Univ.Prof. Dipl.-Ing. Dr. techn.
Harald GALL

Universitat Zurich
Technische Universitat Wien

Design Heuristics

* Object-Oriented Design Heuristics by Arthur
Riel, Addison-Wesley, 1996.

(c) 2006, Ducasse, Gall

e Insights into 0o design improvement.

e More than are language-
independent and allow one to rate the
integrity of a software design.

e The are not written as hard and
fast rules; they are meant to serve
which allow the
flexibility of ignoring the heuristic as
necessary.

Classes and Objects: The
Building Blocks of the
Object-Oriented Paradigm

e Heuristic #2.1
All data should be hidden within its class

* Heuristic #2.2
Users of a class must be dependent on its
public interface, but a class should not be
dependent on its users

* Heuristic #2.3
Minimize the number of messages in the
protocol of a class

Heuristic #2.4

Implement a minimal public interface which all
classes understand (e.g. operations such as copy
(deep versus shallow), equality testing, pretty
printing, parsing from a ASCII description, etc.).

To send the same message to different objects

To be able to substitute them

Example: Object>>printString, Object>>copy...

Heuristic #2.5

Do not put implementations details such as
common-code private functions into the public
interface of a class

Example:
= Private/protected in C++
= Private method categories in Smalltalk

Do not clutter the public interface of a class with
items that clients are not able to use or are not
interested in using

* Heuristic #2.7
A class should only use operations in the
public interface of another class or have
nothing to do with that class

e Heuristic #2.8

A class should capture one and only one key
abstraction

* Heuristic #2.9
Keep related data and behavior in one place

* Spin off non related information into another
class

e -> Move Data Close to Behavior

* Most of the methods defined on a class
should be using most of the instance variables
most of the time

e Heuristic #2.1 |

Be sure the abstractions you model are
classes and not the roles objects play

e Are mother and father classes or role of
Person?

* No magic answer: Depends on the domain

* Do they have different behavior? So they are
more distinct classes

Topologies of Action-
Oriented Vs. Object-
Oriented Applications

* Heuristic #3.1
Distribute system intelligence horizontally as
uniformly as possible, i.e., the top-level
classes in a design should share the work

* Heuristic #3.2
Do not create god classes/objects (classes
that control all other classes). Be very
suspicious of classes whose name contains
Driver, Manager, System, SubSystem

* Heuristic #3.5
Model should never be dependent on the
interface that represents it. The interface
should be dependent on the model

* What is happening if you want two different
Uls for the same model?

Heuristic #3.3

Beware of classes that have many accessor methods
defined in their public interface. May imply that data
and behavior is not being kept at the same place

Heuristic #3.4
Beware of classes having methods that only operate
on a proper subset of the instance variables.

* One responsibility: coordinating and using
other objects

= OrderedCollection maintains a list of objects
sorted by arrival order: two indexes and a list

* Class should not contain more objects than a
developer can fit in his short-term memory.
(6 or 7 is the average value)

Model the real world whenever possible
Eliminate irrelevant classes
Eliminate classes that are outside of the system

A method is not a class. Be suspicious of any class
whose name is a verb or derived from a verb,

especially those that only one piece of meaningful
behavior

The Relationships Between
Classes and Objects

e Minimize the number of classes with which
ahother class collaborates

* Minimize the number of messages sent
between a class and its collaborators
= Counter example: Visitor pattern

* Minimize the number of different messages
sent between a class and its collaborators

* When an object use another one it should get a
reference on it to interact with it

* Ways to get references
= (containment) instance variables of the class
= Passed has argument
= Ask to a third party object (mapping...)

= Create the object and interact with it (coded in class:
kind of DNA)

Heuristic #4.5
If a class contains object of another class, then the

containing class should be sending messages to the
contained objects (the containment relationship
should always imply a uses relationships)

A object may know what it contains but it should
not know who contains it.

* Heuristic #4.6
Most of the methods defined on a class should be
using most of the data members most of the time.

* Heuristic #4.7
Classes should not contain more objects than a
developer can fit in his or her short term memory.
A favorite value for this number is six.

* Heuristic #4.8
Distribute system intelligence vertically down
narrow-and deep containment hierarchies.

How do we represent possibilities or constraints
between classes!?

= Appetizer, entrée, main dish...

= No peas and corn together...

It is best to implement them in terms of class
definition but this may lead to class proliferation

=> implemented in the creation method

* Heuristic #4.9
When implementing semantic constraints in
the constructor of a class, place the
constraint definition as far down a
containment hierarchy as the domain allows

=> Objects should contain the semantic
constraints about themselves

Heuristic #4.1 |

The semantic information on which a constraint is
based is best placed in a central third-party object
when that information is volatile.

Heuristic #4.12

The semantic information on which a constraint is
based is best decentralized among the classes
involved in the constraint when that information is

stable.

The Inheritance
Relationship

* Superclass should not know its subclasses

* Subclasses should not use directly data of
superclasses

* If two or more classes have common data
and behavior, they should inherit from a
common class that captures those data and
behavior

Heuristic #5. |

Inheritance should only be used to model a
specialization hierarchy.

Vererbung ist ein White-box-Entwurf

Aggregation oder Komposition definieren einen
Black-box-Entwurf

Richtiger Einsatz von Vererbung erleichtert das
Programmverstandnis enorm!

* Heuristic #5.2
Derived classes must have knowledge of
their base class by definition, but base
classes should not know anything about their
derived classes.

e Heuristic #5.3

* All data in a base class should be private, i.e.
do not use protected data.

* Heuristic #5.4
Theoretically, inheritance hierarchies should
be deep, i.e. the deeper the better.

* Heuristic #5.5
Pragmatically, inheritance hierarchies should
be no deeper than an average person can
keep in their short term memory. A popular
value for this depth is six.

e All abstract classes must be base classes

 All base classes should be abstract classes

=> Not true they can have default value method

* Heuristic #5.8
Factor the commonality of data, behavior, and/or
interface as high as possible in the inheritance
hierarchy.

 Heuristic #5.10

f two or more classes have common data and
behavior (i.e. methods) then those classes should
each inherit from a common base class which
captures those data and methods.

Heuristic #5.9

If two or more classes only share common data (no
common behavior) then that common data should
be placed in a class which will be contained by each
sharing class.

Heuristic #5.1 |

If two or more classes only share common interface
(i.e. messages, not methods) then they should
inherit from a common base class only if they will
be used polymorphically.

* Explicit case analysis on the type of an objects is
usually an error.

* An object is responsible of deciding how to answer
to a message

* A client should send message and not discriminate
messages sent based on receiver type

Heuristic #5.14

Do not model the dynamic semantics of a class
through the use of the inheritance relationship. An
attempt to model dynamic semantics with a static
semantic relationship will lead to a toggling of types
at runtime.

Heuristic #5.15

Do not turn objects of a class into derived classes
of the class. Be very suspicious of any derived class
for which there is only one instance.

Multiple Inheritance

e Heuristic #6.|

* If you have an example of multiple
inheritance in your design, assume you have
made a mistake and prove otherwise.

Heuristic #6.2

Whenever there is inheritance in an object-oriented
design ask yourself two questions: |) Am | a special
type of the thing I'm inheriting from? and 2) Is the
thing I'm inheriting from part of me?

Heuristic #6.3

Whenever you have found a multiple inheritance
relationship in a object-oriented design be sure that
no base class is actually a derived class of another
base class, i.e. accidental multiple inheritance.

The Association
Relationship

e Heuristic #/.1

* When given a choice in an object-oriented
design between a containment relationship
and an association relationship, choose the
containment relationship.

Class Specific Data and
Behavior

e Heuristic #8.1

* Do not use global data or functions to
perform bookkeeping information on the
objects of a class, class variables or methods
should be used instead.

* Use the guidelines for

winsightful analysis
wCritical reviews
=aS guide for better 0o design

=to build reusable components and
frameworks

