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ABSTRACT

As a part of the scientific database research underway ot the Oregon Graduate Insti-
tute, we are collaborating with materials scientists in the research and development of
an extensible modeling and computation environment for materials science. Materials
scientists are prolific users of computers for scientific research. Modeling techniques
and algorithms are well known and refined, and computerized databases of chemical
and physical property data abound. However, applications are typically developed in
isolation, using information models specifically tallored for the needs of each applica-
tion. Furthermore, available computerized databases in the form of CDs and on-line
information services are still accessed manually by the scientist in an off-line fashion,
Thus researchers are repeatedly constructing and populating new custom databases for
each application. The goal of our research is to bridge this gulf between applications
and sources of data. We believe that object-oriented technology in general, and data-
bases in particular, provide powerful tools for transparently bridging the gap between
programs and data. An object-oriented database that not only manages data gener-
ated by user applications, but also provides access to relevant external data sources
can be used to bridge this gap. An object-oriented dotabase for materials science data
is described that brings together data from heterogeneous non-object-oriented sources
and formats, and presents the user with a single, uniform object-oriented schema that
transparently integrates these diverse databases. A unique multilevel architeciure is
presented that provides a mechanism for efficiently accessing both heterogeneous ex-

ternal data sources and new data stored within the database.  © 1993 John Wiley & Sons, Inc.

1 INTRODUCTION

The Scientific Database Group at the Oregon
Graduate Institute of Science & Technology (OGI)
is currently involved in a collaborative research
effort with materials scientists at OGI to develop a
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comprehensive computational environment for
materials science research.

Broadly stated, we are interested in exploring
data models and database support for scientific
domains. Specifically we are interested in:

1. Exploring data models that are capable of
providing support for complex scientific
data types

2. Examining database architectures based on
these data models that are capable of inte-
grating large scientific databases by provid-
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ing transparent access to heterogeneous
data sources

3. Using these data models to develop flexible
and extensible interfaces between applica-
tion programs and applicable sources of
data

Currently, each application program typicaily
has its own data model tailored to that applica-
tion. Custom databases built using one program’s
data model are rarely useful to other applications
[1]. Sharing data between applications is difficult
and usually requires a user to convert data be-
tween the different file formats used by different
programs [2].

2 DATABASE MANAGEMENT SYSTEMS

A database management system (DBMS) can be
used to decouple data from the applications that
use the data, allowing the data to be more easily
shared by multiple applications. The interface to a
DBMS has two parts, a data definition language
and a data manipulation language. The data defi-
nition language is used to describe the data in the
database. This description, or schema, defines a
logical structure for the data as seen by clients of
the database. (A client may be a person or an
application program.) The data manipulation lan-
guage is used by clients to access and manipulate
the data in the database. Together, the schema
constructed by the data definition language along
with the data manipulation language provides an
application-independent interface between data
and applications. Applications access the data-
base using the schema and are insulated from the
physical lavout of the data within the database.
This insulation is called program-data indepen-
dence and is an important benefit of using a
DBMS.

A DBMS provides additional benefits such as
managing concurrent access to the data in the
database, protecting data through backup and re-
covery processes, controlling redundancy, check-
ing the validity of data entered into the database,
ete. [3].

The data definition language and the data ma-
nipulation language define the type of data model
implemented by the DBMS. For a DBMS based on
the relational data model, the data definition lan-
guage will include construets for describing rela-
tional tables. The data manipulation language

(typically SQL) will provide the capability to in-
sert, update, delete, and select data from the ta-
bles in the database.

A DBMS based on an object-oriented data
model will use a data definition language that is
capable of defining classes of objects. A class de-
fines an abstract data type encapsulating attrib-
utes {i.e., data values) and methods (i.e.. program
codes) together in objects of that class. Classes are
typically arranged in an inheritance hierarchy
where subclasses ““inherit’” the structure and be-
havior of their superclasses.

The data manipulation language provides gen-
eral query capabilities for selecting objects based
on the value of its attributes as well as on the re-
turn value of a method invocation. {An object exe-
cutes a method in response 1o a message [i.e.. a
procedure call] sent to the object.) The data ma-
nipulation language may also be used for writing
the methods that are encapsulated in the elass
definition.

2.1 Benefits of the Object-Oriented
Model

An object-oriented data model provides much
richer data definition and manipulation languages
than other data models such as the relational
model. Where the relational model has only a sin-
gle ““data structure,”” the table, an object-oriented
data model provides the ability to define an un-
limited number of different data structures and
types to support virtually any sort of data.

The object-oriented paradigm provides power-
ful tools for constructing complex data types com-
mon in scientific domains. Consider the task of
storing matrices in a database. In a relation data-
hase, a matrix can only be represented by decom-
posing the matrix into a relational table that con-
tains the data from the mauix. Operations over
matrices such as multiplication and dot product
are not supported by relational data manipulation
languages. Thus an application using the data-
base must retrieve the data and reconstruct the
matrix using a representation defined by the data
tvpes within the application.

In an object-oriented database, the matrix
could be represented intuitively as a two-dimen-
sional array of rows and columns. The database
and application programs can share a common
representation for matrices. Furthermore, be-
cause the definition of a class in the database also
includes the specification of the behavior of the
objects in the class, the object-oriented database



representation of a matrix can include methods
for manipulating and testing matrices.

Packaging methods together with data as ob-
jects in an object-oriented database provides two
important benefits. First, the development and
maintenance of applications is simplified because
a common code can be developed once and stored
as part of the definition of a class. Second, these
methods can be used as a part of any query over
the data in the database. Thus the methods incre-
mentallv extend the query language by adding
new functionality to the objects in the database.
For example, a method called rank for objects of
the matrix class could be used to compute and
return the number of linearly independent rows of
a matrix. A query could select [ully independent
matrices by searching for matrices where the rank
of the matrix was equal to the number of rows in
the matrix. In a relational implementation, this
sort of query is not expressible. Instead. an appli-
cation program would have to retrieve all matrices
from the relational database. compute the rank of
each matrix. and then compare the rank to the
number of rows to determine which matrices were
fully independent.

2.2 Currently Available Scientific
Databases

Although an object-oriented database can be
used to design and implement a database of sci-
entific data, many databases containing relevant
chemical and physical property data already exist.
These general-purpose databases. in the form of
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CD-ROMs or on-line services, are designed to be
accessed by interactive information retrieval soft-
ware, not directly by user application programs.
The interactive information retrieval software al-
lows the user to pose queries and receive textual
answers to those queries. The data of interest are
then manually transferred by users into a local
database for application.

The goal of our current research is to design
and implement an object-oriented database for
materials science that managers data stored lo-
cally within the database, as well as data external
to the database. Our object-oriented database
provides transparent access to the data managed
by the database regardless of the format of the
data or where that data physically reside as shown
in Figure 1. The interface and data model are ap-
plication independent, describing the data and
data tvpes in the domain terms of materials sci-
ence rather than in the format of a particular ap-
plication.

2.2.1 An Object-Oriented Data Model for
Materials Science

We have chosen to use materials science as a test
domain for our research. Materials scientists have
been leaders in the use of computers for modeling
and research, and computational models for ma-
terials science are well known and refined [2]. In
addition, there are many computer-readable da-
tabases available for materials science [1, 4-7].
We have developed an application-indepen-
dent object-oriented data model for materials sci-

Materials Science Applications
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FIGURE 1

A single programmatic interface between programs and sources of data.
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FIGURE 2 Object-oriented data model for materials science.

ence data. As shown in Figure 2, our data model
currently supports a subdomain of materials sci-
ence, known as structural analysis or crystallogra-
phy [8]. Our data model is being incrementally
defined as we seek to accommodate new areas of
computational materials science.

The remainder of this paper describes the de-
sign and implementation of an object-oriented
database that implements our data model and
provides transparent access to data stored in ex-
ternal data sources.

3 HETEROGENEOUS DATABASES

The goal of providing access to multiple, diverse
databases through a single interface has been a
topic of research for over a decade and has be-
come increasingly important due to the prolifera-
tion of incompatible databases and data available
in a computer-readable format.

A heterogeneous database (HDB) is a mecha-

nism for providing a single point of access to mul-
tiple databases, each of which may have a differ-
ent data model and DBMS software. An HDB
provides a single, common data manipulation
language with which to manipulate the data it
manages [9-11].

There are a number of reasons for building an
HDB on top of existing component databases
rather than attempting to homogenize them by in-
corporating them into a single monolithic data-
base. One reason is that the component databases
may be marginally related to one another. The
databases may have very different implementa-
tions, each having been designed to meet the
needs of its primary users. Furthermore compo-
nent databases are often ‘“‘owned”’ by different or-
ganizations that wish to retain control of their
database. Another reason for integration over
centralized homogenization is that the component
databases may be geographically separated to
promote efficient access by the local, primary us-
ers of the data.



In a scientific environment such as materials
science, not only are databases of scientific prop-
erty data not owned by the scientist, they are also
quite large, some consisting of hundreds of mega-
bytes of data. However, a researcher is likely to be
interested in only a very small subset of the data-
base at any one time. Thus the creation of a sin-
gle, monolithic database is not a particularly prac-
tical or efficient solution, and may be impossible
due 1o the sheer volume of the data sources.

3.1 Two Schools of Thought

There are currendy two schools of thought on the
development of HDBs. the integrated (lederated)
approach with a global unifying schema, as typi-
fied by Multibase [12], and the interoperable ap-
proach of integrating muhiple databases without a
globally integrated schema, as typified by the
Multics Relational Data Store Multidatabase
(MRDSM) [11]. The most significant difference
between these two approaches is the degree of
transparency provided.

3.1.1 Integrated HDBs

The integrated approach is the more ambitious of
the two and attempts to maximize transparency
by providing a single, unified schema for the users
of the HDB. Component databases may be man-
aged by other DBMSs. or may be nothing more
than traditional files.

The architecture of Muliibase, shown in Figure
3, is representative of the integrated HDB ap-
proach.

In Multibase, queries are posed against a global
schema maintained by the Muliibase software.
Multibase translates the global query into sub-
queries over the local schemas of the component

Global Query

Muitibase
Software

FIGURE 3 The Multibase architecture [12, p. 336].
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databases. These local queries are then sent to the
local DBMS for execution.

The major difficulty in developing an integrated
HDB is in generating a unified, global schema and
mapping the local, component schemas into this
global schema.

Syntactic incompatibilities can include data
type mismatches and conflicting names for the
same data item in different databases. More diffi-
cult, however, are semantic incompatibilities that
occur ““when there is a disagreement about the
meaning, interpretation, or intended use of the
same or related data’ [9, p. 187]. Multibase uses
an integration database to resolve syntactic and
semantic conflicts among its component data-
bases [12, p. 339]. The integration database pro-
vides the information necessary to map compo-
nent database schemas to the global schema.

3.1.2 Interoperable HDBs

Litwin and others [11, 13, 14] have noted that the
task of creating a unifving global schema is diffi-
cult at best. Rather than develop a global schema,
the interoperable approach focuses on providing
access to the component databases while leaving
the navigation of the component databases and
the synthesis of data to the user. In contrast to the
integrated approach, the interoperable approach
assumes that the component databases are man-
aged by some tvpe of DBMS that is capable of
executing queries posed by the user.

The MRDSM provides a data manipulation
language, MDSL,, for expressing queries and up-
dates to data is separate databases. MRDSM also
provides a measure of transparency by allowing
for the definition of views in the relational tradi-
tion. These views can be used to transparently join
data drawn from more than one database.

Litwin [15] has proposed that the relational
model be adopted as a “*standard (canonical) data
model”” for HDBs, thus providing a lowest com-
mon denominator among the component data-

bases of an HDB.

3.2 The Current State of the Art

Most HDB implementations currently rely on rela-
tional technology. One reason for this relational
bias is the adoption of SQL as a standard by most
relational database vendors. This standardization
provides a basic building block of HDBs using a
relational database engine.

A number of commercial relational database
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management systems currently provide inter-
operable-style access to other vendor’s databases
through query translation mechanisms such as
Ingres’ gateways and the Open Server from Svbase
[16].

In the last few years, a number of researchers
have begun to suggest that the object-oriented
model may hold promise for building HDBs [17—
22]. The rich modeling constructs provided by an
object-oriented database, along with the ability to
encapsulate data (auributes) and programs
(methods) together as objects in the database pro-
vide a powerful mechanism for building HDBs.

4 OBJECT-ORIENTED ARCHITECTURES
FOR HDBs

The first issue to address in building an object-
oriented HDB is to determine the granularity of
““objectification,”” that is, what external entity will
an object in an object-oriented database represent
and encapsulate. We identify three levels of gran-
ularity:

1. Encapsulating databases where an object in
the database encapsulates an entire exter-
nal data source

2. Encapsulating collections where an object
in the database encapsulates a homoge-
neous collection of external entities, possi-
bly drawn from muliiple data sources

3. Encapsulating single objects where each
object in the database encapsulates a single
entity drawn from one or more external data
sources

select

4.1 Encapsulating Databases

Encapsulating databases as objects can be used
to provide an interoperable HDB. Manola [17]
has suggested such an approach: ““The approach
is basically to surround the DBMS with a laver of
software that implements a common interface, us-
ing the object concept 10 encapsulate this soft-
ware’’ (p. 129).

Queries are executed by sending messages to
the database objects. Each database object per-
forms the tasks of transforming the query into the
native data manipulation language of the external
database it encapsulates. passing the query to the
native. DBMS, and returning the result of the
query. Figure 4 shows two encapsulated data-
bases responding to the same “*select’”’ message.
For the relational database, the message is simply
passed along to the underlying database. The
CODASYL database, however, must translate the
query into an ecquivalent series of “‘find” mes-
sages.

However, encapsulating entire databases does
not really exploit the power of the object-oriented
paradigm. The only benefit is that all database
objects are able to respond polvmorphicallv 1o the
same query. regardless of the underlving format of
the external data source. Furthermore. although
Manola [17] uses object-oriented technology 1o
implement the HDB, the common query interface
to the component databases remains relational (p.
129). Data retrieved from the encapsulated data-
bases as the result of a query are presented to the
user as relations. The data are not encapsulated
as objects.

select

FIGURE 4 LEncapsulated databases [17, p. 130].
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aMoleculeCollection

\

select m.* from molecules
where m.name = ‘'water’

Relational DBMS

FIGURE 5 Lucapsulated collections.

4.1.1 Encapsulating Collections

Another solution is to encapsulate external datain
collection objects  (CO).
databases and languages have some notion of a
collection class. Collections may be used to group
objects together in & meaningful wav. Collections

Most  object-oriented

need not be homogeneous, but a common use of

collections is to provide a way of iterating over all
the members of a class by creating a homogeneous
collection containing those members.

Figure 5 depicts a CO of Molecules receiving an
iteration message that “collects™ objects with the
name “water.”” In response to the iteration mes-
sage, the CO, which stores no data itself. converts

the query into the data manipulation language of

an external data source and queries the external
data source. A new collection of newly created
Molecule objects matching the query selection cri-
teria are returned.

This solution has an important advantage over
encapsulating entire databases. By encapsulating
homogeneous collections of entities, a single. con-
sistent object-oriented definition is imposed on
the data stored in the external data sources. So
given a CO of objects of some class €. the CO can
be queried based on the object-oriented structure
and behavior of class C, regardless of the various
formats of the entities in the external data sources.

Obviously a CO must be quite powerful. It must
be able 1o translate queries over its members into
queries over the external databases that contain
relevant data, and cast the results of the external
database queries into objects of the appropriate
class,

Encapsulating classes of objects in this manner
is very similar to the way other HDBs use relations.
The difference is that instead of a global query

translator, the CO does the work of translating
queries and retrieving relevant data. This ap-
proach is similar to the object-oriented views de-
scribed by Bertino [23]. Czejdo and Taylor [21]
also describe an object-oriented integrated data-
base that is built around encapsulated classes.
Their approach is to use common superclasses to
provide canonical “‘views’’ of data from different
databases.

A disadvantage of this approach, however, is
that interobject relationships, such as one object
being a part of another object, are not maintained
persistently and must be recreated each time a
composite object is accessed.

4.1.2 Encapsulating Single Objects

The finest level of granularity is encapsulating an
external entity as an individual object within the
database. In this approach, an object in the data-
base does not store any data. but is capable of
responding to messages by retrieving data from
external data sources. An encapsulating object
“represents’’ an entity that is stored in external
data sources. Tirri et al. [24] take this approach
by using federated objects, which are objects
composed of fragments drawn from various exter-
nal data sources as shown in Figure 6.

The advantage of this approach is that the
structural and behavioral definition of an objectin
the HDB inherenty imposes an object-oriented
interface on data drawn from external data
sources. In addition, because each object in the
database is now responsible for retrieving its data
from external data sources, objects of different
classes may be mixed together in heterogeneous
collections.
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4.2 Ovur Approach

We have chosen to use an object-oriented data-
base management system (OODBMS) 1o imple-
ment a HTB for materials science data. Our ap-
proach falls into the integrated HDB category with
our object-oriented schema providing a single,
unifying schema for diverse materials science data
sources.

We have chosen the integrated approach for
two reasons. First, we wish to provide a single
object-oriented data model for materials science
data. An integrated object-oriented schema is the
only way to achieve this transparent integration of
diverse  external non-object-oriented  data
sources.

Second, the object-oriented paradigm and cur-
rently available commercial object-oriented data-
bases provide mechanisms for addressing some of
the syntactic and semantic heterogeneity proh-
lems that arise when integrating diverse data
sources [22]. The most valuable mechanism for
addressing these problems is the ability to encap-
sulate data together with methods for manipulat-
ing the object’s data. This encapsulation provides
an elegant way to programmatically handle prob-
lems due to heterogeneity by developing methods
capable of resolving differences among different
representations and providing a consistent exter-
nal interface for the object. 1t should be noted that
the ability to encapsulate data together with meth-
ods is not supported by all OODBMSs. We have

chosen to use the GemStone OODMBS because it
does provide the ability to store methods as well as
data within the database. Many OODBMSs only
provide storage for the data portion of an object:
methods must be defined separately in the user
applications that access the database.

Of the three object-oriented approaches above,
our approach is similar to Tirri’s federated object
approach [24] where objects in the database en-
capsulate individual entities in external data
sources. We call such an encapsulating object an
object representative (OR).

Our approach differs from the approach taken
by other researchers in a number of important
ways.

First, in contrast to Tirri’s federated object ap-
proach [24], our data sources are relativelv static.
Because the data sources change infrequently, we
can initially scan each external data source and
create an OR in the database for each entity of a
particular class that is present in the external data
source. This would be problematic in environ-
ments where external data sources were fre-
quently being updated with new entities. How-
ever, large scientific databases of chemical and
physical property data are slow to change so the
need to rescan an updated database will be infre-
quent.

Second, as external data sources are scanned,
ORs are added to the database, and static con-
nections are made between related ORs. This al-
lows complex objects to be constructed at scan



time rather than attempting to relate objects dur-
mg the execution of a query. For example, in add-
ing a new OR for a Molecule object, that OR is
connected to the Atom objects that are a part of
the molecule’s formula. This particular connec-
tion between a Molecule object and the Atom ob-
jects that form its formula provides an important
performance enhancement for our database. Ma-
terials scientists often pose queries based on the
chemical composition of a material. Consider a
query to select all Crystals that contain copper
and aluminum. The copper and aluminum Atom
objects can be used to select related Molecule and
Crvstal objects by examining the static connec-
tions between a Molecule and its Atoms. and a
Crystal and the Maolecule on which it is based.
Thus thousands of Molecule and Crystal objects
mayv be searched without ever accessing external
data sources. In contrast, encapsulating entire
databases or collections of objects would require
the query to be passed along to the external data
sources for execution.

Third, the HDB will be used to integrate not
only data from external data sources. but to store
new objects created by applications that access
the database directy. Thus vur database is really
a hybrid HDB. transparently managing both data
stored within the HDB as well as external dawa
sources.

5 AN OBJECT-ORIENTED HYBRID
DATABASE

We have developed a hybrid database utilizing a
three-level architecture with an external level con-
sisting of the external data sources, a translational
level providing an interface between ORs and the
external data sources, and an object level that
contains the ORs that populate the database {see
Fig. 10). Both the object and translational levels
reside within the database.

5.1 The External Level

The external level consists of the external data in
its various native formats and software to access
that data.

5.1.1 External Data Sources

We currently have three materials science daia
sources accessible via the database. The largest
data source is the NBS Crystal Database distrib-
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uted by the National Institutes of Standards and
Technology {25]. This database is formatted as a
single 128-megabyte ASCH file of structured data
records and is distibuted on CD-ROM. We have
written a simple piece of data access software that
is used to read a specified number of consecutive
bytes beginning at a specified location in the file.

A second data source is composed of data files
generated by a software tool called the Desktop
Microscopist that was developed by Dr. James
Stanley of OGI's Materials Science department.
The Desktop Microscopist stores individual erys-
tals, each in a single variable-length ASCII file.

The third data source is composed of data liles
generated by the Tektronix (TEK) Cache software
for computer-aided chemistry. Like the Desktop
Microscopist, the TEK Cache system stores indi-
vidual molecules each in a me'le variable-length
ASCH file.

Both the data liles of the Desktop Microscopist
and the TEK Cache system are self-describing
and use a mixed format including both hxed—
length fields and tabular fields similar to the tables
of a relational database. The files from both sys-
tems are read in their entirety by the database
when accessing the data contained in them.

Although these three data sources do not come
with software for querying the data, we expect to
be able to easily accommodate software-sup-
ported data sources such as databases managed
by relational database management systems.

5.2 The Translational Level

Each OR in the object level has a corresponding
object in the translational level of the architecture
called a translational object (TO). Each TO con-
tains two pieces of data:

1. Some unique key that allows us to access
the record in the external data source con-
taining it.

2. A data attribute that holds the data re-
trieved from the external data source.

For the NBS Crystal Database, the unique key
used to access the data is a byte offset into the
data file. This unique key allows us to access the
data directly when required. Both the Desktop Mi-
croscopist and TEK Cache data are stored in sin-
gle files so the name of the file provides the unique
access key.

The primary function of a TO is to respond to
messages {rom the OR requesting an auribute of
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FIGURE 7 A Common interface between the Translational und Objeet levels,

the object by retrieving the data record from the
external level, extracting the requested auribute
from the formatted dara, and performing any nec-
essary datatype conversions.

5.2,1 Addressing Heterogeneity
Problems

The translational level of the architecture provides
a location for addressing svntactic and semantic
problems that arise when attempting 1o integrate
diverse data sources into a common data model.

As shown in Figure 7, different ORs of the same
class (UnitCell in this case) may refer t0' TOs of
different classes. However, the different TOs pro-
vide an identical interface to the ORs. The imple-
mentation of a particular method in a TO will de-
pend on the format of the data in the external data
source.

The interface between the object and transla-
tional levels of the architecture provides a mecha-
nism to address syntactic as well as semantic het-
erogeneity problems. We are able to develop
policies for addressing specific heterogeneity
problems through the methods of the TOs. In the

NBS Crystal Dawabase, for example, some data
items may have two values, one submitted by the
author who researched the material, and a second
added by the NBS Crystal Database editor. We
have established a policy of using the value added
by the editor if one is present, otherwise the value
entered by the original author is used. Figure 8
shows how the unit cell volume method of the
NBSCryvstalDatabaseRecord, a TO. provides an
external interface for the volume atribute by wi-
lizing two internal methods, authorsloliume and
cdVPolume, 16 decide what value to return to the
OR at the object level.

5.3 The Object Level

It is the object level of the architecture that the
users of the database see. It is the level where the
unifving object-oriented schema presented in Fig-
ure 2 is implemented. Objects in the object level of
the architecture mav be ORs or native objects. An
OR will refer to an object in the translational level
and thus encapsulate data from an external data
source. A native object is an object that is not
derived from an exiernal data source.



aNBSDatabaseRecord
volume :
External self cdVolume notNIL
interface ifTrue: [Aself cd Wolume]
ifFalse: [Aself authors\blume]
sumanuvsbusnsasecsununnunnanassunnandas
cdVblume :
Internal "
Methods
authorsVblume ¢

FIGURE 8 Handling semantic heterogeneity.

In order to provide a link between the object
and translatonal levels of the architecture. a class
has been defined from which all the object level
classes are derived. This superelass contains a
special attribute called the realObject. In an OR.
the realObject atiribute refers to the TO that en-
capsulates the source of the OR’s data. In a native
object, the realObject auribute is NIL. Figure 9

shows two UnitCell objects where one is an OR for

unit cell data stored in the NBS Crystal Database
and the other is a native object.

This demarcation between the object and
translational levels of the architecture allows us o
uniformly access data stored loeally in the data-
base (native objects) and data stored in external
data sources. We are not aware of any other re-
search providing this orthogonal view of data
stored locally within the database and the external
data accessible to the database.

5.3.1 Message Execution

Both native objects and ORs provide an identical

behavioral interface. Figure 10 depicts an OR of

alnitCell aUnitCell
a:5.123 a:NIL
b:5.123 b:NIL
©:5.123 c:NIL
alpha: 90 alpha : NIL
beta : 90 beta : NIL
gamma : 90 gamma : NIL
realObject : NIL realObject \

¥

aNBSCrystalDatabaseRecond

data : NIL
offset : 1005956

FIGURE 9 Unit cell objects,

DATABASE FOR MATERIALS SCIENCE 125

2 spaceGroup
A :
= v
aCrystal
spaceGroup : NIL
Object .
Level .
realOhject : ~N
¥
, A :
cammmEmEmrcsmne A ms s asnsssdndncannovunnnnnny
N spaceGroup
Translational anNBSDatabaseRecord
Level offset : 12097
eeeemeeenen s R dsCll daia A Premeceenemenannan

EEE T TS T
]

Read data @ 12097

External
Level

External
File

FIGURE 10  Message execution.

the Crystal class responding to a spaceGroup
message. I this Crystal object were a native object
then the object would simply return the value of
the spaceGroup attribute in response to the
spaceGroup message. However. the crystal in
Figure 10 is an OR and does not store any
data locally. S0 the spaceGroup message
is passed 1o the NBSCrystalDatabaseRecord
object. a TO, in the wanslatonal level. The
NBSCrystatDatabaseRecord object retrieves the
data from the external data file. extracts the space
group value from the formaued data. converts it o
the proper data type (an integer in this case), and
returns the value to the Crystal object. which in
turn returns the value as the response to the origi-
nal spaceGroup message it received.

We expect each TO 1o be able to respond to any
message sent by a corresponding OR. However, if
a particular external data source does not contain
the type of data requested. the TO acecessing that
data source simply returns a NIL value to the OR
that requested the data.

5.4 Populating the Database

Because objects are created in the database that
represent entities present in external data sources,
an initial pass over the external data sources must
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be made to construct the ORs. This is a 1ime-
consuming process, but it has an important bene-
fit, which is that the structure of complex objects
can provide a good deal of information about the
external entity without having to access the exter-
nal data source. A Crystal object, for example, is a
complex object that includes a Molecule object.
The Molecule object is also a complex object that
includes a ChemicalFormula object. The Chemi-
calFormula object is a complex object containing
one or more Atom objects. During the pass over
the external data source, not only is a new OR of
the Crystal class added for each crystal encoun-
tered, that Crystal object is also ““hooked up™ 10
the proper Molecule object. These static connec-
tions between the objects at the object level of the
architecture allow queries over Cryvstal objects
based on their chemical composition bv navigat-
ing the database at the object level without access-
ing the external data source. In this example, re-
taining a small amount of data within the
database in the Atom objects allows the user to
efficiently query a much larger number of Crystal
objects that are stored in external data sources.
This ability to trade small amounts of space for
greatly increased query performance can be used
throughout the architecture by making wise
choices about what data to store within the data-
base and what data to leave in external data
sources.

5.4.1 The Identity Crisis

Unfortunately, making connections berween ob-
jects drawn from external data sources is not triv-
ial. Object-oriented databases rely on what is
called ““identity’’ to uniquely identify individual
objects. Each object receives a unique, immutable
object identifier when the object is created. This
reliance on a unique system-generated object
identifier is in contrast to value-based systems,
such as relational databases, where the value of a
data item determines its unique identity.

There are two potential problems in combining
an identity-based system with a more traditional
value-based database. The first problem occurs
when an object in an identity-based system needs
to refer to an entity stored in a value-based sys-
tem. The object must use the ““key” value of the
entity to refer to it because that is the only way to
uniquely identify the entity. The problems arises
when some element of that key changes. Eliassen
and Karlsen [26] point out that the link between
an identity-based database and value-based ex-

ternal data sources is only as strong as the guaran-
tee that the kevs in the latter will not change.

This problem is only a small concern because
the external data sources are primarily scientific
property databases that will change slowly at fixed
intervals.

The second problem is more subtle. The pre-
ceding section describes “"hooking up’ a Crystal
object with the appropriate MWolecule object as an
external data source is initially scanned. The
problem is that deciding which Molecule object a
particular Crystal refers 10 is not always simple,
For example, is the molecular formula 11,0
“identical’’ to the formula I/I10? The two formu-
las are not identical strings, however, they are
equivalent representations of the same molecular
formula. The most desirable solution is to recog-
nize this equivalence and have a single chemical
formula object representing this molecule in the
database. The difficulty is that there is no “nor-
mal form™ for representing chemical formulas.
The NBS Crystal Database uses a highly struc-
tured and complex format for formulas. On the
other hand, the TEK Cache files do not contain an
explicit formula string: the formula must be in-
ferred by enumeratng the atoms that are a part of
the molecule.

As a partial solution to this particular problem
we have used the power of the object-oriented
paradigm to develop a representation for chemical
formulas. We construet ChemicalFormula objects
from a string representation of the formula by
parsing the swring. ChemicalFormula  objects
present a canonical form for chemical formulas
that we can use to more easily detect cases where
two crystals are based on the same molecule. Fig-
ure 11 presents the canonical structure for both
H,>0 and ITHO,

However, our strategy is not robust enough to
match formulas that are not virtually identical. As
a result, we have endowed ChemicalFormula ob-
jects with methods that allow us to compare differ-
ent formulas for similarity and thus select crvstals
based on similar, if not identical formulas.

5.5 Space and Time Considerations

Our three-level architecture introduces a good
deal of overhead to merely retrieve a single data
value from an object stored in an external daia
source. However, performance can significantly
be enhanced by caching data at the various levels
of the architecture.



aFormula
multiplier : NIL

unit : 'ﬁ
¥

anAtomFormula
multiplier : 2

anAtomFormula
multiplier : NIL

charge : NIL charge : NIL
unit : ~\ unit : "\
anAiom anAtom

name : ‘Hydrogen' name : ‘Oxygen'

symbol : 'H' symbot ; 'O

atomicNumber : | atomicNumber : 16

FIGURE 11 Cuanonical structure for H,0 and 11HO.

5.5.1 Caching

Objects in the translational level access data from
external data sources a whole record at a time. A
simple optimization we can perfor is to cache
the data in the TO as it is read from the external
data source. Caching the whole record is advanta-
geous because queries are often predicated on
more than one attribute of an object. By caching
entire data records, a query over the a, b. and ¢
attributes of a UnitCell object, for example, will
result in only a single access 10 the external data
source.

Likewise we can cache attributes in the OR at
the object level as they are retieved from the TO
in the anslational level. Caching atributes will
accelerate repeated access to the same aturibute,

5.5.2 Space Considerations

So far, tests of the system have been performed
using a very small subset of the data currenty
available to us from external data sources, Our
current disk capacity is more than suflicient 1o
hold not only the data at the external level, but
also the cached data at the translational and ob-
ject levels as well. However, uncontrolled caching
would quickly result in external data sources be-
ing completely duplicated in the translational and
object levels of the database. If space were inex-
haustible we would simply load entire external
data sources into an ob;eu -oriented database.
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However, replicating data sources that are hun-
dreds of megabytes each is impractical if not im-
possible. In addition, we expect only a small sub-
set of these data sources to be relevant at any
given time.

Hence the goal is to cache relevant data, while
flushing irrelevant data as soon as possible. Ini-
tally we considered simply flushing the data
cached in TOs immediately, ;e%ultmg in no
caching at that level. Hnwew r, if data are not
cached at the translational level, a query predi-
cated on two different attributes of the same ob-
ject results in us reading the data in 1o satsly the
message for the first amlbute flushing the ddid.;
and then re-reading and ﬂushmg the data again to
satisfy the message for the second attribute.

Our current solution is to implvmenl a flush
method in each translational level class. The ad-
vantage of an explicic llush method is that we have
total control over when and what objects are
flushed. The disadvantage is that a single query
that ranges over all instances of a class must use
the {lush message otherwise hundreds of mega-
bytes of data will be cached, possibly exceeding
available disk capacity.

An explicit flush message may also work at the
object level. However. caching is not as severe a
problem at this level because we are caching single
attributes instead of entire data records. For ex~
ample, caching an NBS Crystal Database Record
at the wanslatonal level consumes approximately
1200 bytes of space. A single auribute such as
the gamma dtl”bult‘ of a L()xrespoudmg UnitCell
object at the object level consumes only the space
necessary for the floating-point Ob;ect.

Because we have vet to examine the pattern of
use at the object level. we ave reluctant to propose
solutions for flushing data cached in that level.
Our plan is to periodically detect the objects at the
object level that are unlikely to be accessed, flush
the attributes that have been cached from external
data sources, and leave untouched the atiributes
in objects with which users are currently working.
We expect 1o be able to keep wack of which ob-—
jects users are working with by maintaining private
collections of objects for each user.

5.5.3 Performance

We have performed some preliminary tests of our
architecture using simall subsets of the three data
sources we have described earlier. The tests were
conducted on a Sun SPARC with 48 megabytes of
memory. Our database has been implemented us-
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Table 1. Aeccess Time (in seconds)

String Float
Nonresident 695 715
Partially resident 15 35
Resident* S )

* These times represent the performance of GemStone ver-
sion 2.5 with no optimization. We have discovered simple opti-
mizations that result in times more than one order of magni-
tude faster for larger collections,

ing version 2.5 of the GemStone OODBMS. (Our
preliminary tests of GemStone 3.0beta indicate
approximately a doubling of performance over
version 2.5 for querying large collections.)

For the purposes of testing. the object-level
database consists of 1200 Crystal and associated
LUnitCell and Molecule objects. About 1156 of
these Crystal ORs represent a subset of the NBS
Crystal Database (representing approximately 1%
of that database). 40 represent files from the
Desktop Microscopist. and 4 represent files from
the TEK Cache system. All of the external data
sources. including the subset of the CD-ROM-
based NBS Crystal Database. reside on a local
hard disk.

The test consisted of using the GemStone-
Smalltalk Interface to interactively access a single
attribute from all instances of the Crysial class
with the database in a nonresident. partially resi-
dent. and resident state. In the nonresident state,
no data are cached in either the translational level
or the object level and all queries must access the
external level. In the partially resident state. entire
data records required. In the resident state. aturib-
ute values are cached at the object level. providing
performance equal to the basic performance of
the OODBMS we are using.

Table 1 presents the time to retrieve the value
of an attribute from each of the Cristal objects in
database with the database in a nonresident. par-
tally resident. and resident state. The times given
are average times for five trials for each of the
three states. We performed this series of tests for
two attributes. one a string atribute. which re-
quired no conversion from its external data for-
mat, and the other a floating-point attribute,
which required additional conversion at the trans-
latonal level from the external ASCII string format
to an internal floating-point representation.

As the data in Table 1 demonstrate. caching
provides better than one order of magnitude in-
crease in performance between the external and

translational levels. and from three to five times
the performance of the translational level at the
object level. As expected. the conversion of the
floating-point value added substantially to the
time required to access data at the translatonal
level.

We hope to substandally improve the perfor-
mance between the external and translational lev-
els with version 3.0 of GemStone. The only access
to the operating syvstem currently provided by
GemStone is through spawning a new shell. In ac-
cessing the data from the NBS Crystal Database.
TOs must spawn a new shell for each record ac-
cessed! GemStone 3.0 will add support for in-
terprocess communications (IPC). which will allow
us to develop separate “‘server’’ processes 10 ac-
cess data in external data sources. These server
processes will reduce the overhead of accessing a
record from spawning a shell to sending and re-
ceiving a few [PC messages.

5.5.4 Query Performance and
Optimization

Our architecture introduces some potential ineffi-
ciencies in querving external data sources.

One source of inefficiency is the object-byv-ob-
ject strategy of accessing entities stored in external
data sources. Data are only retrieved from exter-
nal data sources when an individual object in the
database is queried for a value that is not cur-
rently stored in the database. As depicted in Fig-
ure 10. when data are not present in an OR. the
OR forwards the query on to its related TO. which
then retrieves the data from the external level. Al-
though this is a reasonable data access mecha-
nism for data sources with no query support such
as the NBS Crvstal Database and the files of the
Desktop Microscopist and TEK Cache systems. it
is not an efficient mechanism for accessing an ex-
ternal relational database.

A relational database management system is
designed to provide efficient retrieval of sets of
records rather than single records. Our current
mechanism will require data to be retrieved from a
relational database one entity at a time by gener-
ating an SQL query for each unique object in the
database. However. the data sources we currently
access. or have plans to incorporate. are not man-
aged by relational database management systems.

Another potential inefliciency may be the order
in which external databases are accessed. We cur-
rently have no control over the order in which
messages are sent to objects in the translational



level. In the event that we are accessing multiple,
large CD-ROM data sources, a random access
pattern could result in a user being forced to per-
form an endless series of CD-ROM swaps. Even
with a planned CD-ROM “‘jukebox™ this thrash-
ing between data sources would unacceptably de-
grade performance.

The solution to this lack of ordering may be as
simple as ordering the collections based on the
class of the realObject attribute of the OR in the
collection. Queries over such an ordered collection
would then follow a more desirable access pattern,
completely accessing each data source in turn.

6 CONCLUSION

We have presented the design and initial develop-
ment of a hyvbrid object-oriented HDB for inte-
grating diverse data sources supporting materials
science research.

The object-oriented data model has proven
more than adequate for modeling crystallographic
data.

Our unique three-level architecture with
persistent object representatives appears to be a
suitable architecture for integrating data sources
that remain relatively static. The architecture pro-
vides efficient access to external data by providing
a static structure for queries based on components
of complex objects. In addition, the architecture
provides opportunities for enhancing performance
by caching data within both the object and trans-
lational le\ els of the architecture.

We have found the database relatively easy 10
extend to new data sources, and currendy provide
transparent access to three structurally diverse
data sources.

Future Work

The development of a more efficient mechanism
for accessing external data sources is eritical to the
usefulness of the database. The IPC capabilities
of version 3.0 of the GemStone OODBMS will al-
low the performance at the external level 10 he
improved significanuy.

In addition. two important issues remain to be
addressed by our database. First. it must be pos-
sible 10 associate meta-data with data retrieved
from the external daia sources. The minimum
meta-data requirement is simply 10 know the data
source from which the data are taken. This is criti-
cal because the architecture allow researchers 1o
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substitute their own value for an attribute re-
trieved from an external data source if they wish.
Thus assumptions cannot be made about the
source of an attribute simply by the determining
the data source from which the data are expected
to have been retrieved.

The second issue is the development of a tun-
able data retention mechanism for flushing little-
used data that have been cached from an external
data source. Once we have had an opportunity to
examine and understand patterns of data access
berween the levels of our architecture we will be
able to develop space management policies that
will minimize space consumption and maximize
performance.

6.1.1 Application Interface

Finally. we will soon begin the process of modifv-
ing materials science application programs to ac-
cess the database. The Desktop Microscopist will
be modified to use the database for all data stor-
age and retrieval rather than the ASCII files it cur-
rently uses.

In addition. the materials scientists with whom
we are collaboxatmg are investigating other sub-
domains of materials science for inclusion in the
database. We hope to provide support for appli-
cations that calculate phase diagrams by incorpo-
rating external data sources containing thermody-
namic data into the database.
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