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This paper is concerned with the symbolic derivation and solution of the
minimal set of network equations in MapleV. By means of the table en-
vironment of MapleV it is possible to realize the essential features of an
object oriented design. All considered linear electric terminals are arranged
in a class hierarchy using the principle of multiple inheritance. The net-
work algorithm for setting up the equations is based on the recursive graph
searching method depth first. The algorithm is extended by a special sub-
structure technique, in order to be able to calculate complex networks with
a higher number of network elements. Finally, the feasibility of the proposed
approach will be demonstrated by two application examples.

1 Introduction

During the past decade, there have been some significant advances in the
area of computer algebra programs. Thus the symbolic calculation of math-
ematical models becomes more and more common. Especially in the field
of control theory most of the controller design methods require a symbolic
description of the controlled plant. Furthermore, these models allow to in-
vestigate the effects of parameter variations on the system behavior in an
easy manner.

We will present an efficient method for the automatic derivation of the
network equations in the computer algebra program MapleV. Thereby only
networks consisting of linear terminals are considered. The result can be
a system of ordinary differential equations or transfer functions. Without
great effort it is also possible to extend the network algorithm to handle
systems with nonlinear terminals.

2 Fundamentals of Network Theory

2.1 Kirchhoff Laws

We consider linear networks, which are formed by connecting together differ-
ent terminals like resistors, inductors, various ideal and controlled sources,
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operational amplifiers etc.. A connected graph G = {N, B} with the fi-
nite set of nodes N and the finite set of branches B gives a mathematical
description of the network, whereas the end points of a branch must be
nodes.

The current state is defined as a point i = (i\,ii, . . . ,i\B\) € -R'̂ ', where

|B | denotes the cardinality of the set B and 2% determines the current flowing
through the kth branch. Now the Kirchhoff current law can be expressed
as follows

with

(1 if the branch k is oriented to the node I
— 1 if the branch k is oriented off the node /
0 otherwise.

A current state i is said to be admissible, if i satisfies the Kirchhoff current
law. Hence we obtain from eq. (1) that i is admissible, iff i G KerD with
the linear map D : R^\ — » R^ defined in the form ]Td̂ & = #/ for some

The voltage state is given by a point u = (u*,u*, . . . ,u\*\\ €

where u* denotes the voltage drop across the Arth branch and f/Z'̂ 'j is

the dual space of /?'̂ L Defining the voltage potential t/ for the Zth node

(v € jR^*) the Kirchhoff voltage law takes the form

for all branches k. A voltage state u is said to be admissible, if u satisfies
the Kirchhoff voltage law. Eq. (2) shows, that u is admissible, iff u £ ImD*

with D* : (#W)* -* (#'*')* as the dual map of D.

Due to Tellegen's theorem^' \ which says that ui is zero, whenever u and
i are admissible, a new formulation of the Kirchhoff 's laws can be given.
Thereby Tellegen's theorem states much more than the fact that the total
power of the network is zero. Let Q be a basis of KerD and S a basis of
ImD*, then the Kirchhoff 's laws are expressed as

i = Qx and uQ = 0 or Si = 0 and u = yS (3)

for some suitable x and y.™
It is a well known fact from graph theory, that every connected graph

G = {N, B} contains a tree T = |JV, 5} with 5 C B.* Consider a con-

nected graph G = {N, B} with a tree T = { JV, B\, then Q of eq. (3) follows

from the currents of the branches in B \ B (this formulation will also be
used for the network algorithm in section 4) and S can be calculated by
means of the voltages of the branches in B.™
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2.2 Two-port Description

Fig. 1 shows a two-port with the input port voltage UT,\, the output port
voltage UT̂  and the four terminal currents 27̂ , 2̂ , 2̂ ,2 and 2̂ . which

fulfill the Kirchhoff current law 2̂ .1 -f i?̂  4- 2̂ ,2 + *r 2 — 0. Every port must

Two-port I "r.2
r,2 V

Figure 1: Representation of a two-port.

satisfy the so called port constraints

,2,

which reduce the number of current variables from three to two. One way to
describe the interrelationship among the four terminal variables of a two-
port is to write the port voltages in terms of the port currents. In this
manner we obtain the impedance matrix Z = {Zij (s)} with

j=l,2
{1, 2} ,

where the symbol ~ denotes the Laplace transform of the corresponding time
signals and s the Laplace variable. The impedances Z^ (s), ij € {1, 2} are
defined in the form

ZT,2=0
(4)

Beside the impedance matrix there exist many other possibilities for
two-port representation, namely the admittance matrix, two hybrid repre-
sentations and the transmission matrix. But since all these representations
can be easily converted into each other an additional investigation is not
necessary.

3 Object Structure of the Terminals in MapleV

Since a computer algebra program like MapleV does not directly support an
object oriented design, the table environment is used to implement a class
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concept. Thereby we attached importance to realize some essential features
of a class mechanism like they are known from C-h-h^ or CLOŜ .

An object model describes the structure of an object in a system and
contains information about the object name, the object type and the rela-
tionship to other objects, the object attributes and data and the methods
and operations which can be applied to this object. ̂ In Maple V such an
object is realized by means of the predefined data type table, which has the
useful property that its values can be symbolically indexed. The following
example illustrates how such an object is created in MapleV.

Electric_0bject := table ([
(init) = proc(x: name) global CORRECT; #initialization

if type( eval(x), name ) then
insert (x, BASIS) ;
x[typ] := {Electric_0bject}; #object type
x[chk] := Electric_0bject [chk] ; tfcheck operation

else
CORRECT := 1;
ERROR (x/ is wrong assigned')

fi
end,

(chk) = proc(x: name) true end

This Electric-Object serves as a superclass from which we derive all
further electric terminals. The initialization program (init) checks if the
object name is valid, determines the object type and inserts this object in
a globally defined table, called BASIS.

The set of all different objects is arranged in a class hierarchy. The con-
nections between the classes are called inheritance links, because a subclass
inherits slots and methods from its superclasses. Fig. 2 illustrates the hier-
archy levels of derivation for the electric terminals used in our program. As
one can see for special two-port elements the concept of multiple inheritance
is used, too.

In the next step we will construct the one-port class. A one-port is
initialized by its name and the names of the two end points, the nodes P
and M. Thereby a one-port branch is oriented to the node P and off the
node M. The function One-Port .Connection checks, if a branch is connected
with two nodes and if necessary, inserts the nodes in the global table BASIS.

One_Port : = table ( [
(init) = proc(x, P, M) ^initialization

Electric_0bject [init] (x) ; inheritance
x[typ] := x [typ] union {One_Port}; ^object type
x[p] := P; #node P
x[m] := M; #node M
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Electric Object

isoae u
with predefined
potential
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-

Figure 2: Terminals inheritance graph.

(con)
(chk)

x[con] := One.Port [con] ;
x[chk] := OneJPort [chk] ;

end,
One_Port_Connection,
proc (x) true end

^connection test
#check operation

Now it is rather easy to create new objects without great effort. How
this can be done, is demonstrated for a capacitor in the next few lines.

Capacitor := table ([
(init) = proc (x, P, M, c, uO) local xO;

if nargs = 4 then xO := 0
else xO := uO fi;
One.Port [init] (x, P, M);
x[typ] := x [typ] union {Capacitor};
x[C] := convert (c, rational);
x[du] := x[i]/s/x[C] + xO/s;

end,
(chk) = proc (x) true end

^initialization

inheritance
#object type
^capacity
ttvoltage drop

In order to guarantee an easy handling of these objects for the user, a
make procedure is implemented in the program. For example a capacitor
with the object name Cl, the nodes K3 and K4 and the capacity Cl .value
is created by calling the procedure

Make(Capacitor. Cl, K3, K4, C I.value).
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The make procedure takes its arguments to initialize the object by means
of the command line

Capacitor [init](CL K3, K4, Cl.Wwe) .

4 Network Algorithm

In this section we want to present an efficient method for the derivation and
solution of the minimal set of network equations. ™ The essential steps of
the algorithm are listed below:

1. Initialization and test phase:

- Setting the global and local variables to their initial values.

- Creation of the nodes of all terminals which are not yet inserted
in the global table BASIS.

- Checking the network graph, if it is connected.

- Finding all voltage sources that form a loop.

- Searching the node K0 with a predefined voltage potential (e.g.
ground). In our case KO is always unique, because we only con-
sider circuits, where the network as a whole satisfies the Kirchhoff
current law.

2. Determination of a tree of the network graph:

For this purpose the recursive graph searching algorithm depth first
is implemented. Thereby the tree must not contain a branch of type
current source, controlled current source or norator, because at these
terminals the voltage drop cannot be written as a function of the
current but it results from the connected network. Moreover if there
exists a node that cannot be reached in this manner, the algorithm is
terminated.

3. Calculation of the currents of the tree branches:

Starting at the end of the tree it is possible to calculate the currents
of the tree branches in terms of the currents of the nontree branches
by means of a recursive algorithm.

4. Calculation of the voltage potential of all nodes:

Since the tree was chosen in such a way, that there is a definite in-
terrelationship between the voltage drop and the current at all tree
branches the voltage potential of all nodes can be expressed in terms
of the currents of the nontree branches. The calculation starts at the
node KO.
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5. Derivation of the minimal set of network equations:

At this step one must distinguish two cases depending on the type of
the nontree branches:

a. If the nontree branches are not of type current source, controlled
current source or norator, then we obtain an equation according
to the fact that the voltage drop of this nontree branch equals
the voltage potential difference of the nodes belonging to this
branch.

b. If the nontree branches are of type current source, controlled
current source or norator, then additional equations which are
induced by this nontree branch must be taken into consideration.
So for example an ideal current source will always maintain a
specific current /o regardless of the voltage drop that may be
found across its terminals. In this case the additional equation is
trivial and results from the fact, that the current of the current
source branch equals IQ for all times.

Suppose G = {./V, B} is a connected network graph with a tree T =

|TV, S>, then the minimal number of network equations is B

6. Solution of network equations:

The system of linear network equations is symbolically solved by
means of internal MapleV procedures.

It turns out, that most of the calculation time is needed for the sym-
bolic solution of the network equations. In a computer algebra program
like MapleV an increasing amount of network elements leads to an over-
polynomial increase in the calculation time and memory. Thus a network
consisting of more than 100 terminals cannot be handled with the so far
presented algorithm.

To overcome this restraint we take advantage of the fact, that the calcu-
lation time and memory of a symbolic operation depend on the size of data
involved in this operation and not primarily on the amount of operations.̂
This is also the reason, why in a computer algebra program the determinant
of an n x n matrix is calculated by means of Cramer's rule, where (n\) n
symbolic operations are required, and not, as one might expect, with the
Gaufi elimination, where only n* symbolic operations are necessary.

The idea is to split the electric network into several subcircuits, whereas
a subcircuit is chosen in such a way, that it can be modeled by a two-
port. The network equations are recursively calculated from the top to the
innermost subcircuit layer and then the subcircuit solutions are substituted
the other way round. In a certain layer a subcircuit is only represented
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by its two-port parameters, like e.g. the impedances of eq. (4). In order
to apply this idea to the network algorithm, the following steps must be
additionally executed.

7. Detection of subcircuits:

From the global table BASIS all two-ports of type impedance matrix
and transmission matrix must be found out and the relevant port data
(node voltage potentials) are stored.

8. Recursion:

Now with the data of the subcircuit we go back to step 1 of our
algorithm and determine the solution of the network equations.

9. Calculation of the substitution table:

Using eq. (4) the impedances of the subcircuit are calculated and
stored in a substitution table.

5 Applications

5.1 A Simple Example - Active Filter

Fig. 3 illustrates the active filter circuit of investigation. The corresponding

Figure 3: Filter circuit.

input file for the calculation has the form:

Make(VSource,U_l, KO, Kl, Ul);
Make(Resistor,R_L Kl, K2. Rl);
Make(Capacitor,C_l, K2, K3, Cl);
Make(Opr,OAJL K2, KO, K3, KO);
Make(Resistor,R_5, Kl, K4, R5);
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Now the current of each branch and the voltage potential of each node
are available as functions of the voltage source U\. Thus, the calculation of
a transfer function is done with relative ease - so e.g. taking C/2 to be the

output of the system the transfer function G (s) = & follows as

^ " 4-

5.2 Thermal Model for an Injection Moulding Machine

It is a well known fact from literature®, that the thermal behavior of a sys-
tem with negligible heat radiation can be modeled by a linear equivalent
thermal network. Thereby the thermal impedances depend on the compo-
nent geometry and material data, whereas also the case of transient heat
conduction is considered by means of thermal capacities. A general cylin-
drical lumped component and its corresponding thermal network is shown
in fig. (4) with the thermal impedances RI. %, % and Rm, the thermal
capacity C, the heat source P, the temperature of the surroundings 0% and
0 (x) denotes the temperature at the point x. For the necessary assumptions
and formulas we refer to the respective literature^' *.

Figure 4: General cylinder component and equivalent thermal network.

This modeling technique was tested on an injection moulding machine.
The geometry of the machine was reduced to about 10 cylinder components
given in fig. (4). All these components together with the additional ther-
mal impedances for the heat convection lead to an interconnected thermal
network with about 60 elements. A symbolic calculation of this network
on a 486AT/100MHz with 32MB RAM is only possible using the subcircuit
technique discussed in section 4. Using 8 subcircuits the calculation takes
2 minutes.

This modeling technique is an alternative to conventional identification
methods. Moreover the great advantage of the symbolic description is. that
one can easily investigate the effects of certain system parameters (like in our
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case e.g. the thermal conductivity) on the system outputs. Comparisons
between measurement results of the injection moulding machine and the
model output show a very good correspondence.
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