
Object-Oriented Design
Heuristics

Univ.Prof. Dipl.-Ing. Dr. techn.

Harald GALL

Universität Zürich
Technische Universität Wien

(c) 2006, Ducasse, Gall

Design Heuristics

• Object-Oriented Design Heuristics by Arthur
Riel, Addison-Wesley, 1996.

(c) 2006, Ducasse, Gall

Goal

• Insights into oo design improvement.

• More than sixty guidelines are language-
independent and allow one to rate the
integrity of a software design.

• The heuristics are not written as hard and
fast rules; they are meant to serve as
warning mechanisms which allow the
flexibility of ignoring the heuristic as
necessary.

Classes and Objects: The
Building Blocks of the
Object-Oriented Paradigm

(c) 2006, Ducasse, Gall

Hidding Data

• Heuristic #2.1
All data should be hidden within its class

(c) 2006, Ducasse, Gall

No Dependence on Clients

• Heuristic #2.2
Users of a class must be dependent on its
public interface, but a class should not be
dependent on its users

(c) 2006, Ducasse, Gall

Support Class = one Clear
Responsibility

• Heuristic #2.3
Minimize the number of messages in the
protocol of a class

(c) 2006, Ducasse, Gall

Supporting Polymorphism and
Communication

• Heuristic #2.4
Implement a minimal public interface which all
classes understand (e.g. operations such as copy
(deep versus shallow), equality testing, pretty
printing, parsing from a ASCII description, etc.).

• To send the same message to different objects
• To be able to substitute them

• Example: Object>>printString, Object>>copy…

(c) 2006, Ducasse, Gall

Clear Public Interface

• Heuristic #2.5
Do not put implementations details such as
common-code private functions into the public
interface of a class

• Example:
☞ Private/protected in C++
☞ Private method categories in Smalltalk

• Do not clutter the public interface of a class with
items that clients are not able to use or are not
interested in using

(c) 2006, Ducasse, Gall

Minimize Classes Interdependencies

• Heuristic #2.7
A class should only use operations in the
public interface of another class or have
nothing to do with that class

(c) 2006, Ducasse, Gall

Support a Class = one Responsibility

• Heuristic #2.8
A class should capture one and only one key
abstraction

(c) 2006, Ducasse, Gall

Strengthen Encapsulation

• Heuristic #2.9
Keep related data and behavior in one place

• Spin off non related information into another
class

• -> Move Data Close to Behavior

(c) 2006, Ducasse, Gall

Object: a Cohesive Entity

• Most of the methods defined on a class
should be using most of the instance variables
most of the time

(c) 2006, Ducasse, Gall

Roles vs. Classes

• Heuristic #2.11
Be sure the abstractions you model are
classes and not the roles objects play

• Are mother and father classes or role of
Person?

• No magic answer: Depends on the domain
• Do they have different behavior? So they are

more distinct classes

Topologies of Action-
Oriented Vs. Object-
Oriented Applications

(c) 2006, Ducasse, Gall

Support one Class = one
Responsibility

• Heuristic #3.1
Distribute system intelligence horizontally as
uniformly as possible, i.e., the top-level
classes in a design should share the work

(c) 2006, Ducasse, Gall

Support one Class = one
Responsibility

• Heuristic #3.2
Do not create god classes/objects (classes
that control all other classes). Be very
suspicious of classes whose name contains
Driver, Manager, System, SubSystem

(c) 2006, Ducasse, Gall

Model and Interfaces

• Heuristic #3.5
Model should never be dependent on the
interface that represents it. The interface
should be dependent on the model

• What is happening if you want two different
UIs for the same model?

(c) 2006, Ducasse, Gall

Basic Checks for God Class Detection

• Heuristic #3.3
Beware of classes that have many accessor methods
defined in their public interface. May imply that data
and behavior is not being kept at the same place

• Heuristic #3.4
Beware of classes having methods that only operate
on a proper subset of the instance variables.

(c) 2006, Ducasse, Gall

One Class: One Responsibility

• One responsibility: coordinating and using
other objects
☞OrderedCollection maintains a list of objects

sorted by arrival order: two indexes and a list

• Class should not contain more objects than a
developer can fit in his short-term memory.
(6 or 7 is the average value)

(c) 2006, Ducasse, Gall

Classes Evaluation

• Model the real world whenever possible

• Eliminate irrelevant classes

• Eliminate classes that are outside of the system

• A method is not a class. Be suspicious of any class
whose name is a verb or derived from a verb,
especially those that only one piece of meaningful
behavior

The Relationships Between
Classes and Objects

(c) 2006, Ducasse, Gall

Minimizing Coupling between Classes

• Minimize the number of classes with which
another class collaborates

• Minimize the number of messages sent
between a class and its collaborators
☞Counter example: Visitor pattern

• Minimize the number of different messages
sent between a class and its collaborators

(c) 2006, Ducasse, Gall

About the Use Relationship

• When an object use another one it should get a
reference on it to interact with it

• Ways to get references
☞ (containment) instance variables of the class
☞ Passed has argument

☞ Ask to a third party object (mapping…)

☞ Create the object and interact with it (coded in class:
kind of DNA)

(c) 2006, Ducasse, Gall

Containment and Uses

• Heuristic #4.5
If a class contains object of another class, then the
containing class should be sending messages to the
contained objects (the containment relationship
should always imply a uses relationships)

• A object may know what it contains but it should
not know who contains it.

(c) 2006, Ducasse, Gall

Coherence in Classes

• Heuristic #4.6
Most of the methods defined on a class should be
using most of the data members most of the time.

• Heuristic #4.7
Classes should not contain more objects than a
developer can fit in his or her short term memory.
A favorite value for this number is six.

• Heuristic #4.8
Distribute system intelligence vertically down
narrow and deep containment hierarchies.

(c) 2006, Ducasse, Gall

Representing Semantics Constraints

• How do we represent possibilities or constraints
between classes?
☞ Appetizer, entrée, main dish…

☞ No peas and corn together…

• It is best to implement them in terms of class
definition but this may lead to class proliferation

• => implemented in the creation method

(c) 2006, Ducasse, Gall

Objects define their logic

• Heuristic #4.9
When implementing semantic constraints in
the constructor of a class, place the
constraint definition as far down a
containment hierarchy as the domain allows

=> Objects should contain the semantic
constraints about themselves

(c) 2006, Ducasse, Gall

Third party constraint holder

• Heuristic #4.11
The semantic information on which a constraint is
based is best placed in a central third-party object
when that information is volatile.

• Heuristic #4.12
The semantic information on which a constraint is
based is best decentralized among the classes
involved in the constraint when that information is
stable.

The Inheritance
Relationship

(c) 2006, Ducasse, Gall

Classes - Subclasses

• Superclass should not know its subclasses

• Subclasses should not use directly data of
superclasses

• If two or more classes have common data
and behavior, they should inherit from a
common class that captures those data and
behavior

(c) 2006, Ducasse, Gall

Inheritancs for Specialization

• Heuristic #5.1
Inheritance should only be used to model a
specialization hierarchy.

• Vererbung ist ein White-box-Entwurf
• Aggregation oder Komposition definieren einen

Black-box-Entwurf
• Richtiger Einsatz von Vererbung erleichtert das

Programmverständnis enorm!

(c) 2006, Ducasse, Gall

Base Class Knowledge

• Heuristic #5.2
Derived classes must have knowledge of
their base class by definition, but base
classes should not know anything about their
derived classes.

(c) 2006, Ducasse, Gall

Base Class Data is Private

• Heuristic #5.3
• All data in a base class should be private, i.e.

do not use protected data.

(c) 2006, Ducasse, Gall

Inheritance Depth

• Heuristic #5.4
Theoretically, inheritance hierarchies should
be deep, i.e. the deeper the better.

• Heuristic #5.5
Pragmatically, inheritance hierarchies should
be no deeper than an average person can
keep in their short term memory. A popular
value for this depth is six.

(c) 2006, Ducasse, Gall

Controversial

• All abstract classes must be base classes

• All base classes should be abstract classes
☞> Not true they can have default value method

(c) 2006, Ducasse, Gall

Interfaces

• Heuristic #5.8
Factor the commonality of data, behavior, and/or
interface as high as possible in the inheritance
hierarchy.

• Heuristic #5.10
If two or more classes have common data and
behavior (i.e. methods) then those classes should
each inherit from a common base class which
captures those data and methods.

(c) 2006, Ducasse, Gall

Inheritance (2)

• Heuristic #5.9
If two or more classes only share common data (no
common behavior) then that common data should
be placed in a class which will be contained by each
sharing class.

• Heuristic #5.11
If two or more classes only share common interface
(i.e. messages, not methods) then they should
inherit from a common base class only if they will
be used polymorphically.

(c) 2006, Ducasse, Gall

Avoid Type Checks

• Explicit case analysis on the type of an objects is
usually an error.

• An object is responsible of deciding how to answer
to a message

• A client should send message and not discriminate
messages sent based on receiver type

(c) 2006, Ducasse, Gall

Dynamic semantics

• Heuristic #5.14
Do not model the dynamic semantics of a class
through the use of the inheritance relationship. An
attempt to model dynamic semantics with a static
semantic relationship will lead to a toggling of types
at runtime.

• Heuristic #5.15
Do not turn objects of a class into derived classes
of the class. Be very suspicious of any derived class
for which there is only one instance.

Multiple Inheritance

(c) 2006, Ducasse, Gall

Prove Multiple Inheritance

• Heuristic #6.1
• If you have an example of multiple

inheritance in your design, assume you have
made a mistake and prove otherwise.

(c) 2006, Ducasse, Gall

Question it

• Heuristic #6.2
• Whenever there is inheritance in an object-oriented

design ask yourself two questions: 1) Am I a special
type of the thing I'm inheriting from? and 2) Is the
thing I'm inheriting from part of me?

• Heuristic #6.3
• Whenever you have found a multiple inheritance

relationship in a object-oriented design be sure that
no base class is actually a derived class of another
base class, i.e. accidental multiple inheritance.

The Association
Relationship

(c) 2006, Ducasse, Gall

Containment

• Heuristic #7.1
• When given a choice in an object-oriented

design between a containment relationship
and an association relationship, choose the
containment relationship.

Class Specific Data and
Behavior

(c) 2006, Ducasse, Gall

Use of Class Variables & Methods

• Heuristic #8.1
• Do not use global data or functions to

perform bookkeeping information on the
objects of a class, class variables or methods
should be used instead.

(c) 2006, Ducasse, Gall

Summary

• Use the guidelines for
☞insightful analysis
☞critical reviews
☞as guide for better oo design
☞to build reusable components and

frameworks

