation aims

at reviewing the recent developments in the field in an integrated way and providing

references to related work in both SE and HCI fields. In addition we discuss the

potential of object modeling to convey the required information in each model.

III.3.1.Task Model

Task modeling is a central and familiar concept in HCI but seldom-used in object-

oriented software engineering. A commonly accepted definition of a task model, from

the HCI perspective, emerged in the CHI'97 workshop: “task models describe the

activities in which users engage to achieve some goal (...) A task model details the

users’ goals and the strategies adopted to achieve those goals, in terms of the actions

that users perform, the objects involved in those actions and the sequencing of

activities” [Harmelen et al., 1997]. This definition is consistent with the definitions

provided by the model based user interface design approach (see section II.7).

From an OOSE perspective, task models can be considered similar to use-case models.

However the definition of a use-case model only refers to system functionality that

provides users with results of value (see section II.4.1).

As we discussed in [Nunes and Cunha, 2000b], the adoption of use-cases in the UML

acknowledges the importance of identifying the different roles users play when

interacting with an application to support their tasks. However they are still mainly

used to structure the application internals and don’t provide an efficient way to

support the usability aspects of the interactive system. Essential use-cases

[Constantine, 1992] identified some of the requirements for user interface

development. An essential use-case is “a simplified, abstract, generalized use-case

defined in terms of user intentions and system responsibilities” [Constantine, 1992], it

contrasts Jacobson’s original definition of a concrete use-case “a class describing the

common pattern of interaction of a set of scenarios” [Jacobson, 1992].

Essential use-cases define user role maps, a set of relationships between actors

(affinity, classification and composition) that reveal how the different roles in a system
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fit together defining who will use the system and how [Constantine, 1992]. Other

approaches, used in goal-driven interaction design, rely on archetypal descriptions of

users. In one of those proposals [Cooper, 1999] the author defines a persona, a

hypothetical archetype of a user defined with precision and detail. The author claims

that instead of designing for a broad audience of users, interaction designers should

design for a small set of archetypal users – the cast of characters [Cooper, 1999]. The

requirements in such proposals are substantially different from the common

interpretation of use-cases in OO analysis and design – they recognize the

peculiarities of interaction design and they focus on users’ goals and the structure of

use. A proposal for structuring use-cases with goals [Cockburn, 1997] already

recognizes some of the above problems distinguishing goals as a key element of use-

cases.

The descriptions of user behavior are intimately associated with the technique (and

underlying concepts) used to abstract the end-users. In the UML, and associated

development methods, descriptions of user behavior are usually captured detailing

use-cases with scenarios, activity diagrams or interaction diagrams. From an HCI

perspective the descriptions of user behavior usually encompass a task model, which,

at least to some degree, can be achieved with the mentioned UML diagrams – in

[Artim et al., 1998] and [Kovacevic, 1998] two UML extensions are proposed to

accommodate task models.

However the major problem with descriptions of user behavior are related to the

system-centric nature of use-cases. In [Constantine and Lockwood, 2001] the authors

argue that “conventional use-cases typically contain too many built-in assumptions,

often hidden and implicit, about the form of the user interface that is yet to be

designed.” Such argument led the authors to propose the essential use-case narrative,

a technology-free, implementation independent, structured scenario expressed in the

language of the application domain and end-users. The essential quality (technology

free and implementation independent) of descriptions of user behavior can also be

applied to diagrammatic representations. In [Nunes and Cunha, 1999] we propose to

detail use-cases with activity diagrams following the same principle. Goal-driven

interaction design also relies on descriptions of user behavior structured in terms of

users’ goals. For instance in [Cooper, 1999], the author proposes to drive design in

terms of personal, corporate and practical goals.

This view of the role of task modeling, with respect to conventional use-case

modeling, was also stressed in the results of the CHI’98 workshop. Artim and

colleagues pointed out “the difficulty with UML's approach to use cases is that it is

not a generalized form of task modeling. A number of important features such as

decomposability and task frequency are entirely missing from the UML model”

[Artim et al., 1998]. As a result of this problem, the workshops participants proposed

an extension to the UML metamodel (depict in Figure III.4) that defined a separate
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user task model and provided a standard model for traceability between tasks and

their corresponding use-cases.

Figure III.4 – Original draft of the CHI’98 User Task Model (from [Artim et al.,
1998])

The problem with the extension proposed in the CHI’98 workshop is that it uses the

heavyweight extension mechanism of the UML, that is, creates additional concepts at

the M2-level (see section II.3.3). This kind of UML extension requires thorough

checking for inconsistencies with the remainder of the elements in the metamodel

(omitted in Figure III.4 for clarity). The CHI’98 proposal omitted any references to the

abstract or concrete syntax, that is, it is not possible to devise mappings between the

new semantics introduced and the notation. Furthermore, heavyweight UML

extensions require “meta-tool” facilities for tool support and they also impact the

interchange formats, for instance XMI (see section II.3.3).

The irrefutable conclusion that use-cases are not a generalized form of task modeling

was also corroborated in the ECOOP’99 workshop. Thus, the inclusion of a task model

in the CHI’97 and ECOOP’99 workshop frameworks. A task model can convey

information about existing tasks and envisioned tasks. Existing task models

correspond to the actual way users perform tasks to accomplish their goals. The

process of understanding existing tasks is conventionally called task analysis.

Envisioned task models correspond to the way users will perform the tasks the

foreseen system will support. The process of designing prospective tasks is usually

called task synthesis, when the impact in the business processes is relevant it can be

referred to work or process-re-engineering (described in the next section).

Both types of task models discussed before convey the information produced in the

early stages of the usability engineering lifecycle, as described in sections II.5.1 and

II.5.2.2. Therefore, a task model ought to include the artifacts generated for the user-

centered activities that encompass understanding and specifying the context of use,
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and specifying the user and organization requirements (as presented in section

II.5.2.2). From the usability engineering lifecycle (UEL) perspective, this activity

includes the tasks of user profiling, task analysis, to some extent usability goal setting,

in addition to the work-reengineering task (as described in section II.5.1).

III.3.2.Business (Process) Model

From a traditional Management Information Systems (MIS) perspective a business

process is “the unique ways in which organizations coordinate and organize work

activities, information, and knowledge to produce valuable products or services”

[Laudon and Laudon, 2000]. Therefore, a business model encompasses all the business

processes in the context, or related to, the application domain of software intensive

systems. This definition is consistent with the one provided by Jacobson and

colleagues where “the business process model describes the business processes of a

company or organization in terms of its workers, clients and entities they manipulate

(...) The business model presents the business from the usage perspective and outlines

how it provides value to its users (partners and customers)” [Jacobson et al., 1999].

Therefore, a business model captures the internal operations of a business together

with perforce interactions with the outside world – an important issue in human-

computer interaction [Nunes et al., 1999].

From a requirements engineering perspective a business model is “a model of the

communications and contracts among the participants in the business and the other

stakeholders, customers, suppliers and so on” [Graham, 1998]. This model starts with

the identification of the different external actors (or agents in the requirements

engineering tradition) and their shared goals, also known in the literature as customer

value propositions (CVPs) [Jacobson et al., 1995]. However, external goals are

insufficient to characterize the goals of a business and, thus, must be complemented

with internal goals. Internal goals are those that the organization holds for it’s own

private reasons and have to do with the underlying cultural and ethical principles

[Graham, 1995]. A business model in this perspective can be represented with a

mission matrix or grid where the shared and internal goals define one dimension and

the stakeholder’s roles define another dimension. The business processes are then

distributed along the mission grid defining who does what with respect to the

different shared and internal goals. Logical roles correspond to abstract job

descriptions that unify a coherent set of processes, which can be accomplished using

one basic set of skills [Graham, 1994].

Therefore, the requirements engineering approach defines a business as a network of

communicating agents. An agent is an autonomous and flexible entity capable of

communicating with the external world in a proactive way that can involve exhibiting

intelligence and social behavior [Graham, 1995]. Agents in a business communicate

through signs and signals, called semiotic acts. In an object-oriented perspective

semiotic acts can be represented as messages that can imply data flows and are
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directed from the initiator to the recipient. In this perspective agents can also be

modeled as special types of objects (actors) that pass messages. According to

[Graham, 1995], this approach based on semiotics, is preferable to other approaches

because it’s not too close to system design, as other alternatives such as Jackson

System Development and its OO variants [Graham, 1998]. The author also argues that,

besides being one of the most widely used approaches, use-cases are both

theoretically and practically flawed for conveying a business model [Graham, 1995].

Some confusion might occur when comparing the concept of a task model with the

concept of a business model. However task models are abstractions of user behavior

while performing tasks with existing or envisioned systems; whereas a business

model represents the business processes from a usage perspective that produces value

in terms of services or products for the organization [Nunes et al., 1999]. Not all the

activities involved in a business process necessarily involve software intensive

systems, in which case both models can eventually match. However, the typical case,

which is consistent with the usability engineering perspective (see section II.5.1),

involves translating business goals to usability goals that subsequently drive work

reengineering.

There is also a relationship between a business model and a domain model. A domain

model can be conceived as a simplified variant of a business model where we only

focus on the entities that workers manipulate to perform the business processes

[Jacobson et al., 1999]. This is also consistent with the HCI perspective were a domain

model might include all kinds of user referents that are not germane to the business

model [Nunes et al., 1999].

Another important aspect, related to business models, is business process re-

engineering (BPR). BPR involves studying the key business processes in an

organization with the aim of improving their efficiency, for instance, redesigning

process to make their path more proficient. Thus, BPR provides the opportunity to

improve existing processes or offer new services to the different stakeholders. From a

usability engineering perspective, BPR or work reengineering involves realizing the

power and efficiency that automation makes possible; reengineering work to more

effectively support business goals; and minimizing retraining by using as much as

possible the user’s task knowledge, while maximizing efficiency and effectiveness by

accommodating cognitive capabilities.

Business (process) models, whether product of business re-engineering or not, convey

the information produced in the early stages of the usability engineering lifecycle (see

sections II.5.1 and II.5.2.2). Therefore, in a similar way to the task model, a business

process models also contains artifacts generated for the user-centered activities that

encompass understanding and specifying the context of use, and specifying the user

and organization requirements (as presented in section II.5.2.2). From the usability
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engineering lifecycle (UEL) perspective, this activity includes the tasks of work

reengineering, and to some extent usability goal setting (as described in section II.5.1).

III.3.3.Domain Model

A domain model concerns someone’s view of existing or possible reality [Wand et al.,

2000]. This definition is based on the ontological perspective, the branch of philosophy

dealing with models of reality, which distinguishes between concrete things (entities)

and conceptual things (e.g. mathematical concepts). Therefore, the notion of a concrete

thing (an entity or an object) applies to anything perceived as a specific object by

someone, whether it exists in physical reality or someone’s view of reality [Wand et

al., 2000]. The ontological perspective is consistent with other definitions in theoretical

work on object orientation and human computer interaction. For instance, conceptual

models as defined by Martin and Oddel (section II.2.4) and mental models as defined

by Norman (section II.1.2.4).

Mental models refer to representations that people construct in their minds of

themselves, others and objects in the environment, that is, a collection of entities as

defined in the ontological perspective. A domain model simply restricts the entities,

which can be considered, to the concepts that apply to a selected area of interest. This

restriction, to the context of the system, is consistent with the commonly definition of

domain model found in the Unified Process: “a domain model captures the most

important types of objects in the context of the system. The domain objects represent

things that exist or events that transpire in environment in which the system works.”

[Jacobson et al., 1999]. However, in the CHI’97 workshops, the authors argued that a

domain model “(...) specifies user domain semantics. A domain model is composed of

types, which model referents and represent the users' world at a sufficient level of

detail to perform user interface design. Users may appear as part of the domain model

if they are required to be in the model.” [Harmelen et al., 1997].

The main difference, between both perspectives, lies in the restriction found in the

CHI’97 vision to the entities required to perform user-interface design. Such

restriction is sometimes isolated with a different model called conceptual core model,

for instance in the Idiom method [Harmelen, 1996] and in the original version of the

CHI’97 framework [Harmelen et al., 1997]. The conceptual core model restricts the

domain entities to the subset seen from the end-user perspective, in other words the

entities required to perform user-interface design. The conceptual core model can also

be conceived as a view, or projection, into the domain model from the end-user’s

perspective.

Domain modeling concerns the early stages of the usability engineering lifecycle (see

sections II.5.1 and II.5.2.2). The domain model conveys information about the user-

centered activity of specifying the context of use, and part of the corresponding task of

contextual task analysis in the usability engineering lifecycle (UEL). In addition, since
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a domain model reflects to some extent the user’s mental model, it drives initial

conceptual models of the system image. Hence, domain modeling also concerns the

activity of designing prototypes and the corresponding UEL task of conceptual model

design (see, respectively, sections II.5.1 and II.5.2.2).

III.3.4.Interaction model, User Interface and Interactive System Model

According to the initial CHI'97 definition: “An interaction model provides a

specification of the interactive facilities to be used by the users when invoking core

functionality in the system.” [Harmelen et al., 1997]. Thus, an interaction model

provides a description of the semantics of the presentation of the core functionality to

the users and the interaction with that functionality (behavior), including interaction

styles and techniques.

An interaction style includes the look (appearance) and feel (behavior) of interaction

objects and associated interaction techniques from a behavioral (user’s) point of view

[Hix and Hartson, 1993]. Examples of interaction styles include command entry,

menus and navigation, direct manipulation [Shneiderman, 1982], surface interaction

[Took, 1990], instrumental interaction [Beaudouin-Lafon, 2000] and so on. Platform

specific guidelines describe specific issues related to interaction styles that generally

point the way toward consistency and standardization.

There is a close relationship between the interaction styles and the notion of an

interaction model. For instance, Beaudouin-Lafon defines an interaction model as “a

set of principles, rules and properties that guide the design of an interface. It describes

how to combine interaction techniques in a meaningful and consistent way and

defines the "look and feel" of the interaction from the user's perspective” [Beaudouin-

Lafon, 2000]. Thus, properties of an interaction model can be used to evaluate

different design for concrete user-interfaces.

Types in interaction models include abstract and concrete interface objects, such as,

selection mechanisms, temporal dependencies, windows, panels, instruments, forms,

command, menus, etc. In addition, the objects described by those types can be used as

a basis for automatic generation of user interfaces during an implementation phase (as

discussed in section III.2.3).

In the original CHI’97 framework there was no specific reference to the separation

between the conceptual structure of the interaction and the concrete realization of the

user-interface - enforced by the specific user-interface technology and other

implementation constraints. This distinction, introduced by [Kovacevic, 1998] and

later reinforced in the ECOOP’99 workshop [Nunes et al., 1999], is consistent with the

tradition of model-based design of user-interfaces and architectural models of user

interface (see sections II.6 and II.7). As a consequence the revised framework, depict in
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Figure III.3, introduces a user interface model that corresponds to the concrete and

technology dependent objects of its interaction model counterpart.

A user-interface goes beyond the interaction styles and presentation elements used to

specify it. The primary role of a user interface is to present to the users the internal

functionality provided by the underlying application. According to [Kovacevic, 1998],

each user interface is a product the application information requirements and the look

and feel requirements. There are many ways the application information requirements

can be satisfied, for instance, different interaction techniques can be used to specify an

input value, or values can be specified in varying order. A user-interface results when

we determine those look and feel requirements, depending on the target user-

interface technology or platform. Kovacevic adds that those requirements are optional

in a sense that even if they are not fully satisfied (e.g., there is no desired interaction

technique available on a target platform and a different technique must be used), the

application will still be functional [Kovacevic, 1998]. Hence, the look and feel

requirements affect the application usability and not its functionality.

The last model introduced in the CHI’97 and ECOOP’99 workshop  frameworks is the

interaction system model. In the CHI’97 understanding, an interactive system model

aggregates the core model and the interaction model [Harmelen et al., 1997].

Conversely, since there is no distinction between a core conceptual model and a

domain model in the ECOOP’99 workshop perspective, the interactive system model

refers only to the domain and interaction models [Nunes et al., 1999]. Kovacevic

points out that, “notation must facilitate this collaboration by supporting any

additional UI related modeling views and providing underlying semantics that ties UI

design view construct with OO A&D constructs (in the same manner UML ties

existing views)” [Kovacevic, 1998]. In essence, an interactive system model is useful

when using an implementation a user needs, inter alia, to understand both the

semantics of the system and the means of interacting with the system [Harmelen et al.,

1997].

The relationship between the three user-interface specific models presented in this

section and the usability process frameworks presented in sections II.5.1 and II.5.2.2 is

not evident. The interaction models, the user interface models and the interactive

system model convey the representations required to support user interface design in

later stages of development. Those models either reflect the tradition of model-based

design of user-interfaces (section II.7) or the new “movement” towards an integrated

view of object modeling and user-interface design discussed in the context of related

approaches in the following sections. The usability process frameworks only address

the notable exception of prototypes. However, prototypes are illustrations of the

system user-interface (whether partial, complete, function or non-functional) and

hence are distinct from the software system itself.
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III.4. TOWARD INTEGRATED USER-CENTERED OBJECT-

ORIENTED METHODS

In the previous sections we reviewed some of the recent developments related to both

object-oriented development and user-interface design. The requirements defined in

the conceptual frameworks of the CHI’97, CHI’98 and ECOOP’99 workshops

[Harmelen et al., 1997; Artim et al., 1998; Nunes et al., 1999] revealed a new

understanding for the integration of usability engineering in modern object-oriented

software development. This new understanding requires integrated development

methods that bridge the gap between software engineering and user-interface design

on the common ground of the object-oriented paradigm. This section reviews the

existing methods that conform to this new understanding and proposes a new process

framework that accommodates those methods.

In a recent book about object-oriented user interface design, Mark van Harmelen

[Harmelen, 2001c] refers to development methods that integrated both fields as object-

oriented and human-computer interaction methods (OO&HCI). According to the

author OO&HCI method can be accommodated in a framework that operates

according to four principles, as follows [Harmelen, 2001c]:

•  The intervention of HCI design techniques in early phases of the development

lifecycle;

•  An emphasis on model building and user interface design as the means to establish

interactive system scope, functionality and concrete user interface;

•  Validation of the developing interactive system design by involving users in

evaluation of a range of prototypes throughout the design process;

•  Iterative redesign on the basis of prototype use and evaluation to converge on

viable, efficient and usable support of users' task-based behavior.

The framework of OO&HCI methods differs from the general user-centered design

principles (see section II.5.2.1); notably because of the emphasis on model building for

user interface design to establish the system scope, functionality and user interface.

This emphasis enables OO&HCI methods to address the fundamental nature of

interactive systems, lacking in traditional object-oriented methods. To overcome this

deficiency, OO&HCI methods enable specific support for design of use, scope,

contents, capability and user interface presentation and behavior [Harmelen, 2001c].
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III.4.1.Problems in Traditional Object-Oriented Methods

The motivation for an integrated object-oriented and user interface design approach is

that traditional object-oriented methods have severe problems addressing user

concerns. Some of those problems were discussed in section III.3 and can be

summarized as follows [Harmelen, 2001c]:

•  The suitability of conventional use-case modeling as a primary vehicle for

conveying user-interface concerns;

•  The support for developing a user interface design during object-oriented analysis

and design.

Since their introduction in object-oriented software engineering use-cases have

become ubiquitous in development practice. Despite the exceeding usefulness of use-

cases to structure the application internals and the unifying role in driving

development, their support for user-centered activities is deficient. Furthermore, use-

cases are recognized to be imprecisely defined leading to multiple interpretations,

both in theory and practice, which severely compromises their utility. Evidence of this

inadequacy for the purpose of requirements engineering, and user-centered design

was discussed in section III.3 and extensively supported in [Constantine and

Lockwood, 2001; Graham, 1998; Cockburn, 2000; Harmelen, 2001c]. This system-

centric nature of use-cases compromises the focus, throughout development, on the

user-centered requirements describing the context of use and defining the added

value for the underlying organization. The consequences, compromising the usability

of the end products, are manifest in systems that contain functionality that is either

hard to use or that provides no results of value to the users.

In traditional OO development, user-interface design is considered a separate activity

from both analysis and design. The conventional understanding is that user-interface

design is an additional (and separate) OO design level activity, which usually

compromises prototyping the presentation of an already defined set of internal

functionalities. As van Harmelen points out, “this conventional understanding

unfortunately separates too deeply interrelated design activities” [Harmelen, 2001c].

The consequences of this problem are evident at different levels. The architectural

baseline developed during OO analysis fails to consider user-interface requirements,

which leads too often to sub-optimal user interfaces constructed around a system-

centric architecture. Usability problems are repeatedly discovered too late in the

development and are either hard (and costly) to repair or unrecoverable at all.

Furthermore, failing to represent user-interface architectural concerns, compromises

the traceability between the internal and user-interface elements.
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III.4.2.Review of User Centered Object-Oriented Methods

As we saw previously, User-centered OO methods, or OO&HCI methods as described

in [Harmelen, 2001c], differ from conventional OO approaches incorporating design

techniques that help discover, articulate and address users’ needs, while supporting

user-interface design models and techniques. We only consider user-centered OO

methods those that explicitly comply with those requirements, thus, following the

understanding of the unifying framework presented in section III.2.2.

The methods reviewed in this section, follow the tradition of OO analysis, design and

implementation - as described in the Unified Process [Jacobson et al., 1999].

Furthermore, many of those methods incorporate or maintain compatibility with use-

case modeling enabling an important link with the structuring of internal

functionality. Beyond these similarities the user centered OO methods described here,

vary in many ways. However, they share a list of principles described by van

Harmelen and summarized as follows [Harmelen, 2001c]:

•  The adoption of a user centered design approach through the integration of HCI

design techniques in the early analysis phases and the use of field studies to yield

design information about user behavior and the context of use. Also, favoring the

UCD tradition of treating users as equal partners in design conveying their

knowledge of their own needs, work context and work processes to the design

team; and yielding appropriate division of work and functionality between users

and interactive systems;

•  A very strong emphasis on OO model building and user interface design as the

means to establish the scope, functionality and user interface. Specifically the

development of an OO conceptual model (depending upon the designers

perception of the users’ mental models) together with some form of description of

envisioned user behavior that shape the interactive system design;

•  The possibility of the interaction model informing the design of the domain and

conceptual models. Notably through the use of descriptions of user behavior, often

task models, that use or are compatible with use-case models;

•  Avoidance of prematurely constraining concrete design decisions early in the

design process, favoring abstract expressions of user interaction. While adopting

an engineering approach that acknowledges and caters for real-world technology

constraints while trying to make suitable design trade-offs that preserve the

coherence user’s conceptual model and the usability of the delivered system;

•  Development and validation of the interactive system design by involving users in

testing and evaluating a range of prototypes. Iterative redesign to coverage on

viable, efficient and usable support of users' task-based behavior;
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III.4.2.1.Object, View and Interaction Design (Ovid)

The Object, View and Interaction Design (Ovid) method evolved from early work by a

group at IBM involved in the development of the Common User Access (CUA) object-

oriented user interface architecture. Work on the CUA architecture (see III.1) began in

the late 80s and aimed at exploring the underlying concepts of an object-oriented user

interface. From 1989 to 1992 CUA evolved and was widely adopted by IBM and

Microsoft products. Ovid was then the result of applying OO analysis and design

concepts, together with related tools, to the task of designing user interfaces.

Visuals

Interaction

Techniques

Object Model

What users

see (10%)

How users

work (30%)

What users work

with (60%)

Cues, feedback, and aesthetics

Keyboard and mouse button

mappings, menu organization...

Userv objects to accomplish tasks; their
properties, behaviors and relantionships

Figure III.5 – The Iceberg analogy  of the designer’s usability model (source:
[Roberts et al., 1998])

Ovid reinforces the idea that visual representations and interaction techniques (the

look and feel) are not the most important part of a user-interface. The underlying

objects and relationships are the most important aspect of a designer’s model, that is,

designers should concentrate on the objects, their relationships and behaviors and

how they structure the user interface to support the users in their tasks. This idea is

proposed in [Roberts et al., 1998] with the Iceberg analogy, depict in Figure III.5.

Task

analysis

Objects

Views

Tasks

Interactions

Figure III.6 – The Ovid Lifecycle (source: [Roberts et al., 1998])

The key goal in Ovid is the construction of the designer’s model that represents the

application from the perspective of the user. This iterative process, depict in Figure

III.6, compromises four lifecycle stages that start with task analysis. Ovid is not

prescriptive regarding task analysis. The method doesn’t provide a specific technique

for the purpose of task analysis, instead the author’s claim that Ovid can start from

any task model built through use-cases, scenarios or any other kind of task modeling
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technique. The core iterative cycle of Ovid includes the following steps [Roberts et al.,

1998 ]:

•  Identify the objects the user will have to deal with (the object in the user’s mental

model);

•  Suggest some views of those objects that will enable users to interact with the

objects needed to perform each task;

•  Document the details of how these interactions will occur in the form of new task

descriptions;

•  Document the details of the specific interactions with individual view and the

related objects.
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Implementation

State Model
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tries to make real

1..*

1..*

0..*

0..*

shows

Figure III.7 – Models in Ovid and their Relationships (adaptation of an
unpublished meta-model provided by Dave Roberts)

Figure III.7 illustrates the different models in Ovid and their relationships. In the

following is a description of Ovid’s models (or descriptions) with corresponding

notations [Roberts et al., 1998]:

•  Task analysis output and task descriptions – as we mentioned previously, Ovid is

not prescriptive about model for task analysis, hence the output of task analysis,

and corresponding task descriptions, can be any of natural language scenarios, a

use-case model, a hierarchical task model, and so on;

•  User’s Model – the user’s model is an object model in the HCI tradition of mental

models (see section II.1.2.4). User’s models are depict with UML class diagrams;

•  Designer’s Model - the designer’s model is an object model corresponding to the

user’s model augmented with object views. Views in Ovid present information to

users and allow them to use the information to accomplish desired tasks. Views

can generally be classified as composed, contents, properties and user assistance or

help [Roberts et al., 1998 ]. The designer’s model is an object model in Ovid and is

represented with UML class diagrams. Views were originally depict using UML

notes but more recently the authors have proposed to use stereotypes of UML

classes;

•  View state model – view state models in Ovid correspond to the lifecycle of the

View objects. This state model is represented in Ovid with both UML statecharts

and conventional state tables;
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•  Implementation – an implementation in Ovid corresponds to the reification of the

Designer’s model and is represented with UML class diagrams. The reification

corresponds to the factoring of the designer’s model, including concerns related to

the look and feel restrictions of the target platform;

III.4.2.2.Idiom

The Idiom method was firstly proposed in [Harmelen, 1996] as an object-oriented

method with an emphasis on specification activities for graphical user interface WIMP

design. The first version of Idiom was based on the assumption that object models can

convey significant details about the interactive aspects of a GUI-based system. Thus,

Idiom enabled user actions to be depicted graphically in interaction sequences.

The author redesigned idiom recently [Harmelen, 2001b] to add upstream design

activities, such as scenario generation and subsequent task based design. Idiom

doesn’t incorporate field studies or explicit participatory techniques, although the

author assumes that they are compatible with Idiom.

Figure III.8 – The Idiom Process Framework (source: [Harmelen, 2001b])

The overall process of Idiom is illustrated in Figure III.8. Development activities are

depict by boxes, and logical or informing dependencies by connections. The

development activities in Idiom are as follows [Harmelen, 2001b]:

•  User categorization, scenario generation, and task modeling as early user-centered

design activities;

•  Domain modeling, which corresponds to the object-oriented tradition;

•  Core modeling, which corresponds to conceptual modeling in the HCI tradition;
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•  View modeling, compromising the composition of perceptual entities (views) that

provide the context for task execution and how they are dynamically crated and

destroyed;

•  Designing the concrete details of the interactive system, including the

representation of domain objects at the user interface level and how the user

interacts with those representations (selection mechanisms, commands, feedback,

cursor design, screen layout error handling and help system);

Idiom uses the following models (and descriptions) with corresponding notations

[Harmelen, 2001b]:

•  Scenarios are concrete textual description in natural language;

•  Task models – Idiom is not prescriptive as to the nature of task models. In

[Harmelen, 2001b] course-grained task models are represented as structured

textual descriptions in natural language. Fine-grained task models are represented

with UML sequence diagrams;

•  Domain and Conceptual Models – In Idiom both domain and core models are

represented with conventional UML class diagrams;

•  View Model – although views are referred as object in Idiom, the notation to

express the structural aspects of views is not consistent. In early stages views are

depict using an ad-hoc notation that renders views as boxes annotated with

structured text to indicate the tasks supported. In later stages views appear as

extensions of the core model (UML class diagram), including containment

relationships amongst them. Semantics for properties of views are not defined. The

behavioral of views is expressed with UML statecharts;

•  Concrete user interface model – views also appear in the concrete user interface

model. However, the additional semantics is provided with interaction sequences

that provide a description of the dynamics of the interaction using VDM [Jones,

1986].

III.4.2.3.Usage-Centered Design

Usage centered design is a model based development method based on the initial

ideas of essential use-cases, as proposed by [Constantine, 1992]. Usage centered

design is described by it’s authors as an orderly and systematic method that can be

used with any existing software development lifecycle and incorporated into different

development technologies, in particular object-oriented development approaches and

the UML [Constantine and Lockwood, 1999].
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Figure III.9 – Model of the design activities in Usage-centered Design (source:
[Constantine and Lockwood, 1999])

Usage-centered design recommends a concurrent engineering process involving

different development activities that are carried out in parallel whenever possible (see

Figure III.9). The set of activities proposed by Usage-centered Design is as follows

[Constantine and Lockwood, 1999]:

•  Collaborative requirements dialogue – is a specialized conversation and

negotiation between developers and their users (including clients) to establish the

requirements of the system to be constructed;

•  Task modeling  - involves constructing a clear and complete picture of the work to

be supported through role and task models;

•  Domain modeling – involve developing a representation of all the interrelated

concepts and constructs in the application domain;

•  Interface content model – involves developing the abstract representations of the

various interaction spaces that support the user’s tasks;

•  Implementation modeling – concerns the concretization of the content model by

describing the design of the user-interface and the description of its operation;

•  Usability inspection – involves assessing the implementation model for usability

problems through testing with end-users;

•  Operational contextualization – concerns adapting the design to the actual

operational conditions and environment in which the system will be deployed;

•  Standards and style definition – involves gathering, documenting and adapting

existing standards and guidelines to influence the design. In usage-centered design

the standards are also, contrary to the HCI tradition, revised and reviewed by the

outcome of other design activities;

•  Help system and documentation – concerns developing the help system and

documentation in parallel with the other development activities;

•  Object-structure design – involves applying object-oriented design techniques in

the OO development tradition to structure the underlying object models;

•  Concentric construction – is the process of developing working systems in layers

as guided by essential use-case models;
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•  Architectural iteration – corresponds to the maintenance of the sound internal

software architecture as successive layers are added to the system by concentric

construction;

Figure III.9 illustrates the concurrent design activities in user-centered design. The

overlapping between activities reinforces the idea that activities coincide in time and

often proceed in parallel. Contrary to the OO development tradition (see section II.4),

Usage-centered Design suggests that usage models should drive the whole

development process; consequently user-interface activities play a central role of in

the process model.

Figure III.10 – Models and logic dependencies in Usage-centered design (source:
[Constantine and Lockwood, 2001], updated version provided directly by the
authors)

Usage-centered Design is a model driven method that employs a set of abstract

models and specific notations. There is no explicit reference to the UML in usage-

centered design. The authors adopt a critical attitude towards the UML standard,

specifically in what concerns conventional use-case modeling and the usability of the

notation (see for instance [Constantine and Lockwood, 2001]). However, the ad-hoc

notations suggested in the method are, to some extent, compatible with different UML

notations. For the purpose of contrasting Usage-centered design with the other

approaches described here, were applicable we mention UML notations and diagrams

that can be used to represent the models. Usage-centered design defines the following

models [Constantine and Lockwood, 1999]:

•  Operational Model – a collection of the salient factors in the operational context

affecting the user interface design, including user profiles and environment

profiles. User and environment profiles are captured in Usage-centered design

using natural language;
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•  Domain Model –captures the tangible or conceptual entities of the application

domain. Domain models in Usage-centered design are represented with object or

entity-relationship models, and natural language glossaries for simple cases;

•  User role model - captures and organizes the salient or distinguishing

characteristics as they affect the use of the system. A user role model is represented

using a user role map, which corresponds roughly to a UML use-case diagram

with stereotyped relationships between actors (affinity, classification and

composition);

•  Task Model –represents, in the form of essential use cases, those things that users

in user roles are interested in accomplishing with the system. Task models are

represented in Usage-centered design with essential use-case narratives (refer to

section III.3.1 for the definition) and use-case maps. Use case maps are a collection

of essential use-cases and their interrelationships, which can be depicted in the

UML as an extended use-case diagram;

•  Content Model – is an abstract model of the contents of the user-interface in terms

of abstract components (tools and materials) contained within interaction contexts.

A content model includes a context navigation map, which is a model of the user-

interface architecture showing the interaction contexts and the transitions and

connections among them. Navigation maps can be described in the UML as class

or object diagrams.

III.4.2.4.Other Methods

The methods described before (Idiom, Ovid and Usage-centered Design) are user-

centered OO methods because they comply with the outline provided in section III.4.

In particular, all the methods described before provide a user-centered process

framework (iterative and involving users) and they all focus on OO model building

with specific modeling techniques to support user-interface design.

In this section we briefly review other notable user-interface related methods that by

some reason don’t fit under the classification of user-centered OO methods described

before. Some of the methods presented are simply process framework, while other are

specific techniques to assist user interface design in the development process. For a

detailed review of the methods in this section refer to [Hudson, 2001; Gulliksen et al.,

2001; Harmelen, 2001c].

Graphical User Interface Design and Evaluation (GUIDE)

GUIDE [Redmond-Pyle and Moore, 1995] was originally proposed for the

development of large Windows based applications in the late 80s and early 90s in the

UK. GUIDE includes a number of user-centered concerns, such as, early focus on

users and task analysis, development of a user conceptual model, and design of the

user-interface prior to internal system design.
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GUIDE proposes the inclusion of a set of user-interface specific activities in the overall

development lifecycle. The activities proposed by GUIDE start by the definition of the

users and usability requirements, and then follows with a concurrent set of three tasks

(model user tasks, model user objects and define style guide), the user-centered core

ends with an iterative cycle of design, prototype and evaluate of the graphical user

interface (GUI).

Logical User-Centered Interaction Design (LUCID)

Logical User-Centered Interaction Design (LUCID) is a general user-centered process

framework developed at Cognetics Corporation by [Kreitzberg, 1996]. The framework

follows the user-centered tradition with a stronger focus on prototyping. LUCID

identifies six stages: develop the product concept, perform research and need analysis,

design concepts and key screen prototype, do iterative design and refinement,

implement software, and provide rollout support.

As a management strategy LUCID makes the commitment to user-centered design

explicit and highlights the role of usability engineering. A distinctive aspect of LUCID

is its focus on key-screen prototypes that incorporate the major navigational paths of

the system. This strategy enables a bi-focal design approach, where sections of the

user-interface architecture are tested with users through hi-fi prototypes, while

keeping the focus on the overall user-interface architecture.

STructured User-Interface Design for Interaction Optimization (STUDIO)

STructured User-Interface Design for Interaction Optimization (STUDIO) emerged at

KPMG consultants in the early 90s [Browne, 1993]. Browne’s approach is particularly

tailored for client-server development, where STUDIO is only applied to the interface

intensive clients. STUDIO is not a model-based method but contains many familiar

user-centered concepts.

User Interface Modeling (UIM)

User Interface Modeling (UIM) is a method for gathering user requirements that are

directly applicable when designing the user interface of an information system [Lif,

1999]. UIM is basically a complement to traditional use-case modeling. UIM specifies

an actor model, a goal model and a work model in participatory sessions with end-

users, software developers and user interface designers.

UIM doesn’t describe a systematic procedure for creating user-interfaces. UIM

approach is based on the assumption that user-interface design is a creative process

that can’t be described in a methodological way. Instead UIM facilitates the design

decisions by providing models that defines the user requirements regarding the user-

interface.



State of the Art: Object Modeling for User-Centered Development and User Interface Design

101

Entity, Task, Presenter Architectural Framework

The Entity, Task, Presenter (ETP) framework is defines a user-interface architecture

with the assumption that the HCI artifacts that form the user-interface descriptions

can be classified into three major groups: entities, tasks and presentation elements

(presenters) [Artim, 2001]. This classification is an elaboration of the original analysis

framework of Jacobson’s et al OOSE method [Jacobson, 1992] (see also section II.4.3.2).

The Bridge

The Bridge is a comprehensive and integrated participatory method (see section II.5.3)

for quickly designing object-oriented, multiplatform GUIs [Dayton et al., 1998]. A

typical Bridge session encompasses three explicit steps.

Part 1 expresses the user requirements as task flows. Here the goal is to translate user

needs for the task into requirements that reflect the task flows. The output of this step

is a set of index cards and sticky arrows describing what users will do with the new

interface.

Part 2 of the Bridge is mapping task flows to task objects. The goal is to map the UI

requirements into discrete units of information that users manipulate to do the task

(task objects).

Part 3 of the Bridge to map task objects to GUI objects. This third step of the Bridge

guarantees that the GUI is usable for executing the task.

III.4.3.A general framework for an Integrated User-Centered Object-Oriented
Process

Following a proposal from a position paper at ECOOP’99 workshop, in [Nunes and

Cunha, 1999] a suggestion for a UC-OO process framework was considered

consensual in expressing the general requirements for integrated methods as

described in section III.4. Here we describe this approach, originally proposed in

[Nunes and Cunha, 1999] and later reformulated in [Nunes, 1999] and [Nunes et al.,

1999].
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Figure III.11 – The User Centered Object-Oriented Process Framework [Nunes et
al., 1999]

The user-centered OO process includes the seven following workflows: User profile,

Task analysis, User Interface Principles and Guidelines, Prototyping, User Interface

Design, User Interface Implementation and Usability Testing. Figure III.11 tries to

depict the effort that is usually required in each workflow as the actual project time

goes by.

The workflows of the UC-OO process framework are summarized in the following

sections. Relationships with specific model based techniques described in section

III.4.2 are included. The aim is to give a broader perspective of a general and ideal UC-

OO process framework, supported by the existing features of the UML 1.3 standard

[OMG, 1999].

III.4.3.1.User Profile

User profile analysis concerns the description of the specific user characteristics

relevant for interaction design (e.g., special needs, job expertise, computer literacy and

expected frequency of use). It also identifies major user groups required for the task

analysis workflow. This workflow will drive almost all design decisions, except those

related to technical constraints. The effort in this workflow will typically concentrate

on the inception and early elaboration phases.

Major techniques used to profile users are questionnaires and interviews.

Traditionally, artifacts produced from this workflow are data summaries, analysis and

conclusions. Examples of model-based approaches to user profiling proposed by the
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Usage-centered Design method, described in section III.4.2.3. Additional examples are

provided in UIM, described in section III.4.2.4.

III.4.3.2.Task Analysis

Task analysis is the process of learning about users, by observing them in action, and

building a user-centered model of their work as they actually perform it [Hackos and

Redish, 1998]. This process is quite different from asking users questions outside their

typical environments. This workflow will be used to set user interface principles and

style guides and drive user interface design. The effort in this workflow starts late in

the inception phase, builds up during the elaboration phase and can extend to early

construction, if the system boundaries are not stable in the first iterations of this

phase.

As we discussed in section III.3.1, there is strong consensus about incorporating task

modeling in UML. Use cases have been found to be insufficient as general form of task

modeling. The heavyweight UML extensions proposed to solve this problem at the

CHI’98 workshop failed their purpose, because they required more flexibility than the

current UML standard offers for extensibility. The current practice to solve this

problem can be characterized as follows:

(i) Not prescribing modeling notations to perform task modeling, therefore

enabling the use of traditional HCI techniques (e.g. scenarios, hierarchical task

analysis) or conventional use-case modeling. Examples include Ovid and

Idiom, described in sections III.4.2.1 and III.4.2.2;

(ii) To extend the conventional understanding of use-case modeling, enabling

use-cases to include requirements suitable for user-interface design. A notable

example is essential use-cases as initially proposed in [Constantine, 1992] and

prescribed in Usage-centered Design (section III.4.2.3) and other approaches

(e.g. [Beck and Fowler, 2001]). However, such proposals still require the use of

natural language structured scenarios that are not easily related to other

modeling constructs. Other proposals in this direction are described in the

UIM approach (section III.4.2.4 and [Lif, 1999]) and [Cockburn, 2000];

(iii) To use existing UML diagrams to express task models. This approach is

prescribed for task synthesis purposes in Ovid, Idiom and ETP using UML

sequence diagrams. Others proposed to use or extend UML statecharts or

activity diagrams [Silva and Paton, 2000; Markopoulos and Marijnissen, 2000].

The general problem with using or extending sequence or activity diagrams is

related to the capability of such models to depict and enable usable

manipulation of moderate size task descriptions (see sections II.7 and V.1.2).

Those UML models were provided to express intra and inter-object behavior

for the purpose of specifying the system internals. They are recognized to be
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extremely complicated to manipulate and use for task analysis when end-user

involvement is required on the light of user-centered tradition [Paternò, 2000].

III.4.3.3.User Interface Principles and Guidelines

This workflow concerns gathering, reviewing and adapting relevant user interface

design principles, guidelines and standards (see section II.5.1). Principles, guidelines

and standards will ensure coherence and consistency across the user interface, driving

the user interface design workflow. The effort in this workflow is divided among the

three initial phases. At the inception phase general principles are gathered and

reviewed from the literature and consulted from experts. In the elaboration phase

those principles are adapted to the specific project information produced in the other

workflows, particularly user profile and task analysis. Finally in the construction

phase, they are evaluated and refined as a consequence of prototype evaluation. The

outputs of this workflow are guidelines and standards documents.

Guidelines and standards are by nature textual descriptions in natural language of

“how-to-do” solutions; see for example [Apple, 1992; Microsoft, 1995; IBM, 1991].

III.4.3.4.Prototyping

Prototyping is acknowledged to be a major technique in modern software system

development. It supports the iterative and incremental nature of the process, enabling

the generation, discussion and evaluation of design decisions. Although one can

argue that the UP design and implementation workflows can (and should) inherently

support prototyping, the UC-OO process isolates this workflow due its conceptual

difference in user interface design. The effort in the prototyping workflow builds up

through the phases of inception, elaboration and construction. In the inception phase

prototyping is typically used to gather information from users and represent high-

level ideas of functional organization and conceptual design. At this stage prototyping

is based on low-fi techniques (mock-ups, etc.) and used in conjunction with

participatory techniques. In elaboration prototyping is used to validate the user-

interface conceptual architecture. At this stage both the overall navigational structure

and selected subsets of the system are prototyped and evaluated with the end-users.

Hi-fi techniques can be used at this stage, although the participatory nature of the

evaluation sessions should limit the fidelity of the prototypes, that is, it is well

acknowledged that users have problems criticizing prototypes that “look” and “feel”

like real systems. At the construction phase prototyping is mainly used to focus on

particular problematic subsets of the system, previously unassessed functionality or

users.

Model-based descriptions of prototypes are indirectly proposed in the Usage-centered

Design method (see section III.4.2.3). Constantine and colleagues have recently
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enhanced the idea of abstract prototypes based on abstract canonical components

[Constantine, 2000].

III.4.3.5.User Interface Design

An informal survey in user interface programming [Myers and Rosson, 1992]

concluded that, on average, 48% of interactive system programming effort was

devoted to the user interface. Respondents estimated that the average time devoted to

UI development was 45% on the design phase and 50% on implementation time. The

user-centered process framework assumes that roughly half of the effort on the

original UP design and implementation workflows is transposed to the UI design and

implementation workflows when developing an interactive system.

At the user interface design level an UC-OO approach requires support to model the

presentation and behavior aspects of the user interface (see section III.3). At the

presentation level there is strong consensus about proposing a specific construct to

model the contexts where users perform their tasks. Such concept is proposed as an

interaction context (Idiom and Usage-centered Design), object-view (Ovid) or

presenter (ETP) in all the UC-OO methods described in sections III.4.2.1 to III.4.2.3.

This concept is conceived as an enhancement of the interface or boundary

architectural element of the OOSE tradition (see section II.4.3.2). Although not

semantically equivalent, such approaches point out the need for a modeling concept

that captures the “interaction points” as the building block of a model driven

interactive system architecture.  To model behavioral aspects at the user-interface

design level, what is usually known as task synthesis in the HCI tradition, most

approaches use the existing UML behavioral diagram. However the same concerns

described for task modeling extensions discussed in section III.4.3.2, apply here. A

notable exception that aims to follow the model-based tradition, towards automating

the generation of the user-interface, is described in [Kovacevic, 1998].

III.4.3.6.User Interface Implementation

At the implementation level the fundamental issues are tool support and traceability

between conceptual models and the implementation model. Tool support for task

analysis is recognized to be insufficient [Bomsdorf and Szwillus, 1998]. One approach,

described in [Lu et al., 1999], is to transform task analysis models into UML

interaction models and vice versa. This pragmatic approach enables the integration of

specialized task modeling tools to industrial strength tools. Also, the “interaction

point” concept seams to enable a clearer management of traceability between

conceptual models, i.e., dependencies can be established between (i) the different

“interaction points” that compose the navigational structure of the interface, and (ii)

the “interaction points” and the other object descriptions belonging to the functional

core. Related approaches concern the definition of user interfaces at an abstract level
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using a declarative language. Both AUIML [Merrick, 1999], UIML [UIML, 2000] and to

some extend Xforms [W3C, 2001] propose an XML (eXtensible Markup Language)

[W3C, 2000a] vocabulary designed to allow the intent of an interaction with a user to

be defined enabling task designers to concentrate on the semantics of the interactions

without having to concern themselves with any particular devices to be supported.

III.4.3.7.Usability Testing

Usability testing aims at identifying problems users will have with the software in all

aspects of its use (installing, learning, operating, etc.). Although similar techniques

can be used to evaluate prototypes usability testing can only be done when the

product reaches the end of the construction phase and in early transition phase. There

are different types of techniques that can be used to perform usability testing: formal

lab testing, field testing, thinking aloud, walkthrough, inspection, etc. The type of

techniques used usually depends on the resources available.
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III.5. CONCLUSION

This chapter presented the recent developments in the field of object modeling for

user-centered development and user interface design, the specific area of research

involved in this thesis.

The main conclusion we can draw from the state-of-the-art in the field is that there is

consensus that object orientation can be used to effectively bridge the gap between

HCI and SE. As we saw from the brief historical perspective in the beginning of the

chapter, object orientation is mainstream in several aspects of user-interface

development. Several interaction styles and techniques rely on object-orientation as

the underlying implementation technology. Moreover, conceptual and

implementation frameworks for interactive systems are grounded on object-

orientation. However, it is irrefutable that object modeling for requirements, analysis

and design, of the interactive aspects of software intensive systems, is still incipient. In

this chapter we reviewed several approaches that try to integrated SE and HCI at this

level, but several unanswered problems still remain.

At the requirements level, there is consensus that adequate development of interactive

systems relies on understanding the context of use and organizational requirements

through user involvement (see section II.5.2). The UC-OO methods presented in this

chapter don’t provide specific guidance regarding user-involvement and how to

systematically translate the information provided by users to the development setting.

Participatory techniques (see section II.5.3) are recognized to be an effective solution

for this purpose - in particular methods like the Bridge (see section III.4.2.4) have

proved to be successful in leveraging user knowledge. However, those participatory

methods and techniques, lack specific support on how to translate low-tech materials

into the mainstream UML. There is still a gap between the information conveyed in

low-tech materials and the more formal artifacts required to specify and model

software intensive systems driving implementation. Moreover, the problem is

increasingly difficult with iterative development since artifacts are required to sustain

user assessment.

Another major issue at the requirements level is the inadequacy of conventional use-

case modeling as a general form of task analysis that addresses the concerns of user-

centered development. The UML is a language primarily designed to address the

problem of developing the system internals and exhibits several problems to address

the usability concerns involved in interactive systems. This problem is recognized in

all the surveyed UC-OO methods (Ovid, Idiom and Usage-centered Design).

However, both Ovid and Idiom are not prescriptive towards task analysis, that is,
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they can accommodate both use-case modeling, with the previously mentioned

problems; or traditional HCI task analysis, where no notational solution is provided

that conforms to the UML enabling semantic interoperability. On the other hand,

Usage-centered Design promotes essential use-case modeling as a general form of task

analysis, thus solving some of the problems with the system-centric nature of

conventional use-cases. Then again, essential use cases, and the related user role maps

are not entirely compatible with the UML in their current form.

At the analysis level the major problems bridging HCI and SE is related to the

limitations of the conventional OO architectural frameworks, which enable the

description of the major structural elements of a software intensive system. There is

agreement (although not explicit in the case of Idiom and Ovid) that both behavioral

and presentation elements in a UC-OO approach form the elements of the user-

interface architecture. Furthermore, Usage-centered design reinforces the idea that

user-interface architecture should be central regarding the other development

activities. This assumption is grounded in the fact that for the users the user-interface is

the system and hence all functionality should be layered across an architecture that

represents the structure of use and not the internal system functionality. However,

and despite the developments in conceptual and implementation architectures for

interactive systems (see section II.6), the existing UC-OO methods don’t suggest a new

architectural framework capable of conveying those issues.

At the design level, the same problems identified with UML support for task

modeling, apply to the behavioral aspects of user-interface design (task synthesis). At

this level, two of the surveyed methods (Ovid and Idiom) prescribe UML behavioral

diagrams (sequence diagrams, statecharts and UML non-compliant state-tables).

However, UML behavioral diagrams are recognized to be unusable for complex task

sequences and related temporal constraints (see section II.7). Those notations were

developed to express inter and intra object behavior and are not adequate for user-

interface designer, particularly when their work involves communicating with end-

users. On the other hand, Usage-centered design doesn’t provide any notation to

express the behavioral aspects of the user-interface.

Regarding the presentational aspects of the user-interface, all the UC-OO methods

surveyed agree to some extend in a modeling construct that represents an “interaction

space” within the interactive system that provides the context for task execution.

Although with different semantic meanings, all the approaches promote the utility of

modeling the presentation aspects of a user-interface with an interaction

context/space/view. However, there are divergences regarding the classification of

presentation modeling constructs, including containment and navigational

relationships between them. Furthermore, the lack of modeling constructs to

adequately specify, document and visualize the presentation and behavioral aspects

of user-interfaces, limits the capability to promote tool support and automatic
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generation of user-interfaces in the tradition of model-based approaches (see section

II.7).

The following chapter described the Wisdom method and the different proposals that

solve the problems mentioned previously. Our basic premise is the same argument

that drove the adoption of the UML – to enable tool interoperability at the semantic

level and provide a common language for specifying, visualizing and documenting

software intensive system – applies in leveraging the collaboration between software

developers and user interface designers.





IV.  THE WISDOM METHOD

"Engineering is not merely knowing and being knowledgeable,

like a walking encyclopedia; engineering is not merely analysis;

engineering is not merely the possession of the capacity to get

elegant solutions to non-existent engineering problems;

engineering is practicing the art of the organized forcing of

technological change... Engineers operate at the interface

between science and society..."

Dean Gordon Brown, Massachusetts Institute of

Technology (1962)

This chapter presents the Wisdom method, a UC-OO method developed to address

the specific needs of small development teams who are required to design, build and

maintain interactive system with the highest process and product quality standards.

The chapter starts presenting the application context of Wisdom, small software

developing companies (SSDs). We explain the importance of lightweight software

engineering methods to support software development in small companies by

characterizing those companies, their importance in the software industry, and the

major differences from large companies that work with classical lifecycles.

Sections 2, 3 and 4 of this chapter describe the three important components of the

Wisdom lightweight software engineering method, as follows:

•  The Wisdom process - a software process framework based on a user-centered,

evolutionary, and rapid-prototyping model specifically adapted for small teams of

developers working in environments where they can take advantage of: (i)

enhanced communication both internally and towards external partners; (ii)

flexibility in the sense that developers are encouraged to take initiative and are not

obliged to follow rigid administrative processes; (iii) control meaning that teams
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and projects are easily manageable; (iv) fast reaction in the sense that developers

and managers are able to respond quickly to new conditions and unexpected

circumstances; (v) improvisation and creativity fostering competitiveness in

turbulent development environments where time to market plays a central role.

•  The Wisdom model architecture - A set of UML models that support the different

development lifecycle phases involved in the Wisdom process. Such models are

also required to build interactive system in general (following the general UC-OO

process framework presented in the previous chapter). In addition, an original

extension of the UML analysis framework (the Wisdom user-interface architecture)

that captures the essential elements of well-known and experimented interactive

system conceptual and implementation architectures.

•  The Wisdom notation - A set of modeling notations based on a subset of the UML

and enhanced with UML-compliant extensions specifically adapted to develop

interactive systems. The Wisdom notation adapts several recent contributions in

the field of OO-UC to the UML style and standard and also proposes new

notations to support effective and efficient user-centered development and user-

interface design using the UML style as the notational basis. The original

notational contributions introduced by Wisdom, enable the description of

presentation aspects of user-interfaces, including support for modeling abstract

user-interface components, their contents, containment relationships and

navigation. In addition, Wisdom supports user-interface behavior modeling with a

well-established and original adaptation of one of the most used task modeling

notations of the usability-engineering field.

The Wisdom process, architecture and notation are the three major contributions of

this thesis. The Wisdom process enables a new understanding of an UML-based

process framework and provides an alternative to the Unified Process (UP). The UP is

recognized to inadequately support user-centered development and user-interface

design. Additionally, the UP framework is not suitable for small software

development groups required to rapidly develop high quality products in a turbulent

and competitive environment. The Wisdom process overcomes these limitations

promoting a rapid, evolutionary prototyping model, which seamlessly adapts the

requirements of small software development teams that typically work by random

acts of hacking. To accomplish this the Wisdom process relies on a new model

architecture that promotes a set of UML-based models to support user-centered

development and user-interface design. The Wisdom model architecture introduces

new models to support user-role modeling, interaction modeling, dialogue modeling

and presentation modeling. In addition, the Wisdom architecture promotes a new

analysis-level architectural framework. The new Wisdom UI architecture supports the

integration of UI elements has architectural significant structural constituents of the

overall system architecture. Finally the Wisdom notation provides a set of new UML

extensions that define the new notational constructs necessary to support the models
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and architectures required by the Wisdom process and defined in the Wisdom model

and UI architectures.

The Wisdom process, architecture and notation are independent contributions that

can be broadly applicable in different UC-OO methods. The Wisdom method is a

specific proposal for a new UC-OO method that integrates those components. Section

5 of this chapter provides a description of the systematic activities required to develop

interactive systems with the Wisdom method. During the description several

examples of UML artifacts illustrate the application of the different components of the

Wisdom method. The Wisdom method was developed from our experiences working

with small software development companies (SSDs), which worked chaotically urging

to implementation.

The chapter ends with a comparison between the Wisdom method, including the

different models and associated notations, and the other UC-OO methods described

in the previous chapter (Ovid, Idiom and Usage-centered Design). The differences are

highlighted with respect to the general UC-OO framework presented in the previous

chapter, thus outlining the main contributions of Wisdom.
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IV.1. APPLICATION CONTEXT: SMALL SOFTWARE

DEVELOPING COMPANIES

As the field of software engineering (SE) matures and becomes more comfortable with

the methods and processes required to build high quality software in a predicted and

controlled manner, there is an increasing concern that the methods developed for

conventional large contract-based software intensive systems are not well-adapted to

all environments [Laitinen et al., 2000]. Software engineering conventionally targeted

large, contract-based development for the defense and industry sectors. Although the

SE discipline achieved significant improvements in that area, today modern software

development faces completely different problems. In a research survey on the future

of Software Engineering (SE), one of the five prominent research objectives is

“adapting conventional software engineering methods and techniques to work in

evolutionary, rapid, extreme and other non-classical styles of software development”

[Finkelstein and Kramer, 2000].

As Laitinen and colleagues point out “The last decade has changed both the character

of the software industry and the composition of the companies engaged in

development” [Laitinen et al., 2000]. Mass markets, the Internet and entertainment

software are today large industry segments subject to intense competition. Small

companies are dominating those emerging market segments, and groups of six or

fewer developers are now able to create products in excess of 100,000 source lines of

code in 18 to 24 months [Laitinen et al., 2000].

In a recent special issue on software engineering in the small, Laitanen and colleagues

identified three reasons to advance the study of software engineering in the small

[Laitinen et al., 2000]: changes in the software industry, underestimates of the number

of small software developing companies, and differences in small group development

methods from the standard models. In the following sections we discuss those issues

based on previous research on software engineering in the small.

IV.1.1.Underestimating the Importance of Small Software Developing Companies

Small software developing companies are recognized to be the backbone of the

software industry. According to the 1992 USA economic census [USCensus, 1997],

companies with less than 50 employees accounted for 96,2% of the total companies

belonging to the Computer and Data Processing Services sector (SIC 737). They were

responsible for 28,3% of the employees in this sector and 26,8% of sales and receipts

(23 228,1 millions USD). In Western Europe, where traditionally small companies are
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more representative than in the USA, the Software and IT Services market accounts

for 106 292 millions of ECU and has the highest average annual growth rate (12.5%

and 12.9%) within the Information and Communications Technology (ICT) market

[EITO, 1999].

The 1997 Economic Census provided more recent and accurate data for characterizing

software development companies. The adoption of the new North American Industry

Classification System (NAICS) supports a better way to classify software related

activities. The previous SIC classification system included in SIC 737 all the computer

related activities (including software development, maintenance, rental and leasing,

online information systems, and other computer related services). The new NAICS

divides software related activities in a different way. Reproduction of prepackaged

software is treated in NAICS as a manufacturing activity; on-line distribution of

software products is in the Information sector, and custom design of software to client

specifications is included in the Professional, Scientific, and Technical Services sector.

These distinctions arise because of the different ways that software is created,

reproduced, and distributed. Therefore, for the purpose of better characterizing the

impact of small companies in the US software industry we considered companies into

two major areas, as follows [USCensus, 1999]:

•  541511 Custom Computer Programming Services  - This U.S. industry comprises

establishments primarily engaged in writing, modifying, testing, and supporting

software to meet the needs of a particular customer. The data published with

NAICS code 541511 is comprised in the SIC industry 7371 (Custom Computer

Programming Services)

•  51121 Software Publishers  - This industry comprises establishments primarily

engaged in computer software publishing or publishing and reproduction.

Establishments in this industry carry out operations necessary for producing and

distributing computer software, such as designing, providing documentation,

assisting in installation, and providing support services to software purchasers.

These establishments may design, develop, and publish, or publish only.  The

data published with NAICS code 511210 is comprised in the SIC industry 7372

(Software Publishers).
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US Economic

Census 1997

Custom

Comput

er Progr.

Services

Perc. of

Total

Software

Publishe

rs

Perc. of

Total

Total Perc. of

Total

Total of firms

Number of Firms 29 248 9 880 39 128

Establishments 31 624 12 090 43 714

Paid Employees 318 198 266 380 584 578

Receipts ($1,000) 38 300

515

61 699

420

99 999

935

Payroll ($1,000) 18 417

084

18 386

784

36 803

868

Single establ. Firms 28 222 96,5% 9 100 92,1% 37 322 95,4%

Multi establ. Firms 1 026 3,5% 780 7,9% 1 806 4,1%

Firms < 50 employees 0

Number of firms 18 348 62,7% 7 409 75,0% 25 757 65,8%

Paid Employees 107 028 33,6% 63 041 23,7% 170 069 29,1%

Receipts ($1,000) 12 921

889

33,7%

8 233 101 13,3%

21 154

990 21,2%

Payroll ($1,000) 6 100 884 33,1% 3 298 093 17,9% 9 398 977 25,5%

Top 50 firms in Sector 0

Establishments 1 253 4,0% 855 7,1% 2 108 4,8%

Paid Employees 79 775 25,1% 84 999 31,9% 164 774 28,2%

Receipts ($1,000) 10 330

539

27,0% 35 265

678 57,2%

45 596

217 45,6%

Payroll ($1,000) 4 720 686 25,6%

7 898 707 43,0%

12 619

393 34,3%

Figure IV.1 – Characterization of small software development companies
according to the US Economic Census 1997 [USCensus, 1999].

Figure IV.1 summarizes some statistics, drawn from the 1997 US Economic Census,

for the two major areas related to software development. The first conclusion we can

draw from the figures is that the custom development sector compromises roughly 3

times more firms than the shrink-wrapped sector. However, looking at the number of

paid employees the custom sector has a ratio of 10,8 employees per firm, while in the

shrink-wrapped that ratio is 26,9. The distribution of receipts by both sectors is also

opposite to the number of firms; the shrink-wrapped sector is responsible for 1,6 more

receipts than the custom sector. Together both sectors represented almost 100 billion

USD in 1997. There is also a considerable effect of concentration in both sectors. The

top 50 firms in the custom sector represent roughly 1/4 of the employees, receipts and

payroll. In the shrink-wrapped sector the number of paid employees is similar but the

total of receipts increases to almost 1/2.

The impact of small companies can be estimated considering companies with less than

50 employees, which is the conventional definition in economic terms both in the US

and the European Union [JOCE, 1996]. We can see from the data in Figure IV.1 that

small companies account for the large majority of firms in both sectors - 62,7% for the

custom sector and 75% for the shrink-wrapped sector. Although that contribution is

expected, the number of paid employees is considerable in both sectors with roughly
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1/3 in the custom sector and 1/4 in the shrink-wrapped sector. Together there are 25

757 small companies in both sectors (65,8%), which represent 170 069 paid employees

(29,1%) and 21 billions of USD (21,2%) in the 1997 economic year.

From this analysis we can conclude that the impact of small companies, from both the

custom and shrink-wrapped sectors, is considerable. Furthermore, these figures don’t

include software groups within user organizations, other sectors highly enabled by

software (e.g. online services), temporary workers and the public sector. Moreover,

the growth in software employment has increased dramatically in the last few years,

and also the impact of the Internet is not evident in the official statistics dating back to

1997.

IV.1.2.Differences in Software Engineering in the Small

Small software development companies (SSDs) face an internal turbulence not

common in larger organizations. Environmental turbulence in SSDs is typically

caused by the absence of well defined roles that people play in the company,

managing multiple projects at the same time, lack of stability in terms of personnel,

working in different application domains, and so on. To face these problems, and

according to [Dyba, 2000], SSDs require an improvement approach that recognizes:

•  The need for a dramatically shorter time frame between planning and actions;

•  That planning and actions do not provide all the details of the corresponding

implementation;

•  That creativity is necessary to make sense of the environment.

Creativity and improvisation play a central role in SSDs because of the environment

in which they operate. The environment includes the development context, the

characteristics of the market they focus, access to human and other resources, and

competition. Improvisation involves dealing with the unforeseen through continual

experimentation with new possibilities, to create innovative and improved solutions

outside the normal plans and routines [Dyba, 2000]. The current dominant perspective

on software development is rooted in the rationalized paradigm that promotes a

standardized, controllable and predictable software engineering process. However,

software development shares a distinct characteristic with improvisation processes,

which is related to the fact that we cannot specify results completely at the outset of

the work process [Dyba, 2000]. This means that we can only outline the planned

software products and not the processes. Processes based on improvisation differ

from the conventional processes because planning and action converge in time – an

important issue because time to market often determines competitiveness in small

companies [Dyba, 2000].

An improvisation process in SSDs essentially impacts the decisions that have to do

with how developers interpret the environment and make decisions in open
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situations. For instance, decisions related to modeling, architecture, interaction and

resource allocation. A Software Process Improvement (SPI) effort dealing with

improvisation involves exploitation (the adoption and use of existing knowledge and

experience) and exploration (the search for new knowledge through imitation or

innovation). Figure IV.2 illustrates the role of exploitation and exploration in

improvement strategies versus organizational size and environment turbulence.

Figure IV.2 – Improvement strategy versus organizational size and environmental
turbulence for (a) exploitation and (b) exploration in small and large companies
(source [Dyba, 2000])

As we can see from the two graphs in Figure IV.2, large companies react to

environmental turbulence increasing their level of exploitation at the cost of reduced

exploration. Conversely, small companies react to environmental turbulence

increasing their level of exploration at the cost of reduced exploitation. The basic

problem that SSDs face is to take advantage of exploitation to ensure short-term

results, and to engage in exploration to ensure long-term survival. As Dyba points out

“A software organization that specializes in exploitation will eventually become better

at using an increasingly obsolete technology, while an organization that specializes in

exploration will never realize the advantages of its discoveries” [Dyba, 2000].

Therefore, we need a flexible process model that leverages exploration, thus ensuring

that SSDs take advantage of their inherent characteristics and become more

competitive. But we also need a controlled process model that enhances the capability

to take advantage of exploitation and ensure short-term results. The Wisdom process,

described in section IV.2, enables this combination through a controlled evolutionary

process model.

Other researchers, involved in applying software process assessment and

improvement models like the Capability Maturity Model (CMM) [Paulk, 1995], also

concluded that those models are not suitable for SSDs [Brodman and Johnson, 1994;

Cattaneo et al., 1995]. The research surveys and case studies available in the literature,

describing improvement strategies for SSDs, point out that those companies are

concerned with being measured against a model whose requirements they cannot

meet. SSDs want to improve, but they also want their own tailored made methods to

be accepted by improvement strategies. As we saw previously, SSDs are considerably
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different and face completely different environments from large companies for whom

SPI strategies were designed. Concerns, like the ones related with the role of

improvisation and creativity in SSDs, are ultimately important for SSDs. Furthermore,

we must admit that SSDs are at very low maturity levels and that their ascension

process might, or should in fact, be quite different from what conventional process

improvement models recommend (see the Wisdom proposal in Figure IV.5).

Figure IV.3 – The impact of (1) ability and (2) reliability on performance - M
denotes the mean performance of the distributions. (Source: [Dyba, 2000])

Figure IV.3 illustrates why conventional SPI approaches based on “best practice

models”, like the CMM, are not suitable for SSDs. CMM is based on the argument that

standardizing the software process and introducing efficient techniques to developers

reduces the time required to accomplish development tasks, thus increasing the

productivity, quality and reliability of task performance. Using a model inspired in

[March, 1991] Dyba argues that “March’s model implies that if the increase in

reliability comes as a consequence of reducing the performance distribution’s left-

hand tail, the likelihood of finishing last among several competitors is reduced

without changing the likelihood of finishing first. But, if process improvement

reduces the distribution’s right-hand tail, it might easily decrease the chance of being

best among the competitors despite increases in the organization’s average

performance” [Dyba, 2000] (see Figure IV.3 - 1). If the goal in SSDs is to increase the

competitive advantage, improvement strategies should focus on learning from success

to increase the performance of distribution’s right-hand tail, while at the same time

reducing the left-hand tail by learning from failures (as illustrated in Figure IV.3 - 2).
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Therefore, SSDs need an improvement strategy that leverages exploration to ensure

competitiveness, but also enables repeatable success. The Wisdom process described

in section IV.2, and the underlying improvement strategy depict in Figure IV.5, focus

on these two basic premises. On the one hand the controlled evolutionary process

model and the standardized notation fosters repeatable success. On the other hand the

lightweight nature of the process and the role of participatory techniques enable

exploration.

Additionally, in [Nunes and Cunha, 2000c] we discussed the main problems faced by

SSDs based on our own experience. SSDs face organizational, cultural, financial, and

technical obstacles. In terms of organizational problems, small companies have

difficulties forming an internal dedicated process. New practices can affect existing

product maintenance and client demand. Management’s fear of high costs, delayed

time-to-market, and low return on investment manifests in cultural problems.

Software engineers often resist new methods, tools, technologies, and standards.

Reaching higher maturity levels—required to comply with quality standards—is a

long-term commitment. Financial problems often arise because allocating resources

for quality groups and hiring consultants are costly. Modern methods and tools are

expensive and require training (which temporarily reduces productivity). Finally,

small companies can’t avoid technical problems: tailoring complex software

engineering methods and techniques that are designed for large companies is costly

and time consuming. Low-end tools (for example, fourth-generation languages) lack

integration and support for management tasks (for example, documentation,

configuration management, and so on). Besides raising these problems in small

software companies, existing process assessment and improvement models fail to

benefit from the strengths of such environments. For instance, small companies are

usually more flexible and controllable and they react faster than large companies.

Also, communication is usually enhanced in such companies both internally and

towards external partners (clients, technology providers, and consultants).

To confirm our experience we conducted an informal survey on SSDs’ software

engineering practices [Nunes and Cunha, 1998] in Portugal. The study confirmed that

SSDs have a strong urge toward implementation. This urge ultimately leads them to

chaotic tailored made processes, also known as the Nike® (just do it) [Booch, 1996]

approach to software engineering. The results of the informal survey showed that

Portuguese SSDs are in fact at very low maturity levels, 80% of the surveyed

companies didn’t use a formal process model, they either just do it or use tailored

methods. The same study showed that 80% of the companies use 4th generation

languages (4GL), either as their sole development tool or in conjunction with 3rd

generation languages (3GL). The respondents also confirmed that SSDs are focused on

custom or in-house development [Grudin, 1991]. This development context is deeply

focused on user interaction, since it usually concerns developing (or adapting) small

software systems to meet specific user needs not covered by large shrink-wrapped

systems. Therefore there is an increasing importance of human-computer interaction
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techniques to support user-interface design, participatory techniques and user-

centered design.

SSDs are typically closer to end-users and, due to their limited resources, increasingly

dependent on the quality of the user interface to satisfy client needs. It is also well

known that user-interfaces are responsible for a significant share of the development

effort. An informal survey on user interface development [Myers and Rosson, 1992]

concluded that, on average, 48% of the code is devoted to the user interface.

Respondents estimated that the average time devoted to user interface development

during the various phases was 45% on the design phase, 50% on implementation time

and 37% on the maintenance phase.

In the following sections we present the Wisdom process, architecture and notation.

The Wisdom process defines an evolutionary prototyping development model

specifically adapted to provide an improvement strategy for SSDs. The Wisdom

process also enables the implementation of the specific activities defined in the

Wisdom method in a controlled manner. The Wisdom architecture encompasses a

UML model architecture that supports the different models required by the Wisdom

method, in agreement with the requirements for user-centered development and user-

interface design. In addition, the Wisdom user-interface architecture defines a new

architectural framework capable of conveying the architectural significant elements

underlying the structure of use. Finally the Wisdom notation is a subset of the UML

diagrams specifically adapted to reduce the complexity of the overall language.

Moreover, the Wisdom notation extends that reduced subset to include the new

requirements for user-centered development and user-interface design.



The Wisdom Method

122

IV.2. THE WISDOM PROCESS

The Wisdom process defines the basic steps for successfully implementing the

Wisdom method in a software development organization, considering the different

policies, organizational structures, technologies, procedures and artifacts required to

conceive, develop and deploy an interactive software intensive system.

Inception Elaboration Construction Transition

internal system
design

Prototyping/
Implementation

Prototype
Evaluation/ Test

Evol. 
#1

Evol. 
#2

Evol. 
#n

Evol. 
#n+1

Evol. 
#n+2

Evol. 
#m

Evol. 
#m+1

Preliminary evolution

4 Evolutionary Phases

Interiorise project

Understand
system context

Essential task
modeling

Internal system
analysis

user interface
design

Interface architecture
design

Wisdom 
Activities

Requirements

Analysis

Design

Whitewater
Evolution

Process
Workflows

User profiling

Figure IV.4 – The Wisdom Process Framework

Figure IV.4 illustrates the Wisdom process framework. The process framework is

presented in a way similar to the one used to present iterative and incremental

processes in the object-oriented software engineering field (see for instance the UP in

section II.4.2, Figure II.16). On the top right-hand side of the illustration are the four

phases of software development (inception, elaboration, construction and transition),

here called evolutionary phases due to the evolutionary characteristic of Wisdom. On

the left hand-side are the process workflows. We use the term workflow to describe

the activities that software engineers perform and the artifacts they produce in the

context of the Wisdom process. At the far left are three of the well-known workflows

of software engineering (requirements, analysis and design). We use those terms for

clarity when introducing our approach, that is, they are usually recognized by the

common software engineer, even those who work by “random acts of hacking”. The

fourth workflow is renamed in Wisdom whitewater evolution and replaces traditional

implementation. Whitewater is a metaphor, originally used in the Bridge method

[Dayton et al., 1998], to illustrate a development process with high resemblance to the

intense energy in rapid streams of water where the total (and apparently messy)

energy makes the activity as a whole progress very quickly. Evolution complements

whitewater because the process evolves in a sequence of incremental prototypes,
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ultimately leading to the end product. To the right of the process workflows are the

activities performed in the Wisdom method, presented in terms of the devoted effort

usually required as time goes by. Finally at the bottom of the illustration we represent

time in terms of evolutions. An evolution is defined as a prototype (functional or non-

functional) of a software system resulting from intentional (conceptual or concrete),

incremental change made with the goal of achieving a desired end product.

The main differences between the Wisdom process and the general UC-OO process

framework, described in section III.4.3 (Figure III.11), are related to the higher degree

of integration provided by the evolutionary development nature of Wisdom. Contrary

to the process framework in section III.4.3, the Wisdom process only makes a clear

distinction between internal and user interface development at the levels of analysis

and design. During the inception phase all the development activities are combined,

meaning that there is a clear acceptance that the development process should be

driven by user-centered requirements gathering activities focused on the real world

tasks the system will ultimately support. Moreover, the Wisdom process doesn’t

separate prototyping from actual development. This characteristic is intimately

related to the evolutionary nature of the method described in section IV.2.1. Similarly,

testing and evaluation activities are concentrated on the iterative deployment of

evolutionary prototypes.

Under this broader understanding of a software development process (see section II.4)

Wisdom can also be conceived as an improvement strategy for SSDs with chaotic

ways of working. Although a chaotic development strategy can take many forms, a

tentative representation is illustrated at the top of Figure IV.5. In this representation of

chaotic development, the effort is concentrated in the construction and transition

phases and corresponds to incremental efforts to increase the functionality of the

evolving product. Typically during transition a lot of effort is required to fix several

problems (including bugs and usability problems) and shape the functionalities to fit

the initial requirements. Therefore the product takes a long time to stabilize and meet

the satisfaction criteria of the users, clients and other stakeholders.

SSDs that work chaotically have many problems repeating success, managing and

measuring the projects, practicing reuse and product line development. The end

products are usually badly structured and manifest high maintenance costs. Although

SSDs recognize the drawbacks with chaotic atmospheres, several problems prevent

them to improve their processes. As we discussed in section IV.1.2, one of the major

problems faced are managerial and practitioner’s cultural barriers. Therefore we need

a model that seamlessly adapts their environment. The Wisdom process rationalizes

just do it and builds on what best characterizes small software companies: fast

movement, flexibility and good communication. Our approach leverages those

characteristics and smoothly evolves the chaotic atmosphere to a controlled

evolutionary prototyping model [Nunes and Cunha, 2000c].
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In the remaining of this section we briefly present the main characteristics of the

Wisdom process philosophy. We define and discuss the important concepts used in

the Wisdom method and notation, regarding evolutionary prototyping, essential use-

cases and task flows. Where required we contrast concepts and definitions with

related approaches both from the object-oriented and usability engineering fields.

IV.2.1.Evolutionary Prototyping

Prototyping has been recognized as an efficient and effective means of developing,

exploring and testing software intensive system, and notably their user interfaces.

Prototyping is a development approach used to improve software development

through the construction of models or simulations (prototypes) of the products or

design alternatives to be developed. Prototypes can be used to test concepts, evaluate

and explore design alternatives, communicate the look and feel, gather requirements,

perform usability evaluation and son on.

Prototyping, viewed from a process perspective, is usually classified as follows

[Baumer et al., 1996]:

•  Exploratory prototyping – serves to clarify requirements and potential solutions

and results in discussion of what should be achieved by a task and how it can be

automated by a software system. Resulting prototypes are typically functional and

simulate presentational aspects.

•  Experimental prototyping – focuses on the technical realization of selected

requirements and results in experience about the suitability and feasibility of a

particular design or implementation alternative. Resulting prototypes are typically

breadboards and functional.

•  Evolutionary prototyping – is a continuous process for adapting a software

intensive system to rapidly changing requirements and other environment

constraints. In evolutionary prototyping all types of prototypes can be developed

but pilot systems are of particular importance.

The different types of prototypes that result from the process of prototyping can be

classified as follows [Baumer et al., 1996]:

•  Presentation prototypes – aim at illustrating how an application automates a given

task by focusing on the user-interface aspects of the system.

•  Functional prototypes – implement strategically important parts of the user

interface and the underlying functionality enabling an effective simulation of a

given task.

•  Breadboards – serve to investigate technical aspects of a software intensive system,

such as architecture or functionality, which involve special risk. Breadboards are

usually not intended for evaluation by end-users.
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•  Pilot systems – are very mature prototypes that can actually be deployed for

effective use.

This classification is only one of the possible alternatives for characterizing the

products of prototyping. Other popular classifications include vertical/horizontal

prototypes and low/high fidelity prototypes [Isensee and Rudd, 1996]. Vertical

prototypes correspond to functional prototypes limited in terms of the number of

tasks they support. Conversely, horizontal prototypes cover more tasks but with less

underlying functionality. Low fidelity prototypes usually refer to limited functionality

and limited interaction prototyping efforts that required little cost and effort to

develop. Finally high fidelity prototypes are usually fully functional prototypes that

highly resemble the end system and that are costly to develop.

Developing prototypes is an integral part of iterative user-centered development

[Gulliksen et al., 2001; Preece, 1995; Dix, 1998]. However Wisdom emphasizes the use

of prototyping for evolutionary development. There is an important distinction

between the conventional understandings of prototyping in iterative user-centered

development – usually as an effective technique to communicate and evaluate a given

solution  - and evolving prototypes to reach the end product. Evolutionary

prototyping is an extensive form of prototyping that is usually considered inadequate

for conventional software development. The major drawbacks attributed to

evolutionary prototyping are related to the impact of non-functional requirements (for

instance, those that affect performance) and to the risks of committing to a given

architecture or particular solution too early in development. However, evolutionary

prototyping is irrefutably considered to be the most effective way of coping with

turbulent environments where time to market, changing requirements and

competition are crucial factors. Those factors are the ones that typically define the

environments in which small software development companies operate (see section

IV.1.2).

To take advantage of evolutionary prototyping, without engaging into its well-

identified problems, special concerns are required to prevent that end products

become badly structured, hence, increasing maintenance costs and preventing reuse.

In addition, special care must be taken to prevent the impact of non-functional

requirements, like the ones that affect performance. As we discuss in the following

sections, Wisdom provides both architectural models that enable control over the

structure of the systems (section IV.3) and special techniques, supported by effective

notation, that enable exploration of design alternatives and management of non-

functional requirements.

IV.2.1.1.From Chaotic Development to Evolutionary prototyping

One can look at the just do it approach as only performing the whitewater evolution

workflow as a process in itself. In fact, to implement Wisdom in a software
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organization, we evolve this chaotic activity introducing the concept of evolution

(depict as the second alternative in Figure IV.5). That way Wisdom aims to preserve

the whitewater nature of the just do it approach, in other words, the importance of

maintaining the quick and powerful pace of development in order to seamlessly

improve the existing process and prevent unnecessary barriers from managers and

the development team. In order to do that the development team is asked to state

prototype objectives and perform adequate evaluation of those objectives at the end of

the each evolution (the two main activities represented in the second alternative in

Figure IV.5). This activity introduces a sense of completion and control, very effective

to gain both developers’ and managers’ support. The key idea is to raise the

importance of progress measurement and to support the subsequent Wisdom

activities. It is imperative that the development team sees a clear advantage and

benefit of those techniques over the random acts of hacking they usually perform.
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Figure IV.5 – Wisdom as a process improvement strategy. From top to bottom the
successive introduction of Wisdom activities leading to the final process.
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After successfully introducing the concept of evolution, the development team starts

experimenting the Wisdom notation, a subset and extension of the UML (see section

0), through participatory requirements discovery sessions with end-users. At this level

the Wisdom process would look like the third alternative in Figure IV.5. Since the

major process improvement problems faced by SSDs are on requirements

specification and management [Choust et al., 1997], there is a clear advantage starting

with this activity. The participatory sessions use a reworked version of the Bridge

method (see section III.4.2.4), where a clear mapping between the concepts

represented in the low-tech materials and the UML notation is provided. Regarding

the process improvement strategy, participatory sessions are a way of seamlessly

introducing the notation on a need-to-know basis. Thus we are able to minimize

training overload and overcome barriers regarding limited short-term productivity

and training overload. Additionally, the model-based nature of Wisdom ensures that

creating, managing and maintaining documentation becomes a consequence of the

development process itself and not an additional support activity. We call this

improvement approach a friendly trojan horse approach, because of the disguised way

the techniques are introduced to the development team.

This goal setting and evaluation cycle, anchored on an UML-based requirements

model form the foundation of the Wisdom improvement strategy. Depending on

different environment characteristics (team size, experience, maturity, complexity of

the project, tools, and so on) we introduce the remaining Wisdom activities, models

and associated notation. Always following the same friendly trojan horse approach we

enable the development team to expand the evolutionary cycle according to their

needs. A typical expansion of the Wisdom process corresponds to the fourth

alternative depicted in Figure IV.5. This alternative doesn’t involve the design

activities represented in the full Wisdom process in Figure IV.4. In fact several SSDs

that adopted Wisdom, never explicitly perform design activities such as the ones

supported by the design-level notational extensions described in section IV.4. This

factor is related to the development tools they use, typically 4GLs that lack integration

with modeling tools. Without integration between the modeling tools and the actual

development tools many companies feel that it’s not worth the effort required to

create and maintain those design-level models.

IV.2.1.2.Driven by Essential Use-Cases and Task Flows

As we extensively discussed in sections III.3.1 and III.4.1, conventional use-case

modeling is not adequate for user-centered development and user-interface design.

Although use-cases are an effective tool to structure the internal functionality of the

system, driving the development process, they are not a general and flexible form of

task analysis. Thus, the current practice in UC-OO methods involves, either extending

the conventional understanding of use-cases to include user-centered requirements
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(e.g. essential use-cases), or using the existing UML behavior diagrams to express task

models (see section III.4.3.2).

Wisdom promotes a combined approach for use-case modeling consisting of essential

use-cases to convey the structure of use, and UML activity diagrams do detail that

structure in terms of essential task flows. Essential use-cases in Wisdom correspond to

top-level tasks and define a way of using a system that is complete, meaningful and

well defined to the user [Constantine and Lockwood, 1999]. Therefore, they

correspond to goals or external tasks as defined by the usability engineering

understanding, that is, a state of the system that a human wishes to achieve (see

section II.1.2.2).

Task flows detail essential use-cases through a technology free, implementation

independent sequence of desirable and realistic activities required to achieve the goal

underlying the essential use-case they describe. Task flows correspond to internal

tasks in the usability engineering understanding, in other words, the sequence of

activities that a user is required, or believes to be necessary, to do in order to

accomplish a goal. The atomic activities in a task flow are internal tasks that involve

no problem solving or control structure component (see section II.1.2.2).

The critical difference between the Wisdom use-case modeling approach and the

conventional use-case approach [Jacobson et al., 1999], is related to the fact that top

level tasks, required by the users to accomplish actual work, drive development and

not the inherent internal functionality. Conventional use-cases describe a coherent

unit of functionality provided by the system [OMG, 1999], thus a conventional use-

case driven process concentrates on units of functionality. An essential use-case

driven process is conducted by the real-world tasks that provide real-value to the

users. Furthermore, the essential nature of task flows prevents requirement models to

contain built-in assumptions about the form of the user-interface of the envisioned

system. This approach promotes creativity and leverages novel and simpler solutions

for user interface design and the underlying functionality that supports the user-

interface.

Wisdom shares the original understanding of essential use-cases as proposed in

[Constantine, 1992] and later endorsed in the Usage-centered Design method (see

section III.4.2.3). However, Wisdom proposes to use diagrammatic representations of

essential task flows depict through UML activity diagrams. This UML-based

representation of essential task flows was originally proposed in [Nunes and Cunha,

1999], and fosters participatory gathering of requirements because it is simpler to

manipulate than their natural language counterparts defined by essential use-case

narratives [Constantine and Lockwood, 1999]. Task flows, emerging from

participatory sessions in the form of low-tech materials, are easily translated into

UML activity diagrams thus becoming model-based artifacts that software developers

can elaborate, transform and relate to other modeling constructs.
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Figure IV.6 illustrates the differences between conventional use-case descriptions, as

proposed in the Unified Process and the Rational Unified Process (RUP), and

structured essential use-cases. The example provided is for a top level task (goal) of

cash withdraw in an ATM machine, a common problem addressed in OO modeling

textbooks [Rumbaugh et al., 1991; Jacobson, 1992; Kruchten, 1998]. The same example

is used as the basis for an extensive discussion of the role of use-cases for user-

interface design in [Constantine and Lockwood, 2001].

The first narrative in Figure IV.6 is directly translated from the RUP textbook and

describes the example ATM use-case as a numbered sequence of steps. The system-

centric nature of this example is obvious. Discussing the same example Constantine

and Lockwood point out “The narrative exemplifies a systems-centric view: With one

exception, each step begins with the system side of things” [Constantine and

Lockwood, 2001]. In fact, this conventional use-case narrative is full of assumptions

about design level decisions for the system that is yet to be developed. For instance,

the reference of cards and PINs for user authentication. Moreover, the narrative is full

of rhetorical details that are not essential for the purpose of illustrating the interaction,

and which difficult the usefulness of the representation.

The second example in Figure IV.6 represents a responsibility driven use-case

narrative that avoids the confusion between the user actions and the system

responsibilities [Wirfs-Brock, 1993], therefore making the user-interface boundary

evident [Constantine and Lockwood, 2001]. However, this example still includes

assumptions about the implementation of the user-interface, for instance the reference

to technology details. This kind of use-case narrative is superior to the conventional

description promoted in conventional OO modeling but still inadequate as an

effective informing description for user-interface design.

The third example in Figure IV.6 represents an essential use-case narrative (see section

III.3.1) for the same ATM use-case. In the words of Constantine and Lockwood, “this

example is dramatically shorter and simpler that the concrete use-case for the same

interaction because it includes only those steps that are essential and of intrinsic

interest to the user” [Constantine and Lockwood, 1999]. The essential use case

narrative is problem-oriented and leaves open many possibilities for the design and

implementation of the user interface. For instance, user identification could be

implemented with retinal scan or voice recognition. Moreover, the potential of this

narrative to accommodate different interaction styles and user-interface technologies

is far superior from their concrete counterparts.
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Conventional Use-case: Withdraw Money

(Transcription from [Kruchten 1999, pp. 96-97])

1. The use case begins when the Client inserts an ATM card. The system reads and
validates the information on the card.

2. System prompts for PIN. The Client enters PIN. The system validates the PIN.
3. System asks which operation the client wishes to perform. Client selects “Cash

withdrawal.”
4. System requests amounts. Client enters amount.
5. System requests account type. Client selects account type (checking, savings,

credit).
6. System communicates with the ATM network to validate account ID, PIN, and

availability of the amount requested.
7. System asks the client whether he or she wants a receipt. This step is performed

only if there is paper left to print the receipt.
8. System asks the client to withdraw the card. Client withdraws card. (This is a

security measure to ensure that Clients do not leave their cards in the machine.)
9. System dispenses the requested amount of cash.
10. System prints receipt.
11. The use case ends.

Structured Use-case: Withdraw Money

(Originally proposed by [Wirsf-Brock 1993])

User intentions System responsibilities
Insert card in ATM

Read Card
Request PIN

Enter PIN
Verify PIN
Display option menu

Select option
Display account menu

Select account
Prompt for Amount

Enter amount
Display amount

Confirm account
Return Card

Take card
Dispense cash if available

Essential Use-case: Withdraw Money

(Transcription from [Constantine and Lockwood 1999, p. 105])

User intentions System responsibilities
Identify self

Verify identity
Offer choices

Choose
Dispense cash

Take cash

Figure IV.6 – Three alternative use-case descriptions for the Withdraw cash use-
case: (i) Conventional, (ii) Structured, (iii) Essential

Figure IV.7 illustrates the Wisdom diagrammatic approach to essential task flows for

the same example of the ATM cash withdrawal use-case. In Wisdom we take

advantage of the evident superiority of essential use-case narratives but adapt the

concept to a diagrammatical representation to foster user participation and enable a

better integration with the UML. Therefore, we combine essential use-case narratives

with participatory driven task flows as proposed in the Bridge method [Dayton et al.,

1998]. At the far left is the outcome of a typical participatory session where the

withdraw cash use-case is worked-out with end-users through manipulation of index

cards (activities) and sticky arrows (dependencies between activities). To the right is

the corresponding UML activity diagram that results from the translation of the sticky

arrows and index cards (see section III.4.2.4) produced in the participatory session.
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The differences from the original essential use-case narrative depicted in Figure IV.6

are as follows:

•  Wisdom essential task flows support multiple success and failure scenarios

through the use of decisions and guards, depicted as diamonds both in the Bridge

and UML activity diagrams. Multiple scenarios lead to the well-known scenario

explosion problem, which can be solved in use-case modeling with subordinate

use-cases, extensions and variations [Cockburn, 1997]. There are many techniques

to support extensions in structured prose. For instance, control conditions (if,

continue, etc.) are used in essential use-case narratives, numbered scenario

fragments are used in conventional use-cases, and other approaches even use one

description per scenario. Although the alternatives are equivalent from a broad,

formal point of view, their expressive power varies [Cockburn, 1997]. On the one

hand, control structures introduce composed constructs that require some formal

knowledge. On the other hand, scenario fragments can lead to large narratives that

are sometimes hard to read due to extensive cross-references.

•  Representing activities and dependencies with index cards and sticky arrows

fosters communication with end-users. Low-tech materials, like the ones used in

Wisdom participatory sessions, provide “an equal opportunity work surface”

where users, independently of their computer experience, can express themselves

equally [Dayton et al., 1998]. Moreover, pictorial representations are easier to

manipulate than structured narratives, users can combine and recombine the

activities and their dependencies more freely than textual representations.

•  There is a clear mapping between the output of the participatory sessions, based

on the Bridge task flows, and UML activity diagrams. As illustrated in Figure IV.7,

index cards correspond to UML activity constructs and sticky arrows correspond

to UML dependencies between activities. As a result, the development team can

feed the result of participatory sessions into more formal UML model elements

that are manageable by modeling tools and easily related to other modeling

constructs. The translation process provides a good opportunity to add extra

information regarding non-functional requirements (depict as UML notes),

including usability considerations, design trade-offs or other constraints.

•  The development team can recurrently use the task flows in subsequent

participatory sessions and apply different techniques to identify task object and

relate them to GUI objects (Parts 2 and 3 of the Bridge). Moreover, essential task

flows can be used to perform usability testing at each Part of the Bridge method, as

described in [Dayton et al., 1998]. Since there is seamless mapping between the

output of participatory techniques and the UML activity diagrams, the

development team can take advantage of tool support to manage the changes

introduced by usability testing.
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Figure IV.7 – Example of the Wisdom approach to use-case modeling for the ATM
withdraw cash example: (i) left-hand side – an adapted Bridge task flow produced
in a participatory sessions and (ii) right-hand side – an essential task flows
expressed as an UML activity diagram.

The role of Wisdom essential task flows is not restricted to capturing and expressing

requirements in participatory sessions. Essential use-cases and task flows in Wisdom

drive the evolutionary prototyping process (see section IV.2.1), by intentionally

guiding development in terms of the real-world tasks that add real value to the users.

Development progresses in terms of evolutions that support an increasing number of

essential use-cases, task flows and the corresponding underlying functionality. Thus,

the well-known problem of providing functionalities that don’t add value (a problem

usually known as “featurism”) is minimized. Moreover, essential use-cases and task

flows serve as containers for non-functional requirements (as illustrated by notes in

Figure IV.7) and provide the major input for finding and specifying, interaction and

analysis classes.
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IV.3. THE WISDOM ARCHITECTURE

One of the more important goals in software development is to establish the

architectural foundation of the envisioned system. As we discussed in section II.4.3, a

software architecture involves the description of the elements that built the software

intensive system, the interactions among those components and the patterns that

guide their composition [Shaw and Garlan, 1996]. Despite following the same

principles in the above definition, a characterization of interactive system architecture

should include other issues related to the interactive nature of the system. However,

definitions in the literature are diverse in breadth and purpose.

Artim describes user interface architecture as "an approach to development processes,

organization and artifacts that enables both good UI practices and better coordination

with the rest of development activities" [Artim, 2001]. This highly conceptual

description focuses mainly the process of building an interactive system and the need

for collaboration and coordination between HCI and SE practice. Paternò gives a more

traditional (in the software engineering sense) definition: "the architectural model of

an interactive application is a description of what the basic components of its

implementation are, and how they are connected in order to support the required

functionality and interactions with the user" [Paternò, 2000 ]. However, this definition

still lacks some key aspects of software architectures, like reuse and pattern

composition. Kovacevic adds reuse concerns and some key aspects of model-based

approaches observing that such architecture should "maximize leverage of UI domain

knowledge and reuse (…) providing design assistance (evaluation, exploration) and

run time services (e.g., UI management and context-sensitive help)" [Kovacevic, 1998].

Finally Constantine and Lockwood point out “the term user interface architecture

refers to the overall structure of the user interface (…) how all these things are

integrated into a complete system that makes sense to the user” [Constantine and

Lockwood, 1999].

We consider that an architecture for interactive systems involves the description of the

elements from which those systems are built, the overall structure and organizations

of the user interface, patterns that guide their composition and how they are

connected in order to support the interactions with the users in their tasks.

This characterization of interactive system architecture can be recursively

decomposed into parts that interact through interfaces and are described with

different models concerning different criteria, for instance, granularity, nature of the

entities and usage. The two major architectural descriptions for interactive systems are

discussed in section II.6. Conceptual models, for example PAC [Coutaz, 1987] and
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MVC [Golberg and Robson, 1983], concern conceptual entities (e.g., the notion of

dialogue control) and how the entities relate to each other in the design space.

Implementation models, for example Seeheim [Pfaff and Haguen, 1985] and Arch

[Bass, 1992], concern software components (e.g., a dialogue controller) and the

relationship between the components.

Both conceptual and implementation models of interactive systems have adopted the

separation of concerns between the entities that model the task domain and those

involved in the perceivable part of the system (also promoted in the meta-model

described in section III.2.2). On the one hand, this distinction enables the entities that

depend on the task domain (functional core) to be reused with different

interpretations and rendering functions. On the other hand, interpretation and

rendering entities define a software component (the user interface) that can be

maintained independent from the functional core [Coutaz, 1993]. Due to practical

engineering issues this separation of concerns is further refined in implementation-

oriented models.

The following sections discuss the two original architectural descriptions promoted in

the Wisdom method. Both architectural descriptions build on the best practice models

described in sections II.4.3 and II.6, thus providing an effective bridge between the

understanding of software architecture descriptions in software engineering, and the

requirements for the purpose of developing interactive systems.

IV.3.1.Wisdom Model Architecture

As we discussed in section II.2.1, a model is an abstraction of a physical system with a

certain purpose. UML models have two goals: to capture the semantic information of

a system through a collection of logical constructs (e.g. classes, associations, use-cases,

etc.) and to present such information in a visual notation that can be manipulated by

developers. Models can take different forms, aim at different purposes and appear at

different levels of abstraction. However, they should be geared towards a determined

purpose. For instance, as we discussed in section II.2.1, models can guide the thought

process, abstract specification of the essential structure of a system, completely specify

the final system, partially describe the system or exemplify typical solutions

[Rumbaugh et al., 1999]. From this perspective, model architecture defines a set of

models with a predefined purpose. Various examples of model architectures are

described in sections II.4.3. However, as we discussed in section III.2.2, they don’t

comply with the necessities required by interactive systems.

The Wisdom model architecture specifies the different models of interest to effectively

develop an interactive system under the framework of the Wisdom method. This

model architecture guides the though process in Wisdom from the high level models

built to capture requirements to the implementation models that fully specify the final

system. According to the requirements for interactive system model architecture
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discussed in section III.3, the Wisdom model architecture leverages both the internal

and user interface architectures. Hence, we solve the problem in traditional software

engineering approaches were the focus goes only to the organization of the internal

components and their relationships - the internal architecture of the software system.

Following the best traditions of the user-centered approach, the Wisdom architecture

enables the focus on the external user interface architecture since early project

inception. Like the internal architecture is more than a set of internal components, the

user-interface architecture is also more than a set of user interface components. In

Wisdom the external architecture not only concerns individual user interface

components but also (and essentially) the overall structure and organization of the

user interface.

Business or
domain model

Use case
model

Analysis
model

Interaction
model

Design model

Dialogue
Model

Presentation
Model

Implementation
Model

Analysis
Workflow

Requirements
Workflow

Design
Workflow

Whitewater
Evolution
Workflow

User role
model

Figure IV.8 – The Wisdom Model Architecture

Figure IV.8 illustrates the Wisdom model architecture. Eight models are developed in

Wisdom - excluding the implementation model, which represents all the artifacts

required to deploy the system (databases, code, user interface, etc.). Models are

roughly aligned with respect to the major conventional workflows defined in OO

software engineering: requirements, analysis and design. Whitewater evolution

replaces conventional implementation to highlight the importance of the evolutionary

prototyping nature of Wisdom (see section IV.2.1).

At the far left in Figure IV.8 is the user role model. This model follows the original

perspective of Constantine and Lockwood’s user role map as described in section

III.4.2.3 [Constantine and Lockwood, 1999]. The user role model captures and

organizes the salient or distinguishing characteristics of the users as they affect the use

of the system. User roles represent types of users, including the collection of their

interests, behaviors, responsibilities and expectations in relation to the system. The

Wisdom user role model is represented using UML use-case diagrams with

stereotyped relationships between actors (affinity, classification and composition),

corresponding to an adaptation of their original semantic definition in Usage-centered

Design (in section IV.4.1 we describe the corresponding UML extensions). The user

role model is developed during early inception according to the user-centered best
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practice of early focus on user needs (see section II.5.2). Information in the user role

model can be captured using different usability techniques (site visits, focus groups,

surveys, and so on), but in Wisdom we promote the use of focus groups in

participatory sessions. The user role model impacts all the following models,

specifically the domain and/or business model and the use-case model.

At the top left hand side of the figure are the domain and/or business model. The

domain model captures the most important types of objects in the context of the

system (see section III.3.3). When the business context, in which the system is to be

deployed, is significantly complex; or when business process reengineering is a

primarily concern, the domain model can be complemented with a business model.

The business (process) model describes how the organization coordinates the work

activities, information and knowledge to produce the valuable products or services

(see section III.3.2). In Wisdom the domain model is captured using class diagrams.

The business process model extends the domain model with additional information

captured through activity diagrams. In addition, a business use-case diagram can

represent the structure of the organization in terms of business actors and business

use-cases. Business actors represent the role that someone or something in the

environment can play in relation to the business organization. They are related to

business use-cases that define the types of sequences of work steps that produce a

result of perceivable and measurable value to an individual actor of the system.

Business actors are distinct from user roles, defined in the user role model. While

business actors are roles from the perspective of the business organization, user roles

represent users from a usability perspective. Business modeling entities used in

Wisdom are the ones defined in the UML profile for business modeling (see section

II.3.3). The information in the domain and business process models is captured

through participatory sessions in early system inception. The domain or business

process models impact primarily the interaction and analysis models.

The remaining inception model is the use-case model. A use case model specifies the

services a system provides to its users [OMG, 1999]. As described in section IV.2.1.2,

Wisdom enriches that specification detailing use cases with essential activity

diagrams, hence, focusing on user needs for the tasks reflected in task flows. The use

case model is represented in Wisdom with use case and activity diagrams. To avoid

scenario explosion (see section IV.2.1.2) we use UML decisions in activity diagrams to

ensure there is only one essential task flows per essential use case. The information in

the use-case model is highly influenced by the user role model and the domain or

business models. Use-cases and essential task flows are built in participatory sessions

with focus groups. There is no obvious logical dependency between the business,

domain and use case model, but as the arrows (logical dependencies) in Figure IV.8

suggest, they all influence the following models.

The requirement models (business, domain and use case) are an external view of the

system described in the language of the customer. The analysis model is an internal
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view of the system described in the language of the developers. This model structures

the system with stereotypical classes (and packages if required) outlining how to

realize the functionality within the system. Therefore, the analysis model shapes the

internal architecture of the system defining how different analysis classes participate

in the realization of the different use cases. To specify the analysis model in Wisdom

we use the UML analysis framework described in section II.4.3.2. This framework in

expanded with an original proposal for a new interaction framework described in

section IV.3.2. That way Wisdom enables the relationship between the internal

architecture and the user-interface (external) architecture. The information in the

analysis model corresponds to a technical activity carried out by the software

development team. The analysis model is primarily built during system elaboration in

the analysis workflow. The analysis model influences directly the design model in the

design workflow.

As consistently mentioned throughout the previous chapter, there is common

agreement over the clear advantage to separate the user interface from the functional

core in conceptual and implementation architectural models for interactive system. In

section III.2.3 we discussed that such conceptual (not necessarily physical) separation

leverages on user-interface knowledge in providing design assistance (evaluation,

exploration) and run-time services (user interface management, help systems, etc.).

This approach should support implementation of internal functionality independent

of the user interface fostering reuse, maintainability and multi-user interface

development, an increasingly important requirement with the advent of multiple

information appliances [Norman, 1998]. The Wisdom interaction model is an external

view of the system from the user interface perspective. This model structures the user

interface identifying the different elements that compose the dialogue and

presentation structure of the system (look and feel), and how they relate to the

domain specific information in the functional core. The different elements that

compose the Wisdom user-interface architecture are described in detail in section

IV.3.2. To specify the interaction model in Wisdom we use the corresponding UML

notational extensions described in section IV.4.3. The information in the interaction

model corresponds to a technical activity carried out by the user-interface

development team. The interaction model is mainly built during the analysis

workflow of the elaboration phase. The interaction model influences the presentation

and dialogue models devised in the construction workflows.

The Wisdom models in the design workflow reflect the same separation of concerns

between the internal functionality and the user interface at a lower level of

abstraction. The design model defines the physical realization of the use cases

focusing on how functional and non-functional requirements, and other constraints

related to the implementation environment, impact the system. Hence, the design

model is more formal than the conceptual analysis model and specific to a given

implementation. To specify the design model we can use any number of stereotypical

language dependent classes.
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The dialogue model specifies the dialogue structure of the interactive application,

focusing on the tasks the system supports and the temporal relationships between

tasks. The dialogue model specifies task level sequencing and provides relationships

that ensure multiple interaction space consistency, while mapping between domain

specific and user-interface specific formalisms. There is general agreement that

dialogue models are fundamental models in user interface design because they enable

developers to specify the dialogue structure of the application avoiding low-level

implementation details (see section II.7). The Wisdom dialogue model serves this

purpose refining the user-interface architecture and ensuring the separation of

concerns between the user interface and the functional core, and also between the

presentation and dialogue aspects of the system. To specify the Wisdom dialogue

model we use an UML extension based on the ConcurTaskTrees [Paternò, 2000]

formalism. This extension and the main features of the formalism are discussed in

section IV.4.4.

The presentation model defines the physical realization of the perceivable part of the

interactive system (the presentation), focusing on how the different presentation

entities are structured to realize the physical interaction with the user. The

presentation model provides a set of implementation independent entities (interaction

spaces) for use by the dialogue model, hence, leveraging independence of the

interaction techniques provided by the user interface technology (e.g. UI toolkit).

Interaction spaces are responsible for receiving and presenting information to the

users supporting their task. Interaction spaces are typically organized in hierarchies

and containment relationships can occur between them. According to [Nunes et al.,

1999] an interactive system’ architecture should “support the separation of the user

interface specifics (look and feel) from its (conceptual) specification, independent of

the type of interaction and technology”. Such separation leverages automatic user

interface implementation from conceptual (abstract) models [Nunes et al., 1999]. We

specify the presentation model using a set of UML extensions described in section

IV.4.5.

IV.3.2.Wisdom User-Interface Architecture

The Wisdom user-interface architecture is an elaboration of the

boundary/entity/control analysis pattern described in section II.4.3.2. This original

architectural pattern, initially proposed in [Nunes and Cunha, 2000a], addresses the

refinement and structuring of the requirements defined in the early user-centered

models. The Wisdom UI architecture encompasses three types of stereotyped classes:

entity, task and interaction space.

As we discussed in [Nunes and Cunha, 2000a] the original proposal for new UI

architecture introduces a user-centered perspective at the analysis level. Despite all

the requirements for interactive system architecture (discussed in sections II.6 and

III.2.2), the new architecture model should comply with the following criteria:
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•  Build on user interface design knowledge capturing the essence of existing

successful and tested architectural patterns;

•  Seamlessly integrate the existing UP analysis pattern, while leveraging

cooperation, artifact change and ensuring traceability between usability

engineering and software engineering models;

•  Foster separation of concerns between internal functionality and the user interface,

not only in its intrinsic structure, but also enabling the co-evolution of the internal

and interface architectures;

•  Conform to the UML standard both at the semantic and notation levels, that is, the

artifacts required to express the architecture should be consistent with the UML

and its built-in mechanisms;

The information space for the Wisdom UI architecture is depicted in Figure IV.9. The

new information space differs from the information space of the OOSE [Jacobson,

1992], Unified Process [Jacobson et al., 1999] and UML standard profile for software

development processes [OMG, 1999], introducing two new dimensions for the

dialogue and presentation components. In addition, the presentation dimension of the

UP is restricted to non-human interface. Note that the information dimension is

shared between the two information spaces, leading to a total of five dimensions if we

consider both information spaces as a whole. Such combined information space spans

the analysis model and the interaction model, described in the previous section.

Behaviour

Information

Interface

(non-human)

Dialogue

Presentation

Information

Analysis model Interaction model

Figure IV.9 - The Wisdom user-interface architecture

This Wisdom UI architecture encompasses the information, dialogue and presentation

dimensions of the information space, clearly mapping the conceptual architectural

models for interactive systems described in section II.6. Accordingly, the internal

architecture accommodates the existing analysis dimensions, also including the

shared information dimension. Note that the presentation dimension in the analysis

model is reduced to capture the interface (not the presentation) to external systems

(system actors). This way we are able to tie the internal and user-interface

architectures, leveraging the required separation of concerns, while maintaining the

necessary relationship amongst them. Moreover, the two information spaces

accommodate the domain knowledge of both the OO and usability engineering

communities.
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The Wisdom UI architecture, like the MVC, PAC and UP analysis architectures, is a

conceptual architecture pattern. Therefore it should not take into consideration design

or implementation criteria, like the Seeheim and Arch models do (see section II.6).

However, the Wisdom architecture is at a higher granularity level of the MVC and

PAC models, hence, it will eventually suffer subsequent reification at design and

implementation. Therefore the Wisdom architecture should support such reification,

maintaining qualities like robustness, reuse and location of change; while leveraging

the mediating nature of the domain adapter and interaction toolkit components of the

Arch model (see Figure II.24). This process is typically achieved through precise

allocation of information objects (entity classes) to domain adapter and domain

specific components at design and implementation time (see II.7). Such allocation

enables semantic enhancement (dividing or joining objects in the domain adapter

component) and semantic delegation (enhancing performance by preventing long

chains of data transfer to objects in the domain specific component) [Coutaz, 1993].

The same applies to the interaction toolkit component, at this level with presentation

objects (view classes).

Figure IV.10 – Application example of the conventional OO analysis framework
versus the Wisdom UI architecture: left-hand side - transcription of a solution
provided in [Conallen, 1999]; right-hand side - the new solution based on the
Wisdom UI architecture.

Figure IV.10 illustrates the differences between the Wisdom UI architecture and the

conventional architectural descriptions used in the OO field. To the left-hand side of

the figure is the analysis conceptual architecture provided in [Conallen, 1999] for a

glossary web application. The architecture in the example supports three use-cases

(read glossary, search glossary and edit glossary entry). As we can see from left-hand

model in the figure, the conventional solution doesn’t separate the user-interface from

the internal functionality. For instance, browse glossary and search glossary are two

control classes that contain both the business logic required to browse and search

glossary entries and the structure of use required to perform those tasks. Furthermore,

the conventional model contains built-in assumption about the user-interface

technology and the interaction styles used to implement the user-interface of the

glossary application. For instance, the boundary classes Home Page, Search form and
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Entry form are obviously indication a form-based interaction style and a web-based

user-interface. Assuming technology constraints at the analysis level suggests that this

architecture could not support a different technology or interaction style - for example

a Java applet – therefore compromising the potential for reuse.

The right-hand side of Figure IV.10 depicts the solution for the same problem based

on the Wisdom UI architecture. The Wisdom architecture clearly supports the well-

known best practice of separation of concerns between the internal functionality and

the user-interface specifics. The advantages are evident, not only the structure of use

related to reading, searching and editing the glossary is contained in specific classes

(the read glossary, search glossary and edit glossary task classes), but also the structure of

the internal functionality becomes simpler because it doesn’t have to contain the user-

interface behavior. Moreover, there is a clear separation between the presentation of

the user-interface (glossary browser and glossary editor interaction space classes) and the

structure of use. The resulting architecture is therefore, simpler (both in terms of the

user-interface and the internal functionality), more robust (changes in the presentation

of the user-interface don’t impact the structure of use and the internal functionality,

and vice-versa), and more reusable (the structure of use can be reused with respect to

different implementation technologies). Finally the Wisdom UI architecture

seamlessly maps different implementation architecture. For instance, assuming typical

three-tier implementation architecture for a web-application, interaction spaces and

task classes are candidates for client-side components, whereas control classes are

candidates for the middleware tier and entities for the data tier.

The Wisdom model architecture (see Figure IV.8) defines a set of UML models that

enable user-centered development (user-role model and use-case model) and user-

interface design (presentation model and dialogue model). The Wisdom UI

architecture (see Figure IV.9) extends the conventional UML analysis framework

enabling the description of architectural significant elements that describe the

structure of use. In the following section we describe the UML notational extensions

required to support those models.
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IV.4. THE WISDOM NOTATION

According to a recent study based on charts of concepts, UML version 1.12 has 84 basic

concepts and 149 diagram concepts, leading to an overwhelming total of 233 concepts

[Castellani, 1999] (see Figure IV.11). As we discussed in section II.2.3, UML

predecessors (notably OMT, OOSE and Booch) were methods, but the UML is a

process independent language. Thus the language includes an extensive number of

concepts to enable tailoring for different requirements and development contexts.
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Figure IV.11 – UML Diagrams and Associated Concepts (estimation based on
[Castellani, 1999])

The Wisdom notation involves both a subset of the different UML modeling

constructs and a set of extensions in the form of a UML profile – the Wisdom profile.

A profile is a UML lightweight extension mechanisms that involves a predefined set

of stereotypes, tagged values, constraints and notation icons that collectively

specialize and tailor the UML for a specific domain or process [OMG, 1999]. The

Wisdom profile is therefore a collection of stereotypes, tagged values and notation

icons that specialize the UML to support user-centered development and user-

centered design.

                                                            
2  Castellani’s study with charts of concepts refers to UML version 1.1. The author didn’t update the study

to the current UML version (1.3) because there are no significant changes in the overall number of
concepts.
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Figure IV.12 – Process Workflows, Activities, Models and Diagrams in Wisdom

Figure IV.12 represents the four process development workflows described in section

IV.2, and the corresponding Wisdom activities, models, and diagrams used to specify

the different models. As depicted in Figure IV.12, Wisdom in its full form is based on

eight models and uses four types of diagrams (use-case and class diagrams and two

types of behavioral diagrams). According to the mentioned study about the UML

concepts [Castellani, 1999], we estimate that this selection of diagrams and concepts is

approximately 39 basic concepts and 29 diagram concepts, leading to an overall total

of 68 concepts (29% of UML 1.1 total number of concepts). The Wisdom profile

extends the UML with a number of extra concepts (the extensions proposed in this

section), but they are limited in number and closely related (stereotyped) from

existing UML concepts. Moreover, Wisdom doesn’t fully explore all the concepts in

each diagram in Figure IV.12; some of the concepts are for advanced modeling

purposes and are seldom used. Therefore, the extra concepts introduced by Wisdom

compensate the number of advanced and seldom used concepts in the UML diagrams.
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In the following sections we define a set of UML extensions, originally proposed in

[Nunes and Cunha, 2000b], that support user-centered development and user-

interface design. We present the extensions according to the different models defined

in the Wisdom model architecture described in section IV.3.1: requirements, analysis,

interaction, presentation, dialogue and design. The aim is to describe the notation in

relation to the development lifecycle stages were the extensions are more likely to be

applied. The presented extensions, together with the standard modeling constructs

related with each model in Figure IV.12, collectively define the available constructs

required to convey the information in each model.

IV.4.1.UML Extensions for the User Role Model

As we discussed in section IV.3.1, Wisdom uses the original perspective of Usage-

centered Design user role maps to convey the information for user profiling. The user

role model is a representation of the various user roles and their salient or

distinguishing characteristics as they affect the use of the system [Constantine and

Lockwood, 1999]. The relevant and salient characteristics in user roles are as follows

[Constantine and Lockwood, 1999]:

•  Incumbents – aspects of the actual users playing a given role, including important

categories such as domain and system knowledge, training, experience, education,

and so on;

•  Proficiency – how usage proficiency is distributed over time and among users in a

given role (e.g. novice, intermediate, expert);

•  Interaction – patterns of usage with a given role (e.g. frequency, regularity,

predictability, concentration and intensity of interaction);

•  Information – nature of the information manipulated by users in a role or

exchanged between users and the system (e.g. origin of information, direction of

flow, volume and complexity);

•  Usability criteria – relative importance of specific usability objectives with respect

to a given role (efficiency, accuracy, reliability, learnability, rememberability, user

satisfaction and so on – see section II.1.3);

•  Functional support – specific functions, features, or facilities needed to support

users in a given role;

•  Operational risks – type and level of risk associated with the user’s interaction with

a system in a given role (e.g. life critical systems, safety requirements, etc.);

•  Device constraints – limitations or constraints of the physical equipment

facilitating the interaction between the user and the system in a given role (e.g.

screen size, type of input devices, etc.);

•  Environment – relevant factors of the physical environment in which a user in a

role interacts with the system (e.g. lightning and noise conditions, mobile use, etc.).
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The Wisdom role model is conveyed with UML use-case diagrams, which represent

the relationships among user roles in terms of affinity, classification and composition,

in a way consistent with the understanding proposed in Usage-centered Design. A

user role is one kind of relationship between users and the system, defining a

collection of user interests, behaviors, responsibilities, and expectations in relation to

the system [Constantine and Lockwood, 1999]. The concept of user roles, as the

original authors recognize [Constantine and Lockwood, 1999], is substantially similar

to the concept of actor originally proposed in the OOSE method [Jacobson, 1992] and

later endorsed in the UML standard [OMG, 1999]. However, there is one important

difference, as Constantine and Lockwood point out “actors, in the original definition,

include other nonhuman systems – including hardware and software – interacting

with the system (…) colloquially “actor” refers to the person playing a part, and

“role” refers to the part being played (…)” [Constantine and Lockwood, 1999].

Although the difference between user roles and UML actors is semantically subtle,

there is a clear advantage to distinguish between human actors and system actors.

This distinction is already provided at the analysis level with the Wisdom user

interface architecture (see section IV.3.2) and, therefore, there is an obvious advantage

to separate the different types of interaction (human and nonhuman) as early as

possible in the development lifecycle. Furthermore, the salient and distinguishing

characteristics of both types of actors are evident when we look at the different

usability criteria described before.

The following UML extensions define the Wisdom adaptation to convey the

information in the user role model. Concepts are adapted from the original proposal

of Constantine and Lockwood [Constantine and Lockwood, 1999], but reflect the

Wisdom perspective, notably in what concerns the pragmatics of adapting a had-hoc

notation into the UML. The Wisdom UML extensions for the user role model are as

follows:

•  <<essential use-case>> is a UML class stereotype defining the specification of a

sequence of user intentions and system responsibilities, including variants, that a

human actor can perform, interacting with the system. Essential use-cases are

technology free and do not contain any unnecessary restrictions or limiting

assumptions regarding specific implementation details reduced to its minimal

form of expression;

•  <<human actor>> is a UML class stereotype defining a coherent set of user roles

that users play when interacting with a system defined in terms of essential use-

cases. User roles define a set of distinguishing and salient characteristics, including

level of domain knowledge, experience, proficiency, usability aspects and other

criteria. A human actor is always an abstraction of an end-user that actually

interacts with the application, and excludes other stakeholders not involved in

explicit interaction (e.g. clients, customers, domain experts, etc.). A user role is one

kind of relationship between users and the system, defining a collection of user
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interests, behaviors, responsibilities, and expectations in relation to the essential

use-cases.

•  <<system actor>>  is a UML class stereotype defining a coherent set of system

roles that an external system plays when interacting with use-cases. A system actor

has one role for each use case with which it communicates.

•  <<resembles>> is a UML association stereotype between human actors or essential

use-cases that defines a similarity of an unspecified nature.

•  <<specializes>> is a UML association stereotype between essential use-cases or

human actors denoting that some essential use-cases or human actors are

subclasses (subcases or subactors) of another, inheriting characteristics of the

superclass (supercase or subactor).

•  <<includes>> is a UML association stereotype between essential use-cases or

human actors denoting that some essential use-cases or human actors are

composed of others. One essential use-case can “use” or depend on other essential

use-cases including the sequences of activities that define the other essential use-

cases. One human actor may “include” or be composed of other human actors.

Human Actor

<<human actor>>

System Actor

<<system actor>> <<essential use case>>

Essential Use Case

Figure IV.13 - Alternative notations for the class stereotypes of the Wisdom user
role model.
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Figure IV.14 – Participatory notation for the class stereotypes of the Wisdom user
role model

Figure IV.13 illustrates the notational icons defined by the Wisdom profile for the user

role model.
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As we discuss in sections IV.2.1.1 and 0, Wisdom user-role models emerge from

participatory sessions. The structure of the index cards used for each class stereotype

is depicted in Figure IV.14. Associations between modeling elements (human actors,

system actors and essential use cases) are conveyed in the front of the index cards. In

the back of the index cards additional information about each modeling element is

captured. That additional information includes a minimal set of the relevant and

salient characteristics for human actors (see the detailed description in the beginning

of this section); protocols, technologies involved and performance information in

system actors (additional information common in system-to-system interaction); and

finally usability goals, priority, risks and estimated effort for essential use-cases.

For essential use-cases the additional information concerns usability goals (see section

II.5.1) that define the minimal acceptable user performance and satisfaction criteria;

priority in terms of relative importance and value-added for end-users and business

objectives; estimated risks associated with the implementation of the use-case

(including impact of non-functional requirements); and finally an estimation of the

effort required to implement the essential use-case. The additional information

captured for essential use-cases enables the development team to directly combine

usability criteria and process management information. Since essential use-cases drive

the development process, the development team can prioritize development in terms

of the added value to the end-users (see section IV.2.1.2). The additional information

depicted in the participatory notation for the user-role map can be translated into the

UML through stereotyped attributes.

IV.4.2.Revised UML Extensions for the Analysis Model

As we mentioned in section IV.3.2, the Wisdom user-interface architecture expands

the understanding of the stereotypes defined in the UML standard profile for software

development processes. At the notational level the Wisdom notation introduces some

subtle but important changes in the conceptual definitions of the class stereotypes.

The modified definitions introduced in the Wisdom profile (where required partial

definitions are retrieved from [OMG, 1999] and [Jacobson et al., 1999]) are as follows:

•  <<Boundary>> class stereotype – the boundary class is used, in the Wisdom user-

interface architecture, to model the interaction between the system and external

systems (non-human). The interaction involves receiving (not presenting)

information to and from external systems. Boundary classes clarify and isolate

requirements in the system’s boundaries, thus isolating change in the

communication interface (excluding human-interface). Boundary classes often

represent external systems, for example, communication interfaces, sensors,

actuators, printer interfaces, APIs, etc.

•  <<Control>> class stereotype – the control class represents coordination,

sequencing, transactions and control of other objects. Control classes often
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encapsulate complex derivations and calculations (such as business logic) that

cannot be related to specific entity classes. Thereby, control classes isolate changes

to control, sequencing, transactions and business logic that involves several other

objects.

•  <<Entity>> class stereotype – the entity class is used to model perdurable

information (often persistent). Entity classes structure domain (or business) classes

and associate behavior, often, representing a logical data structure. As a result,

entity classes reflect the information in a way that benefits developers when

designing and implementing the system (including support for persistence). Entity

objects isolate changes to the information they represent.

IV.4.3.UML Extensions for the Interaction Model

The elements of the interaction model are interaction classes, defined as stereotypes of

UML class constructs. The three stereotypes proposed in the Wisdom user-interface

architecture are as follows:

•  <<Task>> class stereotype – Task classes are used to model the structure of the

dialogue between the user and the system in terms of meaningful and complete

sets of actions required to achieve a goal. Task classes are responsible for task level

sequencing, consistency of multiple presentation elements and mapping back and

forth between entities and presentation classes (interaction spaces). Task classes

encapsulate the complex temporal dependencies and other restrictions among

different activities required to use the system and that cannot be related to specific

entity classes. Thereby, task classes isolate changes in the dialogue structure of the

user interface.

•  <<Interaction space>> class stereotype – the interaction space class is used to

model interaction between the system and the human users. An interaction space

class represents the space within the user interface of a system where the user

interacts with all the functions, containers, and information needed for carrying

out some particular task or set of interrelated tasks. Interaction space classes are

responsible for the physical interaction with the user, including a set of interaction

techniques that define the image of the system (output) and the handling of events

produced by the user (input). Interaction space classes isolate change in the user

interface of the system, interaction spaces are technology independent although

they often represent abstraction of windows, forms, panes, etc.

The UML profile for software development processes also defines association

stereotypes. Although, the Wisdom profile doesn’t change the semantics of those

association stereotypes, they can be applied to the new class stereotypes introduced

before, as follows:

•  <<Communicate>> is an association between actors and use cases denoting that

the actor sends messages to the use case or the use case sends messages to the

actor. It can also be used between boundary, control and entity. In addition it can
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be used between actor and boundary, with the new specific constraint that actor is

an external system. Communicate can also be used between entity, task and

interaction space. In addition it can be used between actor and interaction space,

with the specific constraint that actor is human. The direction of communication

can be one way or two ways;

•  <<Subscribe>> is an association between two class states that objects of the source

class (subscriber) will be notified when a particular event occurs in objects of the

target class (publisher). Subscribe can be used from boundary, entity and control to

entity. In addition, subscribe can also be used between task and entity. The

direction of subscribe is one way.

The alternative notations for the class stereotypes defined in the Analysis and

Interaction models are depict in Figure IV.15 (see also Figure IV.9).

Task Interaction
Space

<<task>> <<Interaction
Space>>

Boundary Control

<<boundary>> <<control>>

Entity

<<entity>>

Analysis model Interaction model

Figure IV.15 – Alternative notations for the class stereotypes of the Wisdom
analysis and interaction models.

IV.4.4.UML Extensions for the Dialogue Model

As we discussed in section II.7 task models are fundamental models for user-centered

development. In Wisdom essential task flows are used to describe the sequence of

activities that a user is required, or believes to be necessary, to do in order to

accomplish a goal (see section IV.2.1.2). Therefore, essential task flows are a form of

task modeling useful for task analysis purposes, that is, to understand the user tasks

that drives development. In section IV.2.1.2 we discussed Wisdom essential task flows

and how they can be created in participatory sessions with end-users and later

translated into more formal UML activity diagrams. However, at later stages of the

development lifecycle, designers are required to perform the transition from task to

dialogue, in other words, synthesize the actual description of the human-computer

dialogue. As we discussed in section II.7.2, the requirements for dialogue modeling

are substantially different from the requirements for task modeling.

Although UML behavioral diagrams (in particular sequence and statechart diagrams)

can, to some extent, be used for dialogue modeling, there is evidence that those

formalisms are not adequate to specify modern modeless interactive applications (see

discussion in section II.7.2). Therefore we decided to adapt one of the most widely

used 2nd generation task formalism from the usability-engineering field into the UML.
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We chose the  ConcurTaskTrees (CTT) visual task formalism, because it is a popular

and easy to use graphical notation that combines hierarchical structuring of

concurrent tasks with a rich set of temporal operators. Moreover, and contrary to

other 2nd generation task formalisms (Diane+ and LeanCuisine+ - see section II.7.2),

the formal semantics of the CTT are defined and tool support is publicity available.

According to Paternò, the main purpose of CTT is to support the specification of

flexible and expressive task models that can be easily interpreted even by people

without formal background [Paternò, 2000]. CTT is an expressive, compact,

understandable and flexible notation representing concurrent and interactive

activities by task decomposition and supporting cooperation between multiple users.

CTT defines three types of task allocations:

•  user tasks (tasks performed by the user);

•  application tasks (tasks completely executed by the application);

•  interaction tasks (tasks performed by the user interacting with the system);

•  abstract tasks (tasks which require complex activities whose performance cannot

be univocally allocated).

An important feature of the CTT notation, essential to bring detail into the dialogue

model, is the ability to express temporal relationships between tasks. In the adaptation

of the formalism we use UML constraints and stereotyped dependencies to express

the temporal relationships between tasks. A constraint is a semantic relationship

among model elements that specifies conditions and propositions that must be

maintained as true [OMG, 1999]. A UML dependency is a relationship between two

modeling elements, in which a change to one modeling element (the independent

element) will affect the other modeling element (the dependent element).

The temporal relationships in CTT adapted in our approach are depict in Figure IV.16

and described bellow (including the original notation from [Paternò, 2000] in

parenthesis next to their name):

•  Independent concurrency (T1|||T2) – denotes that actions belonging to two tasks

(T1 and T2) can be performed in any order without any specific constraint;

•  Choice (T1[]T2) – denotes that it is possible to choose form a set of tasks and once

the choice has been made the chosen task can be performed, while other tasks are

not available;

•  Concurrency with Information Exchange (T1|[]|T2) – same has independent

concurrency but the tasks have to synchronize in order to exchange information;

•  Deactivation (T1[>T2) – denotes that the first task (T1) is definitely deactivated

once the second task (T2) terminates;

•  Enabling (T1>>T2) – denotes that the second task (T2) is activated once the first

task (T1) terminates;
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•  Iteration (T*) – denotes the task (T) is performed repeatedly until the task is

deactivated by another task;

•  Finite Iteration(s) (T1(n)) – same as iteration but the task (T) is performed n times;

•  Optional Tasks ([T]) – denotes that the performance of a task is optional.

Independent concurrency

T1 ||| T2

Choice

T1 [] T2

Enabling with information
passing

T1 []>> T2

T1 T2

T

{xor}

T1 T2

T

Iteration

T1*

Concurrency with

information exchange

T1 |[]| T2

T1 T2

T

Enabling
T1 >> T2

Finite Iteration
T1(n)

Optional Tasks
[T1]

Deactivation

T1[>T2

T1 T2

T

T1 T2

T

T1

T

*

T1

T

1..n

T1

T

0..1

<<seq>>

<<info pass>>

<<seq info

pass>>

T1 T2

T

<<deact>>

Figure IV.16 – Notation for the UML adaptation of ConcurTasktrees

To support the CTT notation the following extensions to the UML are proposed:

•  <<Refine task>> is an association between two tasks denoting that the target class

(subtask) specifies the source task (parent task) at a different (lower) level of detail.

The refine task association is unidirectional can only be used between task classes.

Constraints for the Refine task association (assuming all objects or classes maintain

their own thread of control, i.e., they are active and run concurrently with other active

objects):

•  {xor} – is the UML standard constraint and applies to a set of associations,

specifying that over that set, exactly one is manifest for each associated instance;

Dependency stereotypes for the temporal relationships, again assuming that all

objects or classes are active and run concurrently with other active objects:

•  <<infopass>> is a dependency stereotype denoting the independent task sends

information to the dependent task;

•  <<seq>> is a dependency stereotype denoting that the dependent task is activated

once the first task terminates;

•  <<seqi>> is a dependency stereotype denoting that the independent task activates

the dependent task with information exchange;

•  <<deact>> is a dependency stereotype that denoting that the dependent task is

definitely deactivated once the dependent task terminates.
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Others have proposed different approaches to integrate task modeling into the UML.

As we discussed in [Nunes and Cunha, 2001a] (see also section III.4.3.2 for a similar

discussion for task analysis) those approaches can be generally described into:

•  Extending the UML metamodel, introducing a separate task model, and

establishing relationships between the task elements and the existing UML

elements. This approach was the one followed in the CHI’98 workshop (see section

III.3.1) but involves a number of problems. On the one hand, the UML metamodel

is not yet entirely compliant with the OMG’s MOF architecture [OMG, 1999]; hence

this kind of heavyweight extension mechanism will likely introduce more

inconsistencies in the existing UML semantics. Furthermore it is not possible, in

the current UML standard, to devise mappings between the new extended

semantics and the notations. Finally, heavyweight extensions require tools that

support metamodeling facilities and also impact the interchange formats [Cook,

2000];

•  Representing elements and operators of a task model by a UML behavioral

diagram (for instance statechart diagrams or sequence diagrams). This approach,

proposed in [Markopoulos and Marijnissen, 2000], follows the model-based

tradition and suffers from the problems already identified in section IV.2.1.2. In

[Silva and Paton, 2000] some of the problems representing task models with

statecharts are solved through a set of UML metamodeling extensions, however

this possibility incurs into the same problems of heavyweight extensions described

earlier.

In [Paternò, 2001] the author agrees that the solution provided for the Wisdom

dialogue model enforces the structural correctness of CTT models. However, he

argues that the resulting representations are not very effective to support designers in

their work: “the usability aspect is not only important for the final application but also

for the representations used in the design process” [Paternò, 2001]. We recognize this

problem, in particular because the existing UML tools are not specifically adapted to

build hierarchical structures, and also because they don’t explore the intrinsic

possibilities of dialogue notations (for instance simulation). In section V.3 we discuss

several experiences were CTT models are interchanged between the CTT environment

and the UML through the XMI interchange format. This way we are able to take

advantage of specific tool support for dialogue models, while also leveraging the

possibility of combining dialogue model with the other modeling constructs required

to develop software intensive systems.

IV.4.5.UML Extensions for the Presentation Model

The other design level model defining the Wisdom profile is the presentation model.

As we discussed in section III.3.4, the concept of a presentation modeling element to

convey the presentational aspects of interactive applications, is commonly accepted in

UC-OO methods.
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In the Ovid method (see section III.4.2.1), Roberts and colleagues proposed the

concept of a (object) view – the modeling concept responsible for presenting to the

users and allowing them to use information to accomplish tasks [Roberts et al., 1998].

However the initial proposal of Ovid relies on UML annotations to express relevant

information of views and, thus, have little semantic significance. Ovid organizes

views in designers’ models and implementation models through class, sequence and

statechart diagrams. This model organization maps the well-known usability

engineering distinction between the different conceptual models of users’, designers’

and implementation – the aim is to bring the implementation model as close to the

user’s model as possible, hence, preventing the user interface from reflecting the

internal system architecture.

Idiom (see section III.4.2.2) also provides a concept (called view) similar to a Wisdom

interaction space. A view in Idiom is described by a type and is an abstract

representation of composition of one or more of view objects, interaction techniques

and other views. A view can provide a context for task execution by satisfying the

user’s task information needs and providing ways to invoke application functionality

that supports the user’s task behavior [Harmelen, 2001b]. The view structure is

modeled in the structural view model, and the view behavior supporting task

execution is described, including the creation and deletion of top-level views, in the

dynamic view model [Harmelen, 2001b].

A similar concept is also proposed in Usage-centered Design (see section III.4.2.3), the

authors of essential use-cases propose interaction contexts as the main building block

of the presentation aspects of the user interface. An interaction context represents the

places within the user interface of a system where the user interacts with all the

functions, containers and information needed for carrying out some particular tasks or

set of interrelated tasks [Constantine and Lockwood, 1999]. However the authors

don’t provide any information regarding the definition of interaction contexts within

the UML framework. Contrasting Ovid, Usage-centered Design emphasizes the

navigational structure of the user interface architecture. Interaction contexts are

organized in navigation maps and relationships between interaction contexts are

defined (context changes). This characteristic enhances the capability of reasoning

about the navigational structure of the interactive application, supporting one of the

important compromises in interaction design – the balance between the number of

interaction contexts and the number of context transitions.

Both Ovid, Idiom, and Usage-centered Design classify the presentation objects in

terms of generic graphical interaction elements, that is, contents, composed, properties

and user assistance in Ovid; windows, dialogue boxes, confirmation boxes and

palettes in Idiom; and window, screen, display, message and panel in Usage-centered

Design. This classification scheme imposes a dependency on the user interface

technology - the WIMP graphical user interface, which restricts the ability of the

modeling concepts to serve multiple interaction styles and interface technologies.
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Interaction spaces in the Wisdom notation have similarities with the concept of

boundary classes in UP and the UML standard profile for software development

processes, object Views in Ovid, and Interaction Contexts in Usage-centered Design.

Figure IV.17 illustrates the main differences between the presentation modeling

concepts in UP, OVID, Usage Centered Design, and Wisdom.
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Figure IV.17 – Presentation modeling elements in the UP (boundary), Ovid (object
view), Idiom (view), Usage-centered Design (interaction space) and Wisdom
(interaction space)

In the Wisdom notation the presentation model defines the physical realization of the

perceivable part of the interactive system (the presentation), focusing on how the

different presentation entities are structured to realize the physical interaction with

the user. The presentation model provides a set of implementation independent

modeling constructs (the <<interaction space>> class stereotype) for use by the

presentation model, hence, leveraging independence of the interaction techniques

provided by the user interface technology (e.g. UI toolkit). Interaction spaces are
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responsible for receiving and presenting information to the users supporting their

task. Views are typically organized in hierarchies and containment relationships can

occur between views. In the next section we present the UML’s extensions to support

the presentation model.

The following UML extensions support the Interaction model:

•  <<Navigate>> is an association stereotype between two interaction classes

denoting a user moving from one interaction space to another. The navigate

association can be unidirectional or bi-directional; the later usually meaning there

is an implied return in the navigation. Users navigate in interaction spaces while

performing complex tasks and a change between interaction spaces usually

requires a switch of thinking from the user;

•  <<Contains>> is an association stereotype between two interaction space classes

denoting that the source class (container) contains the target class (content). The

contains association can only be used between interaction space classes and is

unidirectional.

•  <<input element>> is an attribute stereotype denoting information received from

the user, i.e., information the user can manipulate;

•  <<output element>> is an attribute stereotype denoting information presented to

the user, i.e., information the user can perceive but not manipulate;

•  <<action>> is an operation stereotype denoting something a user can do in the

physical user interface that causes a significant change in the internal state of the

system, that is, changes in the long term information of the system (entities),

request for signification functionality, changes in context of the user interface, and

so on.

IV.4.6.Valid Association Stereotypes Combinations

Figure IV.18 illustrates the valid combinations for the different associations

stereotypes defined in the UML extensions of the Wisdom profile.
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The previous sections described the main contributions underlying the Wisdom

method: process, architectural models and notation. The following section describes

how those contributions are combined together supporting interactive system

development with the Wisdom method.
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IV.5. THE WISDOM METHOD

This section presents the Wisdom method in detail, introducing the specific activities

involved in each of the three major workflows for software development:

requirements, analysis and design. In the following subsections we describe the

activities for each workflow, present the main techniques used in Wisdom and

illustrate the application of the method with a simple hotel reservation system.

IV.5.1.Genealogy of Wisdom

For several years we worked with small software developing companies (SSDs) to try

to help them build a rational software development process. We have learnt how

people in such environments build interactive software, understood the methods,

techniques and tools they use, characterized the kind of products they have built, and

studied how they have worked together and with their customers. The Wisdom

proposal results from our efforts to bring rational software development practices into

these environments.

Wisdom originated from a simpler 1997 proposal called User-Centered Evolutionary

Prototyping (UCEP) [Nunes, 1997; Nunes and Cunha, 1998; Nunes et al., 1998]. UCEP

was a customized set of methods and techniques aiming to rationalize a chaotic

software process in a particular small software developing company in the Island of

Madeira, Portugal. Our initial approach was applied to a medium scale project,

involving a small team of 6 people. The project saw the development of a supervisory

and decision support system (SITINA) for the power management company in

Madeira [Nunes et al., 1998]. The UCEP set of methods, tools and techniques we

adapted and transferred into the software developing company were:

•  object-oriented methods - at the time an adapted version of the Object Modeling

Technique (OMT) [Rumbaugh et al., 1991];

•  visual modeling tools - initially Rational Rose and in the end a simple drawing

package due to integration and platform restrictions;

•  low-fi and high-fi prototyping [Isensee and Rudd, 1996]; and finally

•  participatory techniques - used to support requirements discovery, introduce

notation and evaluate prototypes.

Figure IV.19 illustrates the Wisdom genealogy; on the left hand side of the figure are

major software engineering influences, on the right hand side major human-computer

interaction influences. From the illustration we can see that Wisdom was inspired in

Bohem’s Spiral Model [Bohem, 1988] and Kreitzberg’s LUCID [Kreitzberg, 1996].
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From the spiral model Wisdom got the evolutionary rhythm, and from LUCID the

user-centered perspective. Since its initial form, the Wisdom approach used an

object-oriented analysis and design notation to specify and document the software

system. We chose OMT because of it’s easy to learn notation and simple

transformation rules for the relational schema. The OMT notation (essentially the

static model) played two major roles in UCEP On the one hand it worked as the

common language for practitioners, and between practitioners and users in

participatory sessions and prototype evaluation. On the other hand, the working

models stabilized the evolutionary process and documented the projects.

UCEP
[Nunes, Cunha]

LUCID
[Kreitzberg]

Spiral Model
[Bohem]

WISDOM
[Nunes, Cunha]

OMT

UML

Bridge
[Dayton et al]

Usage Centered Design
[Constantine & Lockwood]

Software Engineering Human-Computer Interaction

USDP
[Jacobson et al]

ConcurTaskTrees
[Paternò]

OVID
[Roberts et al]

Figure IV.19 – Wisdom Genealogy

The success of several following experiments with UCEP, and the advent of the UML

led to the proposal described here and renamed Wisdom. The UML provided new

modeling constructs and built-in extension mechanisms, essential to formalize some

off-hand modeling techniques used in UCEP, like the ones that specify the user

interface and essential task flows. Special care was also taken to improve UCEP’s

participatory techniques. Participatory techniques play a major role in Wisdom

because they are used to bring users to the development process, to introduce the

notation on a need-to-know basis and to take advantage of SSD’s enhanced

communication capabilities. To support participatory requirements gathering and

participatory design, Wisdom adapts some ideas from the Bridge method [Dayton et

al., 1998]. Since the emphasis was not only to produce object-oriented user interfaces,

like in the Bridge method proposes, we decided to detach the technique from this

specific interaction style.

Essential use-cases [Constantine, 1992] provided a sound and important tool for task

modeling based on use-cases, which is the de facto standard in OO development.

They also provided an effective connection to user profiling model-based techniques

such as the ones promoted with user role modeling in Usage-centered Design

[Constantine and Lockwood, 1999]. Therefore, Usage-centered Design is a major

influence for modeling techniques in early development activities. The importance of

a conceptual construct to capture the presentation aspects for user interface design,

proposed in early UC-OO methods like OVID and Idiom, influenced the presentation
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model in Wisdom. To specify the dialogue model we adapted the ConcurTaskTrees

[Paternò, 2000] task formalism, hence providing support for reusable task structures,

task patterns and task-based evaluation of the user-interface. Finally we decided to

use the software process modeling terminology of the UP framework [Jacobson et al.,

1999] in Wisdom. Being also focused on improvement strategies for SSDs, we required

a terminology that clearly mapped to the existing best practices on the object-oriented

software engineering field.

Due to the degree of customization to integrate human-computer interaction

techniques, Wisdom is not intended to develop non-interactive software. Wisdom was

not tried on large-scale projects, as the remit is not intended for such projects and

large development teams. Furthermore, Wisdom was only applied on custom or in-

house projects. Wisdom was never tried in off-the-shelf and contract based

development contexts [Grudin, 1991]. Although Wisdom is not intended to be a

scalable method, we believe it can be applied within other contexts and represent a

good step towards a large-scale industry process like the Rational Unified Process

(RUP) [Kruchten, 1998] or Catalysis [DSouza and Wills, 1999]. Wisdom is strongly

based on the UML and it uses several models and views that exist in such large

industrial processes. Thus, an organization can start implementing Wisdom and then

incrementally introduce new workflows, models and views using the UML, to then

ultimately reach an industry scale process.
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Figure IV.20 – Dimensions of Software Complexity and Wisdom (adapted from
[Royce, 1998])

Wisdom is a lightweight software engineering method. Lightweight in the sense that

it can be learnt and applied in a couple of days or weeks. Wisdom is object-oriented, it

uses the UML to specify, visualize and document the artifacts of the development
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project. Wisdom is specifically adapted to develop interactive systems, because it uses

and extends the UML to support human-computer interaction techniques. Finally

Wisdom is evolutionary, in the sense that the project evolves in a sequence of

incremental prototypes, ultimately leading to the end product.

IV.5.2.Workflows, Development Activities and Models in Wisdom

The three Wisdom software development workflows presented in this section are

depicted as UML activity diagrams in Figure IV.21, Figure IV.23 and Figure IV.25.

Despite the problems representing evolutionary processes with sequential notations,

we recognize the importance of such representation to clearly present the method. To

overcome some of those problems we introduce several graphical notations to better

express Wisdom’s whitewater evolutionary nature (see section IV.2). Each graph

represents the Wisdom activities for each conventional software development

workflow (requirements, analysis, design and whitewater evolution). The Wisdom

specific activities, introduced in section IV.2, are illustrated with three cogwheels

(stereotypes of activities that denote software development activities). Sub-activities

are illustrated as two cogwheels and, where required, grouped in a rounded rectangle

to detail a specific Wisdom activity. Due to the whitewater nature of Wisdom several

activities can occur in parallel: a double sized line with multiple outgoing arrows

illustrates such parallel execution (fork and join). Output artifacts of the Wisdom

activities are illustrated with corresponding notational icons and related to the

activities with a dashed dependency. We recognize this representation to be non-

compliant to the UML specification, but use it because we believe it’s clearer.

We claim that the activity diagrams in Figure IV.21, Figure IV.23 and Figure IV.25

represent a hypothetical implementation of the Wisdom method and should only work

as a framework. Depending on the complexity of the projects, the maturity of the

development team and other factors, the flow of activities can be different. For

instance, some activities can be eliminated in simple projects, while others added for

different purposes (e.g. quality procedures, process management). This can happen

within teams, projects or even iterations in the same project performed by the same

team. To better illustrate this whitewater nature of Wisdom, suppose we draw each

activity of a specific workflow in a sheet of paper and throw them into a rapid stream

of water (whitewater). What usually happens is that some sheets find obstacles and

reach the target later (or never) than others that are able to find a quicker path. If we

repeat (iterate) the experience the pace differs each time, and sheets that failed to

reach the target (or moved slowly) the first time can perform exceptionally on a

different turn. In the end this apparently messy approach is usually better and more

flexible than sequentially having the sheets traveling in a canal at the same but slower

speed.

As mentioned in the beginning of this section we use a simple hotel reservation

system to illustrate our method. The examples shown bellow and throughout this
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section are based on a simple problem definition based in similar examples worked in

the literature [Roberts et al., 1998; Dayton et al., 1998]. To clarify the scope of the case

study we cite a definition of this particular problem from [Nunes et al., 1999].

“The guest makes a reservation with the Hotel. The Hotel will take as many

reservations as it has rooms available. When a guest arrives, he or she is processed

by the registration clerk. The clerk will check the details provided by the guest with

those that are already recorded. Sometimes guests do not make a reservation before

they arrive. Some guests want to stay in non-smoking rooms. When a guest leaves

the Hotel, he or she is again processed by the registration clerk. The clerk checks

the details of the staying and prints a bill. The guest pays the bill, leaves the Hotel

and the room becomes unoccupied.” [Nunes et al., 1999]

We use this simple example to illustrate the Wisdom method because it is easier to

understand that a real life problem. Examples of the applicability of the Wisdom

method to real-life problems can be found in [Nunes and Cunha, 2001b], where we

present a case study with different Wisdom artifacts produced for a web-application

developed to support cooperative work in the construction industry.

IV.5.3.Requirements Workflow

The purpose of the requirements workflow is to aim development towards a system

that satisfies the customer (including the end users). At this level Wisdom differs from

the mainstream object-oriented software engineering process frameworks introducing

several activities to support the participatory user-centered perspective. Figure IV.21

represents an UML activity diagram describing the main activities in the requirements

workflow.
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Figure IV.21 – Activity Diagram for the Requirements Workflow Set in Wisdom.

The interiorize project activity (leftmost in Figure IV.21) aims at raising some initial

brainstorm over the scope of the envisioned system. In this activity the end-users and

the team devise a high-level concept of the problem. This short textual description,

usually a single paragraph [Kreitzberg, 1996], should clearly indicate what the system

should and should not do, and what are the potential benefits and anticipated risks.

One can see this description as an initial user manual of the system (for more

information on this approach see [Norman, 1998]).

The understand system context activity aims at understanding the domain of the

problem, either focusing only on the things involved in the problem domain, or, also

in the users and their work processes. Usually the former simplified version happens

when the problem domain is very simple or the development team is experienced in

the domain. The resulting artifact is then a domain model of the problem, usually an

UML class diagram describing the business or real-world objects manipulated in the

problem domain and their relationships. The later, more complex version, happens

when the problem domain is complex or when the development team has little or no

knowledge of the domain – very frequent in SSDs due to their flexibility. In such case

the development team produces a business model, describing the workers, the work

processes they perform and the business entities they manipulate. The outcome is

again an UML class diagram, using the business process profile of the UML, and
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several activity diagrams describing the business processes. It is out of the scope of

this thesis to discuss this standard profile (refer to [OMG, 1999] for further details).

The purpose of user profiling activity is to describe (profile) the actual users whose

work will be supported by the system. Here, the goal is to describe who are the

prospective users, how they are grouped and what are their salient characteristics

(incumbents, proficiency, interaction, information, usability criteria, functional

support and other criteria as described in section IV.4.1). Depending on the

complexity of the project the outcome of this workflow can be a simple textual

description of the users or a complete user role model as described in section IV.4.1.

The requirements discovery activity aims at finding and capturing the functional and

non-functional requirements of the envisioned system. Wisdom is a essential use-case

and task flow driven method; therefore it relies on essential use-cases [Constantine

and Lockwood, 1999] to capture the structure of use and the underlying functional

requirements. Because of the evolutionary nature of the method, non-functional

requirements can largely influence the quality and stability of the end product. That

way we propose to attach non-functional requirements to the use-case model at

different levels of abstraction. Thus, the requirements discovery activity encompasses

several sub-activities (at the far right in Figure IV.21), they are (i) finding actors and

essential use-cases; (ii) detailing essential use-cases with activity diagrams; (iii)

annotating non-functional requirements to use-cases. At this level there are several

differences between Wisdom and the UP approaches. Our approach uses activity

diagrams to detail essential use-cases, expressing the desirable and realistic task flows.

These task flows drive the user interface design process ensuring that the interaction

model reflects the actual perceived tasks of the users. The Wisdom approach also

encourages the use of annotations to express non-functional requirements in the

actual use-case model. This technique reduces the number of artifacts the

development team must master and maintain. Also, non-functional requirements can

be placed at the hierarchical level best suited to them, i.e., annotating an activity in the

activity diagram, annotating a whole activity diagram, or even annotating the entire

use-cases model for high level non-functional requirements.

Usually the Wisdom evolutionary prototyping approach ends the requirements

workflow with one or several prototypes. At this stage prototypes are typically low-

fidelity and non-functional (see section IV.2.1). However, functional prototypes are

sometimes useful to illustrate a novel technology and jumpstart requirements

discovery. We have witnessed several successful experiences where a functional

prototype is useful to demonstrate to the clients the potential of a given novel

solution, fostering a better understanding of the impact of the envisioned system.
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Figure IV.22 – Example of artifacts produced by the Requirements Workflow for
the Hotel Reservation System

Figure IV.22 represents three artifacts from the requirements workflow. On the top

left-hand side of the figure is the use-case model annotated with one non-functional

requirement. To the right is an essential task flow expressing the make reservation

use-case. The first two swim lanes illustrate which actor performs what activity; the

last swim lane depicts system responsibilities. This example of an essential task flow
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includes detailed business information (the workflow between customer and clerk)

and is a product of several iterations and participatory sessions with end users. The

aim is to exemplify the informing power of early models like the business model.

Finally in the bottom left-hand side is a domain model showing the most important

things in the problem domain and how they relate to each other. Just as a simple

example of the importance of participatory techniques to create requirements models,

we asked several experienced practitioners to build a domain model from the above

problem description. We also worked the example in a short participatory session

with domain experts. The former considered the hotel the universe of discourse and

omitted the class from the domain model. The later included the hotel class because it

is clearly a user perceivable object, and, therefore, important from the user interface

perspective.

IV.5.4.Analysis Workflow

The analysis workflow refines and structures the requirements described in the

previous workflow. The purpose is to build a description of the requirements that

shapes the structure of the interactive system. Whereas the use-case model is an

external view of the system, described in the language of the users; the analysis model

is an internal view of the system in the language of the developers.

The activity diagram for the Wisdom analysis workflow is illustrated in Figure IV.23.

The major activities in this workflow reflect the incremental construction of structured

stereotypical classes and package diagrams. The separation of concerns between the

internal architecture and the user interface architecture is responsible for the two

concurrent flows of activities in the illustration. The leftmost flow reflects the building

of the internal architecture of the system and how analysis classes are organized to

realize the different use-cases. The rightmost flow structures the interaction model in

terms of task and interaction space classes and how they are organized to support the

user interface of the system. Note that the rightmost activity is itself divided in two

concurrent flows that support the separation between the dialogue and presentation

structures of the interactive system (see section IV.3.2).
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Figure IV.23 – Activity Diagram for the Analysis Workflow in Wisdom

The internal system analysis activity aims at structuring the requirements in a way

that facilitates their understanding and management. Analysis classes represent

abstractions of domain concepts captured in the requirements workflow, and are

focused on functional requirements, postponing the handling of non-functional

requirements to design. They contain attributes, operations and relationships at a high

level of abstraction, i.e., attributes are conceptually typed, operations are informal

descriptions of responsibilities and relationships are more conceptual than their

design and implementation counterparts. There are two sub-activities in this internal

system analysis: identify general analysis classes and structure analysis classes. There

are several techniques to extract analysis objects from the requirements model.

Wisdom does not define any special technique to do this; instead we recommend a

lightweight version of the CRC card method [Beck and Cunningham, 1989]. We found

out that this method, for its close resemblance to the participatory nature of the Bridge

method (see section III.4.2.4), can be easily introduced as an effective way to extract

analysis classes and corresponding responsibilities from the requirements model. The

next sub-activity is to structure the identified classes into analysis stereotypes and

distribute responsibilities to build the internal architecture. This is usually a sub-

activity that takes several iterations, prototypes and visits to other activities in the

requirements workflow until a stable architecture is reached.

The interface architecture design activity concerns the external architecture of the

system, i.e., the part of the system responsible for the user interface supporting the

users performing the envisioned tasks. As mentioned before this activity compromises

two concurrent flows of activities corresponding to the dialogue and presentation
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models of the user interface. Like in the internal architecture companion activity,

those two flows of activities have also two sub-activities: identify and structure

interaction classes (task and interaction space). As we discussed in section IV.3.2

Wisdom defines two stereotypes for interaction classes. The task class stereotype is

the element of the dialogue component, and the interaction space class stereotype is

the element of the presentation component. While devising the user-interface

architecture we should concentrate on the desirable tasks and not in a particular user

interface design solution. That is the role of the design level models (presentation

model and dialogue model) in the design workflow. To identify both the task and

interaction space classes we use the essential task flows from the requirements

workflow as the main source of information. Tasks have usually a clear mapping to

the task steps in the task flows. The major problem at this level is to identify a set of

tasks that support the essential task flows while ensuring there is robustness and

reuse in the user-interface architecture. Regarding the presentation component,

identifying and structuring interaction spaces is mainly a compromise between the

number of interaction spaces and the number of transitions between interaction

spaces. This is usually done producing several versions of the architecture and testing

different representations through abstract prototypes in usability sessions with end

users (in [Dayton et al., 1998] methods are provided to perform usability evaluation

within the Bridge method). Like in the previous activity the user-interface architecture

usually takes some visits to the requirement workflow before a stable architecture can

be achieved.

The final activity in the analysis workflow is to relate the internal and user-interface

architectures to see how they collaborate in realizing the essential use-cases. This

activity is very important to balance both architectures and ensure the design and

implementation models can seamlessly build up on them. This sub-activity is done

creating associations between classes in the two models, usually communicates or

subscribes association stereotypes between entities in the analysis model and tasks in

the interaction model (see section IV.4.3).

If required, there is an additional activity in this workflow. This optional step is to

package analysis classes and interaction classes into smaller manageable pieces. Since

use-cases capture task flows and functional requirements, they are the natural basis

for packaging. Therefore, packaging should allocate groups of use-cases, preferably

related in the same domain or business model, to analysis packages. These packages

will then fulfill the use-cases user-interface and underlying functionality accordingly.
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Figure IV.24 – Example of artifacts produced by the Analysis Workflow for the Hotel

Reservation System

Figure IV.24 illustrates three artifacts from the analysis workflow for the Hotel

reservation system. At the left hand side is an essential task flows (activity diagram)

expressing the make reservation essential use-case. To the right of the activity diagram

is a possible interaction model with stereotyped interaction classes (interaction spaces

and tasks) and corresponding associations. The arrows between those two diagrams

represent mappings used to identify interaction spaces and tasks from the essential

task flow. As we can see, the mapping is simple and straightforward. At the right

hand side is a possible internal architecture model with stereotyped analysis classes

(control and entity) and corresponding associations (communicates). The relationship

between tasks classes and entity or control classes ties both architectural models

together and corresponds to the last but one activity in Figure IV.23 (relate analysis

and interaction classes). A comparison between this analysis model and the domain

model in Figure IV.22 clearly points out the goal of the internal analysis activity. The

former model is model of the problem domain while the later an architecture of a

solution. Although this is a simple example, note that not all the entities identified in

the analysis model are user perceivable objects (objects of interest to the users). This

example also depicts multiple analysis and interaction classes collaborating in the

realization of one or more essential use-cases. For instance, the customer browser

interaction space, the identify customer task, the customer entity and the availability

handler control; all amongst other realize the make reservation essential use-case. In

addition they all, except the availability handler control, realize also the check in and

check out use-cases (see Figure IV.22).
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IV.5.5.Design Workflow

The design workflow drives the system to implementation refining its shape and

architecture. While the analysis workflow only focuses on functional requirements,

the design workflow also focuses on non-functional requirements. At this level

constraints related to the development environment (languages, databases, GUIs,

operating systems, distribution, replication, etc.) are managed. During design the

system is then broken up into manageable pieces, possibly allocated to different

development teams (concurrently or not).

The activity diagram for the design workflow is illustrated in Figure IV.25. The major

activities in this workflow reflect the incremental refinement of the analysis and

interaction models. The separation of concerns initiated in analysis continues during

the design workflow. Since the design workflow tends to progress through a

succession of incremental prototypes, usually, two activities take place

simultaneously: the internal system design and the user interface design. One of the major

improvements of Wisdom, at this stage, is enabling careful planning of design (and

consequent implementation) prioritizing the evolutionary process by essential use-

cases and interaction classes, i.e., the architectural building blocks. The internal and

user interface architectures devised in the previous workflow guarantee that the

incremental construction brings muscle (design) to a coherent skeleton (analysis).
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Figure IV.25 - Activity Diagram for the Design Workflow in Wisdom

The internal system design activity is illustrated on the left-hand side of Figure IV.25.

Since design highly depends on the development environment (tools, technologies,

programming languages, etc.) we will only briefly describe its goal. The first sub-

activity is to prioritize and select candidate use-cases for design. As we saw in section

IV.2.1.2, use-cases drive the development process binding the workflows together. At

this stage, information from the use-case model, including the essential task flows, is

used to give cadence to the evolutionary process. The unified process places this

activity in the early phases of the development process; in Wisdom such decision is

done in design, as experience has shown that SSDs tend to move faster in the early

phases of development. Prioritizing decisions is often achieved well after an in-depth

understanding of the system under development. The following design activity in

internal system design accomplishes the refinement of the stereotypical analysis

classes, both at the responsibility and association level. Refinement is achieved once

the integration of the non-functional requirements has taken place. The importance of

annotating non-functional requirements to the requirements model is ultimately
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important at this stage. Since they escort the use-cases that drive the development

process, the risk of leaving out such requirements is minimized and leverages better

design decisions. This refinement process, in SSDs’ environments, also leads to a

partial translation of the analysis model (typically entity stereotypes) to the relational

schema. This translation process between entity classes and the relation schema is

widely documented in [Blaha and Premerlani, 1997]. Moreover there is increasing

interest in standardizing a UML profile for data modeling - at least one mainstream

UML tool (Rational Rose) already provides support for such a profile and partially

automates the translation process [Rational, 2000]. Nevertheless, the characteristics of

the 4GLs used, increase the risk of driving the user interface from the database

schema. Thus, the increased importance to separate the user interface from the design

model.

The user-interface design activity is concerned with the realization of the interaction

model into a concrete user interface. This activity usually encompasses two main

design decisions or restrictions: the interface style and the user interface technology

(see section III.1). They both influence each other, e.g., a particular user interface

technology can prevent the implementation of a specific interaction style. The

construction of the presentation model, detailed at the right hand side of Figure IV.25,

encompasses two concurrent flows of activities, corresponding to the dialogue and

presentation components of the interaction model. The leftmost flow of activities

corresponds to the refinement of the tasks identified and structured in the analysis

workflow. This process usually involves three steps: (i) decide which tasks to refine,

this is usually done in co-ordination with the prioritization used for internal

functionality; (ii) identify which subtasks refine the top-level task; (iii) define the

temporal relationships amongst the subtasks according to the options presented in

section IV.4.4. Whenever possible, task patterns should be used in steps (ii) and (iii)

[Tidwell, 1998a; Bayle et al., 1998; Welie and Troedtteberg, 2000] (see also section V.4).

The rightmost flow of activities corresponds to the refinement of the presentation

model defined in the analysis workflow. This process usually involves four steps: (i)

decide which interaction space to refine, again this is usually done in co-ordination

with the use-case prioritization defined for internal functionality; (ii) decompose

complex interaction spaces in different contained or navigable interaction spaces,

therefore creating interaction spaces that easily map to the implementation toolkit and

also to presentation patterns fostering reuse; (iii) map actions on interaction spaces to

the dialogue model, hence establishing an initial correspondence between the

dialogue and presentation models; and finally (iv) map input and output elements to

interface components, for instance mapping elements to GUI widgets. The user-

interface design activity ends relating both task classes to interaction space classes,

hence, completing the process of distributing responsibilities between the dialogue

and presentation models.

The following criteria have been identified to gather information from the task model

that is also useful to guide the user interface design process [Paternò, 2000 ]:
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•  Task type, frequency and cognitive effort – the type of presentation depends on the

information required to perform the task (the type of task), for instance, if a task

has to consider a spatial relationship it is important to provide a graphical

representation. The frequency with which a user performs a task, or sequences of

related tasks, also influences the presentation, for instance frequent tasks should be

highlighted in the presentation and shortcuts provided. Finally the cognitive effort

underlying a task can be reduced by synchronizing different media, for instance, it

is problematic to ear a long description and read at the same time;

•  Contextual environment and user knowledge – we have to take into account the

context in which a particular task is performed and also the impact of the user

knowledge in the application domain. These issues are discussed in user-centered

design in section II.5;

•  Layout optimization – the performance of the same task sometimes requires

different amounts of information depending on the specific instances of objects

involved, thus the structure of the information remains the same but the layout

changes to accommodate different information;

•  Identifying and group presentation objects (interaction spaces) – the concept of an

enabled task set is useful for identifying interaction contexts. An enabled task set is

a set of tasks that are logically enabled to start their performance during the same

period of time [Paternò, 2000 ]. One task can belong to multiple enabled task sets,

but if multiple tasks are enabled at the same time they should be grouped in the

same presentation (interaction context);

One important aspect with identifying interaction contexts is that there is a large set of

possibilities in terms of the number of distinct presentations that support a given task

or set of interrelated tasks [Paternò, 2000 ]. Paternò identifies three types of possible

approaches [Paternò, 2000 ]:

•  One unique interaction space supporting all the possible tasks – this approach is

possible for simple applications, otherwise the resulting interface would be

confusing because there is large number of interaction techniques in a very limited

space;

•  As many presentations as the number of possible enabled task sets – the number of

enabled task sets, associated with a task model, is the upper bound to the number

of distinct and meaningful interaction spaces. If the number of presentations is

higher than the number of enabled task sets then the user interface imposes a

sequential order on the performance of some tasks that could be enabled

concurrently;

•  Intermediate solutions – the intermediate solution implies that tasks belonging to

different task sets are supported by the same presentation (interaction space). This

can be beneficial when different tasks are performed in sequence many times or

when they exchange information, thus are logically related. The criteria for

intermediate solutions depends on temporal relationships among tasks, for
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instance, tasks that exchange information should be placed in close proximity, if

there is a choice among tasks the presentation should highlight the different

possibilities, if there is a disabling task then the control task should be placed in a

predefined location.

Like the internal system design is highly dependent on the development environment,

also the user interface design depends on a large number of external factors. Our goal

in Wisdom was to build a model-based framework that could accommodate different

design techniques, user interface styles and technologies. On the one hand, we have

an UML model based approach that detaches the user interface design techniques

from a specific design context, using the abstract concepts of tasks and interaction

spaces. On the other hand, those abstract concepts are refined during design time

supporting different design alternatives to create the concrete user interface,

leveraging multi-user interface design over the same interface architecture (see section

V.1.3). The Bridge method [Dayton et al., 1998] is one alternative to design concrete

user interfaces in Wisdom, one that clearly fits the SSDs environment. Hence, if the

development team decides to design an object-oriented graphical user interface Part 2

and 3 of the Bridge can be easily implemented within Wisdom (see sections III.4.2.4

and III.4.2.4 for a description of the Bridge part 1). Part 2 of the Bridge concerns

mapping task flows to task objects; the goal is to map the user interface requirements

into discrete units of information that users manipulate to do the task (task objects). In

Wisdom the task objects map to interaction spaces. Therefore the specific behaviors

and containment relations for task objects in the Bridge are, in fact, Wisdom

stereotyped interaction spaces, with input and output elements, actions, navigational

and containment associations. In this OO GUI context we can use the Bridge task

object design (TOD) technique to discover, design, document and usability test the

task objects. Afterwards we can use Part 3 of the Bridge to map task objects to GUI

objects. This 3rd step of the Bridge guarantees that the GUI is usable for executing the

task. For an in depth description of the Bridge refer to [Dayton et al., 1998]. For a brief

illustration of this integration of the Bridge in Wisdom see the example in Figure

IV.27. Concluding, a similar distinction between part 1, and parts 2 and 3 of the

Bridge, should be taken when using a different design method, style and technology.

Iterations through the Wisdom design workflow usually reflect the actual

implementation of the end product. At this level prototypes are usually fully

functional incremental evolutions of the end product, typically organized in terms of

prioritized use cases and interaction classes. This nature of development is very

important for SSDs, since they are very reluctant to throw away functional prototypes.

If adequately implemented, Wisdom provides the needed control over the

evolutionary process to quickly and effectively produce high-quality products from

this final Wisdom workflow.
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Figure IV.26 - Artifacts from the Design Workflow for the Hotel Reservation
System

Figure IV.26 illustrates two Wisdom design artifacts for the hotel reservation system.

The top diagram is part of the dialogue model, in particular, the refinement of the top-

level task check availability (see related example in Figure IV.24). This particular

example uses the search task pattern (see [Paternò, 2000] and section V.4). The

diagram in the bottom of the figure represents part of the presentation model. This

example illustrates two advantages of the presentation model. While the left hand

side of the diagram details the presentation structure that supports the top-level task

check availability, the right hand side shown the top-level navigation structure. That

way, developers are able to zoom into detail while keeping focus on the high level

structure, thus preventing the well-known problems of incremental approaches.
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Figure IV.27 - Using the Bridge to create concrete GUIs in Wisdom

Figure IV.27 illustrates the process of mapping descriptions from the Bridge

participatory sessions into the Wisdom model based approach and the concrete user

interface. Leftmost in the figure is a Bridge task object with corresponding index cards

showing the object identity, attributes, actions and containment relationships. To the

left is the Wisdom formalization of that information into stereotyped interaction

spaces. The different interaction spaces of the Bridge task object map each one to an

individual interaction space in Wisdom. Then, attributes are mapped into stereotyped

input or output elements, actions to stereotyped actions, and containment

relationships to navigate or containment stereotyped associations. This mapping

clearly shows the role of Wisdom interaction spaces realizing the interface

architecture. The final step in this process would be to execute the Bridge part 3 to

map the Wisdom interaction spaces into concrete GUI objects. This mapping is show

rightmost in the illustration. Refer to [Dayton et al., 1998] for more details on the

Bridge part 3.



The Wisdom Method

176

IV.6. DIFFERENCES BETWEEN WISDOM AND OTHER UC-

OO METHODS

Since all the methods described in section III.4.2 are UC-OO methods, they all comply

to some extent with the UC-OO framework and underlying useful models that

support user-centered development and user-interface design as described in section

III.3. The main differences between Ovid, Idiom, Usage-centered Design (see sections

III.4.2.1, III.4.2.2 and III.4.2.3) and Wisdom are related to the modeling support that

each method provides for each useful model in the UC-OO framework. In other

words, the different methods stipulate a specific set of modeling constructs to convey

the information on the useful models for user-centered development and user-

interface design.

Models /

Artifacts

Ovid Idiom Usage-centered

Design

Wisdom

User profile - User categorization

*

User role model User role model

Model of existing

tasks

Task analysis

output *

Course-grained

task model *

Essential use-case

model

Use case model

Domain model User’s Model

Designer’s Model

Domain model

Core model

Domain model Domain model

Business process

model

- - Operational model Business model

User interface

architecture

description

- - - Interaction

model

Model of

envisioned tasks

Task descriptions Fine grained task

model

Essential use-case

narratives

Essential task

flows

Model of user-

interface

presentation

View model View object model Content model Presentation

model

Model of user-

interface

behavior

View state model View dynamic

model

- Dialogue model

Model of concrete

user-interface

Implementation * Concrete user-

interface design *

Visual and

interaction design *

Evolving

Prototypes *

* - Denotes that the method is not prescriptive regarding the model.

Figure IV.28 – Comparison between different UC-OO methods and Wisdom with
respect to the useful model for user-centered development and user-interface
design.

Figure IV.28 illustrates how the different UC-OO models compare to Wisdom with

respect to the different useful models for user-centered development and user-
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interface design (see section III.3). This table is a summary of the different models for

each method as reviewed in sections III.4.2.1, III.4.2.2 and III.4.2.3.

As the table in Figure IV.28 illustrates, Ovid is the only method lacking an explicit

reference to user profiling. Idiom references user categorization (a simplified form of

profiling) but doesn’t provide any specific modeling constructs or techniques to

support the activity. Usage-centered Design provides modeling support for user

profiling in the form of user role maps that convey the different user roles and their

relationships. Furthermore, User-centered Design provides forms for specifying

different profiling information (incumbents, proficiency, interaction, information,

usability criteria, functional support and other criteria as described in section IV.4.1

and [Constantine and Lockwood, 1999]). Wisdom adapts the original proposal of

Usage-centered Design in way compatible with the current UML standard. The

resulting user role model in Wisdom is a set of UML extensions that, not only

distinguish between human and system actor, but also provide further stereotyping of

class attributes for different profile information.

As we mentioned in section III.3.1, both Ovid and Idiom are not prescriptive

regarding task analysis, that is, models of existing tasks. Usage-centered Design

provides essential use cases and essential use-case narratives (see sections III.4.2.3 and

IV.2.1.2). Wisdom follows the same principle but promotes a diagrammatic

representation of essential task flows with UML activity diagrams. The differences

between the two approaches are described in detail in section IV.2.1.2.

All the methods, including Wisdom, prescribe the use of object models to represent

the information in the domain model. Idiom is the only method providing a

distinction between the domain model and the core conceptual model. As mentioned

previously that distinction can be supported in Wisdom through the use of different

UML views, that is, using different projections of the domain model (see section

III.3.3).

Ovid and Idiom don’t mention a business process model as an important model for

user-interface development. Usage-centered design defines the operational model,

although with a different meaning from what is defined in the UC-OO framework in

section III.3.2. The operational model in Usage-centered Design involves the salient

factors in the operational context that affect the user-interface (notably environment

profiles). Those factors are related to the conditions in which the envisioned system

will operate and don’t include specifically the business processes of the underlying

organization. Furthermore Usage-centered design captures that information in natural

language. Therefore, Wisdom is the only UC-OO method explicitly endorsing a

business process model as defined in section III.3.2.

Wisdom is the only method providing explicit modeling constructs to convey user-

interface architecture. There are several references in Usage-centered Design to user-



The Wisdom Method

178

interface architecture, but they only refer to design level constructs, that is, models of

presentation and navigation aspects. The Wisdom user-interface architecture

(described in section IV.3.2), not only leverages well-grounded work on interactive

system architectures (see section II.6), but also provides an approach that seamlessly

expands and integrates the existing OO analysis architectural pattern (see section

II.4.3.2).

At the design level all UC-OO methods provide modeling support for the

presentation aspects of interactive systems. The differences, discussed in section

IV.4.5, are mainly related to the way the modeling constructs are classified and

structured. Ovid emphasizes the containment relationships between (object) views

and the relationship to user perceivable objects (domain objects). Idiom roughly

follows the same approach of Ovid, but provides additional support for structural and

behavior descriptions of views. Usage-centered Design focuses more on the

navigational aspects (navigation maps). Ovid, Idiom and Usage-centered Design have

a classification schema closely related to the WIMP interaction style. Wisdom differs

from all the other methods providing a more abstract notion of the presentation-

modeling construct (interaction space). Furthermore, Wisdom provides stereotyped

input and output elements, and also actions that enable the specification of additional

semantics useful for automatic user interface generation.

Regarding models of user interface behavior, both Ovid and Idiom focus on the

internal behavior of view (the view behavior models) and promote the use of UML

behavior diagrams (sequence diagrams) do convey the inter-view behavior. This

approach attaches the user-interface behavior, and to some extent the modeling of the

envisioned tasks, to the presentation components of the user-interface. Furthermore,

UML behavior diagrams are recognized to have problems conveying usable

descriptions of moderate size envisioned tasks (see section III.4.3.2). Usage-centered

design lacks support for dynamic aspects of the user interface. Wisdom is the only

UC-OO method providing support for a specific notation for task modeling to convey

the behavior of the user interface. Not only Wisdom supports one of the most

qualified task notations in the usability engineering field (ConcurTaskTrees), but also

promotes the integration with the UML, thus enabling the relationship of task models

with other modeling constructs.

All the existing UC-OO methods, including Wisdom, don’t provide modeling

constructs for concrete user-interfaces, that is, models capable of conveying all the

information required to automatically generate the actual user-interface. UC-OO

approaches are traditionally aimed at analysis and design level models, and rely on

user-interface development toolkits to support interaction design. Wisdom follows the

same approach with respect to implementation-oriented models, however several

experiences (outlined in the next chapter) demonstrate the potential of generating

concrete user interfaces from highly conceptual models such as the ones provided by

the presentation and task models.
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IV.7. CONCLUSION

This chapter presented the Wisdom method, including the application context of

small software developing companies and the major original contributions of the

thesis: the Wisdom process, architectural models and notational extensions. The

chapter ended with a discussion of the differences between Wisdom and other UC-

OO methods (Ovid, Idiom and Usage-centered Design).

Wisdom is a lightweight software engineering method specifically tailored for

developing interactive applications by small software development groups required

to take advantage of enhanced communication, flexibility, fast reaction, improvisation

and creativity to sustain the highly turbulent and competitive environments in which

they operate.

The Wisdom process is a new OO-UC software development process framework that

recognizes the needs of software engineering in the small and takes advantage of

what best characterizes this development context. The Wisdom process is based on an

evolutionary prototyping model that best deals with the changing requirements and

critical time to market factors that SSDs usually face. Evolutionary prototyping is also

a model that seamlessly rationalizes the chaotic ways of working characterizing many

SSDs, thus enabling process improvement strategies. The Wisdom process provides

specific techniques to prevent the well-known problems of evolutionary approaches.

In particular Wisdom includes a set of UML-based architectural models that prevent

evolving software intensive systems from becoming badly structured. In addition,

Wisdom includes an essential use-case and task flow driven approach that focuses

development on the real-world tasks. Essential use-cases and task flows play a central

role in the Wisdom process. Task flows emerge from participatory sessions and guide

the development process ensuring that evolving prototypes are prioritized in terms of

the real-world tasks that provided the critical added value for the customers and end-

users. Therefore, Wisdom differs from the conventional SE approach that focus on

internal functionality and typically leads to complex systems that are hard to use.

Wisdom also provides two architectural models that leverage interactive system

development. The Wisdom model architecture specifies the different models of

interest to effectively develop interactive systems. This model architecture guides the

thought process in Wisdom, from the high level models built to capture requirements,

to the implementation models that fully specify the final system. In addition, the

Wisdom model architecture enables the separation of concerns between the internal

functionality and the user-interface, both in terms of presentation and behavior

aspects. At the analysis level, Wisdom promotes a new user-interface architecture that
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expands the understanding of the existing UP analysis framework to include

usability-engineering concerns. The Wisdom user-interface architecture enables

developers to specify robust and reusable architectural models of interactive systems.

The Wisdom notation supports the Wisdom architectural models and the different

modeling techniques used to detail those models. The Wisdom notation involves both

a subset of the different UML modeling constructs, and a set of extensions in the form

of a UML profile. The Wisdom notation reduces the number of UML diagrams

required to document interactive systems, thus it only required roughly 29% of the

total number of UML concepts. The main contributions at the notational level are

concentrated on the presentation and dialogue models. At the presentation level

Wisdom enables modeling constructs to specify conceptual user-interfaces around a

central notion of an interaction space. Interaction spaces convey the structure of the

user interface, and can be combined with containment and navigational relationships,

thus providing and accurate model of the presentation aspects of the user-interface.

At the dialogue level Wisdom enables the specification of usable and complex task

structures based on a UML extensions that accommodates one of the most widely

used task notation in the usability-engineering field. Moreover, Wisdom also provides

UML extensions to support user role modeling, an important activity in user-centered

development. All the notation extensions in Wisdom comply with the UML standard.

Therefore Wisdom is the only UC-OO method fully compatible with the UML and

taking advantage of the associated tool support.

The next chapter describes several experiences of applying the Wisdom method in

different aspects related to tool issues and UI patterns.



V.  PRACTICAL EXPERIENCE AND
RESULTS

“Engineering is the art or science of making practical.”

—Samuel C. Florman (1976)

This chapter describes practical experience of applying the Wisdom method in

different aspects related to user interface design and specifically the impact regarding

tool support.

Section 1 discusses tool issues. The section starts with a brief description of CASE

tools and their role in software development. In particular we discuss the

classification of CASE technology, including several studies about CASE usage, and

how the UML can influence and benefit the CASE tool market. We then briefly

present the UML interchange format that brings a new perspective into tool

interconnection mechanisms. We discuss the importance of the OMG’s XML Metadata

Interchange (XMI) standard to leverage tool interoperability and briefly outline the

XMI architecture, usage scenarios and document structure. The second part of the

section focuses on user interface tools and presents a classification of such tools,

including an historical perspective and future trends in the field. This subsection

stresses the new requirements for user interface tools that emerge from the

appearance of multiple information appliances that will ultimately influence the

requirements, complexity and diversity of future user-interfaces. This theme is

discussed in detail in the following section about appliance-independent user

interface description languages.

Section 2 discusses several experiences automatically generating appliance-

independent user interfaces from Wisdom models. The section starts describing the
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importance of automatic generation technology with the advent of multiple

information appliances. We then describe one of the first languages that support

automatic rendering of user-interfaces for multiple devices. The Abstract User-

Interface Markup Language (AUIML), developed at the IBM Ease of Use group was

used in several experiences we conducted to evaluate the potential of using the XMI

format to automatically generate concrete user interfaces from the Wisdom

presentation model. We then discuss how those experiences could be generalized to

the forthcoming XForms W3C standard that defines the next generation web forms.

Specifically we present a proposal for a multiple tool environment that supports

flexible automatic generation of user interfaces for different information appliances.

Section 3 discusses how tool support for task modeling can be enhanced through the

benefits of the UML interchange mechanisms. This section illustrates how the XMI

interchange format can foster tool interoperability enabling two different notations to

be interchanged between UML modeling tools and task modeling tools. We illustrate

how we can enhance the support for editing, simulating and perform completeness

checking on CTT models that can be transferred without loss of information back and

forth between UML and the CTT environment (CTTe). This section ends with a new

proposal for an environment that integrates, the experiences with appliance

independent automatic generation of user-interfaces, with the tool support for task

modeling (CTTe). We explain why task models can complement presentation based

automatic generation in such an environment.

Section 4 discusses the use of the Wisdom notation to express user interface patterns.

This section discussed the increasing importance of user-interface patterns to deal

with the growing complexity of modern user interface design. We argue that one of

the major problems preventing the dissemination of user-interface patterns is the lack

of a notation that enables the representation of abstract solutions underlying the

patterns. We then illustrate how the Wisdom notation, for both the dialogue and

presentations models, can be used to fill this gap increasing the expressive power of

the recurring solutions conveyed in user-interface patterns. This section ends with a

discussion about the importance of user-interface patterns as design aids for user

interface designers. We argue that using standard notations, like the ones proposed in

Wisdom, can enhance tool support for user-interface design. Particularly enabling

tools to provide rapid and flexible access to user-interface patterns when they can be

most effective, that is, when designers are modeling the application.
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V.1. TOOL ISSUES

Computer-Aided Software Engineering (CASE) tools are expected to increase

productivity, improve quality, easier maintenance, and make software development

more enjoyable [Jarzabek and Huang, 1998]. However, several published results

suggest that CASE tools are seldom adopted in software organizations, and fail to

deliver the benefits they promise [Kemerer, 1992; IIvari, 1996; Jarzabek and Huang,

1998; Sharma and Rai, 2000]. Kemerer, for example, reports that one-year after

introduction, 70% of the CASE tools are never used, 25% are used only by a limited

number of people in the organization, and 5% are widely used by only one group of

people but not to capacity [Kemerer, 1992]. Despite of limited CASE tool adoption,

there is evidence that the technology improves, to a reasonable degree, the quality of

documentation, the consistency of developed products, standardization, adaptability,

and overall system quality [IIvari, 1996].

One of the major goals of the UML was to encourage the growth of the object tool

market, by providing a common set of concepts, which can be interchanged between

tools and users without loss of information. According to [Robbins, 1999], that goal is

very close to a reality. The International Data Corporation (IDC), a market research

firm that collects data on all aspects of the computer hardware and software

industries, has published a series of reports on object-oriented analysis and design

tools: "IDC expects revenues in the worldwide market for OOAD tools to expand at a

compound annual growth rate of 54.6% from $127.4 million in 1995 to $1,125.2 million

in the year 2000" [Robbins, 1999]. Furthermore, IDC expects that much of this growth

to stem from adoption of OOAD tools by smaller software development

organizations.

CASE technology can be broadly classified in terms of their support to development

tasks into three major areas, as follows [Sommerville, 1996]:

•  Support for development activities such as requirements classification, analysis,

design, implementation and test. This kind of CASE technology is very mature for

low-end activities – for instance compilers, editors, debuggers and integrated

development environments (IDEs). Tool support for high-end activities usually

involves a close relationship with specific development methods, languages and

technologies - for instance, object-orientation, entity-relationship modeling,

CORBA, UML and the Unified Process. Therefore, the success of high-end CASE

technology is highly influenced by the lack of standards for modeling languages,

associated methods and interchange formats – one of the specific problems the

UML and related standardization initiatives aim to solve;
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•  Support for process management activities such as process modeling, metrics, risk

management, process planning and scheduling, configuration and change

management. This kind of CASE technology is to some extent mature in specific

domains, for instance, version and configuration management; but is highly

dependent on CASE support for specific development activities in order to

leverage support for management activities;

•  Meta-CASE is a technology aiming at generating specific CASE tools to support

development activities or process management - usually enabling users to extend

or customize their own tools from a common meta-facility. Meta-CASE is still

mainly a research technology and the existing products are either complex or not

widely available. Meta-CASE also highly depends on standards for meta-facilities,

such as the MOF (see section II.3.2), that provide the set of basic concepts from

which specific standards can be built, leveraging semantic interoperability and

interchange formats that the resulting CASE technology can take advantage of.

Despite this useful classification, the literature on CASE tools conventionally restricts

the term to high-end tools to support development activities and tools to support

process management activities. To avoid misconceptions here we use the term CASE

in that conventional way.

Several studies have been carried out to assess CASE tool adoption and infusion in

software development organizations [IIvari, 1996; Sharma and Rai, 2000]. CASE

adoption refers to the proportion of development tasks for which CASE tools are used

at or beyond the experimental level [Sharma and Rai, 2000]. CASE infusion refers to

the extent to which CASE is used to support development tasks [Sharma and Rai,

2000]. In a survey of 105 Finnish software development organizations, including both

public and private organizations of various sizes and market segments, Iivari studied

the impact of different factors in CASE usage and effectiveness [IIvari, 1996]. This

study pointed out that voluntariness (the degree to which an innovation is perceived

as being voluntary) is the most influencing factor of all (in this case with a negative

contribution). Management support and relative advantage (the degree to which an

innovation is perceived as better than its precursor) had also a significant positive

influence in CASE adoption. The author relates the high negative impact of

voluntariness, revealed by the study, with the importance of individualism over

management influence, namely in countries or organizations where traditionally the

power distance is low [IIvari, 1996]. The author conjecture about the impact of

individualism is consistent with the fact that, in the same study, 85% of the projects

averaged 1 to 19 persons – an evidence also consistent with our profile of small

companies and development groups within user organizations (see section IV.1). In

terms of the impact of CASE tools in productivity and quality of software

development, the survey points out that CASE usage emerges as a significant

predictor of both perceived productivity effects and quality effects [IIvari, 1996]. In

general the results of this study point out that high CASE usage tends to increase the
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productivity and quality of software development, and that high voluntariness tends

to decrease CASE usage.

Another study of CASE deployment in US software development organizations,

assessed tool usage in terms of support for production, coordination and organization

– a framework that roughly follows the classification provided in the beginning of this

section. Sharma and colleagues surveyed 350 public and private organizations, also of

various sizes and market segments, and concluded that the lowest percentage of

CASE adoption is in software departments with 1-10 employees. The highest

percentage of CASE adoption is in the segment of 11-50 employees, and the

percentage of adopters doubles that of non-adopters in larger organizations [Sharma

and Rai, 2000]. CASE adoption and infusion levels for adopter organizations averages

0.6/1.0 for adoption and 0.5/1.0 for infusion, meaning that adopter organizations are

using CASE for 60% of development tasks and that CASE usage is limited to a small

segment of projects (0.5/1.0). Adoption and infusion levels are balanced in terms of

CASE support for production (0.68 and 0.54 respectively) and organization (0.65 and

0.48 respectively) but fairly low for coordination (0.45 and 0.48 respectively). CASE

adoption levels for production tasks are very unbalanced, ranging from 0.39 for

testing and validation tasks, to 0.72 for design and construction tasks, and 0.95 for

representation and analysis tasks. In general the results of this study point out that

CASE is mainly used in large organizations (>50 employees), for only slightly more

than half of the development tasks (adoption level), and only in a very limited subset

of projects (infusion level) [Sharma and Rai, 2000].

The studies mentioned before, clearly characterize the different problems with CASE

tool adoption, infusion and usage in terms of development tasks. They also point out

that CASE tools increase the productivity of software developers and the quality of

the process and end products. However, few indications are given with respect to

why CASE tools are not widely adopted, in particular, for small companies and

different development tasks. Jarzabek and Huang, based on their extensive experience

designing and using CASE tools, claim that existing CASE tools are far too oriented to

software modeling and construction methods, and give little attention to other factors

that matter to programmers [Jarzabek and Huang, 1998]. Creative, problem-solving

aspects of software development receive little support from CASE tools and therefore

they are not attractive to software developers. The authors claim that CASE tools

should support those (soft) aspects while enabling a seamless transition to more

rigorous (hard) aspects. Moreover, the tools should provide a natural process-oriented

development framework, rather than a method-oriented one, thus playing a more

active role in software development [Jarzabek and Huang, 1998]. An outline of this

approach, called by the authors’ user-centered CASE tools, is depicted in Figure V.1.

The user-centered vision of CASE tools is clearly more consistent with the

requirements of small software development groups as described in section IV.1.

Particularly important is the focus on creativity and improvisation as key success

factors in these environments.
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Figure V.1 – Jarzabek and Huang perspective on how to make CASE tools
attractive to developers (source: [Jarzabek and Huang, 1998])

In the following sections we describe key technologies and approaches that could

leverage this new vision of CASE tool support. In particular we focus on the UML

interchange support to enhance tool interoperability, thus, enabling different highly

focused tools to support developers in the different tasks they must accomplish in

order to develop highly usable interactive software.

V.1.1.The XMI Interchange Format

The XML Metadata Interchange (XMI) standard defines an alternate physical

specification of the UML in the eXtensible Markup Language (XML) [W3C, 1999b],

specifically for interchanging UML models between tools and/or repositories. The

main purpose of XMI is to enable easy interchange of metadata between modeling

tools (based on the OMG-UML) and metadata repositories (OMG-MOF based) in

distributed heterogeneous environments [OMG, 2000]. XMI integrates three key

industry standards:

•  XML - eXtensible Markup Language, a W3C standard;

•  UML - Unified Modeling Language, an OMG modeling standard;

•  MOF - Meta Object Facility, an OMG metamodeling and metadata repository

standard.

The XMI standard enables different types of application development tools to

interchange their information. Examples of such application include [Brodsky, 1999]:
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•  Modeling tools – such as object-oriented UML tools, for instance Rational Rose and

TogetherJ [Rational, 2000; TogetherSoft, 2000];

•  Development tools – such as integrated development environments, for instance

VisualAge for Java and Symantec Café [IBM, 2000a; Symantec, 2000];

•  Databases, Data Warehouses and Business Intelligence tools (data mining, OLAP,

etc.);

•  Software assets – such as program source code (C, C++, and Java) and CASE tools,

for instance WindRiver SniFF+ [Windriver, 2000];

•  Repositories – such as IBM VisualAge TeamConnection and Unisys Universal

Repository [IBM, 2000b; Unisys, 2000];

•  Reports, report generation tools, documentation tools, and web browsers.

Software Assets
Modeling Tools

(A&D)

Development

Tools

Database

Schema
Reports

RepositoryXMI

Tool 1 Tool 2

Tool 3

Tool 4Tool 5

Tool 6

Before XMI After XMI

Figure V.2 – Tool integration: (a) current situation and with open model
Interchange (XMI) [Brodsky, 1999]

Figure V.2 illustrates the improvement of an open and standard tool integration

facility. Without an open interchange standard such as XMI, each tool was required to

know the formats used by any other tool in the market. Therefore, tool vendors were

obliged to develop an exceeding number of N*N-N bridges between N tools required

to interchange information (left hand side in Figure V.2). The problem increases with

different versions of each tool and different release and schedules for proprietary

formats. With the advent of XMI, not only tool interoperability becomes simpler, but

also more cost-effective (right hand side in Figure V.2). Therefore, tool vendors,

integrators and end-users benefit from reduced complexity, reflected in lower costs

and time to market [Brodsky, 1999].

An example of how XMI can be used follows the architecture at the right hand side in

Figure V.2. A business analyst makes a UML business model using an OO modeling

tool. The design is expressed in XMI and used by a software developer working on a

specific programming language with an integrated development environment (IDE).

Reports and documentation can be published to the web, generated directly from the

XMI specification. By accessing the design in XMI, database schemas and data

warehouses may be created by database designers and business intelligence analysts.

This example illustrates how XMI enables users to focus directly on their roles,

working as a team in an open, distributed environment. Users can employ the right

products for each role, and interchange their designs in XMI using the Internet and
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the transformation facilities available for the XML, that is, the eXtensible Stylesheet

Language (XSL) [Brodsky, 1999].

V.1.1.1.XMI Architecture

XMI, together with MOF and UML form the core of the OMG metadata repository

architecture. This architecture, illustrated in Figure V.3, includes the following key

aspects [OMG, 2000]:

•  A four-layered metamodeling architecture for general-purpose manipulation of

metadata in distributed object repositories (see section II.3.2);

•  The use of MOF to define and manipulate metamodels programmatically using

fine-grained Common Object Request Broker Architecture (CORBA) interfaces.

This approach leverages the strength of CORBA distributed object infrastructure

[OMG, 2001];

•  The use of UML notation for representing models and metamodels (see section

II.3.2);

•  The use of standard information models (UML) to describe the semantics of object

analysis and design models;

•  The use of Stream-based Model Interchange Format (SMIF) - the current XMI

proposal - for stream based interchange of metadata.

Figure V.3 – The OMG Repository Architecture and the SMIF (XMI) Interchange
Standard (source: [OMG, 2000])

V.1.1.2.XMI Usage Scenarios

The main usage scenarios for the XMI interchange format are as follows [OMG, 2000]:

•  Combining Tools in a Heterogeneous Environment - since no single tool exists for

both modeling the enterprise and documenting the applications that implement

the business solution, a combination of tools from different vendors is necessary.

However, this combination leads to complex translations or manual re-entry of

information. XMI eases the problem of tool interoperability by providing a flexible

and easily parsed information interchange format. Since the XMI specification
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contains the definitions of the information being transferred, as well as the

information itself, a tool reading the stream can better interpret the information

content. Furthermore, including the definitions in the stream enhances the

flexibility of the scope of the information - it can be extended with new definitions

as more tools are integrated to exchange information;

•  Cooperating with Common Metamodel Definitions - if the tools exchanging

information share the same meta-model, all the information transferred can be

understood and used without limitations. Furthermore, since the MOF meta-model

is expressed using itself (see section II.3.2), XMI can also be used to share meta-

model definitions, thus promoting the use of common meta-models by different

tool providers. In addition, each vendor must be able to extend the information

content of the model to include items of information that have not been included in

the shared model. XMI allows a vendor to attach additional information to shared

definitions in a way that allows the information to be preserved and passed

through a tool that does not understand the information. Loss-less transfer of

information through tools is necessary to prevent errors that may be introduced by

the filtering effect of a tool passing on only that information it can understand

itself. Using this extension mechanism, XMI stream can be passed from tool to tool

without suffering information loss;

•  Working in a Distributed and Intermittently Connected Environment - the use of

XMI for a metadata interchange facilitates the exchange of model and design data

over the Internet and by phone, even with restricted connectivity to the network

and limited bandwidth. Appearing as a set of hyper-linked Internet documents,

the data can be transferred and transported easily. The same mechanism can be

used to upload modifications. The type definitions can be separated from the

actual content and versioned to allow consistency checking;

•  Promoting Design Patterns and Reuse - It is often difficult to develop and exploit

best practices across the development group and organization without being able

to exchange model and design data between different tool sets. XMI only requires

the development team to agree on the meta-models for the data to be shared, plus

a standard mechanism for extending that meta-model with their own types of

meta-data. Therefore, it does not require the tool vendors to invest in the same

technology stack. Vendor extensions to a standard meta-model are designed to

enable other vendor’s tools to process and use the standardized information while

being able easily retain and pass through vendor specific extensions.

V.1.1.3.Overview of XMI DTD and Document Structure

An XML Document Type Definition (DTD) provides a means by which an XML

processor can validate the syntax and some of the semantics of an XML document.

Although the use of DTDs is optional, it improves the confidence in the quality of the

document [OMG, 2000].
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Every XMI DTD contains the elements generated from an information model, plus a

fixed set of element declarations that may be used by all XMI documents. These fixed

elements provide a default set of data types and the document structure, starting with

the top-level XMI element. Each XMI document contains one or more elements, called

XMI, that serve as top-level containers for the information to be transferred. XMI is a

standard XML element and may stand alone in its own document or may be

embedded in XML or HTML documents.

Every XMI DTD consists of the following declarations [OMG, 2000]:

•  An XML version processing instruction: <? XML version=”1.0” ?>;

•  An optional encoding declaration that specifies the character set, which follows the

Unicode standard: <? XML version="1.0" ENCODING=”UCS-2” ?>;

•  Any other valid XML processing instructions;

•  The required XMI declarations;

•  Declarations for a specific meta-model;

•  Declarations for differences;

•  Declarations for extensions.

Every XMI document consists of the following declarations [OMG, 2000]:

•  An XML version processing instruction;

•  An optional encoding declaration that specifies the character set;

•  Any other valid XML processing instructions;

•  An optional external DTD declaration with an optional internal DTD declaration:

<! DOCTYPE XMI SYSTEM “http://www.xmi.org/xmi.dtd“>;

The top level XML element for each XMI document is the XMI element. Its declaration

is as follows:

<!ELEMENT XMI (XMI.header?,
XMI.content?,
XMI.difference*,
XMI.extensions*) >

<!ATTLIST XMI xmi.version CDATA #FIXED "1.1"
timestamp CDATA #IMPLIED
verified (true | false) #IMPLIED >

The XMI element contains the following structural elements:

•  XMI.header  - contains version declarations and optional documentation

regarding the transfer. The XMI.header element is optional in XMI 1.1, and

contains XML elements, which identify the model meta-model, and meta-meta-

model for the metadata; as well as an optional XML element that contains various

information about the metadata being transferred;

•  XMI.content - contains the core information that is to be transferred. The

XMI.content XML element contains the actual metadata being transferred. It
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may represent model information or meta-model information. Its declaration is

<!ELEMENT XMI.content ANY>;

•  Differences - specify the differences between two XMI documents to be

transferred. This is useful in cases such as small changes to a large set of

information;

•  Extensions - allow the transfer of private tool information beyond that already

present in a DTD. The extensions are especially useful for round-trip exchanges

between tools that benefit from preservation of private additional information due

to their own internal architecture;

•  The xmi.version - defines the XMI version. The timestamp indicates the date

and time that the metadata was written. The verified attribute indicates whether

the metadata has been verified (“true,” means the verification of the model was

performed by the document creator at the full semantic level of the meta-model).

Generating element declarations provides an architectural consistency for each

element in several important areas: Object identity, extensibility, navigation, and

linking. This consistency enables tools to traverse any XMI document or DTD in a

regular manner to find the information needed [Brodsky, 1999]:

•  Object identity is standardized through the xmi.element.att macro (called an

XML entity), which declares markers for optionally declaring unique identity via

universal identifiers (uuids), plus optional shorthand labels and local document

identifiers (xmi.id);

•  Extensibility is standardized by the optional XMI.extension element which

allows nested extensions in addition to those present in the extensions section;

•  Navigation is standardized by the regular pattern from which DTDs are generated;

•  Linking is standardized through the xmi.link.att macro, compatible with the

upcoming XLink and XPointer specifications from the W3C [W3C, 2000c] to

provide both internal and external linking by identifiers (ids) and references

(hrefs). In addition, every element may contain a reference to another location for

its definition, allowing transparent and consistent linking.

Figure V.4 illustrates a minimal example of XMI for a UML car class. The resulting

document contains two sections (header and contents) following the structure

described before. Relationships between model elements are described using the XMI

linking mechanisms, for instance as required to express the associations between class

elements in the example provided in Figure V.4.
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<XMI xmi. version="1.1"
xmlns:uml="org.omg/uml1.3">
<XMI. header>
<XMI. documentation>
An example of a car
</ XMI. documentation>
<XMI.metamodel name="UML" version="1.3"
href=" uml1.3.xmi"/>
<XMI.model name="Cars" version="1.0"/>
</XMI.header>
<XMI.content>
<Class name="Car">
<Class.ownedElements>
<Attribute name="make"/>
<Attribute name="model"/>
<Operation name="drive"/>
</Class.ownedElements>
</Class>
</XMI.content>
</XMI>

Figure V.4 – XMI Example for a Car class (adapted from [Brodsky, 1999])

XML validation can determine whether the XML elements required by this

specification are present in the XML document containing meta-model data. XML

validation can also perform some verification that the meta-model data conforms to a

meta-model. However, it is impossible to rely solely on XML validation to verify that

the information transferred satisfies all of a meta-model’s semantic constraints.

MOF Model

(XMI Document)

Generated XML

DTD/Schema

XML Parser
Objects

(XMI Document)

generate

Model

well-formed

semantic

validation

optional
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Figure V.5 – Validation of XMI documents (adapted from [Brodsky, 1999])

XMI is not restricted to express UML information. The OMG is working on a

standard, called Common Warehouse Metadata (CWM), to enable the expression of

database information and schemas in a common form that can be interchanged with

the XMI. The OMG’s CWM interchange initiative will provide a general definition for

the interchange of relational and hierarchical databases, database management and

data warehousing. Other examples of information that can be interchanged with XMI

include: Java and C++ class definitions, enterprise Java beans and electronic

commerce standards. Ultimately all the meta-models that are MOF compliant (see

section II.3.2) can be expressed and interchanged with XMI.

V.1.2.User Interface Tools

Virtually all applications today are built using some form of user interface (UI) tool

[Myers et al., 2000]. Contributions from research on UI tools and technology had a

tremendous impact on the current practice of software development – for instance
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object-oriented programming, event languages and component-based development

were all contributions related to UI research. Moreover, UI tools are an important

segment of the tool market, accounting for 100 million USD per-year [Myers et al.,

2000].

A user interface tool is any software aimed to help create the part of a software

intensive system that handles the input and output between the user and the

interactive system (the user interface). User interface tools have been called various

names over the years. The most popular terms are User Interface Management

Systems (UIMS), Toolkits, User Interface Development Environments (UIDEs),

Interface Builders, Interface Development Tools and Application Frameworks [Myers,

1995; Myers, 1996; Myers et al., 2000].

User interface tools bring many advantages to interactive system development.

According to Myers [Myers, 1995] the main advantages can be classified as follows:

•  UI tools increase the quality of the user interfaces – mainly because tools enable

rapid prototyping of UIs and subsequent incorporation of changes discovered

through user testing. They also leverage multi-UI creation, foster consistency and

enable different specialists (other than programmers) to be involved in the UI

design process;

•  UI tools promote UI code that is easier and more economical to create and

maintain – because UI specifications can be represented, validated, and evaluated

more easily. In addition, UI tools reduce the code to write, better modularization,

separation of concerns (between internal functionality and UI), reduced

complexity, increased reliability, and increased portability between platforms.

V.1.2.1.Classification of UI Tools

A user interface software tool may be divided into various layers, a typical approach

is described by Myers and involves: the windowing system, the toolkit, and higher-

level tools (see Figure V.6) [Myers, 1995; Myers, 1996]. The windowing system

supports the separation of the screen into different regions (conventionally called

windows). Windowing systems are usually an integral part of the operating system (a

notable exception is XWindows) and therefore examples of such systems can be found

in many common operating systems in the use today, for instance MacOS and

Microsoft Windows. The toolkit is a library of widgets (ways of using a physical input

device to input a certain type of value) that can be called by the application program.

Typical widgets included in a toolkit are menus, buttons, scroll bars, text fields, and so

on. Toolkits have the advantage of fostering consistency between UIs developed using

the same toolkit. Furthermore, toolkits provide reuse at the functional level, for

instance the functions that control the basics of widgets. However, toolkits have

several problems: they limit the interaction styles to those provided, and they are

expensive to create and complex to manage [Myers, 1995]. Examples of toolkits are



Practical Experience and Results

194

collections of procedures (APIs) that can be called by applications (for instance

SunView Toolkit, Macintosh Toolbox, etc.) and object-oriented frameworks (such as

those provided by Smalltalk, Xt, Garnet, Microsoft Foundation Classes, Java Abstract

Window Toolkit  and Java Swing).

Application

Higher-level Tools

Toolkit

Windowing System

Operating system

Figure V.6 – Myers components of a UI software tool (source: [Myers, 1995]

Since programming at the toolkit level is complex and difficult, higher-level tools are

required to simplify and ease the process of producing the user interface [Myers,

1995]. Most high-level tools work both at design-time and runtime. The design-time

component is responsible for helping design the user interface - for instance through a

graphical editor that helps layout the widgets or a compiler that processes the UI

specification language. The runtime component manages the UI when the user is

interacting with the application and therefore is conventionally called a User-Interface

Management System (UIMS). Optionally a post-runtime component can support UI

metrics and evaluation by providing automatic cognitive models of the UI, for

instance GOMS-based models such as the ones described in section II.1.2.2. However,

to date very few tools provide this kind of post-runtime facilities [Myers, 1995].

High-level tools mainly differ in terms of the specification language and style used to

specify the user interface. Myers provides a classification based on the specification

format provided by high-level tools as illustrated in Figure V.7 [Myers, 1995].
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Specification Format Examples

Language Based

State Transition Networks VAPS

Context-Free Grammars YAW, LEX, Syngraph

Event Languages ALGAE, Sassafras, HyperTalk

Declarative Languages Cousin, Open Dialog, Motif, UIL

Constraint Languages Thinglab, C32

Screen Scrapers Easel

Database Interfaces Oracle

Visual Programming LabView, Prograph, Visual Basic

Application Frameworks

MacApp, Unidraw, Microsoft Foundation Classes, Java

AWT, Swing

Model-Based Generation

MIKE, UIDE, ITS, Humanoid

Interactive Graphical Specification

Prototypes Bricklin’s Demo, Director, HyperCard

Card-based Systems Menulay, HyperCard

Interface Builders DialogEditor, NeXT Interface Builder, Prototyper

Data Visualization Tools DataViews

Graphical Editors Peridot, Lapidary, Marquise

Figure V.7 - Specifications formats for High-level User Interface Development
Tools (adapted from [Myers, 1995])

Language-Based Systems

Language based systems enable designers to specify the syntax of the user interface

(the valid sequences of input and output actions) using special purpose languages,

such as context-free grammars, state transition diagrams, declarative or event based

languages, and so on (see formats and examples in Figure V.7).

Different language-based specification formats have different advantages and

disadvantages [Myers, 1995]. State transition networks, such as UML activity or

statechart diagrams (see section II.3), provide a natural way of specifying the handling

of a sequence of input events involved when a user interacts with a given system.

However, state transition diagrams pose many problems when the UI is complex

(many nodes and arcs) or when the user interacts with multiple objects at the same

time, which is typically the case with modern highly interactive applications (see

section II.7.2). The same problems exist with context-free grammars that are more

oriented to batch processing of strings with a complex syntactic structure and thus

have been abandoned for modern highly interactive user interfaces.

Event languages have several advantages over the two previous approaches, in

particular the possibility of handling multiple input devices active at the same time,

thus simplifying the support for non-model user interfaces. The main disadvantage is

related to the complexity and distribution of the flow of control, as a result small

changes can affect many different parts of the program. However, event languages are

particularly efficient for small to medium sized programs.
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Declarative languages take a different approach enabling the designer to focus on

what should happen as opposed to how to make it happen. The main advantage of

declarative languages is related to the fact that designers don’t have to concentrate on

the time sequence of events, but only on the flow of information. The main

disadvantage is that declarative approaches are only possible for form-based UI or

widget layout description, thus more complex direct manipulation techniques (such

as drag and drop, drawing graphical objects, and so on) must be specified using a

different approach. However, declarative languages have recently become the basis

for web UI, notably HTML forms and other intent-based UI description languages

discussed separately in section V.1.3.

Constraint languages allow the specification to be based on restrictions about the

behavior of the UI. Constraint languages are still under research and provide a natural

way to express many kinds of relationships that arise in UI, for instance that two

objects must stay attached. However they require a complex runtime system to

support the constraints while the user interacts with the application.

Screen scrappers are commercial tools specialized to be “front-ends” (or screen

scrappers) that provide a graphical user interface for old legacy systems without

changing the existing underlying functionality. Screen scrappers rely on buffering

schemes and are not intended to develop modern UI from scratch.

Database interfaces are a very important class of commercial tools that support form-

based or GUI based access to databases. Virtually all-major database management

system (DMS) vendors provide tools that allow designers to develop UI for accessing

and changing data on a database. Fourth-generation languages (4GLs) fall also into

this category but are usually independent of the back-end DMS. These tools typically

include interactive form editors (essentially interface builders) and special database

access languages.

Visual programming provides graphical and layout as part of the program

specification. Most systems that support diagrammatic languages (such as state-

transition diagrams) provide mechanism for visual programming. Visual

programming tools are typically easier to use by non-experienced programmers but

bear the same problems of state transition schemas when the underlying UI involves

many states and arcs (typical in highly interactive modeless application).

Application Frameworks

Application frameworks are the second major class of high-level tools for user

interface design. Frameworks originated form the need to reduce the complexity of

directly programming UI toolkits.

The first example of an application framework was MacApp [Schmucker, 1986] that

provided a way to simplify the programming of the Macintosh toolbox and to comply
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with the platform guidelines [Apple, 1992]. Application frameworks are typically

based on a set of OO classes that can be specialized for a particular application, thus

highly reducing the development effort of the common parts of the application –

several studies found out that tools like the MacApp reduce the development effort in

one order of magnitude [Schmucker, 1986].

Application frameworks have the drawback of still requiring designers to program

the application specific subclasses, however component based approaches such as

Object Linking and Embedding (OLE) [Microsoft, 2000] and JavaBeans [Sun, 2000]

allow applications to be built from complex components only requiring those

components to adhere to a common communication standard.

Model-based Generation

Model-based automatic generation of UIs aims at simplifying the need to specify all

the details about the placement, format and design of the UI. Model-based approaches

aim to generate, as much as possible, those details from higher-level models of the UI.

Model-based approaches are described in more detail in section II.7. The main

drawback of model-based approaches is that they failed to go beyond the research

level of generating menus and dialog boxes to the commercial requirements of high-

quality UIs. A further problem is that the specification languages required by those

approaches are hard to learn.

Interactive Graphical Specification

Interactive graphical specification encompasses approaches that allow the definition

of the UI, at least partially, by direct manipulation (placing objects on the screen using

a pointing device). Interactive graphical specification is motivated by the assumption

that visual presentation is of primarily importance in GUIs, thus these tools enable

rapid development of rich graphical UIs by nonprogrammers. Interactive graphical

specification differs from visual programming because the UI is drawn rather than

generated indirectly.

Prototyping tools allow designers to quickly mock-up the visual appearance of

screens. These tools don’t enable full specification of the UI and thus can only be used

to simulate the actual application.

Card-based system is a generic description of tools that enable the development of UIs

based on sequences of static pages (also called frames or forms). Each card in these

systems contains a set of widgets that are coded individually, typically through a

scripting language. Unlike prototyping tools, card systems enable the specification of

fully functional applications although limited in terms of the interactive facilities they

provide. Interface builders (also called interface development tools) allow designers to

compose dialog boxes, menus and windows from a predefined library of widgets,

thus creating by direct manipulation the UI of the final interactive application.
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Interface builders enable some properties of the widgets to be specified through

property sheets, and even support some sequencing of windows and dialog boxes.

Interface builders use the actual toolkit provided by the platform and therefore can be

used to build actual parts of the application (usually generating the code). One

common problem attributed to interface builders is that they provide much flexibility

to developers and thus provide little guidance toward creating good UIs. Another

problem is that interface builders cannot handle graphics areas or widgets that change

dynamically.

Data visualization tools are an important category of tools that focus on the display of

dynamically changing data. These tools are conventionally used as front-ends for

simulation, process control system monitoring, network management and data

analysis. Data visualization tools, unlike interface builders, usually don’t use the

platform widgets.

Graphical editors are tools that enable the creation of custom graphics that depend on

runtime conditions, such as dynamic changing data or user actions. Graphical editors

differ from data visualization tools because in the former designers draw examples of

the UI that, as a result of generalization, is translated into parameterized prototypes

that change in runtime.

V.1.2.2.Trends in UI Tools

In a recent survey on the Past, Present and Future of User Interface Tools, Myers and

colleagues identified some issues that are important for evaluating, which approaches

were successful and which ones are promising in the future [Myers et al., 2000]:

•  The parts of the UI the tools address – the tools that succeeded in the past

contributed significantly in one part of UI development. The majority of the

successful tools and technologies focused on a particular part of the UI that was a

significant problem, and which could be addressed thoroughly and effectively.

Examples of successful approaches include [Myers et al., 2000]: Window managers

and toolkits, event languages, interactive graphical tools, component systems,

scripting languages, hypertext and object-oriented programming. Examples of

approaches that failed to receive commercial success due to issues involved with

trying to address the whole problem include UIMSs and Model-based and

automatic generation techniques;

•  Threshold and Ceiling – the threshold is related to the difficulty of learning a new

system and the ceiling is related with how much can be done using the system.

Successful approaches in the past are usually low threshold and low ceiling (e.g.

interactive graphical tools, hypertext and the www) or high threshold and high

ceiling (windows managers, toolkits and object-oriented programming). Examples

of unsuccessful approaches that suffered from the high threshold problem include

formal languages and constraints. Although different attempts have been made to
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lower the threshold of some of those approaches, they are done at the expense of

powerful features that allow for a high-ceiling, thus become less attractive for

developers;

•  Path of Least Resistance – tools and technologies influence the kinds of UIs that

can be created, therefore successful tools lead to good UIs. Examples of successful

approaches that provided a path of least resistance are window managers and

toolkits. Those approaches are mainly responsible for the significant stability of the

current desktop UI, which highly contributed for the consistency in today’s UI and

the possibility of users to build and transfer skills within different applications and

platforms. Counter-examples include formal languages, which promoted rigid

sequences of actions that are highly undesirable in modern non-modal UIs, thus

the path of least resistance of these tools is detrimental to good UI design;

•  Predictability – developers typically resist tools that can provide unpredictable

results in the final systems. Most successful approaches provided predictability

and control over the resulting UI, conversely the majority of tools employing

automatic techniques (e.g. model based systems and constraints) made the

connection between the specification and the final result difficult to understand

and control;

•  Moving Targets – as with any interactive system, it is very difficult to develop

tools without having a significant experience and understanding of the tasks they

support. Conversely, the time it takes to understand a new implementation task

can lead that good tools become available when that task is less important or even

obsolete. Most successful approaches took advantage of the high stability of

today’s standard GUI. On the contrary, nearly all-unsuccessful approaches

succumbed to the moving-target problem. UIMSs, language-based approaches,

constraints and model-based systems were designed to support a flexible variety

of interaction styles and became less important with standardization of the

desktop UI.

The discussion of the above issues for UI tools makes clear that successful approaches

focused on a particular part of the user interface that was a significant problem and

which could be addressed effectively reducing the development effort, allowing UIs

to be created quickly and promoting a consistent look and feel. The long stability of

the GUI desktop and direct-manipulation user interface style has enabled the

maturing of the successful tools, alleviating the moving-target problem that affected

the earliest research approaches [Myers et al., 2000]. However, the requirements for

the next generation of user interfaces are quite different. The increasing diversity of

computing devices and the increasing connectivity of existing desktop computers will

have a profound effect on the future of UIs.

Myers and colleagues envision important implications from computer becoming a

commodity, ubiquitous computing, end-user customization and the move to

recognition based and 3D user interfaces [Myers et al., 2000].
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Computers are becoming a commodity because the computing power availability to

the general public is almost undistinguished from that available to researchers. Hence,

researchers can no longer have access to high-performance computing to envision and

investigate what will be available to the public in a moderate amount of time.

Furthermore, the quantitative change in increased performance, made available and

affordable computing in many different and embedded devices at different scales.

Computing is becoming ubiquitous [Cerf, 1992; Weiser, 1993; Abowd and Mynatt,

2000] and the move is clearly towards specialized information appliances that perform

well a minimal set of tasks [Norman, 1998; Want and Borriello, 2000]. Those devices

have varying input and output capabilities, for instance the conventional desktop

machine varies in a factor of 4 in screen resolution (from 640x480 to 1280x1024) and in

a factor of 2.5 in screen size  (8 to 20 inches); conversely today’s information

appliances vary in a factor of 1000 in resolution and in a factor of 100 in display

[Myers et al., 2000]. Moreover, information appliances are very distinct in terms of

input and output devices, for example a cellular phone has a numeric keypad and

voice recognition, palmtops have touch-sensitive screens and stylus and no keyboard,

and so on.

Therefore, according to Myers and colleagues, the requirements of the next generation

UIs entail tools that: (i) enable rapid prototyping of devices and not only software; (ii)

tools that enable coordination of multiple distributed communication devices, (iii)

tools that support recognitions-based interfaces (voice, gestures, etc.), (iv) tools that

support three-dimensional technologies, and (v) tools that leverage end-user

programming, customization and scripting [Myers et al., 2000]. In the words of Myers

and colleagues “Future trends will call for new and powerful techniques (high ceiling)

to deal with the anticipated dramatic increase in user interface diversity” [Myers et al.,

2000].

V.1.3.Appliance Independent UI Description Languages

Although the idea of a platform independent user-interface description language is

not new, the World Wide Web (WWW) provided the first effective and widely

available user interface description language that is independent of the underlying

platform. From the initial success of the HTML, in allowing non-programmers to

design platform independent user-interfaces, there has been an explosion of different

approaches for declarative device-independent UI description languages. Examples

for desktop applications include Dynamic HTML (DHTML) or more specifically the

interaction between HTML, Cascading Style Sheets (CSS), eXtensible Stylesheet

Language (XSLT), the Document Object Model (DOM) and scripting (JavaScript, CGI,

VBScript, and so on) [W3C, 1998a; W3C, 1998b]; XwingML [Bluestone, 1999] and

XML-based User Interface Language (XUL) [Mozilla, 1999]. Related efforts have also

emerged for different environments, notably the Wireless Markup Language (WML)

[WAPF, 1999] for mobile devices with displays; and SpeechML [IBM, 1999], Voice
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Markup Language (VoxML) [Motorola, 2001] and Java Speech Markup Language

(JSML) [Sun, 1997] for voice-enabled devices like a conventional telephone.

This plethora of UI description languages is a consequence of the multiple hardware

and software technologies involved in the development of specialized information

appliances (see section V.1.2.2). This diversity in UI description languages poses the

same drawbacks that UI designers faced in the early days of the personal computer.

Before windowing systems, toolkits and higher-level tools (notably APIs and OO

frameworks) (see section V.1.2.1) provided an abstraction layer to “hide” the device-

dependent specifics. Several recent approaches have tried to solve this problem

proposing a universal appliance-independent markup language to describe UIs in

highly abstract way, which could be translated into more specific languages via-style

sheets. Two notable examples are the Abstract User Interface Markup Language

(AUIML) [IBM, 1999] and the User-Interface Markup Language (UIML) [Abrams,

1999]. A similar approach (xForms [W3C, 2001]) is being developed by World Wide

Web Consortium (W3C) to try to deal with the limitations of the existing genre of

“split interface” of web applications. Today’s web browsers are a very basic virtual

machine to render views (see MVC in section II.6) in the form of HTML documents

with limited controls. The web server maintains the Model (in the MVC sense)

working around the HTTP’s stateless submission of form input elements by passing

along the model’s context by value (through hidden fields) or by reference (through

cookies or HTTP login) [Khare, 2000a; Khare, 2000b]. The W3C is trying to address

this problem taking advantage of the XML standard in a similar way that was already

proposed in AUIML and UIML. This effort is now possible with the advent of

eXtensible HyperText Markup Language (XHTML) 1.0 [W3C, 2000b], which defines

the first step towards translating the basic capabilities of the HTML 4.0 [W3C, 1999a]

into XML.

XHTML is a family of current and future document types and modules that

reproduce, subset, and extend HTML 4. The XHTML family of document types is

XML based, and thus ultimately designed to work in conjunction with XML-based

user agents (a user or a system that manipulates XML documents). XHTML 1.0, the

first document type in the XHTML family, provides the basis for a family of document

types that will extend and subset XHTML, in order to support a wide range of new

devices and applications, by defining modules and specifying a mechanism for

combining these modules. This mechanism will enable the extension and sub-setting

of XHTML 1.0 in a uniform way through the definition of new modules. The

modularization underlying XHTML is then the strategy of the W3C to manage

multiple information appliances. The process of modularization breaks the XHTML

up into a series of smaller element sets that will likely be required by different

platforms and recombined to meet the needs of different user communities.

In the following sections we present an overview of the AUIML description language

and discuss several experiences, developed in conjunction with the IBM Ease of Use
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group, to assess the possibility of generating AUIML documents from UML models.

We present an overview of the markup language and briefly discuss some of the

results of different experiences generating AUIML documents from both the Ovid

method (see section III.4.2.1) and Wisdom models. In particular we present an

approach that produces AUIML from Wisdom models through the XMI interchange

format. In the last section we discuss how this approach could be generalized to the

forthcoming XForms standard.
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V.2. AUTOMATIC GENERATION OF APPLIANCE
INDEPENDENT USER INTERFACES FROM WISDOM

MODELS

As we discussed previously (see sections II.7, III.4.3.6 and V.1.2) automatic generation

of user-interfaces can speed up implementation and improve productivity enabling

designers to work at higher-levels of abstraction. Research on model-based UIs

proved that it is possible to fully automate the process of UI design and

implementation (see the different approaches discussed in section II.7). Although,

commercial adoption of “pure” model-based approaches was not achieved to date

(see section V.1.2.2), the technology is widespread and used by millions everyday -

anytime a user opens a web-page on a browser a UI is automatically generated from a

declarative HTML specification. In the words of Kovacevic “the issue is not whether

automatic generation is feasible and practical, but how effective it can be” [Kovacevic,

1999]. The example of the world wide web confirms Myers’ prediction that successful

tools and techniques tackle only small but important issues in UI design, that is

automatic generation can be effective when we limit its scope as it is the case in the

WWW. It seams obvious that DHTML markup, has a successful and effective

approach for describing UIs, is a low-ceiling and low threshold technology (see

section V.1.2.2).

The real problem with automatic generation is, therefore, not in the technology itself

but how it can be effectively used in UI design. User interface design is, to some

extent, a creative activity and therefore cannot be fully automated without

compromising the quality of the end user interface. Moreover, adequate user-centered

design relies on continuous and iterative feedback from users and therefore automatic

generation must provide support for exploration and full control over the design. It is

critical that modern UI development tools enable designers to work at very high

levels of abstraction, while providing support for multiple UIs but also leveraging

flexibility. As Kovacevic points out, “this balance of productivity and flexibility is one

issue that UI tools must resolve” [Kovacevic, 1999].

Web enabled markup languages are irrefutably the most widely used approach for

describing user-interfaces for automatic generation purposes. However, hypertext

markup is not adequate for modeling purposes. The complex syntax and the absence

of diagrammatic representations compromise the power and flexibility of markup as

an effective modeling approach. Markup languages leverage the semantic aspects in

detriment of the flexibility and manipulability (by humans) of their notation.

Furthermore, models of software systems are developed in a larger context that
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conveys their true meaning, thus specific markup languages, such as AUIML, lack the

wider context of the overall aspects of interactive system development. The next

section briefly presents the AUIML appliance-independent UI description language

and the following section discusses experiences generating AUIML from Wisdom

models.

V.2.1.1.Abstract User-Interface Markup Language (AUIML)

The Abstract User Interface Markup Language (AUIML) [IBM, 1999] (formerly known

as Druid) is an XML vocabulary developed by the IBM Ease of Use group, intended to

facilitate the definition of an appliance independent UI description language – what

the authors call an intent-based approach (based on the intention of the interaction as

opposed to the presentation aspects). Therefore, The Druid vocabulary is intended to

be independent of the client platform on which the user interface is rendered, the

implementation language and the user interface implementation technology [IBM,

1999].

AUIML consists of two major sets of elements, those that define the Data Model,

which underpins a specific interaction with a user; and those that define the

Presentation Model, which specifies the “look and feel” of the UI. The Data Model is

independent of the modality of user interaction and the Presentation Model allows

flexibility in the degree of specificity of what exactly is expected of a renderer (a

software capable of translating a AUIML document into a concrete user interface).

Therefore, AUIML provides a great deal of flexibility by allowing decisions on the

most appropriate concrete presentation to be taken by the renderer or to be enforced

by the designer.

Figure V.8 depicts an example, from [IBM, 1999; Azevedo et al., 2000], of an AUIML

document describing an interface that simply asks the user for his complete name.

Figure V.9 depicts two examples of concrete UIs generated, respectively, by a Java

Swing and a DHTML renderer for the AUIML document illustrated in Figure V.8.
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<GROUP NAME="PersonName">
<CAPTION>

<META-TEXT>Person's complete name</META-TEXT>
</CAPTION>
<CHOICE NAME="PersonTitles" SELECTION-POLICY="SINGLE">
<CAPTION><META-TEXT>Title</META-TEXT></CAPTION>
<HINT>

<META-TEXT>This is a set of valid titles you may choose
from.</META-TEXT>

</HINT>
<STRING NAME="MR">

<CAPTION><META-TEXT>Mr.</META-TEXT></CAPTION>
</STRING>
<STRING NAME="MRS">

<CAPTION><META-TEXT>Mrs.</META-TEXT></CAPTION>
</STRING>
<STRING NAME="MISS">

<CAPTION><META-TEXT>Miss</META-TEXT></CAPTION>
</STRING>
<STRING NAME="MS">

<CAPTION><META-TEXT>Ms.</META-TEXT></CAPTION>
</STRING>
</CHOICE>
<STRING NAME="FirstName">

<CAPTION><META-TEXT>First Name</META-TEXT></CAPTION>
</STRING>
<STRING NAME="Initial">

<CAPTION><META-TEXT>Initial</META-TEXT></CAPTION>
</STRING>
<STRING NAME="LastName">

<CAPTION><META-TEXT>Last Name</META-TEXT></CAPTION>
</STRING>

</GROUP>

Figure V.8 – AUIML Example for a simple user-interface asking a person’s
complete name

  
Figure V.9 – Two examples of concrete user-interfaces automatically generated
from a AUIML document through: (i) a JavaSwing renderer and (ii) a DHTML
renderer

The Data Model of an AUIML document structures the information necessary to

support a particular user interaction. AUIML provides a set of elements for the data

model as follows:

•  a set of container, grouping and aggregating elements (the DATA-GROUP,

GROUP, CHOICE, TABLE, ROW, TREE and NODE tags);

•  a minimal set of elementary data types (STRING, NUMBER, DATE, TIME and

BOOLEAN tags) that share a common set of attributes (VALID, ENABLED, READ-

ONLY, MANDATORY, ENABLED, and so on) and a specification o simple event-

handlers (WHEN-SELECTED, WHEN-SHOWN, WHEN-ENABLED and so on);

•  a mechanism that facilitates the specification of user-defined data types (the UDT

tag) and two types of complex data types (IMAGE and SOUND tags);
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•  a set of item manipulation elements that allow the state of other data elements to

manipulated as a consequence of events (CHANGE-ITEM, REFRESH-ITEM and

DISPLAY-ITEM);

•  a set of user actions the user is allowed to perform on some elements of the data

model. The actions can be aggregated and associated with one or more items

(ACTION-GROUP, ACTION-LIST, CONTEXT-GROUP, ACTION and

ACCELERATOR tags).

The presentation model in AUIML allows a considerable flexibility in the amount of

specificity a designer can convey. Designers can opt to precisely control what is to be

displayed or just specify the interaction style leaving the decisions to the renderer

based on the underlying data model. AUIML provides a set of elements for the

presentation model as follows:

•  three elements enabling the specification of three common interaction techniques:

wizards, property sheets and panels (the WIZARD, PROPERTYSHEET and

PANEL tags). Each element implies the corresponding navigation and behavior

associated with the three techniques, including common buttons and their

behavior;

•  a set of action containers that organize the collection of available actions, these

include elements related to menus (MENUBAR, MENU, MENUITEM and

SEPARATOR tags), and one element for toolbars (the TOOLBAR tag);

•  a set of area constructs that which have built in layout policies for their child user

interface elements, these include a set of elements that layout their contexts

according to different patterns (VERTICAL-AREA, HORIZONTAL-AREA,

DEFINITE-AREA, and so on);

•  a number of interface elements (widgets or UI components) that can be associated

with the various area tags, these include the common widgets found in any GUI

(LABEL, BUTTON, TEXTFIELD, SLIDER, RADIOBUTTON, CHECKBOX,

COMBOBOX, and so on).

AUIML also provides a number of common attributes (common metadata elements)

to provided different degrees of information as to the purpose or function of the

elements to which they apply. Those elements define three levels of information. Each

of these levels has associated material, which can be used by a renderer, or

application, to communicate with the user. The common metadata elements are

defined in the CAPTION, HINT and TIP tags. All three of these metadata elements

can contain the information in the same media oriented types. These are textual

(META-TEXT tag), audio (META-AUDIO tag) and pictorial (META-IMAGE tag). The

authors of the AUIML consider that over time it is desirable to move to these being

containers of XHTML Semantic modules.
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V.2.2.Generating AUIML Documents from Wisdom Models

The idea of generating AUIML documents from UI specific UML models, such the

ones provided by the Wisdom notation, is then an attempt to assess the capability of

increasing the ceiling and lowering the threshold of hypertext markup as an effective

UI description language. On the one hand, the UML notation provides the low

threshold of a comprehensible diagrammatic notation, while also ensuring that

adequate support for semantics, support for the wider context of system development

and tool interoperability. On the other hand, UI specific markup provides access to

the most successful and widely used automatic generation technology available today.

It supports appliance independent UI descriptions, while also ensuring that designers

have flexibility and control over the design process.

The idea of exploring this approach was the motivation for a joint project involving

the IBM Ease of Use group, where both the main authors of Ovid and AUIML work.

Since two different UML modeling approaches were involved (Ovid and Wisdom),

and the motivations were clearly different, the project collaborators decided it was

beneficial to explore two tracks.

The IBM Ease of Use Group, with the active involvement of an undergraduate student

of the University of Oporto, explored a pragmatic approach aiming at generating

AUIML descriptions directly from Ovid UML models developed in Rational Rose.

The Ovid2AUIML project aimed specifically at producing a “proof of concept” that it

was feasible and useful to link Ovid models to AUIML descriptions allowing

designers to immediately see visual representation of UI [Azevedo et al., 2000]. The

approach followed in the Ovid2AUIML project didn’t take advantage of the UML

interchange formats, instead the team decided to use the scripting capabilities of the

Rational Rose tool. Moreover, due to the pragmatic characteristics of this approach,

little attention was paid to the semantic aspects of the additional information required

in the Ovid models to generate workable AUIML documents.

Simultaneously we examined how the pragmatic approach followed in the IBM

project could be generalized. Our approach aimed at exploring different possibilities

of the underlying concept of generating UI descriptions from UML models. In

particular, the experiences concentrated on: (i) the suitability of the UML notational

extensions provided in Wisdom for the Presentation Model (see section IV.4.5) to

formalize the ad-hoc parameterizations used in the IBM pragmatic approach – in

particular the Wisdom stereotyped navigation and containment relationships as well

as the input and output elements and the stereotyped actions; (ii) the potential of the

Wisdom notational extensions to generate other hypertext markup specifications (e.g.

UIML or Xforms); (iii) the impact and effectiveness of the XMI interchange format to

detach the transformation process from a particular tool (see section V.1.1) (iv) the

suitability and effectiveness of the eXtensible Stylesheet Language Transformations

(XSLT) [W3C, 1999b] to map different XML dialects (specifically between XMI and
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AUIML); and finally (v) the potential, flexibility and effectiveness of the overall

process in the generalized form.

Both tracks of this project were complementary. On the one hand the IBM approach

served as an effective and successful “proof of concept”, as reported in [Azevedo et

al., 2000]. On the other hand, our approach enabled a more in depth exploration of the

envisioned potential of some technologies that are still under development and not

fully supported by commercial tools (e.g. XMI, XSLT and AUIML). Figure V.10

depicts an overview of both tracks in the UML to AUIML project. To the left side is

the IBM approach and to the right side is our approach, together with an overview of

the transformation process between Wisdom UML models and AUIML.

Analyse and validate Ovid Model

IBM Track (Ovid 2 AUIML)

Converte Ovid Model to AUIML

through

Build the Ovid Model

Parameterize the Model with

AUIML specific Information

Invoke the AUIML Renderer to

Produce the Concrete UI

Generate XMI Specification of

the UML Models

Transform the XMI Specification

into an AUIML Document

Build the Wisdom Presentation

Model according to the UML

Extensions

Detail the Wisdom Model with

additional information (typing,

default values, etc.)

Invoke the AUIML Renderer to

Produce the Concrete UI

Our Track (Wisdom 2 AUIML)

Filter the Stereotyped Interaction

Space Classes

Create a DATA-GROUP Tag for

the Model

Identify the Containement

Structure of the Interaction

Spaces whithin the Model

Create a GROUP tag for each

Interaction Space in the Model

Identify Stereotyped Attributes

and Operations

Map Stereotyped Attributes and

Operations into AUIML Tags

according to their typing

Transform the XMI

Specification into an

AUIML Document

Figure V.10 – Overview of the two tracks in the UML to AUIML project, including
an overview of the XMI to AUIML transformation process

Both approaches, described in Figure V.10, start with building an abstract object

model of the presentation aspects of the envisioned interactive application (see

sections III.3.4, III.4.2.1 and IV.4.5). From this initial UML specification, both

approaches differ significantly in the process by which the end AUIML document is

produced. While the IBM approach uses the scripting facilities provided by the

modeling tool (Rational Rose) to directly generate the AUIM document, our approach

uses the XMI interchange format. Therefore, the transformation process, in our

approach, involves producing the XMI specification and then applying a set of XSL

transformations (XSLT) to the XMI document, in order to map the UML constructs

into AUIML elements. Both the XMI generation and the XMI to AUIML

transformation processes are fully automated. The mapping between the UML

modeling constructs, defined in the Wisdom presentation model, and the AUIML

elements is described in the right-hand side of Figure V.10. The transformation

process involves filtering the XMI file for all the interaction space class stereotypes
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and the corresponding containment relationships. From this information an AUIML

GROUP element is created for each interaction space in the Wisdom presentation

model. The containment structure in the AUIML document is derived by the different

containment relationships defined between the interaction spaces in the Wisdom

presentation model (see section IV.4.5). Each AUIML GROUP element is then

augmented with additional information derived from the stereotyped attributes

(input and output elements) and operations (actions) defined in the Wisdom

presentation model for each interaction space class. This further mapping depends on

the high level typing of the stereotyped input elements, output elements, and actions

(see section IV.4.5). For instance, an input element of type choice is translated into an

AUIML CHOICE element, and the same applies for STRING, NUMBER, DATE and so

on. Given that a designer is aware of those elementary data types, no additional

information, or knowledge about AUIML, is required to produce a Wisdom

presentation model capable of generating a working AUIML document. The

automatic generation process ends invoking the renderer to produce a concrete user

interface from the AUIML document.

XMI

Generator

XSLT

Processor
Wisdom

Presentation model
XMI File AUIML

Renderer
AUIML File

XSLT

Transformations

DHTML  UI

Java  UI

Palm OS  UI

...

Figure V.11 – Overview of the Wisdom to AUIML Transformation process

Figure V.11 depicts the transformation process explored in our approach. This process

is a fully automated; given that designers supply additional types for input elements,

output elements and actions for each interaction space in the Wisdom presentation

model. Therefore our experiences confirmed that it is possible to generate multiple

concrete user-interfaces from an abstract UML-based specification of the interaction.

Moreover, that process is fully automated and independent of the modeling tool used

to produce the UML models (given that the tool supports the XMI standard).

An example of the Wisdom to AUIML automatic generation process is provided in

Figure V.12 and Figure V.13. The first example shows the Wisdom presentation model

for customer information in the context of a hotel reservation system – a similar

manual example is provided in Figure IV.27. As we can see from the UML model in

Figure V.12, this abstract model of the user interface comprises three interaction

spaces: one for the overall customer information, one for the customer address and

one for the customer preferences. Each interaction space includes further presentation

information in the form of different input and output elements and actions. To the left

of Figure V.12 is the XMI document attained by exporting automatically exporting the
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UML model in the modeling tool. XMI document contains information for the

Wisdom specific stereotypes and also the information about the model itself. By

traversing the XMI document through the XMI.id of each class and stereotype, we can

isolate the Wisdom presentation model and extract the specific interaction spaces and

relationships (contains also stereotyped). The same procedure applies to the

stereotypes attributes (input and output element) and operations (actions). Therefore

a set of XSL transformation can provide the mapping that translates this XMI

document into the AUIML document illustrated in Figure V.13. As we can see from

this example it is possible to fully generate an AUIML document from a Wisdom

presentation model in XMI only applying XML based technology (XSL

transformations). The process is fully automated by an XSLT processor and requires

no manual manipulation of the information. Furthermore, taking advantage XMI

validation (see section V.1.1.3 and Figure V.5) we can verify that both the XMI

document and the resulting AUIML document are well-formed and comply to the

syntactical and semantic requirements defined in the corresponding Document Type

Definitions (DTDs).

Figure V.12 – An example of a Wisdom presentation model and the corresponding
XMI document
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Figure V.13 – An example of an AUIML document and a corresponding concrete
user interface produced by a Java Swing renderer

The experiences with this generalized Wisdom to AUIML transformation were

conducted at a highly experimental level. This was mainly because most of the

underlying technologies are still incipient and not fully supported by the tool

vendors. Although XMI is established as a standard for a reasonable amount of time

[OMG, 2000], it is still not widespread as a de facto interchange format. The only UML

modeling tool that we had access to, which supported XMI was Rational Rose 2000

[Rational, 2000]. Nevertheless, Rose still requires the support of a third party plug-in,

which doesn’t fully support XMI 1.0 [OMG, 2000]. Moreover, XML processors that

fully support XSLT [W3C, 1999b] are not widely available in current desktop

operating systems. Finally, AUIML is still an internal working specification within

IBM, therefore the existing renderers are still under development and don’t fully

support the AUIML specification.

Despite all of the limitations with the underlying standards and technologies, the

Wisdom to AUIML project proved that the notational extensions provided in the

Wisdom presentation model (see section IV.4.5) are powerful enough to drive an

effective automatic generation process. The concept of an interaction space, including

input and output elements and actions, proved to be a simple but effective way to

encapsulate a more complex appliance independent user interface description

language such as the AUIML. The UML extensions enable the encapsulation of

AUIML specific markup, therefore obviating the need for designers to learn and
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manipulate another language and notation. Moreover, they are easier to manipulate

and relate to the wider context of interactive system development – as it is implied in

the additional Wisdom models (see section IV.4). The experiences also proved the

effectiveness of the XMI interchange format to eliminate tool dependency and

simplify the interchange of modeling information between tools. Not only the

information in the models can be exchange, but also the meta-modeling extensions

(stereotypes, tagged values and constraints), thus enabling approaches like Wisdom to

take advantage of extensibility mechanism without loosing the power of the

underlying technologies. One such example was the ability to take advantage of the

XSL transformation to perform the mapping between the two XML-based dialects,

thus obviating the need to develop specific translators.

There are also limitations with the approach described here for automatic generation

of AUIML documents from Wisdom presentation models. The first limitation is

concerned with the different mappings between the Wisdom modeling constructs and

the AUIML elements. For instance, interaction spaces are always translated into

AUIML GROUPs, but there are situations where other elements would be more

appropriate (in particular TABLE and ROW, TREE and NODE). Moreover, our

approach only considered the generation of the AUIML data model, i.e., no

information is generated for the AUIML presentation model. The motivation for this

restriction is related to the fact that the Wisdom presentation model is a highly

abstract model of the user-interface and it doesn’t include any information regarding

the specific interaction styles or widgets (see section IV.5.5). However, it is possible to

include this kind of information using UML tagged values attached to the Wisdom

specific UML constructs. A UML tagged value is a standard extensibility mechanism

that permits arbitrary information to be attached to any modeling construct [OMG,

1999]. Tagged values are usually applied to attach information that doesn’t change the

underlying semantics of the models, for instance tool specific information for back

end purposes (code generation, reporting, and so on). Since the interaction style,

techniques and widget specification don’t change the semantics of the Wisdom

presentation model, UML tagged values are the best way to include additional

information to enforce the generation of elements appearing in the AUIML

presentation model. For example, in Figure V.13 the renderer decided to present the

customer information with a wizard interaction style, since this is obviously not the

most adequate choice, the designer could attach a tagged value to the topmost

interaction space enforcing a different interaction style. The same mechanism could be

used with input elements, output element and actions, to enforce rendering with

specific widgets.

In the next section we discuss how this experience could be generalized to the

forthcoming W3C standard XForms. We also envisioned how the principles explored

here could leverage a new generation of UI tools that combine the power of automatic

generation and the flexibility of graphical editors.
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V.2.3.Generalization: XForms and Flexible Automatic Generation

XForms are the W3C answer to the increasing demands of web applications and e-

commerce solutions to implement the interaction between the user and the system.

With the advent XHTML [W3C, 2000b], the World Wide Web Consortium (W3C)

successfully translated the basic capabilities of the HTML 4.0 into an XML-validatable

series of modules. This initial goal enabled the W3C to explore new possibilities,

introduced by the XML, for different areas. One of the areas concerned the need to

overcome the limitations of the current design of web forms that doesn’t separate the

purpose from the presentation of a form. This effort started within the W3C as a

subgroup of the HTML Working Group but recently spun off as an independent

XForms Working Group. The discussion of XForms presented here corresponds to the

latest W3C working draft of 16 Feb. 20001 [W3C, 2001], which is “work in progress”

provided by the W3C working group for review by W3C members and other

interested parties. Many sections of the working draft described here are incomplete

and subject to change by the W3C.

XForms is the W3C's name for a specification of Web forms that can be used with a

wide variety of platforms including desktop computers, handhelds, information

appliances, and even paper [W3C, 2001]. The key goals of the XForms are [W3C,

2001]:

•  Support for handheld, television, and desktop browsers, plus printers and

scanners;

•  Richer user interface to meet the needs of business, consumer and device control

applications;

•  Decoupled data, logic and presentation;

•  Improved internationalization;

•  Support for structured form data;

•  Advanced forms logic;

•  Multiple forms per page, and pages per form;

•  Suspend and Resume support;

•  Seamless integration with other XML tag sets.

XForms are comprised of separate sections that describe what the form does, and how

the form looks. This allows for flexible presentation options to be attached to an XML

form definition (including classic XHTML forms). The diagram at the left hand-side of

Figure V.14 illustrates how a single device-independent XML form definition (the

XForms Model) can work with a variety of standard or proprietary user interfaces.

The XForms User Interface provides a standard set of visual controls that are targeted

toward replacing the existing XHTML form controls. These form controls are directly

usable inside XHTML. It is expected that other groups within the W3C (such as the

Voice Browser Working Group), other companies and standard organizations can
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independently develop user interface components for XForms. Another important

concept in XForms is that forms collect data, which is expressed as XML instance data

in the right hand side of Figure V.14. To support this process a channel of instance

data is required to enable the flow of instance data to and from the XForms processor.

The XForms Submit Protocol defines how XForms send and receive data, including

the ability to suspend and resume the completion of a form [W3C, 2001].

Figure V.14 – XForms as an appliance independent user-interface description
language (source: [W3C, 2001])

The XForms Model is, therefore, the non-visual definition of an XML form. The

XForms Model comprises two components: Data structures and XForms Extensions.

The Data Structures component provides a schema describing the instance data and

providing reusable data types. The XForms Extensions include aspects that are not

typically expressed in schemas, like additional constraints, dependencies and

Dynamic Constraints Language, and calculations [W3C, 2001]. The aim of this

definition of the XForms Model is to support aspects that are not typically addressed

in schemas, examples include for instance: stating that an item is read-only; defining

complex interrelations between model items (a spouse information section that only

applies if the user indicated that he has a spouse); numerical calculation and

representation of numeric values using decimal arithmetic; workflow, auto-fill and

pre-fill form applications.

To some extend, the XForms Model intend at modeling the information for

presentation purposes in the same way that Wisdom interaction spaces model the

user-interface (see section IV.4.5). Moreover, the XForms Data Structures are similar to

the elements described in the AUIML data model (see section V.2.1.1), that is, they

encompass simple datatypes (string, boolean, number, currency, date, time, binary,

etc.), compound datatypes and facets (single defining aspects of a value space, for

instance, enumeration, length, max, min, etc.) [W3C, 2001].
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The XForms User Interface defines the part of the electronic form that is perceivable

by users, through a set of visual controls that are targeted towards replacing the

existing XHTML controls. Typically XHTML form controls are expressed in fairly

generic terms, for instance <select> to represent menu controls [W3C, 2001]. The

XForms User Interface aims at providing increase flexibility and control over those

presentation elements. XForms enable this flexibility by providing multiple specific

presentations (for different types of appliances) to be attached to a single XForms

Model through a flexible binding mechanism (as illustrated in Figure V.14) [W3C,

2001]. Furthermore, the XForms User Interface provides a set of XHTML modularized

elements to define widgets (form controls). This set of form controls is designed for

use with XHTML, and initially inspired in the existing HTML 4.0 controls. However,

they eliminate the need for scripting in detriment of declarative markup.

The XForms User Interface is also similar to the elements in the AUIML presentation

model described in section V.2.1.1. XForms controls are declared using markup

elements and their behavior is refined via markup attributes. In addition, they can be

decorated with style properties that can be set using Cascading Style Sheet (CSS). The

set of XForms controls is divided into:

•  abstract form controls - controls that share similar properties such as caption, hint,

help, etc. These correspond roughly to AUIML common metadata elements

(section V.2.1.1);

•  core form controls – a set of controls inspired in the HTML 4.0 controls, such as

output, text entry, checkbox, single select (radio buttons, drop-down menus and

list boxes), multiple select (lists), buttons and submit (for submitting instance data).

These controls correspond roughly to the interface elements in the AUIML

presentation model (section V.2.1.1);

•  custom form controls – a mechanism for allowing the creation of reusable and

custom user interface components. There is no mechanism for custom form

controls in AUIML;

•  multiple pages – a section still under development for allowing multiple page

display. Mutiple pages are also not supported in the AUIML;

•  layout – a set of elements that allow control over the presentation technology, such

as elements for grouping, additional style properties, grid layout, text and

graphics. These correspond to area constructs in the AUIML (see section V.2.1.1).

From the above description of the XForms User Interface, and even considering that

this is work in progress subject to changes until the recommendation stage is reached,

it seams obvious that the experiences described in section V.2.3 could be easily

replicated for XForms. The rationale for such an approach would follow the same

mapping principles described in section V.2.2 for automatically translating the

Wisdom presentation model to the AUIML. Such a mapping, under the light of the

current XForms working draft, would comprise the following:
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•  Mapping Wisdom stereotyped interaction spaces into XForms Model group

elements that allow aggregate hierarchical arrangement of ordered datatypes

(including other group elements). Through tagging Wisdom interaction spaces the

mapping could be enforced for different XForms Model elements, such as array

and union;

•  Mapping Wisdom stereotyped containment relationships between interaction

spaces into the hierarchy of XForms Model group elements, for instance, if

interaction space A has a contains association with interaction space B, then group

element B is nested in group element A;

•  Mapping Wisdom stereotyped input elements and output elements into XForms

datatypes, using conceptual typing of the stereotyped attributes, for instance,

typing input and output elements as string, boolean, number, currency, monetary,

date, time, duration, URI, binary, enumerated. Output elements would

additionally have the model item property read only;

•  Mapping Wisdom stereotyped actions into XForms User Interface buttom

elements, which may contain an XForms Dynamic Constraint to call when the

control is activated. The current XForms working draft is not specific regarding the

description of actions in the XForms Model, in which case it would be beneficial to

map Wisdom stereotyped actions into such an XForms Model element;

•  Mapping Wisdom stereotyped navigation relationships into the navigation

sequence defined for XForms controls deriving from the abstract form control

anyNavControl, through the navindex attribute;

•  Tagging different Wisdom modeling elements (through UML tagged values) to

enforce mapping to presentation specific elements in the XForms User Interface.

Examples include, forcing specific binding of XForms Data Model elements

(datatypes) into specific XForms controls.

The approach described before, supported by the concrete experiences conducted

with IBM’s AUIML described in section V.2.1.1, reinforce the potential of UML model-

based specification of appliance independent user interfaces. On the one hand, the

UML based extensions proposed in the Wisdom presentation model leverage on

increasing support for the UML standard, both in terms of tool support and

interoperability, but also, and foremost, because it is possible to use the same

modeling to specify the user interface and the internal system functionality. On the

other hand, software engineering can incorporate many contributions from the

usability-engineering field, in particular at this level support for automatic generation

of user interfaces and tool support for user interface design.

As we discussed in sections V.1.2.2 and V.1.3, automatic generation of user interfaces

is an established technology in the WWW that benefited from a low-threshold and a

low ceiling, due to the limitations of current web forms. The existing web forms

combine three successful UI-related technologies: simple but limited appliance

independent UI description language (HTML forms), event-based scripting and end-
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user customization through CSS (see sections V.1.2.2 and V.1.3). All of those

technologies addressed an important, but limited part of the problem with a low

ceiling and a low-threshold approach. XForms are an important step towards

increasing the ceiling of web-based UIs, but will eventually fall into the same

problems as conventional model-based design of UIs (see sections II.7 and V.1.2.2).

The basic problem that XForms face is that increasing the support for richer

interaction will also increase the threshold of the underlying UI description language

(including increased complexity for the automatic generation process and limiting the

control of designer over the UI).

We claim that the Wisdom specific extensions can be used to lower the threshold of

appliance independent user interface description languages (like the AUIML or

XForms), because they provide designers with a diagrammatic language that can be

used to generate a first cut into the presentation model. This initial specification, on

the one hand, is easily related to other modeling artifacts required to convey all the

aspects of an interactive application (see section IV.3); on the other hand, it can be

used to generate effective user interfaces as we demonstrated in section V.2.2. To

support the flexibility required to produce high quality user interfaces, a graphical

exploration tool could be used to manipulate the presentation specifics, the layout and

other decorative elements. This approach is illustrated in Figure V.15, which is an

elaboration of the experimental environment described in the Wisdom to AUIML

project (see section V.2.2 and Figure V.11).
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Figure V.15 – An example of an XForms-based flexible automatic generation
process through graphical exploration

The flexible automatic generation process depicted in Figure V.15 combines several

successful technologies and limits each one of them to a particular part of the UI

design process. The Wisdom presentation model describes the UI in terms of abstract

implementation independent entities that are structure to realize the interaction with

the user (see section IV.3.2). The different interaction spaces and the containment and

navigation relationships among them define the Wisdom presentation model. Using
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the Wisdom UI architecture (see section IV.3.2) the interaction spaces are related to the

other entities (boundaries, entities, controls and tasks) that define the overall

architecture of the software system. At this level designer’s concentrate on the overall

system architecture and the architectural significant presentation elements, for

instance, how information and actions are grouped to support the user in their tasks.

At the design level designer detail each interaction space in terms of the different

input elements, output elements and actions that each interaction space requires to

support a task or a set of interrelated tasks. With adequate typing of those stereotyped

attributes and operations designers are able to produce an initial abstract and device

independent model of the specific user interface. That model can be translated and

rendered into a concrete user interface using automatic generation techniques such as

the ones described in section V.2.2 (or the ones envisioned in this section for XForms).

Additional UI specifics can be manipulated over the automatically generated user

interface (the XForm Model) through a graphical exploration tool that produces the

specific UI model (XForms UI, XHTML Forms, or any other specific UI). The final

user-interface is then accomplished using an XForms processor (or an AUIML

renderer) that enables rendering into the target platform (browser or any other

mechanism). The model described here and depicted Figure V.15 can also take

advantage of the XMI. Since XMI allows the information to be preserved and passed

through a tool that does not understand the information (see section V.1.1.2), the UI

specifics can be encoded via UML tagged values and attached to the XMI file for

additional manipulation by other tools. One example of such tool interoperability is

discussed in the next section.
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V.3. ENHANCING THE SUPPORT FOR TASK MODELING

WITH TOOL INTERCHANGE

Task modeling is recognized to be a central part of the user interface design process

(see section III.3.1 and [Bomsdorf and Szwillus, 1998; Paternò, 2000]). Modeling the

user’s task enables designers to construct user-interfaces that reflect the task

properties, including efficient usage patterns, easy-to-use interaction sequences, and

powerful assistance features [Bomsdorf and Szwillus, 1998]. Most of those benefits

come from adequately performing the transition from task (actual tasks) to dialogue

(envisioned tasks), in Wisdom terms from the essential task flows (IV.2.1.2) to the

dialogue model (IV.4.4). Once the decomposition of the envisioned task model reaches

the basic tasks, which involve no problem solving or control structure (actions as

defined in section II.1.2.2), the task model actually reflects the dialogue model that

fully describes how the user interacts with the system. If such a level of description is

reached it is possible to directly implement the task model in the final system to

control the dynamic enabling and disabling of the interaction objects and to support

features, such as context-dependent task-oriented help [Paternò, 2000; Paternò, 2001].

However, this vision of task modeling highly depends on tool support. When

supported by adequate tools dialogue models can be used to perform evaluation, user

interface generation, context sensitive help, consistency and completeness checks and

design assistance in exploring the user interface design space (see section III.2.3).

As a result of a workshop about task-based user interface design [Bomsdorf and

Szwillus, 1998] the participants defined a set of issues that tools should support, as

follows:

•  Flexible and expressive formalisms that are able to capture most relevant aspects of

an interface design;

•  Hiding or conveying the formalism in a unobtrusive manner that yields a rather

natural outgrowth of tools to support various stages of design;

•  Flexible automation, meaning that tedious or mechanical aspects are automated

but creative aspects are flexibly controllable enabling designers to explore different

alternatives for design.

In section III.4.3.2 we discussed different alternatives to support task modeling in the

UML. One of the justifications for adapting the CTT formalism in the Wisdom

dialogue model was to take advantage of one of the most successful and widely used

notation in the HCI field (see sections II.7 and IV.4.4). CTT was developed taking into

account previous experience in task modeling and adding new features in order to

obtain an easy-to-use and powerful notation. As Paternò points out “the key issue is
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not only a matter of expressive power of notations but it is a matter of representations

that should be effective and support designers in their work rather than complicate it”

[Paternò, 2001]. Moreover, tools support for task modeling is recognized to be

insufficient [Bomsdorf and Szwillus, 1999], and CTT is one notation that has extensive

support for task modeling, consistency checking and simulation [Paternò, 2000]. In

this section we describe several experiences where we used the XMI interchange

format to take advantage of the existing CTT tool support without requiring manual

re-entry of information.

As we discussed in [Nunes and Cunha, 2001a], the different experiences carried out

encompass using two XSL style sheets to transform the Wisdom dialogue model into

the CTT XML schema and vice-versa. This process enables user interface designers or

HCI experts to use the powerful CTT notation, and the associated tools, while being

able to change artifacts with their software development counterparts. The

transformation process relies on the fact that the CTT tools support-expressing CTT in

the XML format [Paternò et al., 2000].

This UML transformation is briefly outlined in Figure V.16 and Figure V.17. The

example used here is from a check availability task in a hotel reservation system

described in section IV.5.5.

Figure V.16 - A CTT Model expressed in the original CTT notation

Figure V.16 illustrates a CTT task model in both diagrammatic and XML formats. The

diagrammatic model, at the far right, was produced using the CTTe tool. At the left of

the figure is the corresponding XML specification generated by the CTTe tool and

later opened for browsing in a popular XML editor. As we can see from the red

highlighting, the hierarchical structure of the task tree is built using a sequence of

<task> <subtask> XML tags. Although it’s not visible in the figure, the temporal

relationships are specified with the following tags per subtask: <Parent name="Parent

Task"/>  <SiblingRight name="subtask"/>.
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Figure V.17 - A CTT Model expressed in the CTT UML extension

Figure V.17 illustrates the same task model expressed with a UML class diagram (at

the upper right) and the corresponding XMI specification (see section V.1.1.3). As we

can see from the figure, the XMI schema is significantly different form the CTT XML

schema. The different classes in this example are under the XML tag

<Foundation.Core.Class>; the hierarchical structure is captured with association

stereotypes and is under <Foundation.Core.Association>; and finally the temporal

relationships are captured with dependency stereotypes under

<Foundation.Core.Dependency>. In addition all the stereotypes for the core elements

are under <Foundation.Extension_Mechanisms.Stereotype>. This way the XSL style

sheet must lookup the different stereotypes from the corresponding section and them

filter the different modeling components. The hierarchical decomposition of tasks is

reconstructed following the aggregation relationships and the temporal relationships

generated from each level of subtasks.

The approach described before enables designers to take advantage of existing

modeling, eliciting and simulation tools for the CTT task notation; while supporting

automated artifact change with UML tools and developers of the internal software

functionality that supports the end user tasks. Moreover, task models are useful to

complement the automatic user interface generation process described in sections

V.2.2 and generalized in section V.2.3. The automatic generation process described in

Figure V.15 can benefit from information conveyed in the task model. That

information is usually associated with a number of criteria conveyed in the task model

that is important do identify interaction spaces and guide the presentation model in
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order to obtain effective user interfaces. The criteria described in detail in section

IV.5.5, can be summarized as follows [Paternò, 2001]:

•  grouping of tasks can be reflected in the grouping of interaction spaces;

•  temporal relationships among tasks can be useful to structure the user interface

dialogue and indicate when the interaction techniques supporting the tasks are

enabled;

•  the type of tasks and interaction spaces (and their cardinality) should be

considered when the corresponding widgets and presentation techniques are

selected.

Although we didn’t evaluate the possibility of using the task model to inform the

automatic generation process, an envisioned environment where our experiences

interchanging task model between UML modeling tools and CTT tools are combined

with that possibility for automatic generation purposes is depicted in Figure V.18
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V.4. THE WISDOM NOTATION AND USER-INTERFACE

PATTERNS

There is a growing interest in the possibility of using patterns [Alexander et al., 1977]

in user interface design, development and evaluation [Rijken, 1994; Bayle et al., 1998;

Tidwell, 1998a; Paternò, 2000; Welie and Troedtteberg, 2000]. As we discussed in

section II.4.3.2, patterns emerged from the ideas of the architect Christopher

Alexander and are used to systematize important principles and pragmatics in the

construction field. Those ideas have inspired the object-oriented community to collect,

define and test a variety of solutions for commonly occurring design problems

[Gamma et al., 1995]. User interface patterns follow the same principle defined by

Alexander (see section II.4.3.2), a user-interface pattern is thus a general solution for

commonly occurring design problems in interactive system development.

Although the interest in user interface patterns started in the mid 90s [Rijken, 1994],

and even though several collections of patterns are published and publicity available

[Tidwell, 1998b; Perzel and Kane, 1999; Bayle et al., 1998], a consensual pattern

language as not yet emerged [Welie and Troedtteberg, 2000]. There appears to be a

lack of consensus over the format and focus for user-interface patterns. In [Welie and

Troedtteberg, 2000] the authors argued that user-interface patterns should focus on

the usability aspects that primarily benefit users. The point behind Welie and

Troetteberg’s point is that several solutions in user-interface design solve problems

that designers (and other stakeholders) have but that don’t necessarily benefit users

(for instance a banner in a web page) [Welie and Troedtteberg, 2000]. This

understanding of user-interface patterns is clearly consistent with Alexander’s

original definition and the subsequent variation in software patterns [Gamma et al.,

1995; Fowler and Scott, 1999]. In addition, several authors proposed different formats

to represent user-interface patterns. The different formats proposed also follow the

initial ideas of Alexander, in particular the description of a UI pattern usually

encompasses the following attributes [Alexander et al., 1977; Gamma et al., 1995;

Paternò, 2000]:

•  Identification - including classification and other well-known names for the same

pattern;

•  Problem - including intent, motivation, applicability and usability problems

addressed. The description of the problem usually encompasses concrete

applicability examples of the pattern, for instance, scenarios, screenshots, etc.;

•  Solution – including a descriptions of the elements that makeup the pattern. The

solution doesn’t describe a particular design or implementation because the
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pattern can be applied in many situations, instead the pattern provides an abstract

description of a design problem and how general arrangement of elements solve it;

•  Consequences – including results and tradeoffs of applying the pattern and

relationship to other patterns (reference to related patterns, variants and sub-

patterns).

The attributes for identification, problem and consequences are generally described

through natural language or concrete artifacts for the case of depicting the problem.

However, the main problem describing patterns is the possibility of depicting the

solution in an abstract way that promotes reuse in many analogous, yet different

situations. The possibility of presenting that information through object-oriented

notations, such as in [Gamma et al., 1995] was ultimately important for the success of

analysis [Fowler, 1996] and design patterns [Gamma et al., 1995]. Object-oriented

notations, such as the UML, enabled the identification and dissemination of software

patterns, because developers had access to a comprehensible notation to depict

abstract representations that they could instantiate during implementation.

We argue that one of the problems preventing the identification and dissemination of

user-interface patterns is the lack of a modeling notation capable of illustrating in an

abstract way the solution that those patterns convey. Looking in the literature in user-

interface patterns we find the solution depicted either through concrete examples (for

instance screenshots) or through textual descriptions or ad-hoc sketches [Tidwell,

1998a; Perzel and Kane, 1999; Bayle et al., 1998; Welie and Troedtteberg, 2000].

Moreover, those descriptions of patterns usually focus on the presentation aspects and

neglect the structure of the task underlying the pattern. One notable example, in the

other extreme, is provided in [Paternò, 2000] where the solution for task patterns is

depicted using the CTT notation, thus being both abstract and concentrating in the

task structure. However, Paternò’s approach excludes the presentational aspects of

the pattern, which are ultimately important for designers.

The Wisdom notation provides notational constructs for depicting both the task and

presentation aspects of patterns. The Wisdom notation for the dialogue model (see

section IV.4.4) is based on CTT, so a clear mapping exists from the task patterns

provided in [Paternò, 2000]. Furthermore, the Wisdom presentation model, notably

interaction spaces (see section IV.4.5), provides a means to convey abstract

presentation aspects of conventional user-interface patterns. Thus it is possible to

represent in an abstract way a set of already identified patterns, such as the ones

provided in [Tidwell, 1998b; Perzel and Kane, 1999; Bayle et al., 1998; Welie and

Troedtteberg, 2000].

Figure V.19 exemplifies how the Wisdom notation for the dialogue and presentation

models can be used to illustrate the Wizard pattern from [Welie and Troedtteberg,

2000]. This pattern solves the problem of a user wanting to o achieve a single goal,

which involves several decisions that are not completely known to the user. This
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particular pattern is widely used in many applications (for instance Microsoft Office

applications) to support infrequent tasks that involve several subtasks where

decisions need to be made. The Wisdom dialogue model to the right hand side of

Figure V.19 defines a minimal sequence of tasks, with the corresponding temporal

relationships, that support an abstract Wizard. To the right-hand side of the figure is a

Wisdom presentation model that illustrates how an abstract Wizard can be modeled

through two interaction spaces, one for the wizard body and another one for each

wizard step. Abstract actions are associated with each interaction space denoting

typical actions performed in a Wizard pattern. As we can see from the example, both

the dialogue and presentation models illustrate the pattern without committing to a

particular design, implementation technology, platform or interaction technique.

Figure V.19 – A solution for the Wizard pattern using Wisdom presentation and
dialogue notations

User-interface patterns are a very important step towards promoting consistency in

user-interfaces. User-interface design is becoming a more complex and demanding

task (see section V.1.2.2) with the advent of multiple information appliances.

Therefore, the capability of identifying user-interface patterns, and expressing the

solution in an abstract way that is independent of a particular design or

implementation is ultimately important. Only that way we can promote a language of

patterns that supersedes the restrictions of a particular platform. The notational

extensions provided in the Wisdom notation for both task and presentation aspects of

user-interfaces enable the abstract description of user-interface patterns. Moreover,

since the Wisdom notation complies with the UML standard, we can take advantage

of enhanced communication with software developers, while also taking advantage of
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tools support. An example of tool support for task patterns is provided in [Paternò,

2000]. Although limited to task patterns, this example illustrates how access to user-

interface patterns in modeling tools can increase the efficiency of the design process

by enabling designers to incorporate different UI patterns when they are producing

the models. In this example a dedicated pattern manager enables designers to browse

and select different task patterns to include in their models when they encounter a

common problem that can be adequately solved with a given pattern. An applicability

example that could take advantage of tool support is given the task model presented

in Figure IV.26, which is an instantiation of the search&refine task pattern identified

in [Paternò, 2000].
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V.5. CONCLUSION

This chapter discussed different uses of the Wisdom method in support for user-

interface design. Here we discussed the role of CASE technology, in particular user-

interface tools, which support user-interface design in a way that enables designers to

deal with the increasing complexity of modern user-interfaces.

The Wisdom notation is compliant with the UML standard, and permits designers to

model both the task and presentation aspects of user-interfaces in conformance with

the best practices of usability engineering and human-computer interaction. In this

chapter we explained and demonstrated, through the description and discussion of a

set of practical experiences, the capabilities of Wisdom to improve user-interface

design and leverage tool support.

CASE technology is expected to increase the productivity of developers, improving

the quality of the end products and, thus reduce the maintenance costs, while also

making software development more enjoyable. However, several studies have

pointed out that case adoption and usage is far from confirming those expectations.

The UML, and the related tool interchange formats (XMI), are expected to encourage

the growth of CASE usage, in particular for OO analysis and design. This is mainly

because the UML enabled access to a standard non-proprietary modeling language

that complies with a meta-modeling facility (MOF). Therefore vendors can focus on a

single language and take advantage of flexible interoperability that permits loss-less

information exchange. There is now consensus that we have access to the standards

and technology that could improve the effectiveness of CASE tool usage in modern

software engineering. However, software development has changed significantly in

the past years, thus tools must comply with the new challenges that software

developers face today. The same principles that underlie user-centered design also

apply to CASE tools. Hence, the new tools must focus on the real world tasks that are

ultimately important for software developers. Particularly, tools should support, not

only the “hard” aspects, but also the “soft” aspects of software development. These

include support for creativity, improvisation and design assistance over a process-

oriented framework. This vision of CASE tools is support by market research, which

indicates that the worldwide market for OO analysis and design tools should expand

from adoption by smaller software development organizations.

User-interface design is irrefutably one of the most creative activities in software

development. Despite that, user interface tools are one of the most successful market

segments in the industry. The relative stability of the current desktop graphical user

interface enabled user interface tools to reach a sophistication level that virtually any
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interactive system today is built using some form of UI tool. However, the

requirements for the next generation of user interfaces are quite different. The

increasing diversity of computing devices, and the increasing connectivity of existing

desktop computers, will have a profound effect on the future of user-interfaces. In this

chapter we argue that the diversity and complexity of the modern user-interfaces

imposes new needs, for enhanced notations and interoperability mechanisms, capable

of maintaining the high quality tool support that we have today. The experiences

described in this chapter demonstrate how Wisdom can meet those new requirements

that both software developers and user interface designers will face with the advent of

the next generation of interactive systems. Although the experiences were conducted

at a highly experimental level, they provided results that clearly indicate that this

envisioned development environment is feasible.

In section V.1.3 of this chapter we presented several experiences generating

appliance~-independent user-interface description languages directly from the UML-

based Wisdom notation through the XMI standard. These experiences proved that it is

feasible to work with high-level descriptions of user-interfaces and produce concrete

user interfaces capable of being rendered in multiple platforms. Although model-

based approaches, which were popular in UI research several years ago, already

proved that automatic generation was feasible, they failed to achieve commercial

adoption because they didn’t provide flexibility and control over the resulting UI.

Moreover, model-based approaches relied on specific formalism that imposed a step

learning curve for designers. The approach we described in section V.2.3, takes

advantage of the forthcoming next generation appliance-independent UI description

language (XForms), to achieve flexibility and control over the resulting user-interface.

We propose to accomplish flexibility through separation of concerns between the

abstract interaction, described in the Wisdom presentation model, and the user

interface presentation specifics provided by XForms, and eventually manipulated by a

graphical tool. Moreover, since our approach can take advantage of the XMI

interchange format, we can exchange the models between the different tools without

loosing information. This proposal also leverages artifact change because user-

interface developers can use the same modeling language used by software

developers. Each developer can focus on his or her task and share artifacts for

increased understanding of the overall development context without requiring

additional effort. Therefore we are also able to give the process context to the

development tools required to increase tool adoption and usage, even in extreme

environment like the ones found in small software development companies or groups.

Section V.3 takes our tool environment proposal even further by demonstrating how

different tools, working over different notations, can exchange information using the

XMI standard. In this section we describe another experience were the UML

notational extensions for the Wisdom dialogue model can be interchanged with the

ConcurTaskTrees formalism and associated tools (CTTe). Although Wisdom dialogue

models can be built and manipulated in any UML modeling tool, the CTT
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environment is clearly more focused and usable for the specific requirements of user

interface designers. Our experiences demonstrate how we can take advantage of the

XMI interchange format, to transform models between different special purpose tools

(and notations), thus enabling developers to take advantage of enhanced support for

their tasks. Since the interchange format permits loss-less transfer of information, the

models can be interchanged back and forth, enabling consistency between models to

be maintained. Moreover, automatic generation of user interfaces can be

complemented with the information conveyed in dialogue models. Thus we expand

our proposal for a multiple tool environment, including the information produced by

the Wisdom dialogue model. Task models in this envisioned environment are used to

inform the automatic generation of the user-interface specifics, thus complementing

the information in the presentation model.

Section V.4 discusses how the Wisdom notation can be used to support the

representation of solution for user-interface patterns. User interface patterns are one

of the most promising approaches to foster reuse and deal with the increased

complexity and diversity of modern user interfaces. Despite the growing interest in

this area, a consensual pattern language for user-interface design as not yet emerged.

In this section we argue that one of the problems preventing the dissemination of a UI

patterns is the lack of a standard language to describe the recurring solutions

underlying those patterns. Software patterns emerged with the advent of OO analysis

and design notations, likewise we argue that UI patterns can only emerge when the

community agrees on a standard language that is capable of depicting abstract

solutions that are independent of a particular design or implementation. In this

section we demonstrate how the Wisdom notation can be used to represent UI

patterns in an abstract way. Furthermore, since the Wisdom notation is UML

compliant, they share the same language commonly used to represent software

patterns. Moreover, combined with the tool support described earlier, Wisdom UI

patterns can be introduced as design aids in modeling tools.
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VI.  CONCLUSIONS AND FUTURE
DEVELOPMENTS

“The most exciting phrase to hear in science, the one that

heralds new discoveries, is not 'Eureka!' but 'That's funny...'”

—Isaac Asimov

This chapter describes the main conclusions of this thesis and outlines future

developments.



Conclusions and Future Developments

232

VI.1. CONCLUSIONS

“A conclusion is the place where you got tired of thinking.”

—Unknown

Building interactive systems that are efficient and reliable in use, easy to learn and

remember, and that provide user satisfaction is one of the greatest challenges of the

software industry. These requirements are increasing with the widespread use of the

Internet, the advent of the information appliances and the increasing connectivity of

existing desktop computers. In the past decades, usability engineering was

consistently neglected in software development. However, we are rapidly moving

away from a technology-centered foundation into a customer-centered maturity.

While in the beginning computing technology could not meet all the needs of the

customers, and software developers could take advantage of the relative stability of

the desktop paradigm; today customers demand a diversity of highly usable and

specialized information devices that are efficient, reliable and convenient.

The software industry is embracing this new reality, and small companies are leading

the way. Taking advantage of the progress in software engineering, today small

groups of developers are able to build complex software intensive systems in a

relatively short time. However, they are faced with development processes and

methods that were traditionally devised to support contract-based development by

large teams of developers. Those methods and processes are not adequate for the

turbulent and highly competitive markets where small companies operate, and they

don’t take advantage of what best characterizes them: fast reaction, enhanced

communication, flexibility, improvisation and creativity. Moreover, the architectural

frameworks and notations that object modeling currently offers are either complex or

not adapted to support user-centered development and user-interface design.

This thesis explored how object modeling could contribute to integrate usability

engineering into modern software development, providing benefits for both

disciplines. The underlying principle was that some of the problems that software

engineering faces today are the essence of what usability engineering promoted for

years. Conversely, some of the problems that usability engineering currently faces are

already successfully solved in the software engineering field.
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The Wisdom UML-based approach presented here promotes a lightweight software

development method encompassing three major aspects as follows:

•  The Wisdom process is an alternative to the Unified Process that recognizes the

needs of software engineering in the small and takes advantage of what best

characterizes this development context. The Wisdom process is based on an

evolutionary prototyping model that best deals with the changing requirements

and critical time to market factors that SSDs usually face. This model also

seamlessly rationalizes the chaotic ways of working characterizing many SSDs,

thus enabling process improvement strategies. The Wisdom process controls the

evolutionary prototyping model by providing an architecture-centric approach

that prevents the systems from becoming badly structured, and promoting an

essential use-case and task driven approach that ensures development progresses

in terms of the critical added value for the customers and end-users.

•  The Wisdom architecture provides two architectural models that leverage user-

centered development and user-interface design. The Wisdom model architecture

specifies the different models required to support user-role modeling, interaction

modeling, dialogue modeling and presentation modeling. At the analysis level,

Wisdom promotes a new user-interface architecture that expands the

understanding of the existing UP analysis framework to include usability-

engineering concerns. Therefore developers are able to integrate user-interface

structural elements in the overall system architecture, fostering robustness and

reuse.

•  The Wisdom notation is a subset and extension of the UML that reduces the total

number of concepts required to develop interactive systems. The Wisdom notation

simplifies the application of the UML and defines a new set of modeling constructs

necessary to support the Wisdom architectural models and the different modeling

techniques used to detail those models. In particular the Wisdom notation

formalizes the modeling constructs required to: model the various user roles and

their relevant and salient characteristics; model system requirements in terms of

essential use-cases and essential task flows; model the user-interface elements that

are relevant for the overall system architecture; model the human-computer

dialogue through a hierarchical task based notation; and finally model the abstract

presentation of interactive system in a form independent of the underlying

interaction styles and technologies.

This thesis also illustrates how usability engineering can take advantage of object

modeling, and of the UML in particular, to leverage many of the new and emergent

problems in user-interface design for multiple information appliances. In particular

we demonstrate how the UML interchange mechanisms can: leverage automatic and

flexible generation of user-interfaces from high-level models; tool interoperability

promoting artifact change between UML modeling tools and task modeling tools.

Finally we illustrate how abstract and standard notation can describe recurring user-
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interface solutions (user-interface patterns), thus promoting the dissemination of a

pattern language for interaction design and fostering reuse.

Although considerable work remains, this thesis demonstrates the feasibility of

applying sound and systematic engineering principles to build interactive software of

quality in turbulent and competitive environments. Today software is one of the most

important industries in the world. Developing software of quality is hard and the

complexity will only increase as technology progresses. Nevertheless, it is our

responsibility to ensure that engineering prevails over high-speed hacking.

However, as Larry Constantine points out:

“Ultimately, the true pace of change is not dictated by the evolution of science or

technology or of ideas, but by the capacities of humans and human social systems

to accommodate change. A product, a service, a practice, or a perspective -

however new and innovative - can have no impact without acceptance; no

significance without change in people and their institutions“.

Larry Constantine, Back to the Future,

Communications of the ACM, 44(3), March 2001, p. 128.

In the end, it’s all about the users, but developers are also users of the modeling

languages, tools, techniques, and methods. Ensuring that they have a proper set of

manageable tools, methods, and techniques is the first step toward our quest for

quality and usability in software.
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VI.2. REFLECTIONS AND FUTURE DEVELOPMENTS

"These days, unless you devote an enormous amount of time to

anticipating the future, you won't have any future."

— Ron Chernow, business biographer

The work leading to this thesis has generated many interesting and promising ideas.

Some of those future developments are promising ideas that we believe are worth

exploring, others are equally interesting ideas that we have dropped during the

research program due to different reasons. In the following we discuss four classes of

possible extensions. Where applicable we also state some reflections about the future

of object modeling for user-centered design and user-interface design.

VI.2.1.Software Process and Process Improvement

During the research program leading to this thesis it was evident that there is not

enough knowledge about the actual practices carried out by software developers, in

particular those working in small software companies, small teams in large software

organizations or within user organizations. One initial effort was carried out to

perform an extensive survey to the small software development organizations in

Portugal. However, that survey never passed the test phase due to insufficient data

enabling a precise characterization of the sample, and also because there was not

enough interest and support from software related organizations. We still believe that

such a study would be very important to provide guidelines for future research on

non-classical software processes, and in particular software engineering in the small.

During the development of the research program described here the problem of

benchmarking the Wisdom method emerged repeatedly. Several companies currently

use the Wisdom method, and there is substantial empirical evidence that Wisdom

helped improve, at least to a reasonable degree, the efficiency and control of their

development processes. Despite many efforts to collect process data, those attempts

failed because such systematic activities are very hard to induce in turbulent

environments. Moreover, Wisdom evolved constantly during the past years and many

of the adopter companies tailored the different Wisdom components to some extent.

However, we still believe that a thorough empirical test should be carried out to

assess the process improvement capabilities of Wisdom.
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One final issue worth exploring, on the software process side of Wisdom, is process

management. During this research program we have concentrated on the technical

contributions underlying the method, but there is a great deal of opportunity for

improvement in process management. Several companies adopting Wisdom

developed their own process management activities. There is substantial empirical

knowledge on those practices that is worth systematizing.

VI.2.2.UML and Notation Issues

During the different Workshops about the subject underlying this thesis, the idea that

a general UML profile for user-centered development and user-interface design is

needed was controversial. As the work described in this thesis reflects, much of the

notational extensions provided to support user-centered development and user-

interface design are highly related to their underlying development methods. To some

extent the situation is similar to the “method war” that preceded the UML

standardization. Moreover, there is a strong reaction from the HCI community

towards some of the conventions underlying the UML. The Tupis’00 workshop,

whose primary goal was to push the idea of a UML profile for UCD and UI design,

completely failed that purpose (at least to date). However, we still believe that a

consensus about this issue is important to foster an increasing recognition from the SE

community of the improvements that usability engineering could bring to software

development. Moreover, tool support, and other automation benefits, could only arise

if there is consensus over a set of notation extensions that comply with the UML.

There is an additional danger with failing to reach consensus over a UML profile,

which is the possibility of a major tool vendor pushing a different approach that

eventually becomes a de facto standard. A similar example already occurred with the

UML profiles for data modeling and web applications that overruned significant

research efforts in the fields.

One of the major contributions for the seamless adoption of Wisdom is the

effectiveness of participatory sessions with end-users. The usefulness of participatory

sessions highly depends on the clear mappings between the information conveyed in

the sticky cards and the more formal UML extensions. While this was a primary

concern in Wisdom, the need to periodically translate information between low-tech

materials and UML artifacts is an important impediment to user-centered

development. However, this kind of translation, given that mappings are known as

they are, is clearly a feature that a tool could easily provide. Therefore, we believe that

devising a new UML participatory notation, and providing tool support for that

notation, could highly leverage user-centered design.

The UML extensions underlying the Wisdom notation contain several pragmatic

solutions, in particular on what concerns the dialogue modeling extensions. This is

because the existing UML extension mechanisms are not flexible enough for such

profound extensions. The UML 2.0 RTF clearly mentions flexible extensibility as an



Conclusions and Future Developments

237

important requirement for the next version of the standard. If the UML 2.0 actually

becomes a “language of languages”, then clearly task notations are one of the most

important candidates for a specific language that should be integrated into the UML.

However, to support this kind of integration, not only the semantic aspects need

improvement, but also flexibility at the notational level is crucial to devise usable

constructs. Nevertheless, we believe that UML 2.0 will bring many new opportunities

to improve the Wisdom notation.

VI.2.3.Tool issues

Much of the future developments mentioned before are closely related to CASE tool

support. Process management is clearly one area that could highly benefit from

adequate process-centric CASE tool support. Current UML modeling tools are not

focused on the requirements of software developers. There is substantial empirical

evidence that combining process (or method) information in modeling tools could

highly contribute for increased CASE tool adoption. That fact is more evident in small

organizations because they are highly focused on the development tools (typically

4GLs) and resist shifting tools for modeling purposes. Carefully integrating modeling

features in 4GLs seams an obvious solution to this problem. In addition, conventional

modeling tools do not support multiple levels of abstraction. Neglecting the fact that

developers think about models at different levels of abstraction, and failing to

adequately support traceability between those models, is clearly an impediment for

CASE tool adoption. Moreover, modeling tools don’t automate some of the more

obvious tasks that developers face everyday. For instance, rules for mapping class

diagrams to the relational schema are known for years, but this process is still

incipient in many mainstream UML tools.

One obvious future progress of the work presented in this thesis is the development

of the experiences described in Chapter 5. Automatic flexible generation of multiple

user interfaces is clearly the key to the raising problem of the diversity of information

appliances. We believe that the experiences described in this thesis can effectively lead

to more concrete results towards this direction, in particular, when the underlying

technologies mature.
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short-term, 27

Mental model

definition of, 22

designers', 22

forming, 22

Meta object facility. See MOF

Meta-CASE technology, 184

Metamodel Definitions

cooperating with common, 189

mission grid, 85

Mobi-D

MBDE, 60

model

definition of, 30

of domain specific information, 38

model architecture

definition of, 134

Model Human Processor, 16

as an estimation framework, 17

principles of operation, 18

Model-based

advantages of, 60

and STUDIO, 100

and trends in UI tools, 198

and UML, 216

and user-profiling, 102

and Wisdom, 127

artifacts, 128

descriptions of prototypes, 104

design of UIs, 77, 217

development environments, 60

development of interactive systems, 60

framework, 173

generation, 195

key-aspects of, 133

research and UIs, 203

tradition, 81, 88, 152

user-profiling, 158

Model-based Generation

and UI tools, 197

Modeling tools

and XMI, 187

models

analysis and design, 29

as full specification, 32

context of system development, 30

essential, 31

evolution of, 33

guiding the though process, 31

in Usage-centered Design, 98

levels of abstraction, 31

meaning of, 32

purpose and detail, 31

uses and advantages, 31

MOF, 152

and extension mechanisms, 40

and UML Metamodel, 38

and XMI, 186

and XMI architecture, 188

motor system, 17

Moving Target problem

and UI tools, 199

MVC

and appliances, 201

and Wisdom architecture, 134

and Wisdom UI architecture, 140

architectural model, 57

N

navigate

Wisdom stereotype, 175

Navigate association

Wisdom UML extension, 155

navigation

and AUIML, 206

and interaction model, 88

aspects, 178

in XMI documents, 191

maps, 178

Wisdom and AUIML, 207

navigational

paths, 100

relationships, 108

structure, 104, 105

structure and Usage-centered Design, 153

non-functional requirements

and essential task flows, 131

and essential use-cases, 147

and evolutionary ptototyping, 125

and requirements discovery, 163

and Wisdom analysis workflow, 166

and Wisdom design workflow, 169

and Wisdom model architecture, 137

in Wisdom design workflow, 170

Norman’s Cycle of Interaction, 23

stages of evaluation, 24

stages of execution, 23

notation

and collaboration, 89

and ECOOP'99 Workshop, 79

and history of UML, 33

and semantics, 80

and UI patterns, 182, 223

and Usage-centered Design, 98

and visual presentation, 12

dimension for integrating OO and HCI, 75

for task modeling, 178

for the Wisdom analysis model, 147

for the Wisdom dialogue model, 149

for the Wisdom interaction model, 148

for the Wisdom presentation model, 152

icons, 39

Idiom, 96

independent of, 35

introducing on a need-to-known basis, 158

of models, 30

OMT, 158

participatory, 146

standard, 120

task, 64

UML, 41

visual, 134

Wisdom, 112, 127, 142

Notations

task, 62

O

Object Constraint Language, 37

object modeling behavior

definition of, 35

object modeling structure

definition of, 35
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Object orientation, 29

definition of, 30

object-orientation

common misconceptions, 30

Object-Oriented

Analysis and Design. See Object-Oriented

Analysis and Design

Methods, 41, 157

modeling. See Object-Oriented Modeling

Process, 41

Object-oriented analysis and design, 32

historical perspective, 32

methods, 32

Object-Oriented Methods

problems with, 91

Object-Oriented Modeling

foundation of, 34

historical perspective, 29

object-oriented programming

and UI tools, 198

Object-Oriented Software Engineering, 42

analysis framework, 48

object-oriented user interface design. See OOUID

object-view, 105

OLE

and application formaeworks, 197

OMG

repository architecture, 188

ontology

of software architecture, 44

OO&HCI

methods, 90

OOUI

history of, 73

OOUID

definition of, 74

Operational Model

in Usage-centered Design, 98

Operational risks

in user role model, 144

optional task

and CTT, 151

organizational

behavior, 41

decisions, 32

life, 19

objectives, 54

obstacles faced by SSDs, 120

requirements, 107

requirements specification of in UCD, 53

size, 118

strcutures, 122

structures, 41

systems, 54

output element

map into interface components, 171

output element attribute

Wisdom UML extension, 155

Ovid

and presentation modeling, 153

differences to Wisdom method, 176

lifecycle, 93

method, 74

models, 94

UC-OO method, 93

Ovid method, 103, 105, 107

Ovid2AUIML project, 207

P

PAC

and Wisdom architecture, 133

and Wisdom UI architecture, 140

architectural model, 57

partial interface models

in MBDE, 62

Participatory

notation XE "notation:participatory"  for the

Wisdom user role model, 146

Participatory Design. See PD

participatory techniques, 157

role in Wisdom, 158

Path of Least Resistance

and UI tools, 199

pattern. See Software patterns

PD

definition of, 54

practices, 55

perceptual system, 16

petri nets

in MBDE, 64

Platform

capabilities and constraints in UEL, 51

Predictability

and UI tools, 199

preface. See UML extension mechanism

presentation

and PAC, 48

and Seeheim, 57

aspects, 105, 224, 225

aspects of patterns, 224

aspects of UI, 108

component, 58, 139, 167, 178

decoupling, 213

dimension, 48

element, 101

elements, 30, 215

entities, 138

language, 74

method of, 74

notation, 225

of UI and behavior, 90

options, 213

prototypes, 124

semantics of, 88

separation of, 79, 141

specific elements, 216

structure, 137

techniques, 222

technology, 215

visual, 12

visual and notation, 30

Presentation model

and AUIML, 204, 209

and automatic generation, 211

and CTT, 221

and UC-OO methods, 178

and UI Patterns, 224

and Wisdom genealogy, 159

and XForms, 217

AUIML, 206

in MBDE, 62

refinement of in Design workflow, 171

Wisdom, 138

Wisdom and AUIML, 207

Wisdom UML extensions for, 152
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Presentation modeling elements

comparation of, 154

presentation models

correspondence with dialogue model, 171

presentation objects

classification of, 153

identifying, 172

presenter, 105

process management

Wisdom user role model, 147

process view. See 4+1 view of architecture

process-re-engineering, 84

Proficiency

in user role model, 144

Profiles. See UML Profiles

programming languages, 29

progress measurement

importance of, 126

prototype

evolution of, 123

prototypes, 89

breadboards, 124

functional, 124

in requirements workflow, 163

pilot systems, 125

presentation, 124

prototyping

classification of, 124

evolutionary, 124

experimental, 124

exploratory, 124

from a process perspective, 124

in UCD, 53

in UC-OO process, 104

in user-centered development, 125

low and hi-fi, 157

rapid and UI tools, 193

Screen design standards in UEL, 51

Prototyping tools

and UI tools, 197

R

Raskin’s measure of efficiency

and usability, 14

Rational Unified Process, 42

Refine task association

Wisdom UML extension, 151

relate the internal and UI architectures

Wisdom activity, 167

renderer

and AUIML, 204

AUIML, 211

report generation tools

and XMI, 187

repositories

and MOF, 39

and XMI, 187

Representations

in PD, 55

requirement models

Wisdom, 136

requirements

and models, 31

requirements analysis

in UEL, 49

phase in UEL, 50

requirements discovery

Wisdom activity, 163

requirements engineering, 85, 91

requirements model

and UEL, 52

and Wisdom design workflow, 170

and Wisdom process, 127

and Wisdom requirements workflow, 165

Requirements Workflow

example Wisdom artifacts for, 164

Wisdom, 161

Wisdom, 162

resembles association

Wisdom UML extension, 146

Reuse

and UI patterns, 224

and Wisdom analysis workflow, 167

and XMI, 189

design principle, 26

rigor

methodological in PD, 55

risks

Wisdom user role model, 147

robustness

and Wisdom analysis workflow, 167

S

satisfaction

and usability, 14

definition of, 14

scenarios, 83, 103

in Idiom, 96

multiple, 131

Screen scrappers

UI tools, 196

Seeheim

and Wisdom architecture, 134

and Wisdom UI architecture, 140

architectural model, 57

semantic delegation

and Wisdom UI architecture, 140

semantic enhancement

and Wisdom UI architecture, 140

semantics

of models, 30

separation of concerns

and the Wisdom model architecture, 137

and Wisdom UI architecture, 139

in Wisdom design workflow, 169

seq dependency

Wisdom UML extension, 151

seqi dependency

Wisdom UML extension, 151

seven stages of action, 23

Simplicity

design principle, 26

Small companies

and software engineering, 114

small software developing companies. See SSDs

SMIF

and XMI architecture, 188

software architecture

definition of, 44

Software assets

and XMI, 187

Software development

custom sector, 116

methods and techniques, 41



Index

247

shrink-wrapped, 116

technology, 41

software engineering in the small, 114

differences in, 117

software engineering methods

lightweight, 111

software lifecycle

definition of, 41

software pattern

definition of, 47

software patterns

and UI, 223

and UI patterns, 224

and UML, 36

and Unified Process, 47

and XMI, 189

architectural, 47

in software architecture, 44

software process

cahotic, 157

definition of, 41

Software Process Improvement. See SPI

specializes association

Wisdom UML extension, 146

SPI

and CMM, 119

the impact of ability and reliability in, 119

versus organizational size and environment

turbulence, 118

Spiral Model, 157

SSDs

and data modeling, 171

and the Wisdom method, 157

and user-interface design in Wisdom, 173

Importance in US Economy, 116

informal survey on, 120

obstacles faced by, 120

problems with, 127

problems with and Wisdom, 123

Underestimating the Importance of, 114

Statecharts

in MBDE, 64

state-transition diagrams

in MBDE, 64

stereotype. See UML stereotype

sticky arrows

in essential task flows, 131

Stream-based Model Interchange Format. See SMIF

Structural view

of UIs, 77

Structure

design principle, 26

Structured Analysis, 29

Structured Design, 29

STUDIO

method, 74

Style guides

development in UEL, 51

subordinate

use-case, 131

Subscribe association

Wisdom UML extension, 149

syntax

of the user-interface. See

System acceptability

definition of, 15

definition of, 15

system actor

Wisdom UML extension, 146

system image

Definition of, 22

T

Tactics

MBDE, 60

Tadeus

MBDE, 60

task

and XForms, 218

as a way to identify interaction contexts, 172

definition of, 19

oriented approaches in MBDE, 63

task analysis, 84

and UC-OO methods, 177

in MBDE, 63

in Ovid, 94

in UC-OO process, 103

task class

stereotype, 138

Wisdom UML extension, 148

task classes

in Wisdom analysis workflow, 167

task descriptions

in Ovid, 94

task execution

context, 153

Task flows

detailing essential use-cases, 128

Task model

in MBDE, 61

in OOUID, 82

in Usage-centered Design, 99

notations, 63

Task modeling

and UML, 108

in Usage-centered design, 97

integrating into the UML, 152

tool support for, 220

tools support, 219

task models

and UC-OO methods, 92

in Idiom, 96

Task Notations

for MBDE, 62

task synthesis, 84

Task type, frequency and cognitive effort

in Wisdom design workflow, 172

task-based user interface design, 219

task-oriented approaches

classification of, 63

The Bridge

and Wisdom design workflow, 173

method, 101

Task object design technique, 173

The business model

OOSE definition of, 85

The internal system design

Wisdom activity, 170

Threshold

and UI tools, 198

Tolerance

design principle, 26

tool

integration and XMI, 187

Issues, 183
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support for metamodeling, 152

Toolkits

and UI tools, 193

Tools

in heterogeneous environments, 188

traceability, 91, 105

Transition

phase. See Unified Process

Trident

MBDE, 60

Tube

architectural model, 58

Tupis’00 workshop, 75

U

ubiquitous computing

and tends in UI tools, 200

UCD

and UC-OO methods, 92

design activities, 97

key activities, 53

principles of, 53

UC-OO

general process framework, 101

methods. See

Wisdom method, 111

UC-OO Methods

review of, 92

UEL, 85

and Object Oriented Software Engineering, 52

UI

automatic generation, 81

completeness check, 81

consistency check, 81

evaluation of, 80

exploration of, 81

in UEL, 49

OOUID, 88

UI architecture

and UC-OO methods, 177

different definitions, 133

in Wisdom design workflow, 169

Wisdom, 167

UI description language

appliance independent, 204

UI Description Languages

appliance-independent, 200

diversity of, 201

UI Design, 91

activity in Wisdom design workflow, 171

and creativity, 203

Detailed in UEL, 51

dimensions for integrating with software

development, 80

in UC-OO process, 105

UI development

informal survey on, 121

UI Implementation

in UC-OO Process, 105

UI metrics

and UI tools, 194

UI pattern. See UI pattern

definition of, 223

description of, 223

UI patterns

collections of, 223

UI Principles and Guidelines

in UC-OO process, 104

UI style

and Wisdom design workflow, 171

UI technology

and Wisdom design workflow, 171

UI tool

definition of, 193

UI Tools. See UI tools

advantages of, 193

and the UI design process, 194

Application Frameworks, 196

classification of, 193

division by layers, 193

Interactive Graphical Specification, 197

Language-Based Systems, 195

Model-based generation, 197

specification formats for, 195

trends in, 198

UIDE

MBDE, 60

UIDEs

and UI tools, 193

UIM

method, 100

UIML, 106

and appliances, 201

UIMS, 58

and trends in UI tools, 198

and UI tools. See

UIs

three views of, 77

UML

activity diagrams, 103, 160

and Case Tools, 36

and software development, 41

and task notations, 65

and Wisdom UI architecture, 139

and XMI, 186

definition of, 36

diagrams, 38, 103

diagrams for architecture description, 45

documents, 37

extensibility, 37

Extension mechanisms, 39

genealogy, 34

Goals of, 36

heavyweight extension mechanisms, 84, 152

hevayweight extension mechanism, 40

lightweight extension mechanism, 39, 142

metamodel, 38, 83

notation, 37

problems with, 38

profile for software development processes, 48

Profiles, 39

semantics, 37

specialization, 37

statecharts, 103

stereotype, 39

variations of, 39

XMI, 37

UML behavior diagrams

and UC-OO methods, 178

UML behavioral diagrams

and UI specification, 195

UML notation

and XMI architecture, 188

UML profile

definition of, 142
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for data modeling, 171

understand system context

Wisdom activity, 162

Unified Process, 42, 92

architectural representations, 44, 47

construction phase, 43

elaboration phase, 43

inception phase, 43

lifecycle, 43, 44

transition phase, 44

views, 78

UP

and Wisdom UI architecture, 139, 140

process and Wisdom process, 122

usability

and software development, 49

and system acceptability, 15

and UCD, 52

attributes of, 14

Cognitive frameworks of, 15

Constantine and Lockwood rules of, 14

definition of, 13

experts, 49

goal setting in UEL, 50

goals in UEL, 49

heuristics, 24

measuring, 14

objectives in UCD, 54

principles and rules, 24

Usability criteria

in user role model, 144

Wisdom user-rome model, 147

usability engineering

and HCI, 13

and information-appliances, 4

and labor productivity, 3

and object-oriented software development, 11

and small companies, 4

and the Internet, 4

cost-justifying, 3

definition of, 13

frameworks for, 49

goals in UEL, 52

lifecycle, 49

methods, 49

motivation for, 3

Usability Engineering Lifecycle, 87. See UEL

usability evaluation

in UEL, 49

in Wisdom analysis workflow, 167

usability goals

Wisdom user role model, 147

Usability inspection

in Usage-centered Design, 97

Usability Standards

in Usage-centered Design, 97

Usability Testing

and usability testing, 131

in UC-OO Process, 106

Usage-centered Design, 103

differences to Wisdom method, 176

UC-OO method, 96

Usage-centered Design method, 105, 107

use-case descriptions

differences between conventional OO approaches

and Wisdom, 129

use-case diagrams

and user role model, 145

use-case driven

definition of, 42

use-case model

definition of, 82

Unified Process definition of, 42

Wisdom, 136

use-case modeling, 103

differences between Wisdom and Usage-centered

Design, 128

use-case narrative

essential, 129

responsibility driven, 129

use-case view. See 4+1 view of architecture

use-cases

and history of OOUI, 74

concrete, 82

driving development, 42

extensions, 131

modeling, 91

prioritization in design workflow, 171

system centric nature of, 129

system-centric nature of, 83

Unified Process definition of, 42

variations, 131

User Centered Object-Oriented Methods. See UC-OO

methods

User Interface Management Systems. See UIMS

user model. See Mental Model

User Profile

in UC-OO process, 102

User profiling

and UC-OO methods, 177

in UEL, 50

Wisdom activity, 163

user role maps

definition of, 82

User role model

for Wisdom User-role Model, 144

in Usage-centered Design, 99

Wisdom, 135

Wisdom UML extensions for, 144

user roles

and actors, 145

user tasks

Wisdom dialogue model, 150

User’s Model

Ovid, 94

user-centered

CASE tools, 185

User-centered Design, 52, 91. See UCD

User-centered Object-Oriented. See UC-OO

User-Centered Object-Oriented Methods, 90

users

active involvement of in UCD, 53

Appropriate allocation of function in UCD, 53

assessment in UCD, 54

early focus on, 49

V

view

in Idiom, 153

in Ovid, 153

Rumbaugh definition of, 78

UML definition of, 78

View Model

in Idiom, 96

strurctural, 153
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View state model

Ovid, 94

views

and models, 31

Visibility, 27

design principle, 26

usability heuristic, 24, 26

visual modeling tools, 157

Visual programming

and UI tools, 196

voluntariness

definition of, 184

W

W3C

and appliances, 201

XForms, 213

Whitewater

definition of, 122

evolution, 125

widget

layout description, 196

widgets

and AUIML, 212

and UI tools, 193

windowing system

and UI tools, 193

Wisdom

and AUIML, 207

genealogy of, 157

mapping to XForms, 216

model architecture, 112

notation, 112

practical experience with, 181

process, 111

process framework, 122

workflows, 160

Wisdom architecture, 133

Wisdom dialogue model

and CTT transformation, 220

Wisdom method, 111, 157

differences to other UC-OO methods, 176

Wisdom Model Architecture, 134

definition of, 134

models in, 135

Wisdom notation, 142

and UI patterns, 223

Wisdom process

and the UC-OO framework, 123

as an improvement strategy, 123, 126

Wisdom profile, 142

Wisdom to AUIML

overview of transformation, 209

Wisdom UI architecture

and XForms, 218

differences to conventional UP architecture, 140

Wisdom User-Interface Architecture, 138

WISDOM'99 Workshop. See ECOOP'99 Workshop

WML

and appliances, 200

Work

reengineering, 86

reengineering in UEL, 51

workflow

definition of, 122

workflows, 122

WWW

and appliances, 200

X

Xforms, 106

and appliance independent UI description, 214

and AUIML, 207, 214

and flexible automatic generation, 213, 217

Data structures, 214

extensions, 214

goals of, 213

mapping from Wisdom, 215

Model, 214

User interface, 215

XHTML

and appliances, 201

and Xforms, 213

controls and XForms, 215

document types and modules, 201

modularization, 201

XMI, 186

and distributed intermittent environments, 189

and UML, 37

architecture of, 188

DTD Document Structure, 189

for interchaning task models, 152

practical effectiveness, 212

usage scenarios, 188

validation of documents, 192

Wisdom and AUIML, 208

XML, 106

and UML, 37

and XForms, 213

and XMI, 186

CTT schema, 220

metadata interchange. See XMI

validation and XMI, 192

XML Metadata Interchange. See XMI

xor

UML constraint, 151

XSLT

and CTT transformations, 220

Wisdom and AUIML, 207

XUL

and appliances, 200

XwingML

and appliances, 200
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