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Design Heuristics

• Object-Oriented Design Heuristics by Arthur
Riel, Addison-Wesley, 1996.
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Goal

• Insights into oo design improvement.

• More than sixty guidelines are language-
independent and allow one to rate the
integrity of a software design.

• The heuristics are not written as hard and
fast rules; they are meant to serve as
warning mechanisms which allow the
flexibility of ignoring the heuristic as
necessary.



Classes and Objects: The
Building Blocks of the
Object-Oriented Paradigm
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Hidding Data

• Heuristic #2.1
All data should be hidden within its class
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No Dependence on Clients

• Heuristic #2.2
Users of a class must be dependent on its
public interface, but a class should not be
dependent on its users
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Support Class = one Clear
Responsibility

• Heuristic #2.3
Minimize the number of messages in the
protocol of a class
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Supporting Polymorphism and
Communication

• Heuristic #2.4
Implement a minimal public interface which all
classes understand (e.g. operations such as copy
(deep versus shallow),  equality testing,  pretty
printing,  parsing from a ASCII description, etc.).

• To send the same message to different objects
• To be able to substitute them

• Example: Object>>printString, Object>>copy…
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Clear Public Interface

• Heuristic #2.5
Do not put implementations details such as
common-code private functions into the public
interface of a class

• Example:
☞ Private/protected in C++
☞ Private method categories in Smalltalk

• Do not clutter the public interface of a class with
items that clients are not able to use or are not
interested in using
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Minimize Classes Interdependencies

• Heuristic #2.7
A class should only use operations in the
public interface of another class or have
nothing to do with that class
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Support a Class = one Responsibility

• Heuristic #2.8
A class should capture one and only one key
abstraction
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Strengthen Encapsulation

• Heuristic #2.9
Keep related data and behavior in one place

• Spin off non related information into another
class

• -> Move Data Close to Behavior
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Object: a Cohesive Entity

• Most of the methods defined on a class
should be using most of the instance variables
most of the time
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Roles vs. Classes

• Heuristic #2.11
Be sure the abstractions you model are
classes and not the roles objects play

• Are mother and father classes or role of
Person?

• No magic answer: Depends on the domain
• Do they have different behavior? So they are

more distinct classes



Topologies of Action-
Oriented Vs. Object-
Oriented Applications



(c) 2006, Ducasse, Gall

Support one Class = one
Responsibility

• Heuristic #3.1
Distribute system intelligence horizontally as
uniformly as possible, i.e., the top-level
classes in a design should share the work
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Support one Class = one
Responsibility

• Heuristic #3.2
Do not create god classes/objects (classes
that control all other classes). Be very
suspicious of classes whose name contains
Driver, Manager, System, SubSystem
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Model and Interfaces

• Heuristic #3.5
Model should never be dependent on the
interface that represents it. The interface
should be dependent on the model

• What is happening if you want two different
UIs for the same model?
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Basic Checks for God Class Detection

• Heuristic #3.3
Beware of classes that have many accessor methods
defined in their public interface. May imply that data
and behavior is not being kept at the same place

• Heuristic #3.4
Beware of classes having methods that only operate
on a proper subset of the instance variables.
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One Class: One Responsibility

• One responsibility: coordinating and using
other objects
☞OrderedCollection maintains a list of objects

sorted by arrival order: two indexes and a list

• Class should not contain more objects than a
developer can fit in his short-term memory.
(6 or 7 is the average value)
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Classes Evaluation

• Model the real world whenever possible

• Eliminate irrelevant classes

• Eliminate classes that are outside of the system

• A method is not a class. Be suspicious of any class
whose name is a verb or derived from a verb,
especially those that only one piece of meaningful
behavior



The Relationships Between
Classes and Objects
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Minimizing Coupling between Classes

• Minimize the number of classes with which
another class collaborates

• Minimize the number of messages sent
between a class and its collaborators
☞Counter example: Visitor pattern

• Minimize the number of different messages
sent between a class and its collaborators
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About the Use Relationship

• When an object use another one it should get a
reference on it to interact with it

• Ways to get references
☞ (containment) instance variables of the class
☞ Passed has argument

☞ Ask to a third party object (mapping…)

☞ Create the object and interact with it (coded in class:
kind of DNA)
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Containment and Uses

• Heuristic #4.5
If a class contains object of another class, then the
containing class should be sending messages to the
contained objects (the containment relationship
should always imply a uses relationships)

• A object may know what it contains but it should
not know who contains it.
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Coherence in Classes

• Heuristic #4.6
Most of the methods defined on a class should be
using most of the data members most of the time.

• Heuristic #4.7
Classes should not contain more objects than a
developer can fit in his or her short term memory.
A favorite value for this number is six.

• Heuristic #4.8
Distribute system intelligence vertically down
narrow and deep containment hierarchies.
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Representing Semantics Constraints

• How do we represent possibilities or constraints
between classes?
☞ Appetizer, entrée, main dish…

☞ No peas and corn together…

• It is best to implement them in terms of class
definition but this may lead to class proliferation

• => implemented in the creation method
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Objects define their logic

• Heuristic #4.9
When implementing semantic constraints in
the constructor of a class, place the
constraint definition as far down a
containment hierarchy as the domain allows

=> Objects should contain the semantic
constraints about themselves
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Third party constraint holder

• Heuristic #4.11
The semantic information on which a constraint is
based is best placed in a central third-party object
when that information is volatile.

• Heuristic #4.12
The semantic information on which a constraint is
based is best decentralized among the classes
involved in the constraint when that information is
stable.



The Inheritance
Relationship
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Classes - Subclasses

• Superclass should not know its subclasses

• Subclasses should not use directly data of
superclasses

• If two or more classes have common data
and behavior, they should inherit from a
common class that captures those data and
behavior
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Inheritancs for Specialization

• Heuristic #5.1
Inheritance should only be used to model a
specialization hierarchy.

• Vererbung ist ein White-box-Entwurf
• Aggregation oder Komposition definieren einen

Black-box-Entwurf
• Richtiger Einsatz von Vererbung erleichtert das

Programmverständnis enorm!
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Base Class Knowledge

• Heuristic #5.2
Derived classes must have knowledge of
their base class by definition,  but base
classes should not know anything about their
derived classes.
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Base Class Data is Private

• Heuristic #5.3
• All data in a base class should be private,  i.e.

do not use protected data.
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Inheritance Depth

• Heuristic #5.4
Theoretically,  inheritance hierarchies should
be deep,  i.e. the deeper the better.

• Heuristic #5.5
Pragmatically,  inheritance hierarchies should
be no deeper than an average person can
keep in their short term memory.  A popular
value for this depth is six.
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Controversial

• All abstract classes must be base classes

• All base classes should be abstract classes
☞> Not true they can have default value method
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Interfaces

• Heuristic #5.8
Factor the commonality of data,  behavior,  and/or
interface as high as possible in the inheritance
hierarchy.

• Heuristic #5.10
If two or more classes have common data and
behavior (i.e. methods) then those classes should
each inherit from a common base class which
captures those data and methods.
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Inheritance (2)

• Heuristic #5.9
If two or more classes only share common data (no
common behavior) then that common data should
be placed in a class which will be contained by each
sharing class.

• Heuristic #5.11
If two or more classes only share common interface
(i.e. messages,  not methods) then they should
inherit from a common base class only if they will
be used polymorphically.
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Avoid Type Checks

• Explicit case analysis on the type of an objects is
usually an error.

• An object is responsible of deciding how to answer
to a message

• A client should send message and not discriminate
messages sent based on receiver type
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Dynamic semantics

• Heuristic #5.14
Do not model the dynamic semantics of a class
through the use of the inheritance relationship.  An
attempt to model dynamic semantics with a static
semantic relationship will lead to a toggling of types
at runtime.

• Heuristic #5.15
Do not turn objects of a class into derived classes
of the class.  Be very suspicious of any derived class
for which there is only one instance.



Multiple Inheritance
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Prove Multiple Inheritance

• Heuristic #6.1
• If you have an example of multiple

inheritance in your design,  assume you have
made a mistake and prove otherwise.
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Question it

• Heuristic #6.2
• Whenever there is inheritance in an object-oriented

design ask yourself two questions:  1) Am I a special
type of the thing I'm inheriting from?  and 2) Is the
thing I'm inheriting from part of me?

• Heuristic #6.3
• Whenever you have found a multiple inheritance

relationship in a object-oriented design be sure that
no base class is actually a derived class of another
base class,  i.e. accidental multiple inheritance.



The Association
Relationship
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Containment

• Heuristic #7.1
• When given a choice in an object-oriented

design between a containment relationship
and an association relationship, choose the
containment relationship.



Class Specific Data and
Behavior



(c) 2006, Ducasse, Gall

Use of Class Variables & Methods

• Heuristic #8.1
• Do not use global data or functions to

perform bookkeeping information on the
objects of a class,  class variables or methods
should be used instead.
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Summary

• Use the guidelines for
☞insightful analysis
☞critical reviews
☞as guide for better oo design
☞to build reusable components and

frameworks


