
27

Object Oriented Extensions to
VHDL, The LaMI proposal

Judith BENZAKKI, Bachir DJAFRI

LaMI, Universite d 'Evry
Cours Monseigneur Romero 91025 Evry , FRANCE,

{benzakki, djafri}@lami.univ-evry·fr

Abstract

VHDL[14] is a language for describing digital hardware. It provides many at

tractive features and supports an efficient design methodology. However, there

are certain limitations to the power of the language that can be addressed, at

least partially, by Object Oriented Extensions. Several proposals were made

to extend VHDL and add mechanisms from the object oriented domain. In

this paper we describe the study, carried out by the LaMI laboratory, of an

other approach to Object Oriented extensions to VHDL in view of a future

revision of the language. Related works will be reviewed and the motivations

for this proposal will be introduced and illustrated through examples.

Keywords

VHDL, object, inheritance, encapsulation, message-passing, polymorphism,

reusability

1 INTRODUCTION

Although design automation tools have sped up the design process, the steady

increase in digital system complexity keeps up the challenge faced by the

designer. Consequently, alternative design methods must be found to further

reduce development time[2][3]. In the software domain, the introduction of

object oriented methods has revolutionized the process of developing software,

and greatly improved re-usability and maintainability[7][8]. Abstraction and

management of complexity are the main drivers behind current efforts to add

object oriented extensions to VHDL.

A language is defined as being an object oriented language if it supports

objects, classes and inheritance. These concepts will be defined in this pa

per and we will show through examples how these extensions can improve

process development and endow the system designer with more abstraction

capabilities.

In VHDL, one of the most important concepts is the component, which

©IFIP 1997. Published by Chapman & Hall

Object oriented extensions to VHDL. the LaM! proposal 335

encapsulates a "black box" view of a piece of hardware. This makes VHDL

suitable to develop detailed low-level models, but not to write abstract high

level models, which specify what a piece of hardware should do, and not how it

is supposed to do it. Within the object oriented paradigm, a system is viewed

as a collection of communicating objects. Some object oriented features, such

as abstraction, encapsulation, and modularity are already part of VHDL. This

proposal tries to incorporate other object oriented features, such as inheritance

and polymorphism.

Our approach considers objects as active entities (object = entity) which

can return values in response to messages. Then, in the same entity, data

and functions (called operations) are grouped to favor encapsulation and data

abstraction.

2 OVERVIEW OF THE PROBLEM

Like most structured programming languages, VHDL has some limitations

when the data structures, processes, entities, and architectures need to be

reused. As an example, consider the ROM design shown below:

-- Abstract model of Read Only Memory

-- Parameters that can be changed: Humber of addressable locations,

-- Wordsize and Access time

Library IEEE;
Use IEEE.std_logic_1164.all;

Entity ROM is

-- The generic "input_size" determines the number of addressable

-- locations
-- The generic "output_size" determines the vordlength

-- The generic "TAceess" determines the access time

GENERIC (INPUT_SIZE : integer := 16;
OUTPUT_SIZE : integer := 16;
TAccess : TIME := 3 ns);

PORT (Address: II std_logic_vector (input_size-l dovnto 0);
Data OUT std_logic_vector (output_size-l dovnto 0);

Read: II std_logic);

END ROM;

ARCHITECTURE ROM_architecture of ROM is

TYPE mem_array is array(natural range <» of std_logic_vector(output_size-l dovnto 0);

SUBTYPE mem_type is mem_array(2**input_size-l dovnto 0);

begin -- ROM_architecture

Read_proc : process (Read)
variable rom: mem_type := (others => (others =>'0'»;

begin
Data <= ROM(To_Integer(Address» after TAccess;

end process Read;

end ROM_architecture;

336 Part Eight VHDL

The Read operation done by the ROM is described using a process state

ment. This model could also be useful to design a RAM or any other type of

memory. The current restrictions in VHDL do not allow addition or redefini

tion of component functionalities. Designers must either use the component

'as is' or design a new one. Object-oriented extensions can overcome this lim

itation and increase the potential for reuse by adding inheritance to entities

and architectures.

3 OBJECT ORIENTED CONCEPTS

Procedural programming, whose most famous representative languages are

probably Pascal and C, is characterized by the decomposition of the applica

tion into independent procedures working on distinct data. However, in case

part of the data structure is changed, whole or part of the procedures con

cerned by this modification must be rewritten. Therefore, the idea is to group

the data (stored in variables called attributes) and the procedures (called

operations or methods) into one entity: the object. Objects are the key

concept of object oriented technology. They all have both state (attributes)

and behaviour (operations).

The following illustration is a common visual representation of an object:

Data

Operations

Object A

Figure 1 Visual representation of an object

Everything that the object knows (state) and can do (behaviour) is ex

pressed by the variables and operations within that object. Packaging an

object's variables within the protective custody of its operations is called

encapsulation. Typically, encapsulation is used to hide unimportant imple

mentation details from other objects. Thus, the implementation can change

at any time without changing other parts of the program. In addition to this

information hiding mechanism, it provides the benefit of modularity. In object

oriented terminology, we often say that an object is an instance of a certain

Object oriented extensions to VHDL. the LaMI proposal 337

class of objects that share the same characteristics. A class defines the vari

ables and the operations common to all objects of a certain kind. However,

classes and objects are sometimes difficult to differentiate. This is partially

because objects and classes look very similar. In the real world it is obvious

that classes are not themselves the objects that they describe. They are just

a template or prototype that defines the objects (see Figure 2 (a)).

[00 ~.:):;l

~ == ==

Object A

Class

[00 ~I):;l

~ = == ==

[00 ~.:):;l

~ == ==

ObjectB

(a) Classes and objects

[00 ~.:):;)

~ == ==

ObjectC

Class A

(0 o~ol

~ ==

I is a subel ass of

[Oo~~:;l

U == ==

Class B

(b) SuperClass

and SubClass

Figure 2 Relations Class/Object and SuperClass/SubClass

Objects are generally defined in terms of classes. Object oriented systems

take this a step further and allow new classes to be defined in terms of other

classes, thus, providing the benefit of reusability. These new classes are called

subclasses (also known as child classes or derived classes) of the superclass

(also known as parent class or base class) as shown in Figure 2 (b). Each

subclass inherits both the state (in the form of variable declarations) and

operations from the existing superclass. However, subclasses are not limited to

the state and behaviours provided to them by their superclass. They may also

include other variables and operations than the ones they inherited from the

superclass. They can also override inherited operations and provide specialized

implementations for those operations.

Object oriented technology involves viewing a system as a collection of

objects that interact and communicate with each other via messages. When

object A wants object B to perform one of its operations, object A sends a

message to object B and object B will respond by performing the operation

and perhaps modifying the values of its variables (see Figure 3).

Messages are made of three parts:

• the object to whom the message is addressed

338 Part Eight VHDL

message

Object A Object B

Figure 3 Communication between objects

• the name of the operation to perform

• the parameters needed by the operation.

These three components are enough information for the receiving object to

perform the desired operation.

We will see in the next paragraphs how these concepts are applied in the

different approaches for object oriented extensions to VHDL.

4 THE LANGUAGE EXTENSIONS

Three different proposals for object oriented language extensions to VHDL

have been made. The first proposal comes from the VISTA Technologies Com

pany[ll][13] and is based on a new design unit, which is an extension of en

tities and their corresponding architectures. The second approach is based

on type extension and has been developed at the University of Oldenburg

and the OFFIS Institute[12]. The third approach, developed by the Univer

sity of Bournemouth in collaboration with IBM[9][1O], proposes classes as an

alternative to packages to implement abstract data types.

The main features of these three proposals are given below.

4.1 The VISTA proposal

The VISTA proposal is mainly based on a new design unit called Entity

Object, which is an extension of VHDL entities and their corresponding ar

chitectures. An EntityObject represents an extra abstract data type which

may have ports, generics and operation declarations. Operations are similar

to procedures and their body is specified in the corresponding architectures.

The operations are visible outside the EntityObject and can be invoked from

other EntityObjects. Instance variables are introduced to define attributes of

EntityObjects. In contrast with signals, there is no fixed interconnection be

tween EntityObjects to invoke operations. Instead, so-called handles, which

can be signals or variables, are used to call operations. Messages received by

an EntityObject are queued and then executed in a sequential order. Enti-

Object oriented extensions to VHDL the LaM! proposal 339

ties, architectures, and EntityObjects can inherit several elements of existing

entities, architectures, and EntityObjects. For communications, two new in

structions are introduced, an accept and a send command. They are similar

to those in Ada. An EntityObject corresponds to a task, an operation to an

entry and the call of a send command is similar to the call of a task.

4.2 The Oldenburg proposal

The second approach to the 00 extension to VHDL is inspired by the lan

guage Ada 95 (00 Extension of Ada)[l]. In this extension, inheritance is

seen as a sub-typing operation through the use of tagged types. The abstract

data type is defined through the use of package header and package body.

Data structures, i.e. records, (tagged for inheritance) are used for modelling

objects, and procedures are used to implement the behavioural part of the

abstract data type (methods of classes). Generalization is introduced by an

attribute 'Class, which can be attached to a tagged record. Tagged records

and the associated procedures are declared in the same package. The key for

reuse is an inheritance concept together with a concept for generalization and

abstraction. A new record can be derived from existing tagged records with

the key words new and with. Behaviour can be incrementally specialized by

the declaration of additional procedures or by the redefinition of inherited
procedures. Communication between objects which are declared in the same

process can be realized by a simple procedure call.

4.3 The Bournemouth/IBM proposal

In this third proposed extension, a 'class' is an abstract data type that defines

the type and the behaviour of common objects. Generic clauses and method

mappings are defined in the class header. The class can be defined at three

levels: package, entity and architecture. Signals and instance variables (at

tributes) can be declared as objects of a defined class, and control over the

accessibility of attributes and behaviour of a class is ruled by a three-level

encapsulation mechanism: private, public and restricted. This proposal pro

vides two types of inheritance: simple inheritance (single parent) and multiple

inheritance (multiple parents). The use statement is expanded to select the

inherited classes while the naming problem caused by multiple inheritance is
avoided by the method map construct. The proposed extension enables multi

ple concurrent accesses to the object. Therefore, two or more operations can

be carried out concurrently on the same object. Exclusion mechanisms are
then used to avoid undeterministic behaviour.

The three proposals try to enhance the possibilities for modeling at a higher

340 Part Eight VHDL

level of abstraction. They use different constructs for modelling classes and

objects and provide two different paradigms of object extension of VHDL.

The LaMI proposal is based on physical components and suggests that VHDL

entities be considered as objects. In contrast with the VISTA proposal, object

operations are concurrent and have the semantic of VHDL processes.

4.4 The LaMI proposal

The main goal of object oriented extensions to VHDL is to provide more ab

straction to the system designers and make designs more easily maintainable

and reusable. VHDL already incorporates, to some degree, abstraction, mod

ularity, and encapsulation, but it has some limitations when data structures,

processes, entities, and architectures need to be reused in a new description.

This proposal considers the different aspects described in the Design Ob

jectives Document discussed through the IEEE DASC group on Object

Oriented Extension to VHDL[5].

(a) Objects
Due to the critical role of a design entity (entity/architecture pair) in VHDL,

there is a natural interest in basing object oriented extensions to VHDL on

the idea of a design entity as an object belonging to a class. VHDL entities

offer a good encapsulation mechanism while their abstraction capabilities are

limited to port declaration. An object, in this proposal, is used to model

a hardware component. It is an extention of a VHDL entity with methods

called operations. Operations and their parameters are declared in the entity.

Operation bodies, which define the implementation of these operations, are

defined in the corresponding architectures of the entity. They are analogous

to process bodies. The sequential statements in the operation statement part

are analogous to those found in processes.

To demonstrate the extentions of the VHDL entity, consider the simple

component seen above. The ROM provides only one operation, Read. This

operation corresponds to a process. The object oriented version of the ROM

is shown below:

-- Abstract ~O_model of Read Only Memory

-- Parameters that can be Changed: lumber of addressable locations,

-- Wordsize and Access time

Library IEEE;
Use IEEE.std_logic_1164.all;

Entity ROM is

-- The generic "input_size" determines the number of addressable

-- locations

-- The generic "output_size" determines the vordlength

-- The generic "TAccess" determines the access time

Object oriented extensions to VHDL. the LaMI proposal

GElERIC (IIPUT_SIZE : integer := 16;
OUTPUT_SIZE : integer := 16;
TAccess : TIRE := 3 ns);

Operation Read (Address: II std_logic_vector (input_size-1 dovnto 0);
Data: OUT std_logic_vector (output_size-1 dovnto 0»;

EID ROil;

341

Operation interfaces are, like ports, visible outside the entity. They are

similar to Ada task Entries[4]. Each operation may have in, out, or inout

parameters which are signals only. These operations may be used together

with generics but not with ports. Mixing ports and operations is not allowed.

Each operation has a body in the corresponding architectures of entity as

shown below.

ARCHITECTURE DO_ROil_architecture of ROil is

TYPE mem_array is array(natural range <» of std_logic_vector(output_size-1 dovnto 0);
SUBTYPE mem_type is mem_array(2**input_size-1 dovnto 0);

-- Internal data structure : internal state
Instance variable rom: mem_type := (others => (others =>'0'»;

Operation Read (Address: II std_logic_vector (input_size-1 dovnto 0);
Data: OUT std_logic_vector (output_size-1 dovnto 0» do

begin
Data <= ROII(To_Integer(Address» after TAccess;

end operation Read;

The internal state of the object is defined by instance variables which

are used like shared variables[15][6]. These instance variables are not "public".
They can be accessed only by operations of the object itself (strong encapsu

lation).

The internal state can also be defined by component declarations (objects)

and the operations may declare local variables which retain their values be

tween successive calls. These variables are similar to those declared in VHDL

processes.

(b) Inheritance
In order to increase the potential for component reuse, entities are extended

to support the inheritance mechanism. In this proposal, we add inheritance

to entities and architectures by adding the keyword is new to the entity
(or architecture) declaration. Each entity (or architecture) after the reserved
words is new refers to an existing entity (or architecture) that is inherited. This
allows new VHDL Entities and Architectures to inherit characteristics and

functionalities of existing ones and thus to extend them. Inheritance is simple

inheritance and all elements of an entity or architecture are inherited when

subclassed. These elements include declarations, instance variables, all defined

342 Part Eight VHDL

operations and generics. New operations or instance variables may be defined,

and operations may be redefined (overridden). Declarations, however, may

not be overridden since they are required for proper operation of the defining

superclass. For example, consider the component RAM which is similar to

the ROM with an additional operation Write. Note that in this example, the

RAM inherits all the caracteristics of the ROM such as the generic part, the

operation Read and the variable rom.

-- Abstract DO_model of Random Access Remory

Library IEEE;
Use IEEE.std_logic_1164.all;

Entity RAR is new ROR

-- The generic part is inherited

-- Operation Read is inherited too

-- defining new operation Write

Operation Write (Address: II std_logic_vector (input_size-l dovnto 0);
Data: II std_logic_vector (output_size-l dovnto 0»;

ElID RAR;

ARCHITECTURE OO_RAR_architecture of RAR is new ROR_architecture

-- TYPE mem_array. SUBTYPE mem_type and variable rom are inherited

Operation Write (Address: II std_logic_vector (input_size-l dovnto 0);
Data: II std_logic_vector (output_size-l dovnto 0» do

begin
ROR(To_Integer(Address» <= Data after TAccess;

end operation Write;

(C) Communication
While inheritance increases the potential for component reuse, message pass

ing increases the designer's behavioural expressive power. Messages are used

to invoke operations within an entity. The syntax of a message is :

Object.Operation(parameters). A message is the only means of accessing the

internal data representation. It is sent from an architecture body to an object

(entity with object oriented declaration) at the same design level. This differs

from a procedure call. The message requests that a particular operation be

performed. It causes the operation to execute immediately, and the sender is

blocked until the operation is performed (blocking call) unless the operation

does not contain any return argument (non blocking call). The illustration of

the two kinds of messages is given by Figure 4. From the sender's point of

view, sending a message has the semantics of changing a signal's value in the

sensitivity list of a process.

Object oriented extensions to VHDL the LaM! proposal 343

Blocking call Non blocking call

Object A Object B

Object A Object B

Figure 4 Communications

Messages sent to the same entity operation (object) at the same time are

not lost. In case they invoke the same operation, messages are queued until

this operation is performed. When the operation finishes, the next request is

removed from the queue and served as shown in Figure 5. A message-send

protocol is used to ensure that multiple messages sent to the same operation

of an object (entity) at the same time are not lost.

Messages queues

Data

+

Operations

Figure 5 Messages protocol

The execution of operations of the same entity is concurrent (same as pro

cess) so that instance variables may be accessed by more than one operation. If

two or more operations access an instance variable at the same time, the con
flict is resolved by means of shared variables with a "protect" mechanism[15].

As expected from object oriented languages, an operation of an entity (ob

ject) 0 may call an operation of O. Then self is used in place of the object

name.

(d) Polymorphism
Polymorphism is a mechanism related to inheritance that allows the designer

to invoke operations without knowing the object. VHDL does not support

344 Part Eight VHDL

polymorphism. This proposal supports a broadcasting mechanism through a

new attribute: I Component, which allows the same message to be broadcast

to all objects of the same super class.

For example, suppose that the Counter entity has been defined with GetVal,

Reset, and Increment operations (see Figure 6). By subclassing, LoadCounter

inherits these operations and defines a new one: Load. All derived classes from

the Counter class have the Reset operation. The operation ResetAll can then

be defined as follows.

entity test_bench is end test_bench;

architecture Polymorphism of test_bench is

-- Object declarations

component counter_1 Counter generic map (max_value => 8);

component counter_2 : LoadCounter generic map (max_value => 10);

component counter_3 : LoadCounter generic map (max_value => 16);

begin -- POlymorphism

Operation ResetAll do

begin

Counter'component.Reset;

-- this statement calls the reset operation of all
-- components derived from the Counter class (Entity)

end Operation ResetAll;

end POlymorphism;

Counter

(€rrenc~l

Ii Kff&:ent: I

is a subc lass of

(~rrenc~l

li!i&Zj%H

LoadCounter

Figure 6 Sub classing

Object oriented extensions to VHDL the LaMl proposal 345

There will be no run-time error because we are sure that all objects derived

from the Counter entity have at least the invoked Reset operation.

Note that there is no mapping mechanism for operations and that the inter

nal state ofthe object can also be defined by component declarations (objects).

5 CONCLUSION

Table 1 illustrates how the different published proposals define the main object

oriented concepts.

Class/ Inheritance Communi- Polymorphism

Object mechanism -cation

extension of entity / archi Ada tasks handle:

VISTA entity concept entityO b ject like (send, new predefined

EntityObject accept, ...) type

extension of record

Olden- type concept elements protocols 'class attribute

-burg with tagged tagged types

Bourne- type extension class signals

-mouth (class) model

extension of entity / archi new attribute:

LaMI std-entity anything new protocol 'component

concept inside

Table 1 Comparison of proposals for VHDL object-oriented extensions

The four proposals represent attractive alternatives to the Object Oriented

extension for VHDL. The LaMI proposal has chosen to extend the VHDL en

tity in a simple manner by adding only two keywords -is new and operation

to model an object. This allows new objects to be inherited from existing ones,

and the behaviour of an entity to be abstracted by describing the operations

performed. These extensions do not force the designer to learn new syntax.

They provide a new methodology where components are described as active

objects (entities) which interact by sending messages to operations.

The dynamic polymorphism demonstrates the power of this approach by

providing a broadcasting mechanism. All the examples presented in this paper

have been rewritten in VHDL'93 to show that these extensions can be easily

added to VHDL compilers. These extensions may be handled by a preprocess

ing tool which translates OOVHDL into standard VHDL. We are currently

developing an OOVHDL ~ VHDL'93 preprocessor.

346 Part Eight VHDL

ACKNOWLEDGEMENTS

The authors would like to thank all the LaMI researchers for their collabo

ration and helpful discussions, and they would also like to acknowledge the

insightful suggestions and comments of the reviewers on earlier drafts of the

paper.

REFERENCES

[1] Changes to Ada - 1987 to 1995. International Standard ISO/IEC

8652:1995(E), 1992.

[2] M. Aiguier, J. Benzakki, G. Bernot, and M. Israel. ECOS: From For

mal Specification to Hardware/Software Partitioning. VHDL Forum,

September 1994.

[3] M. Aiguier, S. Beroff, L. Freund, G. Bernot, and M. Israel. Using Ax

iomatic Specifications for Hardware System Design. CEEDA '96, Jan

uary 1996.

[4] J. Barnes. Programmer en Ada. InterEditions, 1988.

[5] J. M. Berge, W. Nebel, and W. Putzke. Requirements and Design Ob

jectives for an Object Oriented Extension to VHDL, August 1996.

Preliminary Draft.

[6] J.M. Berge, A. Fonkoua, S. Maginot, and J. Rouillard. VHDL'92, The

New Features of the VHDL Hardware Description Language. Kluwer

Academic Publishers, 1993.

[7] G. Booch. Object-Oriented Development. IEEE Transactions on Soft

ware Engineering, SE-12(2), February 1986.

[8] G. Booch. Object Oriented Design. Benjamin/Cummings Publishing,

Redwood City, CA, 1991.

[9] D. Cabanis. Proposed Object Oriented Extensions to VHDL. Report

Version 1.0, Bournemouth University, September 1995.

[10] D. Cabanis and S. Medhat. Classification-Orientation for VHDL: A

Specification. VHDL Forum for CAD in Europe, SIG- VHDL Spring'96

Working Conference, Dresden, May 1996.

[11] B. M. Covnot, D. W. Hurst, and S. Swamy. OO-VHDL: An Object Ori

ented VHDL. Proceedings of the VHDL International User's Forum,

1994.

[12] G. Schumacher and W. Nebel. Inheritance Concept for Signals in Object

Oriented Extensions to VHDL. Proceedings of the EURO-DAC'95 with

EURO- VHDL'95, IEEE Computer Society Press, 1995.

[13] S. Swamy, A. Molin, and B. Covnot. 00-VHDL: Object-Oriented Ex

tensions to VHDL. IEEE Computer, October 1995.

[14] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1993,

Revision of IEEE Std 1076-1987, 1994.
[15] J. C. Willis. Preface to shared variable language change specification,

Object oriented extensions to VHDL. the LaMI proposal 347

March 1996. Draft language change specification (LeS) proposing

a revision of the VHDL-93 language reference manual (LRM) with

respect to shared variables.

