
Object-Oriented Implementation of Software

for Solving Ordinary Differential Equations

KJELL GUSTAFSSON

Department of Automatic Control, Lund Institute of Technology, S-22100 Lund, Sweden

ABSTRACT

We describe an object-oriented implementation of numerical integration methods for

solving ordinary differential equations. Software components that are common to many

different integration methods have been identified and implemented in such a way that

they can be reused. This facilitates the design of a uniform user interface and makes the

task of implementing a new integration method fairly modest. The sharing of code in this

type of implementation also allows for less subjective comparisons of the result from

different integration methods. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

The traditional way of writing software for solving

ordinary differential equations (ODE) is to provide

one subroutine to the user. The user calls this

subroutine specifying the function that should be

integrated, the integration interval, and the accu­

racy requirements. In some cases the user can also

affect internal algorithmic decisions, for example,

how to handle the Jacobian, but mostly the inte­

gration routine acts as a black-box module. This

way of coding has resulted in several very success­

ful implementations, for example, DDASSL [1],

RADAU5 [2], LSODE [3], and STRIDE [4].

When solving ODEs there is, unfortunately, no

"optimal" integration method. Different prob­

lems require different discretization methods in

order to be solved accurately and efficiently. As a

Received April 199:i

Revised huw 199::3

This work W<b supported in part bv the !fans \~'erthen fund

and the Clacs Adelskiild fund.

© 199"! bv .John Wilev & Sons. Inc.

Sci<entific Programming. \"ol. 2. pp. 21-:'-225 '19'J:l":

CCC 1 058-92H/9"1/04021-:' -09

consequence, software environments for modeling

and simulation of ODEs need to implement sev­

eral different types of integration methods. The

way of implementing described above is then no

longer preferable. In particular:

1. Many of the internal tasks an integration

routine has to perform are independent of

the implemented discretization method. In

the current style of coding the code that per­

forms these tasks is spread out and some­

times hard to identify. A more modular cod­

ing style would allow for reuse, and the task

of implementing a new integration method

would be easier.

2. If integration methods were to share code

for common internal tasks thev would be

easier to maintain and comparisons of

results from different methods would be less

subjective.

3. Most of the implementations available today

have slightly different user interfaces. In

part this is due to them implementing differ­

ent discretization methods, but often they

differ more than necessarv. A common in­

terface would facilitate the use of integration

217

218 GLSTAFSSO~

Description

FIGURE 1 ODE-solving software structure. There are

two main building blocks: one describing the ODE and

one describing the solver. There are also two different

types of users: one mainly interested in using existing

methods to solve different ODEs and the other trying to

implement new integration methods or improving on

old ones. It is important that the software structure sup­

ports both of these users.

routines as building blocks in other soft­

ware.

4. ODEs often arise as models of physical sys­

tems and/ or phenomena. In a modeling and

simulation environment [5 J. one is normally

interested in doing more than just integrat­

ing the equations, for example, find station­

ary points, linearize, check parameter sen­

Sitlvity, etc. The paradigm where the

integration method is the central part is then

less useful. Rather one would like to have a

structure where different aspects of the

ODE are described, and the integration rou­

tine is just one of many possible operations

that may be applied to this data structure.

In the following we will outline an experimental

software project that addresses the points made

above. It is an object-oriented C++ implementa­

tion of a family of different integration methods.

For simplicity the current implementation is lim­

ited to general explicit Runge-Kutta (ERK) meth­

ods and singly diagonally implicit Runge-Kutta

(SDIRK) methods. The structure of the software

is. however. such that it can fairly straightfor­

wardly be extended to other types of integration

methods, for example, multistep methods, ex­

trapolation methods, etc. The software was used

to produce the results in [6].

Our view of ODE solving software is outlined in

Figure 1. We divide the software into two main

building blocks: one describing the solver and one

describing the ODE. We also envision two types of

users: the first type wants to use the software to

solve ODEs, whereas the second type is develop­

ing new integration methods. For the first type of

user it is important that the solver provides a clear

and consistent interface that is virtually indepen­

dent of the implemented integration method. The

user should be able to switch solvers without ma­

jor changes to the application software. For the

second type of user the internal structure of the

solver description is of vital importance. It should

be written to encourage reuse of basic building

blocks and also supply structures that facilitate

the implementation of a new method.

After a short review of some aspects of numeri­

cal integration we will continue with the descrip­

tion of the software.

2 NUMERICAL INTEGRATION

Consider the initial value problem

y = f(t, y), y(to) =yo, t E [to, lend], (1)

with the exact solution y(t). A time-stepping

method approximates (1) with the difference

equation

Yrz+1 = Yn + h,}m n = 0, 1,2, . (2)

Here :Y, is formed as a combination of solution

point; andf, is formed as a combination of func­

tion values evaluated at the solution points or in

their neighborhood. Csing (2) we compute Yo, Y1,

y 2, . . . as approximations to y(to), y(t1), y(t2),

. . . . The stepsize h, between consecutive solu­

tion points is defined as t,+l = t, + h,.

The appropriate stepsize h, varies along the so­

lution of the differential equation. The choice is a

matter of both accuracy and efficiency. Small

steps make the solution accurate, but require

more computation due to the increase in the num­

ber of steps needed. Therefore, the strategy is to

choose the stepsize as large as possible within the

accuracy requirements, because that gives an ac­

ceptable solution with the least amount of compu­

tation. It is hard for the user to relate a given step­

size to a specific accuracy and therefore the choice

is normally left to the error control algorithm

within the integration method.

In an implicit integration method the formula­

tion of y, and/ or}, involves the value of Yn+1, and

a set of nonlinear equations has to be solved to get

the new solution point Yn+1· The integration

method has to implement a numerical scheme to

solve for Yrz+l· This is usually done either using a

fixed-point iteration or some modified version of

OBJECT -ORIE:\TED IMPLEY1El\TA TIO:\' OF SOFTWARE 219

Newton iteration. The way the iterative equation

solver is operated is crucial for the efficiency of the

integration method.

3 INTEGRATION METHOD DESCRIPTION

An important step to address the points raised in

the introduction is to create a software structure

where it is possible to have different integration

methods share code. We have achieved this by

using the inheritance concept in C++ (Fig. 2).

The code that is common to all methods has been

collected in the base class ODESol ver. whereas

code that only applies to a specific method or a

subfamily of methods has been put in classes fur­

ther down the inheritance chain.

3.1 The ODESolver Class

The base class ODE So 1 ver serves two main pur­

poses:

1. It provides the interface to the user who

wants to integrate an ODE

2. It defines a skeleton code for the implemen­

tation of an integration method

ODESol ver provides a set of interface routines

to the user. The user calls them to specify the con­

ditions of the integration, what ODE to integrate,

relative/ absolute accuracy requirements, when

and what solution data to store, minimum/maxi­

mum stepsize, etc. Once this is done the integra­

tion routine itself can be called. The integration

i MSCoeff i
······--·.:r

·-...

, >-.. ~:·::··: ..
:MultiStep !

'···.··.-······.r:.:::::::.-··' ········::::

Adams BDF
·················

FIGURE 2 Inheritance graph for the classes used

when defining an integration routine. The dashed

boxes have not yet been implemented but serve to indi­

cate how the structure could be extended.

can either be done step by step (the user regains

control after each integration step) or a whole in­

terval at once. After the integration is completed

the produced solution can be accessed in different

ways, for example, final value, accepted solution

points, or interpolated values at specific time in­

stances. Statistical information, for example,

number of failed/succeeded steps, number of

function evaluations, etc., is also collected during

the integration and can be accessed through the

interface routines.

Having a whole set of interface routines may

seem a complicated alternative to the "single"

subroutine call provided by standard implemen­

tations. It is, however, our belief that it leads to

greater flexibility. When instantiating a specific

integration method all internal variables concern­

ing the integration are given reasonable default

values. A nonsophisticated user may stick to these

values whereas a sophisticated user has full free­

dom to alter any of them through the interface

routines, only having to call those related to the

properties that he/ she wants to change. A typical

code segment performing the integration looks like

II Create explicit RK method using
II the DOPRI45 coefficient set.
ERK method ("dopri45");
II Install problem in solver.
II 'prob' points to an instance of

II the ODE class.
method.SetODE(prob) ;
II Set relative error tolerance.
II Same value for all solution

II components.
method.SetTol(0.001);
I I Integrate to t = 10.
method. Integrateinterval(10);
II Print solution.
cout « method. GetSolution ())) endl;

The integration method is of type ERK. All the

routines called belong, however, to the general in­

terface defined by ODESo 1 ver.
The second important part of ODESol ver is

the skeleton code and the support routines it de­

fines. The task of taking one integration step can

be separated into several subtasks. The order of

these subtasks does not depend on how a specific

integration method defines Yn and fm and some

subtasks may even be identical from method to

method. On a coarse level we could claim that

taking an integration step involves:

220 GCSTAFSSON

1. Deciding on new stepsize,

2. Calculating new solution point

3. Estimating error

4. Checking if error fulfills requested accuracy

o. If error is acceptable then updating solu­

tion.

Some of these tasks are clearly method depen­

dent, for example, calculating the new solution

point, whereas others are independent of the im­

plemented method, for example, checking if the

error is sufficiently small.

ODESol ver defines the routine Integrate­

OneStep. This routine is called every time an in­

tegration is to be performed. An integration of a

complete interval (as in Example 3. 1) is internally

implemented as several calls to IntegrateOne­

Step. IntegrateOneStep breaks down the task

of taking one integration step to several subtasks

(to a finer granularity than indicated above) and

defines in which order they should be performed.

Every subtask is implemented as a subroutine

call. The subroutines corresponding to subtasks

independent of the method are defined in ODE­

Solver, whereas the others are declared as vir­

tual functions. These virtual functions will be de­

fined by deriving classes, for example, RK or ERK

in Figure 2.

The benefit of defining a skeleton code is that

once it has been implemented and debugged it

need not be redone. The actual implementation of

a specific integration method now "only" involves

defining specific routines in a predefined struc­

ture, and much of the logic intricacies have al­

ready been handled.

3.2 RKCoeff and RK Classes

The classes RKCoeff and RK are used to extend

ODESol ver with data structures and basic rou­

tines needed to implement a general Runge-Kutta

method.

An s-stage Runge-Kutta method [7, p. 200]

defines Yrz and J,, as

Yrz =yn (3)

s

J,, = L bJf(ln + Cjhm }j) (4)
j~1

s

Y, = Yrz + h" L ay/(tn + cJhn. Jj)
j~1

where Y;, i = 1 ... s, are the stage values. The

coefficients ai;·, b1, and cJ are chosen such that the

Tavlor expansion of the numerical solution Yrz

matches as many terms as possible of the Taylor

expansion of the true solutiony(tn)· The exponent

of the matched term with the highest order is re­

ferred to as the method order. The method typi­

cally supports two formulas of orders k - 1 and k,

respectively. They ar~ represented by the two co­

efficient sets b1 and bJ. One_ coefficient set is used

to advance the integration (/" above) and the other

is used for the error estimate e

m

en+1 = hn L (bj- bJ)f(trz + Cjhn, Jj). (6)
j~1

In addition, many Runge-Kutta methods define

an interpolant

§

q(tn + vhrz) = y, + hrz L bj(v)J(Jj), (7)
j~1

to provide solution values between Yrz and Yrz+l,

i.e., 0 :5 v :5 1. Each bJ(v) is a polynomial in v.

A Runge-Kutta method is defined by the coeffi­

cients ai;, bJ, and c1. The class RKCoeff imple­

ments a data structure that stores these coeffi­

cients as well as the set of polynomials bJ(v). The

coefficients are read from file when the class is

instantiated. Which file to use is passed as an ar­

gument to the class constructor. This provides a

general implementation capable of representing

any type of Runge-Kutta method.

Depending on the structure of the coefficient

matrix aiJ Runge-Kutta methods can be divided

into different classes, for example, a method that

has ai; = 0, j 2: i is called explicit because the

stage values Y; can be calculated explicitly, one

after another. In an implicit method, Equation 5

defines a set of nonlinear equations that have to

be solved in order to obtain the stage values.

The class RK implements data structures to

store Y,. The actual calculation of Y; depends a lot

on the structure of aiJ and is left to be defined in

deriving classes specializing the behavior of RK to

a specific family of Runge-Kutta methods (Fig. 2).

Once Y; has been calculated it is straightforward to

obtain the new solution point (compare Equations

2, 3, and 4), and estimate the error vector (Equa­

tion 6). This type of operation is defined in RK.

3.3 ERK and SDIRK Classes

With the support from base classes as ODE­

Solver, RKCoeff, and RK, it is fairly straightfor­

ward to define a specific type of Runge-Kutta

OBJECT -ORIE~TED L\1PLD1E'\'T ATI0:'-1 OF SOFTWARE 221

method. This is done in deriving classes such as

ERK and SDIRK. One of the routines that is called

from the skeleton code in IntegrateOneStep is

the virtual function CalculateNewSolution­

Point. In the case of a Runge-Kutta method this

task amounts to obtaining the stage values Yi and

combining them to form .Yn+1 . This routine is de­

fined in ERK and SDIRK. It uses several of the

support routines in RK to achieve its goal.

In the case of an explicit method (ERK) the

calculation of Ji is done by a few function evalua­

tions, whereas in an implicit method, for example,

SDIRK, a set of nonlinear functions have to be

solved. A numerical equation solver is called to do

this. To be efficient the solver should exploit the

structure of the coefficient set ay· as well as the

ODE, and consequently it is not sufficient to pro­

vide only one type of equation solver. We will re­

turn to this matter in Section 5.

Another routine called from the Integrate­

OneStep skeleton code and implemented in ERK

and SDIRK is ErrorAndConvergenceControl.

After each integration step this routine decides

what stepsize to use in the next step and, in the

case of an implicit method, how to update the iter­

ation matrix in the equation solver. These deci­

sions depend on whether the current integration

step fulfilled the accuracy requirement or not and

how well the equation solver iterations converged.

The strategy underlying these decisions is vital for

the efficiency and accuracy of the integration

method, and ErrorAndConvergenceControl

should be tailored to each specific type of integra­

tion method [6]. Collecting the complete control

algorithm in one place helps bring global consid­

erations into the design of the control strategy.

3.4 Extensions

The amount of code in ERK and SDIRK is fairly

modest. It amounts to providing implementations

of specific routines in a predefined structure. This

makes the task of implementing a new type of

Runge-Kutta method, for example, fully implicit

Runge-Kutta (FIRK in Fig. 2). less formidable.

Implementing a different type of integration

method, for example, multistep methods, is a

larger task. As Figure 2 indicates this involves the

design of data structures and support routines

corresponding to the ones in RKCoeff and RK.

The administrative routines and the skeleton code

in ODESol ver, however, make the effort much

less tedious than doing the implementation from

scratch.

Finally, a structure such as the one we have

described makes it very easy to experiment with

modifications to existing methods. Suppose we

want to investigate a change in strategy for deter­

mining stepsize in an SDIRK method. This can be

achieved by deriving a new class SDIRK, for ex­

ample, tmpSDIRK in Figure 2. This new class will

behave exactly as an SDIRK, but we are free to

supply new implementations for any of the origi­

nal routines. In our case we would just provide a

new ErrorAndConvergenceControl with the

part calculating the new stepsize rewritten.

4 ODE DESCRIPTION

The idea behind the class hierarchy describing an

ODE is similar to the one underlying the descrip­

tion of the solver. We have defined a base class

ODE providing basic data structures and opera­

tions. A specific ODE is then defined by deriving

from the ODE class and providing implementations

of the virtual functions defined in the base class.

The structure is fairly simple because, so far, we

only support ODEs on the explicit form (1). We

have chosen this form for simplicity. The software

can, however, quite easily be extended to cover

also other formulations, for example, ODEs on

implicit formf(t, y, j) = 0 or differential-algebraic

equations, etc.

An important difference between our structure

and traditional implementations is that the solver

does not keep its own copies of the ODE state, i.e.,

t and y, but rather works directly on the data

stored in ODE. The ODE class makes this possible

by providing access routines to set and read the

state values. Storing the ODE state in ODE is a

natural consequence of regarding the ODE as the

main object, and the solver as one of many opera­

tions one wants to apply to it.

In addition to the routines related to the state of

the ODE the base class ODE also defines interface

routines to access the derivative f(t, y) and the

Jacobian ajlay. These functions are of course vir­

tual and their implementation will be provided by

the deriving class that implements a specific ODE.

Having the definitions ofDeri vati ve and Jaco­

bian in ODE provides for a well-defined interface

between the ODE description and the solver irre­

spective of what specific ODE the user eventually

ends up defining and integrating.

Many integration method implementations will

allow the Jacobian to be defined either through

numerical approximation or analytically in the

form of a supplied subroutine. Which option to

222 GUSTAFSSO:\

choose is normallv decided with a parameter in

the subroutine call to the integration routine. Our

implementation differs on this point. We regard

analytic or numerical Jacobian as a problem prop­

erty and hence this distinction is included in the

ODE description. The solver will always call the

routine Jacobian. How this entity is calculated is

then decided internally in the ODE representa­

tion. The base class ODE provides internal rou­

tines that will construct a numerical approxima­

tion of the Jacobian, and it is up to the deriving

class to either use this code or provide its own

method (numerical or analytic) to calculate the

Jacobian.

5 THE EQUATION SOLVER
BUILDING BLOCKS

At every integration step an implicit integration

method needs to solve a set of nonlinear equa­

tions. Most numerical equation solvers lead to an

iteration scheme on the form

(8)

where z is the vector of variables solved for, R a

residual function, and M the iteration matrix. The

structure of Equation 8 depends on both the ODE

and the type of integration method. To get an effi­

cient implementation it is essential to exploit this

structure.

In the case of Runge-Kutta methods z repre­

sents the stage values. Depending on the structure

of the coefficient matrix aij, z may involve all, a

subset, or only one of the stage values Y;. The

iteration matrix M depends on the type of itera­

tions performed. In the case of fixed point itera­

tion it equals the identity matrix, whereas for

l\ewton iteration it involves both the Jacobian

Iteration­

Controller

Iteration­

Status

StageUpdate

SDIRK­
Explicit­
StageWise­
U date

ajl ay of the ODE as well as the stepsize h and

coefficients from the integration method.

Due to the intricate structural effect the type of

ODE and integration method have on the iteration

(Equation 8), it is not possible to design one equa­

tion solver that works efficiently for any combina­

tion of ODE and method. Rather, the equation

solver has to be put together from several building

blocks, among which some are intrinsic whereas

others depend on the ODE and/or the method.

We have identified and implemented the building

blocks indicated in Figure 3. These blocks make

the work of adapting the equation solver to a new

integration method or a new formulation of the

ODE fairly modest. Some blocks can be reused

directly whereas others require some adjustments.

These adjustments are easily implemented in the

form of a deriving class. This is indicated by the

dashed blocks in Figure 3.

To implement a complete equation solver the

integration method will contain one instance of

IterationController, StageUpdate, and

IterationMatrix. The IterationControl­

ler supervises the iteration process, StageUp­

date handles one iteration of (Equation 8), and

IterationMatrix captures the structure of M.

Both StageUpdate and IterationMatrix

have to be adapted to the specific type if integra­

tion method used as well as to the way the ODE is

formulated. This is done by deriving from the re­

spective base classes. The changes that need to be

done are normally fairly modest. Information

about the current iteration is kept in an object of

~pelterationStatus.

5.1 lterationController and
lterationStatus Classes

The iteration (Equation 8) can be rewritten as

Mom= Pm·

Iteration­

Matrix

Explicit­

Iteration­

Matrix

. ·--~
tl

(9)

FIGURE 3 The equation solver building blocks. The two dashed blocks indicate where

new classes have to be written when implementing a new type of integration method or

allowing a different ODE formulation.

OBJECT-ORIE'\TED I~IPLDIE'\TATIO'\ OF SOFTWARE 223

Given a residual p, we solve for the displacement

Om, and update Zm+1 = Zm + Om. The iteration

should continue until the solution z is sufficiently

accurate, typically measured by the size of llomll o~
IIP,II. During the iteration the rate of convergence,

i.e., llomll!llom-111. is monitored and at sign of diver­

gence the iteration is terminated. For robustness,

there is also normallv a limit on the maximum

number of iterations allowed.

The described iteration control has been imple­

mented in the IterationController. This

class contains interface routines that can be used

to set up the terms of the iteration, e.g. max/min

number of iterations, stopping criteria in terms of

iteration error, and rate of convergence, etc. Once

this has been defined the IterationControl­

ler is asked to start the iteration. The Itera­

tionController expects to have available a

routine Update. which it will call at every itera­

tion. The Update routine performs one iteration

in Equation 8 and returns the current value of liP mil

and llomll. Based on these values the Iteration­

Controller decides whether to continue or to

terminate the iteration. The implementation of

IterationController is completely indepen­

dent of how Pm is formed, how Equation 9 is

solved, and how z is updated.

Once the iteration has been terminated the

IterationController returns an object of type

IterationStatus. This object contains infor­

mation about the iteration, for example, number

of iterations, rate of convergence, final iteration

error, etc. This information is used by the

ErrorAndConvergenceControl routine de­

scribed above to decide on how to update the iter­

ation matrix 1l1 for the next iteration.

5.2 The StageUpdate Class Hierarchy

In the case of Runge-Kutta methods the Update

routine called from the IterationController

is implemented in the StageUpdate class hierar­

chy. This routine performs one iteration by calcu­

lating the residual p, solving foro and updating z.

The base class StageUpdate defines the inter­

face to Update, but defers its implementation to

deriving classes. The reason is that what goes into

the variable z depends on the coefficient matrix aiJ

of the Runge-Kutta method. In addition, the cal­

culation of p depends on the way the ODE is for­

mulated, for example, explicit or implicit.

The class SDIRKExplici tStageWiseUp­

date in Figure 3 corresponds to a situation where

the Update routine has been specialized to an

SDIRK solving an ODE on explicit form and iter-

ating for the stage values Yi one after another. Im­

plementing a new type of Runge-Kutta method

normally requires writing a new derived class in

the StageUpdate hierarchy.

5.3 lterationMatrix Class Hierarchy

The Update routine in StageUpdate uses an ob­

ject of type IterationMatrix when solving foro

in Equation 9. This object encapsulates the de­

scription of the iteration matrix Jlf. Jlf involves

both the stepsize h and the Jacobian of the ODE,

and should be reevaluated every time any of these

changes. For efficiency reasons this is not accept­

able. The success of a particular implementation

of an implicit integration method depends strongly

on finding a good strategy for updating M.

The base class Iterationmatrix provides

the interface routines to update Af. These routines

are used by the control algorithm implemented in

ErrorAndConvergenceControl. Calling New­

Jacobian will evaluate a new Jacobian using the

access routines provided by ODE, while Factor­

ize forms a LC decomposition of M based on the

current stepsize and the latest available Jacobian.

The structure of 111 depends on the way the

ODE is formulated, and the implementation of

some of the operations we are interested in cannot

be defined in the base class. Again we use deriva­

tion to specialize to different situations. The class

Explici titerationMatrix in Figure 3 corre­

sponds to an ODE on explicit form. l'ew types of

integration methods and/or a new way of formu­

lating the ODE will require a new derived class in

the IterationMatrix hierarchy.

6 OTHER GENERAL BUILDING BLOCKS

In our implementation we have used several other

building blocks than the ones mentioned in Sec­

tions 3-5. Some of them are worth mentioning:

6.1 Matrix and Vector Operations

Many of the operations in an integration method

involve the manipulation of matrices and vectors.

In our implementation we have used the package

newmat [Davis, personal communication, 1992].

This package provides routines that make it possi­

ble to write matrix expressions in much the same

way as expressions involving standard floating

point variables.

For many ODEs the Jacobian has special struc­

ture, e.g., banded. In standard implementations

[1-4], this information can be included in the pa-

224 GVSTAFSSO~

rameter list when calling the integrator. In a typi­

cal implementation the handling of a Jacobian

with structure adds complexity to the program.

Every time the Jacobian is accessed there will be

tests in the code making sure that the right repre­

sentation and routines are used. Using C++ and a

package such as newmat we get this functionality

almost for free. newmat distinguishes between dif­

ferent types of matrices. If the Jacobian routine

in ODE returns the result as a banded matrix this

property will propagate. Whenever the matrix is

accessed through the newmat primitives its format

will be checked and the appropriate routines au­

tomatically chosen. Hence, in the case of banded

Jacobian algorithms for banded matrices will be

used automatically both when forming M and

when calculating its LC decomposition. This is

achieved without changes or additions to the

equation solver code.

6.2 Norms

Most integration methods use a mixed absolute­

relative "norm" to measure the size of the error

estimate (Equation 6). For consistency the same

norm should be used when measuring the size of

the iteration errors in the equation solver, i.e., o
and p.

To handle the error measure consistently we

have implemented a class RelAbsNorm. Given a

vector x this class will provide methods and data

structures to calculate its weighted norm. The

weight factor wi used for component i in x is

formed as

(10)

The relative part of the "norm" comes from relat­

ing xi to the magnitude of the same component in

the solution vector y. The factor 'Y/i acts as a scale

factor telling when Yi is regarded as small. Effec­

tively it results in an absolute error measure when

the magnitude of Yi is less than "f/i· The class can

handle 'YJ = 0 (pure relative norm) and TJ = "oo"

(pure absolute norm).

The class RelAbsNorm implements all the in­

terface routines needed to set the values of tal and

TJ, either componentwise or the same value for all.

Once this has been done the norm object can be

passed around and anyone wanting to evaluate

the norm of a vector x weighted according to

Equation 10 just calls the Evaluate function in

Re lAbsNorm passing x as a parameter. The class

handles 1-, 2-, and max norms.

6.3 Data Storage

One of the services the base class ODESol ver

provides for the user is storage of the solution.

Instead of integrating step by step the solver can

be asked to integrate a whole interval and store the

produced solution internally. The user can decide

what solution components to store, when to store

them, etc. After the integration the stored solution

can be accessed through interface routines de­

fined by ODESol ver.

A support class DataStore was written to fa­

cilitate this type of data storage. Instances of this

class are used whenever the programmer needs to

store some data. The implementation of Data­

Store is done such that memory is allocated in an

efficient way. In addition, the data are stored in a

manner allowing fast access.

7 CONCLUSIONS

We have described an object-oriented implemen­

tation of a family of different numerical integra­

tion methods. This implementation differs from

standard implementations in several important

ways. For a user who wants to solve an ODE:

1. It provides a uniform interface independent

of the implemented integration method

2. It works on a simple data structure describ­

ing the ODE, which the user easily can in­

corporate in a larger software framework for

analyzing ODEs

3. It makes different integration methods use

the same implementation of basic building

blocks, e.g., norms, iteration criterias, etc.,

resulting in less subjective comparisons of

results produced with different methods.

For the user who develops and implements new

integration methods:

1. It provides a software structure and basic

building blocks on which the implementa­

tion of new methods can be based

2. It facilitates debugging because many of the

basic routines and structures have already

been used and tested in other methods

3. lt collects the code that describes the error

and convergence control in an integration

method in one place, making it possible to

introduce global considerations in the de­

sign of the control strategy

4. It makes the equation solver of an implicit

method easier to write by providing basic

OBJECT-ORIE~TED IMPLEYIE:"JTATIO~ OF SOFTWARE 225

building blocks and automatic support for

Jacobians with structure.

Turning a new integration method into a work­

ing efficient implementation is often a long and

difficult process. We strongly believe that it can be

sped up and simplified using a software structure

such as the one described here.

ACKNOWLEDGMENTS

Thi~ article was written during a research stay at Stan­

ford Universitv. The author would like to thank Gene

Golub for providing the opportunity to visit Stanford.

REFERENCES

[1] K. E. Brenan, S. L. CampbelL and L. R. Petzold,

Numerical Solution of Initial-Value Problems in

Differential-Algebraic Equations. \Jorth-Holland:

Elsevier, 1989.

[2] E. Hairer and G. Wanner, Solving Ordinary Differ­

ential Equations II-Stlff and Differential-Alge­

braic Problems (Springer Series in Computational

Ylathematics, vol. 14). Springer-Verlag, 1991.

[3] A. C. Hindmarsh, ODEPACK, A Systematized Col­

lection of ODE Solvers (Scientific Computing). Am­

sterdam: IMACS/North-Holland Publishing,

1983, pp. 55-64.

[4] K. Burrage, J. C. Butcher, and F. H. Chipman,

"An implementation of singly-implicit Runge­

Kutta methods," BIT, voL 20, pp. 326-340,

1980.

[5] S. Erik Mattsson, M. Andersson, and K. J. Astrom,

Object-Oriented Modelling and Simulation. J'l,'ew

York: Marcel Dekker, Inc., 1992.

r 6 J K. Gustafsson, "Control of error and convergence

in ODE solvers'· Ph.D. thesis, Department of Auto­

matic ControL Lund Institute of Technology,

Lund, Sweden, 1992.

[7] E. Hairer, S. Paul \Jorsett, and G. Wanner, Solving

Ordinary Differential Equations 1-Nonstiff Prob­

lems (Springer Series in Computational .\1athemat­

ics, vol. 8).

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

