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ABSTRACT 

We describe an object-oriented implementation of numerical integration methods for 

solving ordinary differential equations. Software components that are common to many 

different integration methods have been identified and implemented in such a way that 

they can be reused. This facilitates the design of a uniform user interface and makes the 

task of implementing a new integration method fairly modest. The sharing of code in this 

type of implementation also allows for less subjective comparisons of the result from 

different integration methods. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

The traditional way of writing software for solving 

ordinary differential equations (ODE) is to provide 

one subroutine to the user. The user calls this 

subroutine specifying the function that should be 

integrated, the integration interval, and the accu­

racy requirements. In some cases the user can also 

affect internal algorithmic decisions, for example, 

how to handle the Jacobian, but mostly the inte­

gration routine acts as a black-box module. This 

way of coding has resulted in several very success­

ful implementations, for example, DDASSL [ 1], 

RADAU5 [2], LSODE [3], and STRIDE [4]. 

When solving ODEs there is, unfortunately, no 

"optimal" integration method. Different prob­

lems require different discretization methods in 

order to be solved accurately and efficiently. As a 
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consequence, software environments for modeling 

and simulation of ODEs need to implement sev­

eral different types of integration methods. The 

way of implementing described above is then no 

longer preferable. In particular: 

1. Many of the internal tasks an integration 

routine has to perform are independent of 

the implemented discretization method. In 

the current style of coding the code that per­

forms these tasks is spread out and some­

times hard to identify. A more modular cod­

ing style would allow for reuse, and the task 

of implementing a new integration method 

would be easier. 

2. If integration methods were to share code 

for common internal tasks thev would be 

easier to maintain and comparisons of 

results from different methods would be less 

subjective. 

3. Most of the implementations available today 

have slightly different user interfaces. In 

part this is due to them implementing differ­

ent discretization methods, but often they 

differ more than necessarv. A common in­

terface would facilitate the use of integration 
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Description 

FIGURE 1 ODE-solving software structure. There are 

two main building blocks: one describing the ODE and 

one describing the solver. There are also two different 

types of users: one mainly interested in using existing 

methods to solve different ODEs and the other trying to 

implement new integration methods or improving on 

old ones. It is important that the software structure sup­

ports both of these users. 

routines as building blocks in other soft­

ware. 

4. ODEs often arise as models of physical sys­

tems and/ or phenomena. In a modeling and 

simulation environment [ 5 J. one is normally 

interested in doing more than just integrat­

ing the equations, for example, find station­

ary points, linearize, check parameter sen­

Sitlvity, etc. The paradigm where the 

integration method is the central part is then 

less useful. Rather one would like to have a 

structure where different aspects of the 

ODE are described, and the integration rou­

tine is just one of many possible operations 

that may be applied to this data structure. 

In the following we will outline an experimental 

software project that addresses the points made 

above. It is an object-oriented C++ implementa­

tion of a family of different integration methods. 

For simplicity the current implementation is lim­

ited to general explicit Runge-Kutta (ERK) meth­

ods and singly diagonally implicit Runge-Kutta 

(SDIRK) methods. The structure of the software 

is. however. such that it can fairly straightfor­

wardly be extended to other types of integration 

methods, for example, multistep methods, ex­

trapolation methods, etc. The software was used 

to produce the results in [ 6]. 

Our view of ODE solving software is outlined in 

Figure 1. We divide the software into two main 

building blocks: one describing the solver and one 

describing the ODE. We also envision two types of 

users: the first type wants to use the software to 

solve ODEs, whereas the second type is develop­

ing new integration methods. For the first type of 

user it is important that the solver provides a clear 

and consistent interface that is virtually indepen­

dent of the implemented integration method. The 

user should be able to switch solvers without ma­

jor changes to the application software. For the 

second type of user the internal structure of the 

solver description is of vital importance. It should 

be written to encourage reuse of basic building 

blocks and also supply structures that facilitate 

the implementation of a new method. 

After a short review of some aspects of numeri­

cal integration we will continue with the descrip­

tion of the software. 

2 NUMERICAL INTEGRATION 

Consider the initial value problem 

y = f(t, y), y(to) =yo, t E [to, lend], (1) 

with the exact solution y(t). A time-stepping 

method approximates (1) with the difference 

equation 

Yrz+1 = Yn + h,}m n = 0, 1,2, . (2) 

Here :Y, is formed as a combination of solution 

point; andf, is formed as a combination of func­

tion values evaluated at the solution points or in 

their neighborhood. Csing (2) we compute Yo, Y1, 

y 2, . . . as approximations to y(to), y(t1 ), y(t2), 

. . . . The stepsize h, between consecutive solu­

tion points is defined as t,+l = t, + h,. 

The appropriate stepsize h, varies along the so­

lution of the differential equation. The choice is a 

matter of both accuracy and efficiency. Small 

steps make the solution accurate, but require 

more computation due to the increase in the num­

ber of steps needed. Therefore, the strategy is to 

choose the stepsize as large as possible within the 

accuracy requirements, because that gives an ac­

ceptable solution with the least amount of compu­

tation. It is hard for the user to relate a given step­

size to a specific accuracy and therefore the choice 

is normally left to the error control algorithm 

within the integration method. 

In an implicit integration method the formula­

tion of y, and/ or}, involves the value of Yn+1, and 

a set of nonlinear equations has to be solved to get 

the new solution point Yn+1· The integration 

method has to implement a numerical scheme to 

solve for Yrz+l· This is usually done either using a 

fixed-point iteration or some modified version of 
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Newton iteration. The way the iterative equation 

solver is operated is crucial for the efficiency of the 

integration method. 

3 INTEGRATION METHOD DESCRIPTION 

An important step to address the points raised in 

the introduction is to create a software structure 

where it is possible to have different integration 

methods share code. We have achieved this by 

using the inheritance concept in C++ (Fig. 2). 

The code that is common to all methods has been 

collected in the base class ODESol ver. whereas 

code that only applies to a specific method or a 

subfamily of methods has been put in classes fur­

ther down the inheritance chain. 

3.1 The ODESolver Class 

The base class ODE So 1 ver serves two main pur­

poses: 

1. It provides the interface to the user who 

wants to integrate an ODE 

2. It defines a skeleton code for the implemen­

tation of an integration method 

ODESol ver provides a set of interface routines 

to the user. The user calls them to specify the con­

ditions of the integration, what ODE to integrate, 

relative/ absolute accuracy requirements, when 

and what solution data to store, minimum/maxi­

mum stepsize, etc. Once this is done the integra­

tion routine itself can be called. The integration 

i MSCoeff i 
······--·.:r 

·-... . ... 

, .... >-.. ~:·::··: .. 
:MultiStep ! 

'···.··.-······.r:.:::::::.-··' ········:::: ....... . 

Adams BDF 
················· 

FIGURE 2 Inheritance graph for the classes used 

when defining an integration routine. The dashed 

boxes have not yet been implemented but serve to indi­

cate how the structure could be extended. 

can either be done step by step (the user regains 

control after each integration step) or a whole in­

terval at once. After the integration is completed 

the produced solution can be accessed in different 

ways, for example, final value, accepted solution 

points, or interpolated values at specific time in­

stances. Statistical information, for example, 

number of failed/succeeded steps, number of 

function evaluations, etc., is also collected during 

the integration and can be accessed through the 

interface routines. 

Having a whole set of interface routines may 

seem a complicated alternative to the "single" 

subroutine call provided by standard implemen­

tations. It is, however, our belief that it leads to 

greater flexibility. When instantiating a specific 

integration method all internal variables concern­

ing the integration are given reasonable default 

values. A nonsophisticated user may stick to these 

values whereas a sophisticated user has full free­

dom to alter any of them through the interface 

routines, only having to call those related to the 

properties that he/ she wants to change. A typical 

code segment performing the integration looks like 

II Create explicit RK method using 
II the DOPRI45 coefficient set. 
ERK method ("dopri45"); 
II Install problem in solver. 
II 'prob' points to an instance of 

II the ODE class. 
method.SetODE( prob ) ; 
II Set relative error tolerance. 
II Same value for all solution 

II components. 
method.SetTol( 0.001); 
I I Integrate to t = 10. 
method. Integrateinterval( 10); 
II Print solution. 
cout « method. GetSolution () )) endl; 

The integration method is of type ERK. All the 

routines called belong, however, to the general in­

terface defined by ODESo 1 ver. 
The second important part of ODESol ver is 

the skeleton code and the support routines it de­

fines. The task of taking one integration step can 

be separated into several subtasks. The order of 

these subtasks does not depend on how a specific 

integration method defines Yn and fm and some 

subtasks may even be identical from method to 

method. On a coarse level we could claim that 

taking an integration step involves: 
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1. Deciding on new stepsize, 

2. Calculating new solution point 

3. Estimating error 

4. Checking if error fulfills requested accuracy 

o. If error is acceptable then updating solu­

tion. 

Some of these tasks are clearly method depen­

dent, for example, calculating the new solution 

point, whereas others are independent of the im­

plemented method, for example, checking if the 

error is sufficiently small. 

ODESol ver defines the routine Integrate­

OneStep. This routine is called every time an in­

tegration is to be performed. An integration of a 

complete interval (as in Example 3. 1) is internally 

implemented as several calls to IntegrateOne­

Step. IntegrateOneStep breaks down the task 

of taking one integration step to several subtasks 

(to a finer granularity than indicated above) and 

defines in which order they should be performed. 

Every subtask is implemented as a subroutine 

call. The subroutines corresponding to subtasks 

independent of the method are defined in ODE­

Solver, whereas the others are declared as vir­

tual functions. These virtual functions will be de­

fined by deriving classes, for example, RK or ERK 

in Figure 2. 

The benefit of defining a skeleton code is that 

once it has been implemented and debugged it 

need not be redone. The actual implementation of 

a specific integration method now "only" involves 

defining specific routines in a predefined struc­

ture, and much of the logic intricacies have al­

ready been handled. 

3.2 RKCoeff and RK Classes 

The classes RKCoeff and RK are used to extend 

ODESol ver with data structures and basic rou­

tines needed to implement a general Runge-Kutta 

method. 

An s-stage Runge-Kutta method [7, p. 200] 

defines Yrz and J,, as 

Yrz =yn (3) 

s 

J,, = L bJf(ln + Cjhm }j) (4) 
j~1 

s 

Y, = Yrz + h" L ay/(tn + cJhn. Jj) 
j~1 

where Y;, i = 1 ... s, are the stage values. The 

coefficients ai;·, b1, and cJ are chosen such that the 

Tavlor expansion of the numerical solution Yrz 

matches as many terms as possible of the Taylor 

expansion of the true solutiony(tn)· The exponent 

of the matched term with the highest order is re­

ferred to as the method order. The method typi­

cally supports two formulas of orders k - 1 and k, 

respectively. They ar~ represented by the two co­

efficient sets b1 and bJ. One_ coefficient set is used 

to advance the integration (/" above) and the other 

is used for the error estimate e 

m 

en+1 = hn L (bj- bJ)f(trz + Cjhn, Jj). (6) 
j~1 

In addition, many Runge-Kutta methods define 

an interpolant 

§ 

q(tn + vhrz) = y, + hrz L bj(v)J(Jj), (7) 
j~1 

to provide solution values between Yrz and Yrz+l, 

i.e., 0 :5 v :5 1. Each bJ(v) is a polynomial in v. 

A Runge-Kutta method is defined by the coeffi­

cients ai;, bJ, and c1. The class RKCoeff imple­

ments a data structure that stores these coeffi­

cients as well as the set of polynomials bJ(v). The 

coefficients are read from file when the class is 

instantiated. Which file to use is passed as an ar­

gument to the class constructor. This provides a 

general implementation capable of representing 

any type of Runge-Kutta method. 

Depending on the structure of the coefficient 

matrix aiJ Runge-Kutta methods can be divided 

into different classes, for example, a method that 

has ai; = 0, j 2: i is called explicit because the 

stage values Y; can be calculated explicitly, one 

after another. In an implicit method, Equation 5 

defines a set of nonlinear equations that have to 

be solved in order to obtain the stage values. 

The class RK implements data structures to 

store Y,. The actual calculation of Y; depends a lot 

on the structure of aiJ and is left to be defined in 

deriving classes specializing the behavior of RK to 

a specific family of Runge-Kutta methods (Fig. 2). 

Once Y; has been calculated it is straightforward to 

obtain the new solution point (compare Equations 

2, 3, and 4), and estimate the error vector (Equa­

tion 6). This type of operation is defined in RK. 

3.3 ERK and SDIRK Classes 

With the support from base classes as ODE­

Solver, RKCoeff, and RK, it is fairly straightfor­

ward to define a specific type of Runge-Kutta 
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method. This is done in deriving classes such as 

ERK and SDIRK. One of the routines that is called 

from the skeleton code in IntegrateOneStep is 

the virtual function CalculateNewSolution­

Point. In the case of a Runge-Kutta method this 

task amounts to obtaining the stage values Yi and 

combining them to form .Yn+1 . This routine is de­

fined in ERK and SDIRK. It uses several of the 

support routines in RK to achieve its goal. 

In the case of an explicit method (ERK) the 

calculation of Ji is done by a few function evalua­

tions, whereas in an implicit method, for example, 

SDIRK, a set of nonlinear functions have to be 

solved. A numerical equation solver is called to do 

this. To be efficient the solver should exploit the 

structure of the coefficient set ay· as well as the 

ODE, and consequently it is not sufficient to pro­

vide only one type of equation solver. We will re­

turn to this matter in Section 5. 

Another routine called from the Integrate­

OneStep skeleton code and implemented in ERK 

and SDIRK is ErrorAndConvergenceControl. 

After each integration step this routine decides 

what stepsize to use in the next step and, in the 

case of an implicit method, how to update the iter­

ation matrix in the equation solver. These deci­

sions depend on whether the current integration 

step fulfilled the accuracy requirement or not and 

how well the equation solver iterations converged. 

The strategy underlying these decisions is vital for 

the efficiency and accuracy of the integration 

method, and ErrorAndConvergenceControl 

should be tailored to each specific type of integra­

tion method [ 6]. Collecting the complete control 

algorithm in one place helps bring global consid­

erations into the design of the control strategy. 

3.4 Extensions 

The amount of code in ERK and SDIRK is fairly 

modest. It amounts to providing implementations 

of specific routines in a predefined structure. This 

makes the task of implementing a new type of 

Runge-Kutta method, for example, fully implicit 

Runge-Kutta (FIRK in Fig. 2). less formidable. 

Implementing a different type of integration 

method, for example, multistep methods, is a 

larger task. As Figure 2 indicates this involves the 

design of data structures and support routines 

corresponding to the ones in RKCoeff and RK. 

The administrative routines and the skeleton code 

in ODESol ver, however, make the effort much 

less tedious than doing the implementation from 

scratch. 

Finally, a structure such as the one we have 

described makes it very easy to experiment with 

modifications to existing methods. Suppose we 

want to investigate a change in strategy for deter­

mining stepsize in an SDIRK method. This can be 

achieved by deriving a new class SDIRK, for ex­

ample, tmpSDIRK in Figure 2. This new class will 

behave exactly as an SDIRK, but we are free to 

supply new implementations for any of the origi­

nal routines. In our case we would just provide a 

new ErrorAndConvergenceControl with the 

part calculating the new stepsize rewritten. 

4 ODE DESCRIPTION 

The idea behind the class hierarchy describing an 

ODE is similar to the one underlying the descrip­

tion of the solver. We have defined a base class 

ODE providing basic data structures and opera­

tions. A specific ODE is then defined by deriving 

from the ODE class and providing implementations 

of the virtual functions defined in the base class. 

The structure is fairly simple because, so far, we 

only support ODEs on the explicit form (1). We 

have chosen this form for simplicity. The software 

can, however, quite easily be extended to cover 

also other formulations, for example, ODEs on 

implicit formf(t, y, j) = 0 or differential-algebraic 

equations, etc. 

An important difference between our structure 

and traditional implementations is that the solver 

does not keep its own copies of the ODE state, i.e., 

t and y, but rather works directly on the data 

stored in ODE. The ODE class makes this possible 

by providing access routines to set and read the 

state values. Storing the ODE state in ODE is a 

natural consequence of regarding the ODE as the 

main object, and the solver as one of many opera­

tions one wants to apply to it. 

In addition to the routines related to the state of 

the ODE the base class ODE also defines interface 

routines to access the derivative f(t, y) and the 

Jacobian ajlay. These functions are of course vir­

tual and their implementation will be provided by 

the deriving class that implements a specific ODE. 

Having the definitions ofDeri vati ve and Jaco­

bian in ODE provides for a well-defined interface 

between the ODE description and the solver irre­

spective of what specific ODE the user eventually 

ends up defining and integrating. 

Many integration method implementations will 

allow the Jacobian to be defined either through 

numerical approximation or analytically in the 

form of a supplied subroutine. Which option to 
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choose is normallv decided with a parameter in 

the subroutine call to the integration routine. Our 

implementation differs on this point. We regard 

analytic or numerical Jacobian as a problem prop­

erty and hence this distinction is included in the 

ODE description. The solver will always call the 

routine Jacobian. How this entity is calculated is 

then decided internally in the ODE representa­

tion. The base class ODE provides internal rou­

tines that will construct a numerical approxima­

tion of the Jacobian, and it is up to the deriving 

class to either use this code or provide its own 

method (numerical or analytic) to calculate the 

Jacobian. 

5 THE EQUATION SOLVER 
BUILDING BLOCKS 

At every integration step an implicit integration 

method needs to solve a set of nonlinear equa­

tions. Most numerical equation solvers lead to an 

iteration scheme on the form 

(8) 

where z is the vector of variables solved for, R a 

residual function, and M the iteration matrix. The 

structure of Equation 8 depends on both the ODE 

and the type of integration method. To get an effi­

cient implementation it is essential to exploit this 

structure. 

In the case of Runge-Kutta methods z repre­

sents the stage values. Depending on the structure 

of the coefficient matrix aij, z may involve all, a 

subset, or only one of the stage values Y;. The 

iteration matrix M depends on the type of itera­

tions performed. In the case of fixed point itera­

tion it equals the identity matrix, whereas for 

l\ewton iteration it involves both the Jacobian 

Iteration­

Controller 

Iteration­

Status 

StageUpdate 

SDIRK­
Explicit­
StageWise­
U date 

ajl ay of the ODE as well as the stepsize h and 

coefficients from the integration method. 

Due to the intricate structural effect the type of 

ODE and integration method have on the iteration 

(Equation 8), it is not possible to design one equa­

tion solver that works efficiently for any combina­

tion of ODE and method. Rather, the equation 

solver has to be put together from several building 

blocks, among which some are intrinsic whereas 

others depend on the ODE and/or the method. 

We have identified and implemented the building 

blocks indicated in Figure 3. These blocks make 

the work of adapting the equation solver to a new 

integration method or a new formulation of the 

ODE fairly modest. Some blocks can be reused 

directly whereas others require some adjustments. 

These adjustments are easily implemented in the 

form of a deriving class. This is indicated by the 

dashed blocks in Figure 3. 

To implement a complete equation solver the 

integration method will contain one instance of 

IterationController, StageUpdate, and 

IterationMatrix. The IterationControl­

ler supervises the iteration process, StageUp­

date handles one iteration of (Equation 8), and 

IterationMatrix captures the structure of M. 

Both StageUpdate and IterationMatrix 

have to be adapted to the specific type if integra­

tion method used as well as to the way the ODE is 

formulated. This is done by deriving from the re­

spective base classes. The changes that need to be 

done are normally fairly modest. Information 

about the current iteration is kept in an object of 

~pelterationStatus. 

5.1 lterationController and 
lterationStatus Classes 

The iteration (Equation 8) can be rewritten as 

Mom= Pm· 

Iteration­

Matrix 

Explicit­

Iteration­

Matrix 

. ·--~ 
t .................................... .l 

(9) 

FIGURE 3 The equation solver building blocks. The two dashed blocks indicate where 

new classes have to be written when implementing a new type of integration method or 

allowing a different ODE formulation. 
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Given a residual p, we solve for the displacement 

Om, and update Zm+1 = Zm + Om. The iteration 

should continue until the solution z is sufficiently 

accurate, typically measured by the size of llomll o~ 
IIP,II. During the iteration the rate of convergence, 

i.e., llomll!llom-111. is monitored and at sign of diver­

gence the iteration is terminated. For robustness, 

there is also normallv a limit on the maximum 

number of iterations allowed. 

The described iteration control has been imple­

mented in the IterationController. This 

class contains interface routines that can be used 

to set up the terms of the iteration, e.g. max/min 

number of iterations, stopping criteria in terms of 

iteration error, and rate of convergence, etc. Once 

this has been defined the IterationControl­

ler is asked to start the iteration. The Itera­

tionController expects to have available a 

routine Update. which it will call at every itera­

tion. The Update routine performs one iteration 

in Equation 8 and returns the current value of liP mil 

and llomll. Based on these values the Iteration­

Controller decides whether to continue or to 

terminate the iteration. The implementation of 

IterationController is completely indepen­

dent of how Pm is formed, how Equation 9 is 

solved, and how z is updated. 

Once the iteration has been terminated the 

IterationController returns an object of type 

IterationStatus. This object contains infor­

mation about the iteration, for example, number 

of iterations, rate of convergence, final iteration 

error, etc. This information is used by the 

ErrorAndConvergenceControl routine de­

scribed above to decide on how to update the iter­

ation matrix 1l1 for the next iteration. 

5.2 The StageUpdate Class Hierarchy 

In the case of Runge-Kutta methods the Update 

routine called from the IterationController 

is implemented in the StageUpdate class hierar­

chy. This routine performs one iteration by calcu­

lating the residual p, solving foro and updating z. 

The base class StageUpdate defines the inter­

face to Update, but defers its implementation to 

deriving classes. The reason is that what goes into 

the variable z depends on the coefficient matrix aiJ 

of the Runge-Kutta method. In addition, the cal­

culation of p depends on the way the ODE is for­

mulated, for example, explicit or implicit. 

The class SDIRKExplici tStageWiseUp­

date in Figure 3 corresponds to a situation where 

the Update routine has been specialized to an 

SDIRK solving an ODE on explicit form and iter-

ating for the stage values Yi one after another. Im­

plementing a new type of Runge-Kutta method 

normally requires writing a new derived class in 

the StageUpdate hierarchy. 

5.3 lterationMatrix Class Hierarchy 

The Update routine in StageUpdate uses an ob­

ject of type IterationMatrix when solving foro 

in Equation 9. This object encapsulates the de­

scription of the iteration matrix Jlf. Jlf involves 

both the stepsize h and the Jacobian of the ODE, 

and should be reevaluated every time any of these 

changes. For efficiency reasons this is not accept­

able. The success of a particular implementation 

of an implicit integration method depends strongly 

on finding a good strategy for updating M. 

The base class Iterationmatrix provides 

the interface routines to update Af. These routines 

are used by the control algorithm implemented in 

ErrorAndConvergenceControl. Calling New­

Jacobian will evaluate a new Jacobian using the 

access routines provided by ODE, while Factor­

ize forms a LC decomposition of M based on the 

current stepsize and the latest available Jacobian. 

The structure of 111 depends on the way the 

ODE is formulated, and the implementation of 

some of the operations we are interested in cannot 

be defined in the base class. Again we use deriva­

tion to specialize to different situations. The class 

Explici titerationMatrix in Figure 3 corre­

sponds to an ODE on explicit form. l'ew types of 

integration methods and/or a new way of formu­

lating the ODE will require a new derived class in 

the IterationMatrix hierarchy. 

6 OTHER GENERAL BUILDING BLOCKS 

In our implementation we have used several other 

building blocks than the ones mentioned in Sec­

tions 3-5. Some of them are worth mentioning: 

6.1 Matrix and Vector Operations 

Many of the operations in an integration method 

involve the manipulation of matrices and vectors. 

In our implementation we have used the package 

newmat [Davis, personal communication, 1992]. 

This package provides routines that make it possi­

ble to write matrix expressions in much the same 

way as expressions involving standard floating 

point variables. 

For many ODEs the Jacobian has special struc­

ture, e.g., banded. In standard implementations 

[ 1-4], this information can be included in the pa-
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rameter list when calling the integrator. In a typi­

cal implementation the handling of a Jacobian 

with structure adds complexity to the program. 

Every time the Jacobian is accessed there will be 

tests in the code making sure that the right repre­

sentation and routines are used. Using C++ and a 

package such as newmat we get this functionality 

almost for free. newmat distinguishes between dif­

ferent types of matrices. If the Jacobian routine 

in ODE returns the result as a banded matrix this 

property will propagate. Whenever the matrix is 

accessed through the newmat primitives its format 

will be checked and the appropriate routines au­

tomatically chosen. Hence, in the case of banded 

Jacobian algorithms for banded matrices will be 

used automatically both when forming M and 

when calculating its LC decomposition. This is 

achieved without changes or additions to the 

equation solver code. 

6.2 Norms 

Most integration methods use a mixed absolute­

relative "norm" to measure the size of the error 

estimate (Equation 6). For consistency the same 

norm should be used when measuring the size of 

the iteration errors in the equation solver, i.e., o 
and p. 

To handle the error measure consistently we 

have implemented a class RelAbsNorm. Given a 

vector x this class will provide methods and data 

structures to calculate its weighted norm. The 

weight factor wi used for component i in x is 

formed as 

(10) 

The relative part of the "norm" comes from relat­

ing xi to the magnitude of the same component in 

the solution vector y. The factor 'Y/i acts as a scale 

factor telling when Yi is regarded as small. Effec­

tively it results in an absolute error measure when 

the magnitude of Yi is less than "f/i· The class can 

handle 'YJ = 0 (pure relative norm) and TJ = "oo" 

(pure absolute norm). 

The class RelAbsNorm implements all the in­

terface routines needed to set the values of tal and 

TJ, either componentwise or the same value for all. 

Once this has been done the norm object can be 

passed around and anyone wanting to evaluate 

the norm of a vector x weighted according to 

Equation 10 just calls the Evaluate function in 

Re lAbsNorm passing x as a parameter. The class 

handles 1-, 2-, and max norms. 

6.3 Data Storage 

One of the services the base class ODESol ver 

provides for the user is storage of the solution. 

Instead of integrating step by step the solver can 

be asked to integrate a whole interval and store the 

produced solution internally. The user can decide 

what solution components to store, when to store 

them, etc. After the integration the stored solution 

can be accessed through interface routines de­

fined by ODESol ver. 

A support class DataStore was written to fa­

cilitate this type of data storage. Instances of this 

class are used whenever the programmer needs to 

store some data. The implementation of Data­

Store is done such that memory is allocated in an 

efficient way. In addition, the data are stored in a 

manner allowing fast access. 

7 CONCLUSIONS 

We have described an object-oriented implemen­

tation of a family of different numerical integra­

tion methods. This implementation differs from 

standard implementations in several important 

ways. For a user who wants to solve an ODE: 

1. It provides a uniform interface independent 

of the implemented integration method 

2. It works on a simple data structure describ­

ing the ODE, which the user easily can in­

corporate in a larger software framework for 

analyzing ODEs 

3. It makes different integration methods use 

the same implementation of basic building 

blocks, e.g., norms, iteration criterias, etc., 

resulting in less subjective comparisons of 

results produced with different methods. 

For the user who develops and implements new 

integration methods: 

1. It provides a software structure and basic 

building blocks on which the implementa­

tion of new methods can be based 

2. It facilitates debugging because many of the 

basic routines and structures have already 

been used and tested in other methods 

3. lt collects the code that describes the error 

and convergence control in an integration 

method in one place, making it possible to 

introduce global considerations in the de­

sign of the control strategy 

4. It makes the equation solver of an implicit 

method easier to write by providing basic 



OBJECT-ORIE~TED IMPLEYIE:"JTATIO~ OF SOFTWARE 225 

building blocks and automatic support for 

Jacobians with structure. 

Turning a new integration method into a work­

ing efficient implementation is often a long and 

difficult process. We strongly believe that it can be 

sped up and simplified using a software structure 

such as the one described here. 
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