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SUMMARY

A new approach to the construction of adaptive approximations on finite element meshes and also in
more general settings, including approximations on subdivision surfaces, had been recently proposed
by Krysl, Grinspun, and Schröder. This paper outlines how the general refinement algorithms may
be specialized to some common finite element discretizations in two and three dimensions, discusses
the design of nested meshes, and delves into the algorithmic, design, and implementation issues in
an object oriented software framework (http://hogwarts.ucsd.edu/~pkrysl/CHARMS). Copyright c©
2002 John Wiley & Sons, Ltd.

INTRODUCTION

Finite element approximations construct basis functions from piecewise polynomial functions
defined on a mesh. The resolution of the basis function set may be controlled by increasing
or decreasing the characteristic dimensions of the mesh elements, in other words by adjusting
the mesh density.

In this paper we describe an implementation of the so-called mesh refinement which varies
the density of the mesh by performing local refinement (or coarsening – unrefinement) of the
existing mesh so that in some regions existing finite elements are split to decrease their “size”,
in other regions they are merged to reduce the resolution. This is in contrast to remeshing,
which builds a new mesh in the whole domain or locally. Here we assume that mesh refinement
had been adopted as the method of choice, but both methods have their advantages and
disadvantages.

The element-centric viewpoint that evolved over the years in the finite element community
resulted in the adoption of the geometric division of the individual finite elements as the
starting point of all current mesh refinement algorithms. However, refinement based on the
element-by-element splitting does not in general ensure global compatibility of the refined
mesh, and a number of approaches are in use trying to resolve this problem: (i) the unknowns
of the incompatibly placed nodes are constrained with respect to other nodes so that
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compatibility of the resulting approximation is ensured although the mesh itself remains
incompatible; (ii) compatibility is weakly enforced with Lagrangian multipliers or penalty
methods; (iii) compatibility of the mesh is achieved by splitting additional elements until the
mesh becomes globally compatible. A number of specialized refinement schemes have been
proposed for a variety of practically important meshes: triangular and quadrilateral meshes
in two dimensions [1, 2, 3, 4], tetrahedral [5, 6, 7, 8, 9, 10], or hexahedral meshes in three
dimensions [11]. In general, existing mesh refinement technology tends to be quite complex
(constraint methods, splitting of neighboring elements), or leads to unappealing algorithmic
properties (Lagrange multipliers, penalty methods).

A general, flexible, and robust mesh refinement algorithm had been recently proposed by
Krysl, Grinspun, and Schröder [12] and Grinspun, Krysl, and Schröder [13]. (These algorithms
will be refered to here by the acronym CHARMS, which stands for Conforming, Hiearchical,
Adaptive Refinement MethodS.) It constructs a compatible refined approximation by drawing
on the properties of the refinement equation (well-known in wavelet analysis and elsewhere),
and has a number of very attractive properties:

• The same approach applies in any number of dimensions, and in particular algorithms
on one-dimensional meshes are of the same complexity as algorithms for three- or four-
dimensional meshes;

• The approximation order of the basis functions is immaterial, and the same algorithm
may be applied to piecewise linear or piecewise cubic, or indeed on non-polynomial,
approximations;

• The support of the individual basis functions may be the neighborhood consisting of
all finite elements sharing a node, or it might be a wider neighborhood, for instance a
two-ring of triangles on surfaces supporting the so-called subdivision elements [13], to
which current mesh refinement techniques cannot be applied.

This paper has the following goals: We wish to describe how the CHARMS may be
implemented for some classical finite element approximations, such as those on triangular
or quadrilateral meshes in two dimensions, or on hexahedral meshes in three dimensions. For
simplicity, we apply our adaptive system to a simple partial differential equation of steady
diffusion. We discuss an object-oriented implementation in the C++ language, including the
details of some of the most important (and novel or unusual) algorithms manipulating the
CHARMS datastructures. Mesh refinement should ideally guarantee efficiency, good mesh
quality, and robustness. An important benefit follows if the refined mesh is nested in the
coarser levels, since that property directly supports efficient multilevel solvers [14, 15]. We
show how our algorithms meets all of the above requirements.

1. CHARMS

We start by considering a set of linearly independent scalar basis functions B = {φi(x)},
supported on the finite elements in the mesh M , which span the finite element space X ,

X =

{
v(x) : v(x) =

∑

i

φi(x)vi

}
, (1)

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:0–0
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with x ∈ R
n, v(x) ∈ R

m, vi ∈ R
m (n ≥ 1, m ≥ 1), and φi(x) ∈ R. We propose to create a new,

“refined” mesh, M ′, such that the set of functions φ′
i(x) constructed on mesh M ′ constitutes

a basis for the finer space X ′, such that X ′ is related to the coarser space X by inclusion:

X ⊂ X ′ . (2)

We shall show in Section 2 how to construct appropriate meshes M ′, but here we shall assume
that given a coarser mesh M with the associated basis functions φi(x) it is possible to construct
a finer mesh M ′, and the associated basis functions φ′

i(x), such that the nesting relation (2)
holds. By recursively extending the above argument, a hierarchy of approximation spaces
X (j) is obtained. The coarsest space in the hierarchy is X (0), progressively finer spaces have
increasing indices X (1), X (2). . . , and this sequence may be either infinite or finite, resulting in
the hierarchical nesting relation

X (0) ⊂ X (1) ⊂ X (2) ⊂ . . . ⊂ X (m) . (3)

1.1. REFINEMENT EQUATION

Relation (3) makes it possible to apply the refinement (also known as the multiresolution or
dilation) equation [16] to finite element mesh refinement. Since X (j) ⊂ X (j+1), any basis

function φ
(j)
i (x) on level j may be exactly resolved (reproduced) in the basis with finer

resolution {φ
(j+1)
i (x)}:

φ
(j)
i (x) =

∑

k

β
(j+1)
ik φ

(j+1)
k (x) , (4)

where β
(j+1)
ik 6= 0 are the coefficients of the linear combination. We will usually attempt to

construct the spaces X (j) in such a way that the sum in (4) has a finite, and fairly small,
number of terms.

The refinement equation (4) is the key to our adaptivity approach: Given an approximation
space X (j) with basis B(j), one can derive a custom space X

′

, with basis B
′

whose resolution
is locally finer, by replacing one or more parent basis functions from B(j) by children functions
from B(j′) on levels j′ > j. In this sense, the refinement equation may be viewed as two
statements: Firstly, the approximation properties of the basis function set B

′

preserve or
enhance those of B(j) if the children basis functions are substituted for the parent basis
function. Secondly, the continuity of the children functions is greater than or equal to the
continuity of the parent function (since any finite linear combination of Ck functions is Ck).
Current mesh refinement techniques have to wrestle with continuity because the refinement
operations are applied to isolated pieces of basis functions; CHARMS, on the other hand,
achieves compatibility by construction.

2. CONSTRUCTION OF MESHES OF HIGHER RESOLUTION

In this section we will outline a strategy for constructing the hierarchy of meshes M j that will
lead to the nesting relation (2). We assume that the initial mesh consists of an arbitrary number
of element types (for instance, triangles mixed together with quadrilaterals and tetrahedra in
a non-manifold geometry), but is compatible. Furthermore, we shall consider only nodal basis
functions, i.e. the basis functions are associated with nodes, and are composed of pieces defined

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:0–0
Prepared using nmeauth.cls
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M

M1

0

Figure 1. Uniform division of mesh M
0 that results in a compatible mesh M

1.

over the incident finite elements. On each level j of the nesting hierarchy, it is assumed that

the basis functions φ
(j)
i verify the Kronecker delta property, i.e.,

φ
(j)
i (xk) = δik , (5)

where xk is the location of the node associated with function φ
(j)
k . In other words, we assume

that an approximation built of basis functions from any single level interpolates the nodal
values.

Refining a basis function using Equation (4) will mean that basis functions with higher
resolution need to be constructed from pieces over “finer” finite elements. Therefore, as one
of the steps in our algorithm, we shall need to geometrically divide coarse finite elements into
finer ones. Our mesh hierarchy will be built up in such a way that each element is divided into
elements of the same type (triangles into triangles, quadrilaterals into quadrilaterals, etc.),
and elements at each level will be divided using the same pattern (for instance, one triangle
into four smaller triangles, no matter at which level in the hierarchy the parent triangle is).

Furthermore, we shall assume that refining uniformly one particular mesh in the mesh
hierarchy results in a compatible mesh one level higher; compare with Figure 1. Therefore, if
for instance two finite elements in the mesh M j share an edge, we shall use a division pattern
that divides the shared edge in the same way in both elements. The same principle applies
to faces shared by three-dimensional elements, or in general to d-dimensional faces shared by
(d + 1)-dimensional elements. To specialize the above to some familiar element types: two-
node line elements will be bisected, three-node triangles and four-node quadrilaterals will be
quadrisected (which bisects their edges, making them compatible upon refinement with line
elements attached along the edges of the quadrilateral or triangle), eight-node hexahedra will
be octasected (again, their edges are bisected, and the divided faces are compatible with the
refinement of a four-node quadrilateral).

The same principle may be applied unchanged in higher-dimensional elements of the
Lagrange or Hermite type. For instance, if the basis function pieces over finite elements are
constructed through the master element in the parametric space, which is then mapped to
the physical space, the natural choice for refinement is uniform division in the parametric
space. For instance, consider the quadratic 8-node quadrilateral element in Figure 2, where

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:0–0
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(I)
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(I)

child 1child 0
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Figure 2. Refinement of 8-node quadrilateral finite elements: (I) stands for isoparametric mapping,
(R) stands for refinement.

the isoparametric mappings are indicated by (I), and the refinement process is indicated by
(R).

2.1. TRUE HIERARCHICAL BASIS

Equation (4) may be viewed also as a statement of equivalence: the left hand side (the coarse
function) is equivalent to the right hand side (the set of finer functions) in the sense that
if we combine both sides of (4) we get a linearly-dependent set. Furthermore, we may note
that there is just one function too many in the combined set of the left and right hand side
functions. Therefore, we could move all but one of the right hand side (finer) functions to the
left hand side, obtaining

φ
(j)
i (x) −

∑

k 6=m

β
(j+1)
ik φ

(j+1)
k (x) = β

(j+1)
im φ(j+1)

m (x) . (6)

That is a statement of the same kind as before, an equivalence, but now the function that is
being “reproduced” is on the finer level. Symmetry considerations dictate that the function
to leave on the right hand side is the one whose node “stems” from the node of the coarse
function. For instance, we show in Figure 3 the patch (one triangle and three quadrilaterals)
that supports the function indicated by the filled circle (left). In the right hand part we show
the refined patch, where the filled circles indicate functions on level j +1 on the left hand side

of (6), and the empty circle stands for the single function on the right hand side, φ
(j+1)
m (x);

in other words, the filled circles indicate the linearly independent functions, the empty circle
the one finer function that is dependent on the rest. We shall call the functions on level j + 1

that were moved to the left hand side of (6) the detail functions of φ
(j)
i (x).

The above discussion may suggest to the reader a way of constructing the refined
approximation spaces: To refine a function from the coarse space B, we shall add its detail
functions to B to obtain B

′

. The resulting approximation will be dubbed the true hierarchical

basis, and, indeed it is not a new concept in itself, since we get the well-known hierarchical

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:0–0
Prepared using nmeauth.cls



MESH REFINEMENT WITH CHARMS 5

M 0 M1

Figure 3. Illustration of Equation (6).

basis discussed, for example, by Yserentant [17]. However, our use of this concept for selective
refinement is novel.

2.2. QUASI-HIERARCHICAL BASIS

To formalize somewhat, we shall use the term active function for functions selected from a
given basis set, and the symbol B̂(k) will be used for the set of active functions from basis set
B(k). Now, the approximation basis function set B

′

may be written as

B
′

=

∞⋃

j=0

B̂(j) , (7)

that is as a union of active sets from all mesh levels. For the true hierarchical basis described
above, the active set on level j = 0 includes all the basis functions defined on the initial mesh,
and each active set on level j > 0 includes only the detail functions. Now we shall describe an
alternative refinement strategy, the quasi-hierarchical basis.

As before we proceed from the refinement equation (4). In difference to the true hierarchical
approximation, we shall interpret the refinement equation as a recipe for replacing coarse
functions (left hand side) by “finer” (higher-resolution) functions (right hand side). Thus,
the refinement will delete (deactivate) coarse functions, replacing them in a lossless manner
by finer functions, and unrefinement will delete (deactivate) fine functions and activate coarse
functions. Clearly, if this type of refinement is applied globally, all coarse functions are replaced
by fine functions and the interpolating partition of unity form of finite element approximation
is recovered; on the other hand, if the refinement is graded, transition needs to be made from
coarse to fine functions, and in the transition regions the resulting approximation resembles
the true hierarchical basis in that the basis function do not necessarily add up to unity. This
is illustrated in Figure 4, where on the left we show the true hierarchical basis, compared
to the quasi-hierarchical basis on the right. Even though we replace coarse functions instead
of augmenting them with finer functions, the resulting approximation basis is still written in
the form of Equation (7), the only change being that the active sets B̂(j) may now include
not only the detail functions, but all the functions from the right hand side of the refinement
equation (4).

2.3. APPROXIMATION ON CHARMS-REFINED MESHES

Both the quasi-hierarchical and the true hierarchical approximation may be expressed in
exactly the same way, and in fact often it is possible to devise refinement sequences that
yield precisely the same spans for both basis types. This is not surprising, since both basis

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:0–0
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M
(0)

M
(1)

M
(2)

M
(3)

M
(4)

M
(0)

M
(1)

M
(2)

M
(3)

M
(4)

Figure 4. Comparison of the true hierarchical basis (left) with the quasi-hierarchical basis (right).

types follow from the refinement equation, and as shown in the next section, the construction
of both types of basis may be expressed as the activation or deactivation of basis functions
from the conceptual hierarchy of nested meshes. The equivalence of the quasi-hierarchical and
the hierarchical basis allows us to write the finite element approximation in the unified way

uh(x) =
∑

j: bB(j) 6=∅




∑

i:φ
(j)
i

(x)∈ bB(j)

φ
(j)
i u

(j)
i


 ,

where B̂(j) is the set of active functions on level j, and u
(j)
i are the nodal parameters. Evidently,

it would be possible to express the finite element approximation with a single sum, as usual,
but the above form makes it clear that the basis functions “live” on different refinement levels.

The appromation properties of the CHARMS-adapted basis set are identical for the
discretization error to classical finite element basis using the same type of element. On the other
hand, the hierarchical character of the basis may lead to a deterioration in the conditioning of
the system matrices [17]. This will be more pronounced for the true hierarchical basis than for
the quasi-hierarchical basis. For a small number of overlaps (up to about five levels of refined
basis functions interacting in the transition regions) the effect seems minor. However, so far
this aspect has not been studied in sufficient detail.

It remains to formulate algorithms for the construction of the active sets, and that is the
goal of the next section.

3. FORMAL STATEMENT OF THE REFINEMENT AND UNREFINEMENT
ALGORITHMS

It is of advantage in applications when the active functions constitute a basis, i.e. when they
are linearly independent. In order to make the present work self-contained, we re-phrase here
the algorithms enunciated in Reference [12], but without proofs. These algorithms activate
and deactivate functions from the nesting hierarchy, and guarantee the linear independence of
the active function set.

For the finite element meshes we consider in this paper, no basis function support is entirely
enclosed by the support of another basis function, i.e.,

supp
[
φ

(j)
k

]
6⊆ supp

[
φ

(j)
i

]
for k 6= i and ∀j ≥ 0 . (8)

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:0–0
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This is an important tool in our proofs [12]: Consider two functions on the same level; because
of the above property, the refinement set of either must contain at least one function not
present in the refinement set of the other.

There are many possible algorithms for building adapted bases, and here we present
algorithms based upon three rules:

1. The refining/unrefining of a function on level j may affect that function or any of its
children on level j + 1; no other function may be involved.

2. A function on level j + 1 (j + 1 ≥ 1) may be refined only when all its parents on level j
have been refined.

3. A function on level j may be unrefined only if (a) it is currently refined and (b) none of
its children on level j + 1 are refined.

If the basis functions are completely supported by one ring of elements around a node, then
rules 2 and 3 enforce the common rule of one-level-difference refinement of neighbors; this rule
has been applied to finite element meshes, as well as to spatial datastructures such as quadtrees
and octrees in various contexts (graphics, mesh generation, spatial searches, etc.) [18, 19].

We now show that if the (un)refinement is applied atomically, i.e. it is either entirely executed
or not at all, then linear independence of the adapted basis is guaranteed. Furthermore, our
algorithms ensure that the refinement step is lossless; the span of the resulting set includes the
span of the original set. (Unrefinement is not lossless, in general: some information is always
going to be lost, since the goal of unrefinement is to decrease the span of the approximation
space.)

3.1. QUASI-HIERARCHICAL BASIS

We begin by discussing the quasi-hierarchical refinement strategy. We first describe the
refinement operation, and show that it preserves the linear independence requirement and
is lossless; we then describe the unrefinement operation, and show that it too preserves the
linear independence requirement.

3.1.1. Refinement The refinement set of the coarser function φ
(j)
i supported by the mesh

on level j + 1 is denoted by R(j+1)[φ
(j)
i ], and contains exactly those basis functions that

contribute to the right-hand side of the refinement equation with a non-zero coefficient:

R(j+1)[φ
(j)
i ] =

{
φ

(j+1)
k | β

(j+1)
ik 6= 0

}
. (9)

If φ
(j+1)
k belongs to R(j+1)[φ

(j)
i ], we say that “φ

(j)
i is a parent of φ

(j+1)
k ,” and “φ

(j+1)
k is a

child of φ
(j)
i .”

Given an initial basis function set, B, which contains φ
(j)
i , and satisfies the linear

independence requirement, we choose to produce another function set B
′

by deactivating φ
(j)
i

and activating all of its children R(j+1)[φ
(j)
i ]. We refer to this algorithm, which maps B to B

′

,
as quasi-hierarchical refinement.

We claim that quasi-hierarchical refinement (a) preserves the linear independence
requirement and (b) is lossless. See Reference [12] for proofs.

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:0–0
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3.1.2. Unrefinement Given an initial basis function set, B, that satisfies the linear

independence requirement, and given a previously refined φ
(j)
i , not in B and eligible for

unrefinement under rule 3, we choose to produce another function set B
′

by activating φ
(j)
i

and deactivating those children of φ
(j)
i which have no other currently refined (i.e. inactive)

parent. More concisely, the members of the following set are deactivated:

{
φ(j+1)

m ∈ R(j+1)[φ
(j)
i ] ∧ ∀ r 6= i φ(j+1)

m ∈ R(j+1)[φ(j)
r ] → φ(j)

r ∈ B̂(j)
}

. (10)

We refer to this algorithm, which maps B to B
′

, as quasi-hierarchical unrefinement. We
claim that quasi-hierarchical unrefinement preserves the linear independence requirement. (See
Reference [12] for proofs.)

3.2. HIERARCHICAL BASIS

We have completed the algorithm of quasi-hierarchical refinement, which treats refinement as
the replacement of coarse-level functions by finer-level functions. Let us turn to the alternative
strategy for constructing adapted bases: hierarchical refinement treats refinement as the
addition of finer-level “detail functions” to an unchanged set of coarse-level functions. Before
we continue, let us formalize the concepts of a detail function and a detail (function) set that
had been introduced above.

Definition: Given a function φ
(j)
i , construct the set of all functions φ

(j+1)
k ∈ R(j+1)[φ

(j)
i ] such

that they vanish at the location xi of node i

D(j+1)[φ
(j)
i ] =

{
φ

(j+1)
k | φ

(j+1)
k ∈ R(j+1)[φ

(j)
i ] and φ

(j+1)
k (xi) = 0

}
. (11)

The set D(j+1)[φ
(j)
i ] is the detail set of φ

(j)
i . Functions that belong to at least one detail set

are called detail functions.

Note that our definition of the detail set guarantees that there is precisely one fine function

φ
(j+1)
i such that R(j+1)[φ

(j)
i ] = D(j+1)[φ

(j)
i ]

⋃
φ

(j+1)
i .

3.2.1. Refinement Given an initial basis function set, B, which contains φ
(j)
i , and satisfies

the linear independence requirement, we choose to produce a refined set B
′

by activating

D(j+1)[φ
(j)
i ]. We refer to this algorithm, which maps B to B

′

, as hierarchical refinement. As
proved in Reference [12], the hierarchical refinement (a) preserves the linear independence
requirement and (b) is lossless.

3.2.2. Unrefinement Given an initial basis function set, B, that satisfies the linear

independence requirement, and given a previously refined φ
(j)
i , also in B and eligible for

unrefinement (rule 3), we choose to produce another function set B
′

by deactivating functions

φ
(j+1)
m ∈ D(j+1)[φ

(j)
i ] that are absent from all the refinement sets of currently refined functions

on level j. We refer to this algorithm, which maps B to B
′

, as hierarchical unrefinement. It is
easy to show that hierarchical unrefinement preserves the linear independence requirement [12].

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 00:0–0
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4. DESIGN OF AN ADAPTIVE SOLVER

In this section we will pursue the discussion of the CHARMS technology into the design phase,
which will be illustrated with UML diagrams [20]. Figure legends use slanted type to indicate
abstract classes; the inheritance and delegation relationships are included with multiplicities.

4.1. GEOMETRIC CELL (GCELL)

The computational domain is assumed to be a non-manifold object embedded in a
d-dimensional Euclidean space. The constituent manifolds are assumed to be locally
coordinatized by m Cartesian coordinates, m ≤ d, depending on the manifold dimension.

The domain is discretized into geometric cells. The manifold dimension of these cells
corresponds to the manifold being discretized. Geometric cell (GCELL) is one of the basic
classes in our implementation. However, GCELL is an abstract class, and only its specializations
are being instantiated. The specialization branches in the direction of manifold dimension:
thus there are geometric cells of manifold dimension zero (0) (GCELL POINT P1), of one (1)
(e.g. GCELL LINE L2), two (2) (for instance GCELL SURF Q4, or GCELL SURF T3), and three (3)
(GCELL SOLID H8, or GCELL SOLID T4). Figure 5 shows the class diagram for the quadratic
six-node triangle (GCELL SURF T6).

CONN<CONN_2_MANIFOLD,6,3>

GCELL

GCELL_SURF_T6
CONN

MANIFOLD_DIM
NFENS
NREFFENS

«bind»
<2,6,3>

child/parent

1

1

Figure 5. Class diagram for a gcell representing a six-node (quadratic) triangular finite element. Note
the use of the templated CONN class for the specification of the connectivity.

It is assumed that the cells in the physical space are images of “master” cells in the
parametric domain. The parametric coordinates constitute the charts for the pieces of the
manifolds embedded in the d-dimensional Euclidean space to which the master cell maps.
Each cell may be mapped into a different Cartesian coordinate system, but for simplicity we
shall assume in this paper that all cells map to a single, global Cartesian coordinate system.

Geometric cells (GCELL’s) provide a number of services to the adaptive code. Thus, they
are the means of defining pieces of basis functions (in the master parametric domain), but
they are also carriers of the topological/geometrical refinement hierarchy. In other words, the
h-refinement involves division of a GCELL into finer, nested GCELL’s. It is assumed here that
this division results in GCELL’s of the same type. The topological/geometrical refinement is
applied recursively, resulting in a tree of GCELL’s, the root being represented by the coarsest
GCELL, and the leaves being cells without children. To give an example, Figure 6 shows the
hierarchy of GCELL’s stemming from the root at the bottom, with the finest cells as the leaves
at the top, for a four-node quadrilateral.
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10 P. KRYSL, A. TRIVEDI, B. ZHU

Figure 6. Schematic refinement tree for a quadrilateral GCELL. The upward pointing arrows symbolize
the “child” relationship, the downward arrow points at the parent.

4.2. CONNECTIVITY AND REFINEMENT NODES

Connectivity CONN is a template class, parameterized with the manifold dimension, number
of connected nodes, and number of refinement nodes (Figure 5). This allows us to distinguish
between a line with 3 connected nodes, and a 3-node triangle, etc. From a refinement point
of view, a very important connectivity type is the vertex (CONN<CONN 0 MANIFOLD,1,1>). All
refinement nodes topologically located at the nodes of the coarser levels are classified on the
connectivity CONN<CONN 0 MANIFOLD,1,1>.

encodes a topological division rule. In order to maximize the number of element types that
may be mixed in a single finite element mesh we adopt the strategy that views elements
of manifold dimension d as boundaries of elements of manifold dimension d + 1. This
information is encoded in the instantiations of the template class CONN. Thus, vertices of
cells are topological entities CONN<CONN 0 MANIFOLD,1,1>, that is their manifold dimension
is zero, connect a single node, and are refined with one node. The edges of cells are cells in
their own right, and vertices are their boundaries. For instance, CONN<CONN 1 MANIFOLD,2,1>

is a two-node line segment, which is refined with a single node at the mid-point
(origin of the parametric coordinates). Three-node triangles (CONN<CONN 2 MANIFOLD,3,0>)
and four-node quadrilaterals (CONN<CONN 2 MANIFOLD,4,1>) are bounded by connectivities
CONN<CONN 1 MANIFOLD,2,1>, which makes it possible to mix those two in a single mesh.
Three-node triangles have no refinement nodes of their own (all refinement nodes are located
at the edges, none in the interior), whereas the four-node quadrilaterals have one interior
refinement node. As the last illustration, consider the quadratic isoparametric triangle. The
class diagram for the quadratic six-node triangle in Figure 5 refers to the connectivity type
CONN<CONN 2 MANIFOLD,6,3>, that is a 2-manifold that connects 6 nodes, and has 3 internal
refinement nodes. The boundaries of this cell are of type CONN<CONN 1 MANIFOLD,3,2>, and
the connectivity of the quadratic triangle is compatible with the refinement of the 10-node
tetrahedron.

The topological division starts with the connectivities of the lowest manifold dimension,
that is zero (vertices). Then edges are divided, followed by faces, and finally volumes. Thus,
an eight-node hexahedron would first divide its vertices, then its edges, faces, and finally it
would conclude the process by generating one refinement node at its barycenter.
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4.3. FIELD

The class FIELD is a fundamental concept in our software framework. The term “field” implies
spatial variation [21], and in the present context, field u is represented by the sum

uh(x) =
∑

j

φj(x)uj , (12)

where uh(x) is the usual finite element expansion of function u(x), φj(x) are the finite element
basis functions, and uj are the nodal parameters. The approximated function may be a scalar,
vector, or tensor function of a vector argument, for instance the displacement field over the
domain (vector function of a vector argument), or temperature field (scalar function of a vector
argument). Each term in the sum (12) is expressed through an object, the FIELD PAIR. It relates
two objects: the basis function, BFUN, and the degree-of-freedom parameter (DOFPARAM for
short). The value of the DOFPARAM object may change freely, or some or all of its components
might be prescribed as an expression of an essential boundary condition. FIELD PAIR is a class
parameterized with the number of components in the DOFPARAM object, and in that way
the current implementation is able to represent scalar degrees of freedom (one component), or
vectors in 3D space (three components), or an array of an arbitrary number of components.

FIELD_PAIR
NUM_COMPONENTS

BFUN FIXED_VECTOR
NUM_COMPONENTS

FIELD_BASE

BFUN_SET

1

1..n

FIELD
NUM_COMPONENTS

1

1..n

* 1

1 1

Figure 7. Class diagram for the field pair and field.

4.4. BASIS FUNCTION (BFUN)

Figure 8 shows the class diagram for the basis function and basis function set types. BFUN
serves as the abstract base class. BFUN FE builds up the first concrete class upon BFUN and
provides access to the standard finite element basis functions. BFUN FE maintains a list of all
the GCELL’s over which the individual pieces of the given basis function are defined. Thus,
for instance the basis function associated with the node indicated by the black dot in the
coarse mesh in Figure 3 would include in the list one triangle (GCELL SURF T3) and three
quadrilaterals (GCELL SURF Q4).
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12 P. KRYSL, A. TRIVEDI, B. ZHU

4.5. BASIS FUNCTION SET (BFUN SET)

The basis function set (BFUN SET) collects basis functions defined on a particular geometric
mesh. Any particular BFUN SET maybe associated with any number of fields. The BFUN SET

provides the field with a very important service: The BFUN SET generates an opaque identifier
(BFUN DOFPARAM PAIR ID) which may be used to access a field pair in constant time (it is in fact
implemented as an array access). The BFUN SET generates this identifier based on the pointer
to an opaque, system-wide unique identifier which is carried by a finite element node. That in
turn implies that there is a one-to-one link between the unique identifier (finite element node)
and a basis function. The BFUN DOFPARAM PAIR ID identifier is used for instance by solvers so
they can distribute computed solutions to the field pairs.

BFUN

BFUN_SET

1
*

FEN

UNIQOBJ

1
1

BFUN_FEGCELL
1..n

1

Figure 8. Class diagram for the basis function and basis function set.

5. IMPLEMENTATION OF REFINEMENT/UNREFINEMENT

The implementation of the refinement and unrefinement algorithms as enunciated earlier is
straightforward. However, it seems worthwhile to point out that the refinement of a single
basis function involves the generation of child GCELL’s, which in its turn requires the addition
of refinement nodes. Some of these nodes are shared by two or more GCELL’s, and care must
be taken to introduce only a single copy of each shared refinement node so that compatibility
of the refinement functions is ensured.

To enable the sharing of refinement nodes during the creation of the child geometric cells,
we use the concept of a refinement context. It acts as the dispenser of refinement nodes.

The present code labels refinement nodes with an instance of the connectivity object on
which they are classified. For instance, for an eight-node hexahedron, the refinement nodes are
either located at the vertex nodes, at the mid-points of the edges, at the barycenters of the
faces, or at the center of the volume: compare with Table I. The request to supply a refinement
node on a given connectivity object (for instance, on an edge connecting nodes I and J) is
processed by the refinement context: If the refinement node had not been created for the
connectivity object before, it is created, and the reference to the connectivity is remembered
for future lookups. Each GCELL may thus proceed with the refinement independently of its
neighbors; the sharing of refinement nodes is managed transparently.
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Location of refinement node Classified at (CONN<MANIFOLD DIM,NFENS,NREFFENS>)

Vertex CONN<CONN 0 MANIFOLD,1,1>

Edge CONN<CONN 1 MANIFOLD,2,1>

Face CONN<CONN 2 MANIFOLD,4,1>

Volume CONN<CONN 3 MANIFOLD,8,1>

Table I. Refinement nodes of an 8-node hexahedron.

6. EXAMPLE: EQUATION OF STEADY DIFFUSION

To illustrate the adaptive code, we shall consider a simplified version of the linear partial
differential equation of steady diffusion. In strong form: Given f : Ω ← R, g : Γg ← R, and
h : Γh ← R, find u : Ω̄ ← R

−κ∆u = f in Ω
u = g on Γg

u,ini = h on Γh ,

where Ω is the domain (two- or three-dimensional), Γh and Γg are disjoint parts of the
boundary, Γ = Γh ∪ Γg, ∆ is the Laplace operator, “, i” in the subscript means differentiation
with respect to the i-th Cartesian coordinate, κ is the conductivity (assumed to be constant
in Ω), and the function g and h are the prescribed boundary values. A weak form of Eq. (13)
is derived in a standard way [22] as

a(w, u) = (w, f) + (w, h)Γh
, (13)

where

a(w, u) =

∫

Ω

κw,iu,i dΩ , (14)

(w, f) =

∫

Ω

wf dΩ , (15)

(w, h)Γh
=

∫

Γh

wh dΓh . (16)

The functions u and w are the trial and test function respectively, u ∈ S and w ∈ V, where S
is the trial space and V is the test space.

Next, we choose finite dimensional approximations of the trial and test spaces as the span
of some suitable finite element basis functions. Adopting a Galerkin formulation, the test
functions vh ∈ Vh will all vanish on the boundary Γg, and the trial functions uh will be
decomposed as

uh = vh + gh , (17)

where gh will satisfy (approximately) the boundary condition u = g on Γg, and vh ∈ Vh.
The homogeneous-part of the trial functions is written as

vh =
∑

B

φBdB ,
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14 P. KRYSL, A. TRIVEDI, B. ZHU

which leads to the discrete system of linear equations
∑

B 6∈Γh

a(φA, φB)dB = (φA, f) + (φA, h)Γ −
∑

B∈Γh

a(φA, φB)gB , A 6∈ Γh . (18)

On the left-hand side of (18) is the product of the conductivity matrix with the vector of
unknowns, and the source terms are all on the right-hand side.

6.1. ADAPTIVE ALGORITHM

The overall adaptive algorithm is described as

algorithm ALGO STEADY DIFFUSION
do

1. Assemble the conductivity matrix;
2. Assemble the right-hand side (the source terms);
3. Solve the system of linear equations;
4. Evaluate the required mesh size h(x);
5. Adapt the FE basis function set Vh to the function h(x);

while not converged

Refinement or unrefinement follows an estimate of the required mesh size in the form of a
mesh-size function, h(x). Our code uses residual-based estimates to compute per-cell errors,
which are then processed to yield per-basis-function errors. As an example of such a procedure
we have used the error density, which is obtained as the ratio of the summed error from all
GCELL’s supporting the given basis function and their volume (area, in two dimensions). Basis
functions with high error density are candidates for refinement, basis functions with low error
density are considered for unrefinement. The principle of equidistribution of error then leads
to a mesh-size function h(x).

CHARMS make it very easy to re-use the solution from the coarse mesh in the process of
solving for the fine-mesh solution. The solution field from the coarse mesh is transferred to
the fine mesh (see next section), and is then passed along to the linear equation solver as the
initial guess of the fine-mesh solution. Iterative solution methods then can make use of this
initial guess to converge to the fine-mesh solution more efficiently.

6.2. FIELD TRANSFER

To satisfy the needs of an adaptive procedure, we need a field transfer from one field
(the source) to another (the destination). In our case, the two fields are defined on two
distinct refined meshes resulting from the refinement of the same initial mesh. The field
transfer operation is in general formulated as the computation of the nodal parameters of
the destination field from the condition that the destination field be somehow “close” to the
source field. Since our refinement algorithm is lossless, we can transfer a field from a coarse
mesh to a destination field on a fine mesh exactly. However, if the destination field is defined
fully or partially on a mesh coarser than the source field, the transfer is going to involve some
loss of information.

Approximations generated by CHARMS are in general non-interpolating. This makes it
seemingly hard to come up with an efficient computation of the nodal parameters. A function
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given on the source field

ũ(x) =
∑

k

φ̃k(x)ũk ,

where φ̃k ∈ B̃ and ũk are the basis functions and nodal parameters of the source field, is to be
approximated by (transfered to) the destination field

u(x) =
∑

j

φj(x)uj

where φj ∈ B and uj are the basis functions and nodal parameters of the destination field.
The parameters ũk are known, but parameters uj are all unknown. Thus we have a classical
function approximation problem, and a number of schemes may be used to solve for the
unknown parameters; interpolation, and least square fitting being perhaps the most often used
ones. Instead of striving for the most general solution, we take advantage of the special nature
of the nested finite element spaces, and use an interpolating prolongation when transferring
from coarse to fine, and the dropping of details during restriction in the opposite direction.
The refinement equation (4) in combination with the refinement and unrefinement algorithms
of Section 3 yields an efficient algorithm for the computation of the nodal parameters in the
destination field. Due to space constraints, the algorithm is not described here and the reader
is referred to Reference [23].

6.3. EVALUATION CELL (ECELL)

In our Galerkin example, the mesh is needed for the evaluation of the integrals (14), which
in turn involves the basis function derivatives. Note that there are clearly two separate and
orthogonal operations here:

• Evaluate the basis functions (and their derivatives); and
• Use those computed basis function values or their derivatives to evaluate the integrals.

The second task will change with each new problem. The first task (the evaluation of the basis
functions), on the other hand, will be the same independently of the problem to be solved. Our
design therefore separates the evaluation of the basis functions into a task performed by the
geometric cells, and all the other operations are factored into responsibilities for the so-called
evaluation cells (ECELL’s).

6.4. PROTOCOLS

The protocol PROTO STEADY DIFFUSION for the problem at hand consists predictably of three
functions, assemble conductivity matrix, assemble source terms, and solve. The role of
the protocol is simply to bundle the functionality (creation of the evaluation cells, looping over
those cells to assemble the contributions to the left- and right-hand side of the linear system,
and finally the solution of the system) into a reusable component. The protocol enlists the
services of a linear equation solver component, which we do not have the space to describe in
any detail. The protocol is employed by the algorithm in steps 1–3.

6.5. CALCULATION OF BASIS FUNCTION TABLES

When the basis function tables (the function value, and values of the derivatives with respect
to the spatial coordinates) are needed at a particular quadrature point, they need to be
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ECELL
+_gcell: GCELL

GCELL
1*

ECELL_STEADY_DIFFUSION

ECELL_ELASTICITY

....

ECELL_STEADY_DIFFUSION_H8

ECELL_STEADY_DIFFUSION_T6

Figure 9. Class diagram for the steady-diffusion evaluation cell of for an 8-node hexahedron.

computed for the hierarchy of overlapping basis functions. The geometric cells on which the
basis functions are defined are related through the parent/child relationship.

To evaluate the spatial integrals we perform numerical quadrature on the geometric cells
that are the leaves of the refinement hierarchy. In other words, the interaction of basis functions
from different levels is evaluated over geometric cells that support the finest basis function. (An
alternative approach that evaluates interactions of pairs of basis functions over the support of
the finer function had been proposed in Reference [13].)

Because of our chosen quadrature scheme (all integrals are evaluated over the leaf cells),
we need to traverse the hierarchy from the leaf towards the root. Furthermore, since all the
parent/child relationships are transitive, it is sufficient to consider in this discussion just two
levels from the mesh hierarchy: the parent level and the child level.

Without loss of generality we may consider a particular element type, for instance the
isoparametric eight-node (serendipity) quadrilateral (Figure 2) [24]. The basis functions of a
single element are defined in the parametric coordinates in the biunit square (−1 ≤ ξ ≤ +1,
−1 ≤ η ≤ +1) as

Φ
T (ξ, η) =




−1/4(1 − ξ)(1 − η)(1 + ξ + η)
−1/4(1 + ξ)(1 − η)(1 − ξ + η)
−1/4(1 + ξ)(1 + η)(1 − ξ − η)
−1/4(1 − ξ)(1 + η)(1 + ξ − η)

1/2(1 − ξ)(1 + ξ)(1 − η)
1/2(1 − η)(1 + η)(1 + ξ)
1/2(1 − ξ)(1 + ξ)(1 + η)
1/2(1 − η)(1 + η)(1 − ξ)




, (19)

where the superscript T indicates transpose. The derivatives of the basis functions with respect
to the spatial coordinates are evaluated as usual by the chain rule, which can be put in matrix
form as 



∂Φ(ξ, η)

∂x

∂Φ(ξ, η)

∂y


 = J

−1




∂Φ(ξ, η)

∂ξ

∂Φ(ξ, η)

∂η


 , (20)
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with the jacobian matrix defined as

J =




∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η


 . (21)

The elements of the jacobian matrix are computed from the expansions of x and y in terms of
the basis functions

x =
∑

i

Φi(ξ, η)xi , y =
∑

i

Φi(ξ, η)yi , (22)

where xi and yi are the nodal geometry parameters.

If we now consider approximation on a mesh with basis functions at several levels, we may

still keep Eq. (19), but the elements of the Φ matrix are now functions φ
(j)
i at various levels j.

Similarly, the derivatives with respect to spatial derivatives may be computed from Eq. (20),
but it must be realized that the geometric cells in the mesh hierarchy have their own parametric
coordinates (i.e. they are all mapped from the master element). To compute the jacobian
matrix (21) all the derivatives ∂Φi/∂ξ etc. need to be computed in a single coordinate system.
In our implementation, we choose to compute all the derivatives in the parametric coordinates
of the leaf geometric cell (i.e. the finest cell in the hierarchy). We use the notation ξ′ and
η′ for the parametric coordinates of the parent, and ξ and η for the parametric coordinates

of the child, and φ
(j)
i for the basis function defined on the parent, and φ

(j+1)
i for the basis

functions defined on the child. The parent (top row in Figure 2) is divided into four children
(bottom row) in its parametric space, and all elements, parent and the children, are mapped
to the physical space using the standard isoparametric mapping in their own coordinates. We
express the derivatives of the basis functions on the parent cell with respect to the parametric
coordinates of the child needed in (21) through the chain rule

∂φ
(j)
i

ξ
=

∂φ
(j)
i

ξ′
∂ξ′

ξ
, (23)

and similarly for the relationship between η and η′. For our particular example, the mapping
from the parent to the child is simple. For instance, for child 0 (compare with Figure 2):

ξ′ = 1/2(ξ − 1)

η′ = 1/2(η − 1) , (24)

and we get ∂ξ′/∂ξ = 1/2 and ∂η′/∂η = 1/2; it is easy to show that this relationship holds for
all four children.

We are ready to state the algorithm eval bfun set for the computation of the values and
derivatives with respect to the spatial coordinates of the basis functions active at a particular
quadrature point: The inputs are the leaf cell and the parametric coordinates of a given
quadrature point in that cell. Note that the tree needs to be descended from the leaf cell
towards the root, and the algorithm may proceed by recursion or by iteration.
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algorithm eval bfun set
1. Descend the refinement tree

and compute φ
(j)
i , ∂φ

(j)
i /∂ξ, . . . for all active functions, j = 0, 1, . . . from (23)

2. Compute the jacobian matrix J of Equation (21),
and then invert to obtain J

−1

3. Using ∂φ
(j)
i /∂ξ, . . . from step 1, and J from step 2,

compute ∂φ
(j)
i /∂x, . . ., j = 0, 1, . . ., from Equation (20)

Note that the task of evaluating the individual basis functions and their derivatives in the
parametric coordinates is performed by the GCELL’s, as usual in standard finite element codes.
The only difference is that the child’s coordinates need to be related to the parent’s coordinates
through the chain rule (the factor 1/2 in the example discussed above).

6.6. GEOMETRY

A remark is in order concerning the definition of the geometry of the domain. An isoparametric
description of the finite element fields is used, and Equation (22) makes it clear that to evaluate
the geometry, i.e. the location of a point given by its natural, parametric coordinates, the nodal
parameters for the geometry are needed. Our adaptive framework represents the geometry
as an ordinary field. In other words, the code makes no distinction between the unknown
fields and the geometry. However, one difference needs to be noted: the geometry needs to
be initialized at the beginning of the computation. Fortunately, that is an easy task, since
the basis functions on the initial (input) mesh interpolate. Therefore, the nodal parameters of
the initial geometry field are simply the coordinates of the nodes. The geometry fields for the
refined approximations need to be computed by field transfer, however, since the approximation
becomes non-interpolating upon refinement. If the initial mesh describes the domain exactly,
the geometry is also described exactly on any refined mesh, because of the lossless character of
field transfers from coarse to fine meshes. On the other hand, if the geometry of the domain is
only approximated by the mesh, the nodal geometry parameters may be computed to improve
the shape approximation by fitting curved boundaries [23].

6.7. HEXAHEDRAL DISCRETIZATION IN 3D

Hexahedral finite elements are often preferred to tetrahedra because of their slightly better
performance in a number of applications. However, refining hexahedra by introducing
compatible edges, or by using a technique similar to the mesh refinement of tetrahedra by
bisection is a tough problem, since the element quality tends to deteriorate very quickly and
without bounds. Due to the regular division of the elements by octasection, CHARMS have
no problem with shape deterioration. The implementation of mesh refinement with CHARMS
also proves extremely easy, and in fact it took the first author just a couple of hours to add
the hexahedral refinement to the CHARMS framework once the code had been debugged in
one dimension. Most of the implementation effort goes into the coding of the connectivity of
the parent and its children: the information which nodes are connected by a given child needs
to be recorded.

Figure 10 shows the mesh and the results of a sample simulation for a steady diffusion
problem solved on a polyhedral domain. The initial grid and a refined grid are compared
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Figure 10. Steady diffusion equation solved in a three-dimensional domain. Left: initial grid; middle:
step after two adaptations; right: cut-off grid with a solution contour. The integration cells are shown,

with color coding corresponding to the temperature distribution.

side-by-side. The integration cells are shown in Figure 10 and the reader should take care to
realize the apparently hanging nodes are a visualization artifact: no active basis functions are
associated with the incompatibly located nodes.

6.8. REFINEMENT OF TRIANGULATIONS WITH QUADRATIC TRIANGLES

As an example of mesh refinement for higher-order approximations we discuss here an
implementation for the quadratic (6-node) triangles. Quadrisection is used to divide each
parent triangle into four children of the same type in the parametric space: viz Figure 11.
The refinement nodes are numbered from 0 to 14. Refinement nodes 0. . . 5 are classified at the
nodes of the parent, nodes 6. . . 11 are classified on the 3-node edges of the parent, and the
last three nodes (12,13,14) are classified in the interior of the parent element. An important
piece of information that the refinement algorithm needs is which functions at the nodes of
the child refine a particular function of the parent. For instance, function at node 0 of the
parent is refined by functions at refinement nodes 0, 6, 7, 13, 14, 10, 11 of the children (all
but the function at node 0 are detail functions); function at node 4 of the parent is refined by
functions at nodes 4, 8, 9, 12, 13, 14 of the children (all but the first are detail functions), etc.

Figure 12 shows the contours of the solution of the Poisson equation for a “dipole” source
function. The results are displayed on the integration cells. (The visualization approximates
the smooth quadratic variation by piecewise linear polygons.) Figure 13 illustrates the active
basis function set for the refined mesh in the upper-left corner of the domain from Figure 12
by showing the active functions as red balls, and the geometric cells that support the active
functions are filled triangles. Note that the active functions on level j + 1 vanish along the
boundaries of the geometric cells of level j. That is a visual confirmation of the preserved
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Figure 11. Refinement of the 6-node triangle.

compatibility.

Figure 12. Dipole equation with homogeneous boundary conditions solved on a triangulation of square
domain with 6-node quadratic triangles. Color coding of the field on three refined grids.

Figure 13. Dipole equation, 6-node quadratic triangles. The geometric cells from the upper-left corner
of the computational domain that support basis functions on different levels: left to right, level 1, 2,

3, 4. The red balls indicate the active basis functions.
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CONCLUSIONS

The conforming hierarchical adaptive refinement methods (CHARMS for short) have been
presented from the conceptual view of the basic ideas up to the detailed view of the object
oriented design and implementation.

The CHARMS framework allows for mesh refinement applications to be built quickly and
robustly. The CHARMS element library currently includes two-node line elements, 3-node and
6-node triangles, 4-node and 8-node quadrilaterals, 4-node and 10-node tetrahedra (CHARMS
proved essential in the solution of the tough problem of guaranteeing the shape quality of
a refined tetrahedra [25]), and 8-node hexahedra. After the initial debugging phase for the
generic framework, which could be done entirely with the one-dimensional finite element as a
stub, the implementation never required serious debugging effort when adding a new element.
To support the construction of approximation bases either in a different number of dimensions
(perhaps the time-space), or for a different approximation order (cubics), a new element type
may need to be added. The associated programming effort then needs to be invested into
the coding of the connectivity of the new element, but the generic part of the library is not
affected, and no special tricks are required.

This property is very attractive since implementations of current mesh refinement techniques
often prove too expensive from the point of view of the initial investment effort, and later on
they tend to be much too fragile to be maintained as the software complexity increases. Even
though the software described in this work builds on some non-traditional design decisions,
CHARMS techniques require little in terms of additional data structures, and may be readily
introduced into existing finite element programs.

The object oriented software framework implementing the Conforming Hierar-
chical Adaptive Refinement MethodS (CHARMS) is available as open source at
http://hogwarts.ucsd.edu/~pkrysl/CHARMS.
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