
Object-Oriented Legacy System Trace-based Logic Testing
In Proceedings of European Conference on Software Maintenance and Reengineering (CSMR 2006)

Stéphane Ducasse
LISTIC,

Université de Savoie
France

Tudor Gı̂rba
SCG,

University of Bern
Switzerland

Roel Wuyts
deComp,

Université Libre de Bruxelles
Belgium

Abstract

When reengineering legacy systems, it is crucial to as-
sess if the legacy behavior has been preserved or how it
changed due to the reengineering effort. Ideally if a legacy
system is covered by tests, running the tests on the new
version can identify potential differences or discrepancies.
However, writing tests for an unknown and large system is
difficult due to the lack of internal knowledge. It is espe-
cially difficult to bring the system to an appropriate state.
Our solution is based on the acknowledgment that one of
the few trustable piece of information available when ap-
proaching a legacy system is the running system itself. Our
approach reifies the execution traces and uses logic pro-
gramming to express tests on them. Thereby it eliminates
the need to programatically bring the system in a particular
state, and handles the test-writer a high-level abstraction
mechanism to query the trace. The resulting system, called
TESTLOG, was used on several real-world case studies to
validate our claims.

Keywords: legacy systems, testing, dynamic informa-
tion, logic programming

1 Introduction

During reengineering, it is crucial to write tests to make
sure that the changes made do not introduce bugs in the sys-
tem. Furthermore, writing tests is one pattern to support
software understanding: encode the assumption in a test and
check whether the test fails or succeeds [6].

But even though it is known that tests are important dur-
ing reengineering, it is quite difficult to use them in prac-
tice. Testing a system requires to bring the system into a
particular state, to then trigger the functionality to be tested,
and finally to assert a condition. But here arises a catch-22:
bringing a badly-understood system into a particular state
requires detailed knowledge about the system. Moreover,
due to poor design, it is often difficult to bring the system

into the wanted state [6].
Object-oriented legacy system behavior is distributed

over many interacting objects, making it necessary to test
for complex collaboration scenarios. For example, to test
the correct application of the Observer design pattern, the
collaborations between a subject and its registered ob-
servers need to be verified. Only registered objects should
receive an update message when a subject receives a change
message, so that they can execute an appropriate action. A
test of this collaboration requires an analysis of messages
exchanged between objects. Note that approaches that rea-
son on a structural reification of a program cannot fully
capture these behavioural collaborations (see the example
in Section 3.1, or for example [13]).

In summary, writing tests for legacy systems is compli-
cated because (1) the system needs to be brought in a certain
state, and (2) complicated scenarios need to be expressed.

This paper tackles these two problems by using a logic
programming language to query execution traces. Indeed,
in the context of legacy systems, one of the few trustable
sources of information is the execution of the application it-
self [6]. Our approach consists of (1) reifying the execution
traces, including the evolution of the state of the objects,
and (2) testing assumptions on the reified traces by writing
logic queries. Examples of assumptions are: test whether a
particular message send involves another message send, test
the pre and postconditions, or test how the state of an object
changed before and after a particular message send.

There are three advantages to our solution. First of all,
there is no need to find out how the system needs to be set
up: that information is contained in the execution trace, and
can immediately be used. Secondly the trace can be queried,
so the developer can learn about the system by expressing
assumptions on the execution behavior. Thirdly, the queries
have access to the state of the object before and after each
message send.

To validate our claims, we extended the logic program-
ming language SOUL [23, 24] with a library to reason about
execution traces. This allowed us to experiment on a num-

1

ber of case studies. While doing so we encountered fre-
quently recurring queries, and assembled those in a trace-
based dedicated logic library.

The rest of the article is structured as follows. Section 2
lists the requirements for a language to express tests. Sec-
tion 3 presents our approach of logic trace-based testing
and the logic programming language we used. Section 4
presents a library of frequently occurring testing queries
that we assembled. Section 5 presents the application of
the approach on one case study. Section 6 presents the im-
plementation details of the approach. Section 7 discusses
the applicability of our approach and its pros and cons.

2 Run-Time Information Requirements

This paper proposes to use the information contained in
execution traces to express and check assumptions on the
code. The advantage of this approach is that there is no need
to bring the system in a desired state, since this information
is implicitly contained in the trace. It is however not a trivial
task to extract this test information from the execution trace.
One reason is that the amount of information in an execution
trace is typically huge [26, 11]. Secondly, the behavior that
needs to be tested is typically dispersed over many steps of
execution, interlaced with other functionality.

Manually analyzing an execution trace is therefore im-
practical, and there is a need for a language and a tool sup-
port. Such a testing language should support queries on ob-
jects that are not in the scope of each other - that is, ob-
jects that are not necessary in direct relation, but that can be
found in the execution stack [18]. Here is a non-exhaustive
list of actions that a tester would like to be able to use to
express tests:

• identification of a message based on its name, its
sender, its receiver or its arguments,

• identification of object creation,
• identification of specific message sequences within

complex interactions,
• identification of messages inclusion, i.e., that a se-

quence of messages is included in another one,
• identification that certain messages are not sent or not

received by an object,
• access to the state of an object at a given point in time

such as before and after an invocation,
• detection of state changes,
• observation of the history of an object as it is created,

passed around as argument or serves as sender or re-
ceiver,

• access the state of an object in the recursive state of
another object,

• access whether a reference between two objects exists,
is established or detached.

The next section presents our testing language, that
meets these requirements.

3 Trace-Based Logic Testing

Our approach of trace-based logic testing lets reengi-
neers test assumptions about the dynamic behaviour of a
system by expressing logic queries on a reified execution
trace. It is a two-step approach, illustrated in Figure 1.

1. First the source code is instrumented in order to ob-
tain an execution trace composed of events and object
states. The trace is represented as logic facts. The
instrumentation technique depends on the language at
hand. For example, our experiments in Smalltalk used
method wrappers [3] .

2. Tests are then expressed as logic queries over the trace,
using a library of logic rules that facilitate the manipu-
lation of the trace. We use logic programming because
of its expressiveness in detecting patterns, where uni-
fication and back-tracking are needed.

A

B

C
1: instrumented
 and executed

Tests
> ObserverNotifies(object1,(object2, object3, object4)).
> true

2: test definition
 ObserverNotifies(?ob, ?l)
 if forAll...

Figure 1. The principle of logic trace-based testing.

Other approaches already used execution traces of pro-
grams, but in the context of debugging procedural lan-
guages [8], or for exploring and reverse engineering object-
oriented applications [5, 16, 21]. In object-oriented pro-
gram debugging, query-based debugging combines condi-
tional breakpoints with logic queries, evaluating a query-
like expression is evaluated each time a conditional break-
point is reached [17, 18].

To validate the approach we implemented it under form
of a library for the logic language SOUL, and then by testing
it on several small examples and on two larger systems: the
MOOSE reengineering environment and a meta-interpreter.
While experimenting we noticed that similar situations oc-
cur frequently while testing. We captured this information
in the form of patterns and we explicitly supported them

2

with predicates in our library of logic predicates. Section 4
describes the patterns we found. However, before we dis-
cuss them we first need to introduce SOUL, the logic lan-
guage that we used.

3.1 Logic Programming in SOUL

In this section, we give a short introduction on SOUL
[23, 24]. SOUL is a full Prolog implementation in Smalltalk,
but makes some syntactical and semantical enhancements
that allow for a tight integration with an object-oriented lan-
guage. Like in Prolog, the facts and the rules specify data,
while the logic queries express the reasoning on this data.
Unique in SOUL is that its atoms are objects (meaning that
logic variables can be unified with objects), and that object-
oriented code can be executed during the logic inference.

With SOUL it is therefore possible to perform logic
queries directly on objects. Later on we use this feature
to access the trace information. We also take advantage of
the fact that everything in Smalltalk is an object, hence also
classes and methods. Therefore SOUL can be used to di-
rectly query Smalltalk source code.

The approach is not limited to Smalltalk: Irish, for ex-
ample, uses SOUL to reason about Java code [9]. The same
approach is possible using a regular Prolog, but all the exe-
cution trace elements and objects have to be represented as
logic facts. SOUL allows us to avoid this extra step.

The following query, for example, finds all methods in
the class hierarchy of the class Collection that are named
add: (denoted as #add: in the following example) 1:

if classInHierarchyOf(?c, [Collection]),
methodWithNameInClass(?m, [#add:], ?c)

As in Prolog, logic rules express relations between vari-
ables. For example, the following rule expresses the ba-
sic structure for the Visitor design pattern. It expresses the
main structural relations between the visitor class, the ab-
stract and concrete elements that are visited, and the name
of the method that does the visiting. It accomplishes this by
identifying the different inheritance relationships between
the classes involved, and by expressing the form of the ac-
cept method, that sends back the visit method, passing along
itself as an argument [24]:

visitor(?visitor, ?abstractElement, ?concreteElement, ?visitSelector) if
classInHierarchyOf(?concreteElement, ?abstractElement),
methodInClass(?acceptMethod, ?concreteElement),
argumentsOfMethod(<?arg>, ?acceptMethod),
parseTreeInMethod(<return(send(?arg, ?visitSelector, ?visitArgs))>,

?acceptMethod),

1In SOUL, the keyword if separates the body from the head of a rule,
which can be empty when we do not define a new query. # denotes sym-
bols i.e., unique strings in Smalltalk. Logic variables start with question
marks (?); a comma denotes logical conjunction; lists are delimited with
< and > , and terms between square brackets [] represent Smalltalk ex-
pressions that may use logic variables.

member(variable([#self]), ?visitArgs),
selectorOfClassInProtocol(?visitSelector, ?visitor, ?)

When this rule is defined, we can check whether the class
TreeNodeEnumerator is a visitor, and if so for which ab-
stract and concrete elements:

if visitor(?visitor, [TreeNodeEnumerator], ?concrete, ?selector)

The result of this query are the ten concrete parse tree
nodes, the four visitors used to visit these parse tree nodes,
as well as the selectors that are present in the VisualWorks
Smalltalk environment in which SOUL is implemented.

3.2 Logic Reification of the Trace

The execution traces obtained from running an applica-
tion are represented as logic facts [16, 21]. A trace is com-
posed of events, i.e., messages sent to objects as shown in
Section 6. Logic rules exists for querying the execution
traces, such as querying for the existence of a given event,
for accessing the event attributes (receiver, selector, argu-
ments), or for querying and comparing the state of objects.
We list some of these basic predicates that we use in the rest
of the paper — for the complete description see [10].

• event(?e) returns all the events of a trace.
• event(?e, ?p) returns all the events satisfying a predi-

cate.
• eventForSelector(?e, ?s) expresses that the event e is

a message send with selector (i.e., method name) s.
For example eventForSelector(?e, [#add:]) holds for all
events that have as selector #add:.

• receiver(?e, ?o) expresses that the event e has the ob-
ject o as receiver.

• eventForSelectorContaining(?e, ?s, contains(?event-
List)) expresses that the event e has a selector s and
that it results in events from ?eventList being sent.

• resurrectReceiverBeforeEvent(?e, ?receiver) and re-
ssurectReceiverAfterEvent(?e, ?receiver) are used to
access the state of a particular object at a particular
point in time, namely right before and right after the
message associated with the event e is being sent to
receiver.

4 Trace-Based Logic Testing Patterns

While the primitive predicates from Section 3.2 can be
used to express tests over traces, we developed rules for
patterns that we used repeatedly during our validation. We
present two types of testing patterns: interaction and se-
quence testing patterns (Section 4.1) and state testing pat-
terns (Section 4.2). We developed other patterns such as

3

recursion, double dispatch and visitors testing but for space
reason we do not present them here2.

Before discussing the testing patterns, we first introduce
the execution trace example we use to illustrate the patterns.
The example uses the classifications model [25]. The major
functionality of the classification model is to group items
in classifications, and then to apply actions on these items
by means of services. The service classes implement the
Visitor design pattern and traverse classification items.

The execution trace we use is generated by adding an
item to an existing classification, and then enumerating all
the items in the classification to collect their textual repre-
sentations. The resulting trace of this scenario is small, and
contains 230 events, involving 30 objects (the root classi-
fication, some services, the objects contained as items and
a wrapper class for each of these items). Figure 2 shows a
subset of the trace that adds an item to the root classifica-
tion. Note that all queries that we show query the complete
execution trace, not just the subset shown in Figure 2.

:Root :ServicesConfiguration :ObjectAsItemWrapper

basicAdd:

items

asItem

setParent:

add:

on:

Figure 2. Part of the execution trace showing the addition
of ServicesConfiguration to the root classification.

4.1 Testing Message Sequence Patterns

In this section we present two types of predicates to
match message sequences in execution traces: message im-
plications and scenario testing.
Testing Message Implications. By testing message impli-
cation we can express that a particular message send implies
another particular message send.

For example, when adding an element to a classification,
we see that a message add: is sent, resulting in a send of ba-
sicAdd: and, later on, in a send of setParent:. This chain of
messages implying each other can be expressed by nesting
the events (the sends of messages) that occur by using the
eventForSelectorContains predicate:

if eventForSelectorContaining(?addEvent, [#add:],
< eventForSelectorContaining(?basicAddEvent, [#basicAdd:],

< eventForSelector(?setParentEvent, [#setParent:]) >) >)

2Please refer to [10] for a more detailed discussion

:Root :ServicesConfiguration :ObjectAsItemWrapper

basicAdd:

items

asItem

setParent:

add:

on:

Figure 3. Result highlighting the result of the query ex-
pressing message implication.

The results of applying the above query on the trace dis-
played in Figure 2 is shown in Figure 3. Note how the pat-
tern that we expressed did not include all the messages that
were being sent: it just expressed those messages that were
of interest for us. In this way, we can concentrate on only
some parts of the trace, without needing to deal with the
noise consisting in the messages we do not necessarily care
about.

This feature is particularly important in the context of
object-oriented programming since subclasses can extend
super class behaviour.
Testing Scenario Trees. Testing message implication con-
centrates on expressing conditions over a sequence of mes-
sages. With testing scenario trees we concentrate on ex-
pressing predicates over trees of message sends. As the ar-
gument of the eventForSelectorContains predicate is a list,
we express n-ary trees, and match these against the expres-
sion.

As a concrete example, we refine the message sequence
defined above and express that sending basicAdd: in fact re-
sults in two messages being sent: a message asItem and a
message items. In the course of evaluating asItem, a mes-
sage on: is being sent. Hence we do not have a linear se-
quence of messages that is being sent, but a tree of message
sends: basicAdd: has two branches, with one branch con-
taining a single child. We can express this tree of messages
as follows:

if eventForSelectorContaining(
?basicAdd,
[#basicAdd:],
< eventForSelectorContaining(

?asItem,
[#asItem],
< eventForSelector(?on, [#on:]) >),

eventForSelector(?items, [#items]) >)

4.2 Testing the State of Object Patterns

The previous section dealt with testing message se-
quences. This section concentrates on tests that take the

4

state of object state into account. We present four patterns
related to state: pre and post condition testing, object inclu-
sion, encapsulated state and object references
Testing Pre- and Postconditions. Pre- and postconditions
encode generic assertions about the code. We use our ap-
proach to validate pre- and postconditions when examining
execution traces.

To validate postconditions we identify the method exe-
cution that is the postcondition validation target, ensure the
precondition and validate the postcondition, actions that are
reflected in the head of the rule shown here:

if validatePostcondition(?eventQuery, ?precondQuery, ?postcondQuery)

Three queries are passed as arguments (?eventQuery,
?precondQuery and ?postcondQuery). The first query iden-
tifies the event (?e) for which pre- and postconditions
should be ensured. The second query ensures the event’s
precondition and the third query ensures the event’s post-
condition.

Let’s take once again the example of adding an object
to a classification. The precondition asserts that the classi-
fication where the object is added can accept items (some
classifications are closed, and do not allow object addition).
The postcondition asserts that a classification that accepts
the addition of items indeed has one more element than be-
fore the adding. The query looks as follows:

if validatePostcondition(
eventForSelector(?addEvent, [#add:]),
precondition(?addEvent,

?pre,
[?pre acceptsAdding]),

postcondition(?addEvent,
?pre,
?post,
equals([?pre size + 1], [?post size])))

The example above resembles a regular unit test method.
One difference is that the unit test method requires a setup
to set the original state of the system which, as we discussed
in the beginning of the paper, is difficult to do. The other
difference with a unit test is that this query can be reused on
any trace,whilea unit test would only express the assump-
tion for one specific classification.
Testing Objects Inclusion. Another valuable test that can
be expressed is when one object contains another object in
its state. For example, when adding an item to a classifica-
tion, we want to test that the item object is present in the
classification object after the addition.

The following query accomplishes this, by searching the
add: message and recording its argument (?addedObject),
then capturing the state of the classification after this mes-
sage has been sent (?rootObject), and finally testing whether
the added object is indeed included in the transitive state of
the classification:

if eventForSelectorAndArguments(?e, [#add:], <?addedObject>),
resurrectReceiverAfterEvent(?e, ?rootObject),
includesObject(?rootObject, ?addedObject)

Note the usage of the predicate resurrectReceiver-
AfterEvent:. During the execution of the scenario the clas-
sification is in different states (once empty, then containing
the element we added, etc.). Using this predicate we capture
the state after the sending of an event. There exists a pred-
icate resurrectReceiverBeforeEvent: that captures the state
before the event is sent. Combining these two we can test
that the added object did not yet exist before it was added,
and that it exists afterwards.
Testing Encapsulated States. When testing states there are
various situations where we need to break up the encapsula-
tion as the internal state of an object may not be accessible
through a public interface.

To check the state of an encapsulated object we specify
an expression that is similar to an OCL navigation expres-
sion. The navigation expression consists of a sequence of
instance variable names that is used to stepwise access ob-
jects3. We call the sequence of instance variables used to
access a nested state an access path from a root object to a
nested object.

For example, given the state of the classification after the
object was added to it we can get the internal lastIndex value
of the collection used to store items in a classification using
as access path items lastIndex, as shown in the following
query:

if eventForSelector(?addEvent, [#add:]),
stateAfterEvent(?addEvent, ?state),
nestedObjectAt(<[’items’], [’lastIndex’]>, ?state, ?index)

If we know an access path we can query an object at the
specified position, but sometimes we would like to know
whether an object is included in the recursive state of an-
other object and retrieve its access path. For example,
when we add an element to a classification and we want to
know where or whether an object passed as argument to the
method add: has been added, we write the following query:

if eventForSelector(?e, [#add:]),
argument(?e, [1], ?addedObject),
resurrectReceiverAfterEvent(?e, ?rootObject),
includesObject(?rootObject, ?addedObject, ?accessPath)

Note that the use of the resurrectReceiverAfterEvent
query is necessary because we have multiple states for the
?rootObject (before and sending messages). With this pred-
icate we specify that we are interested in the state after the
message add: has been sent.
Testing Object References. An object has a reference to
another object whenever it is possible to access an object
through navigation along a path of instance variables. Fre-
quent tests are based on the existence, the creation or the
destruction of references between objects. To test the exis-
tence of a reference or a reference-path between a first and
a second object accessible from a root we test whether the

3This access uses introspection as found in Smalltalk or Java.

5

first object is included in the recursive state of the root and
if the first object includes the second object in its recursive
state.
existsReference(?fromObject, ?toObject, ?rootObject) if
includesObject(?rootObject, ?fromObject),
includesObject(?fromObject, ?toObject)

This rule gives us the basis to create two new rules for
testing whether a reference is established or detached by a
single operation defined as follows:
establishesReference(?event, ?fromObject, ?toObject) if
resurrectReceiverBeforeEvent(?event, ?r1),
resurrectReceiverAfterEvent(?event, ?r2),
not(existsReference(?fromObject, ?toObject, ?r1)),
existsReference(?fromObject, ?toObject, ?r2)

detachesReference(?event, ?fromObject, ?toObject) if
resurrectReceiverBeforeEvent(?event, ?r1),
resurrectReceiverAfterEvent(?event, ?r2),
existsReference(?fromObject, ?toObject, ?r1),
not(existsReference(?fromObject, ?toObject, ?r2))

This example terminates this short description of the
most common patterns we used and identified while per-
forming our case studies. It is worth to notice that our ap-
proach is open in the sense that new predicates can be im-
plemented with relative ease using the abstractions provided
by the basic event queries layer of our implementation (see
Section 6).

5 Case Study: Verifying MOOSE Models

We claim that trace-based logic testing effectively tack-
les two problems that make writing tests for legacy systems
complicated: (1) the system needs to be brought in a certain
state in order to start the test, and (2) complicated scenar-
ios need to be expressed. To validate these claims we used
TESTLOG to experiment on several concrete cases [10].

We have already seen some tests on the classification
model (although for our experiments we used bigger traces,
as discussed later on) [25]. This section shows some more
complicated tests that a reengineer could use to gain better
understanding of the MOOSE environment [19].

The MOOSE reengineering environment has at its core
the FAMIX meta-model (a UML-like meta-model with
method invocations and attribute accesses). To extract mod-
els from source code, MOOSE has importers for various pro-
gramming languages such as C++, Java or Smalltalk, and
supports various tool interchange formats such as CDIF or
XMI. The task of an importer is to parse source code entities
and to reified them in a MOOSE model.

We experimented with the MOOSE importing from
Smalltalk because it exposes interesting and complex be-
haviour: parse tree traversal, Smalltalk meta-model access,
object creation, model entity reification and the establish-
ment of references between objects. The complete be-
haviour of an import of a small model produces more than
10.000 message sends.

We stress that while two of the authors are the develop-
ers for MOOSE, the experiments were performed by a stu-
dent that did not know MOOSE before starting the experi-
ments. Thus, the student played the role of the reengineer
that wants to understand an unknown system.
Testing Class Import. The first fact that we would like
to verify is that when a class is imported it is effectively
created and added into the current model and if other de-
pendent entities such as instance variables and methods are
also imported.

We have to identify a location in the trace where FAMIX
model entities of a certain type are created. For example,
from browsing the code and from interviews the reengineer
learned that a FAMIX class is created by the method #en-
sureClassEntityFor: which takes a Smalltalk class and re-
turns a FAMIX entity. Then we query the trace to observe
the creation of a new entities and finally check if the set
of classes is properly imported. Finally we check if other
entities that are dependent of classes are properly imported.

Below are two queries that test whether every class in
a package is imported in a MOOSE model. The first one
performs a check for a single class. The second performs
the test for every classes in a set using a forall query.

classEntityReifiedAndInModel(?c) if
nonvar(?c),
eventForSelectorAndArguments(?e, [#ensureClassEntityFor:], < ?c >),
includesInRecursiveState([MSEModel currentModel], [?e return])

The variable ?c is bound to a class that exists in the
Smalltalk image. We find the execution of the method
#ensureClassEntityFor: in the trace so that the argument
matches the value of the variable #?c. After that we test
whether the imported MOOSE model contains the newly
created entity. The expression [MSEModel currentModel]
refers to the current model in which imported entities will
be added.

testEveryClassInPackage(?packageName, ?test(?c)) if
forall(classInPackage(?packageName, ?c),
?test(?c))

if testEveryClassInPackage([ReferenceModel],
classEntityReifiedAndInModel(?c))

In the test testEveryClassInPackage, we check whether
the query classEntityReifiedAndInModel(?) succeeds for ev-
ery class in a package. The query classInPackage(?c) uni-
fies ?c with every class belonging to ?packageName. The
query forall checks whether a predicate passed as a second
argument is true for every solution passed by the first query.
The term ?test(?c) is a higher-order query that is passed as
an argument to the rule above and can express any predicate
dependent on the set of classes.
Testing Metaclass Import. The importer should make sure
that a class and its metaclass are imported. The following
rule specifies this constraint by simply composing twice the

6

previous query #classEntityReifiedAndInModel(?x) once for
the class and a second time for its meta class.

classAndMetaClassReifiedAndInModel(?c) if
classEntityReifiedAndInModel(?c),
classEntityReifiedAndInModel([?c class])

Now we can perform the test for whether every class
and its meta class are imported in the model by passing
the query classAndMetaClassReifiedAndInModel(?c) as ar-
gument.

if testEveryClassInPackage([ReferenceModel],
classAndMetaClassReifiedAndInModel(?c))

Testing Class Composite Entity Representation. Repre-
senting a class implies representing its instance variables
and its methods. Here we show how we test that a refer-
ence between a reified class and its reified instance vari-
ables. First we query every reified instance variable entity
and class entity and then check whether there exists a refer-
ence between them.

In MOOSE instance variables are reified by calling the
method [#ensureInstVarFor:] where the first argument is the
class and the returned object is the reified instance variable.
We bind the reified class entity to the variable ?cEntity and
the reified instance variable to the variable ?ivEntity for all
execution of [#ensureInstVarFor:].

classAndInstanceVarEntity(?c, ?cEntity, ?ivEntity) if
eventForSelectorAndArguments(?e, [#ensureClassEntityFor:], < ?c >),
eventForSelectorAndArguments(?e1, [#ensureInstVarFor:], < ?c >),
equals(?cEntity, [?e return]),
equals(?ivEntity, [?e1 return])

We now check whether for every pair ?cEntity and ?ivEn-
tity a reference exists between those two objects within the
MOOSE model. This must be true according to the FAMIX
model. Finally we perform the test again for every class.

existsReferenceBetweenClassAndInstanceVariables(?c) if
nonvar(?c),
classAndInstanceVarEntity(?c, ?cEntity, ?ivEntity),
existsReference(?cEntity, ?ivEntity, [MSEModel currentModel])

if testEveryClassInPackage([ReferenceModel],
existsReferenceBetweenClassAndInstanceVariables(?c))

These examples illustrate how complex tests are assem-
bled by composing advanced logic queries. They show how
the approach supports an abstraction over the details of the
execution trace [4, 26]. It can also be seen that there is no
need to first bring the system in a certain state: the execu-
tion trace contains this information, and is simply harvested
from the point in time which is interested to express tests
for a certain behaviour,

6 TESTLOG: Implementation and
Trace Representation

Figure 4 shows the layered architecture of TESTLOG.
The bottom layer comprises an object-oriented model that

Domain Specific Queries

Behavioral Archetypes

Basic Event Queries

Event Reification

Reified Events and States

Tree Pattern MatcherSOUL

Smalltalk

Figure 4. The architecture of TESTLOG

represents the execution trace. Each trace is stored as an
object in the Smalltalk image. At the next abstraction
level TESTLOG provides queries to access single events
and states. This layer serves two purposes: (1) it reifies
the object-oriented model into to the logic environment of
SOUL by binding objects to logic variables, (2) it provides
basic queries on the execution trace for querying events ac-
cording to their attributes. This layer also defines queries
based on state properties such as whether an object is in-
cluded in the recursive state of the events receiver object.
The pattern matching layer implements a pattern matching
query on event trees i.e., matching a subtree in another tree.
Events. Based on the recorded execution trace we reify
an event model with ordering and containment relations be-
tween events. As shown in the Figure 5, an event contains
the following information: the sender object of a message,
the receiver object of a message, the message name, a list
of arguments that are passed and snapshot of the complete
recursive state of the receiver before and after a method ex-
ecution so that we are able to reason about state changes.

Trace
Event

receiver
selector
argumentObjects
returnedObject

EventTree

ObjectState
Snapshot

receiver
return
arguments

1
0..* 1 0..*

2..* 1

1
1

1
1

post pre

0..*

0..1

includes

included

ObjectState
object
value

VariableObjectState
1
1

values

Figure 5. The event and trace model and the object state.

Reification of Object States. Every event refers the events
it includes at the next level of the call tree. To make a state-

7

ment about object states that occurred during an execution
a snapshot of the receiver recursive state before and after
the event is made (instance of the class ObjectState). Ob-
ject states and object identity are completely separated in
the model. An object identity remains the same during the
whole lifetime of an object, however its object state may
change. We can then express that this is the same object
that is passed as an argument that is added to the recursive
state of another object by comparing the two object identi-
ties.
Event Tree Pattern Matching. The requirement for having
a tree pattern matching facility emerges from the fact that
in object-oriented systems the message structure is deeply
nested because of complex object collaborations. However,
because a general tree pattern matching problem with vari-
ables is NP-complete and would no be usable for pattern
matching an execution trace consisting of several thousand
messages, we use the left order embedding algorithm de-
scribed in [15] to pattern match an execution trace. The
left order embedding algorithm has a time complexity of
O(mn) where m is the number of pattern nodes and n is the
number of tree nodes. Informally the left order embedding
algorithm finds the first instance of the pattern if the tree is
traversed in post-order.

7 Discussion

On the usefulness of the approach. Using execution traces
as basis for our approach has the advantage that the testing
context is already embodied within the trace. Moreover,
traces capture the system as it is used and as such are eas-
ier to generate then writing unit tests one by one by hand.
In addition after a query is writted, we can apply it to any
traces we collect, hence reusing the abstraction and the test.
Being able to manipulate tests in an abstract and declarative
manner is powerful [16, 21].

While our approach supports a fine-grained and rich vo-
cabulary to manipulate trace information (see Section 2),
and while the addition of new abstractions is relatively easy,
the syntax we use to define the queries is not really suited
for end-users. We see this approach being used by expert
reengineers in their first dealings with an unknown system.
We acknowledge that our approach requires more knowl-
edge of the application that we would like, which may
seems to contradict our claim. However, using the system
traces has the advantage that the engineer can directly start
expressing tests on existing scenarios and does not have to
struggle to bring the system in the wanted state. Our ex-
perience proved that this is a serious advantage when deal-
ing with unknown systems. Nevertheless, we plan to assess
how regular software engineers can use the approach with-
out having a deep knowledge of the system.
On the scalability of the approach. The following table

shows the sizes (number of classes and methods) of the
three cases we studied. Note that we give this merely for
completeness: since we only used information from the ex-
ecution traces, the size of the source code does not really
matter for the scalability of the approach.

System #Classes #Methods
Moose 215 3881
StarBrowser 80 569
MetaInterpreter 45 622

The next table shows the size of the execution traces that
was used for querying. As shown the traces are not trivial
(i.e., around 200000 events), but our infrastructure managed
to respond within seconds on even the most complicated
examples from Section 5.

Traces #Events #Classes #Methods
StarBrowser 200394 16 237
MetaInterpreter 27890 35 123
MooseImport 150876 83 553

Since our approach uses execution traces, it has the
usual advantages and disadvantages related with using large
amount of data. Large traces may pose scalability prob-
lems. Since TESTLOG stores the traces into object models
expressed in Smalltalk, we can manipulate as large traces as
can be stored in the Smalltalk image. This proved enough
for our case studies. If not, we could resort to storing the
trace information in a (preferably object-oriented) database,
like Gemstone. The use of the logic language did not im-
pose any limitation. However assessing the scalability of
the approach with a larger case studies is one of our future
work. We plan also to see how we can cut traces into coher-
ent scenario or use cases based on the collaborating classes.
On the decision of recording the state. Contrary to most
other approaches [16, 21, 11], our approach records the
state of the objects before and after each message send. As
such, we have fine-grained control over state changes, and
we can for example express side-effects or references be-
tween collaborating objects. The natural question that arises
is whether this approach scales in terms of space when the
number of events grow. Our current implementation is quite
naive and does not optimise memory usage. The following
table shows the data we collected with the classification ex-
ample.

Case #Events Size
StarBrowser 886 200k

1 768 700k
42 504 26.73MB
539 096 372.62MB

Moose 42 350 12MB
333 838 83MB
514 422 144MB

The memory consumed per number of events in our
naive implementation was around 48 k per 100 events in

8

the case of the StarBrowser experiments, and around 27 k
per 100 events for the Moose case study. These measure-
ments can change from one application to the other since
the recursive state depends on the complexity of the inter-
acting objects. For example, more memory is needed for
the StarBrowser experiments because classification objects
reference complex objects from the VisualWorks Smalltalk
GUI application framework.
On the problem of sampling the traces. Another prob-
lem usually posed by dynamic analysis is the fact that a
trace embodies only a specific object interaction, and that
the code coverage is only based on a specific scenario [21].
Relying on traces does not prevent us to have incomplete
or uninteresting contexts for the tests. In the case of badly
understood systems, it is even more of a problem to know
how to choose the traces. Yet, the literature present us with
a number of solutions to this problem.

One reengineering pattern is to start the reengineering
from running the system, by emphasizing that it is impor-
tant to have the knowledge of the domain when understand-
ing the code [6]. For example, the experiments with the
StarBrowser consisted of opening the browser and adding
items to classifications, resulting in the traces used in Sec-
tion 4. Observing these traces and expressing assumptions
on them introduced the main concepts for that application
(classifications, services, visitor patterns, etc.).

Zaidman and Demeyer propose an approach to locate
the most important places regarding a given feature [26].
They detect where one should start the implementation of
a given feature by starting from the most important places
from other similar features. In another complementary ap-
proach, Greevy and Ducasse offer means to relate features
with structural entities (e.g., classes), and thus providing
the link towards combining the dynamic with static anal-
ysis [11]. With these approaches one can analyze the traces
to check whether they are or not relevant for the wanted test.

Nevertheless, after obtaining the traces we can run the
tests against all of them. Furthermore, we can obtain sev-
eral versions of the same scenarios, and we can run the orig-
inal assumptions against all the versions. Thus, we support
the reengineering process by making sure that important as-
sumptions are kept after the reengineering effort.

8 Related Work

In a pioneering paper [14] the authors argue that testing
object-oriented software should not focus on units but on
the message exchange between them in a scenario. How-
ever, the infrastructure to actually do this was not shown.

Auguston [2, 1] also uses a trace composed of event
models and test programs. However it is based on proce-
dural programming languages and does not take into ac-
count the specific behavioural aspects of object-oriented

languages such object creation and the state of objects. Fur-
thermore the author does not reason about the kinds of be-
haviour that can occur in a program, nor how to test for
them.

Query-based debugging [17, 18] use logic programming
to express complex queries over a large number of object.
Some queries are triggered at run-time while the program
is running. However contrary to our approach they cannot
express temporal relationship or refer to previous state of an
object.

Caffeine [12] is a Java-based tool that uses the Java de-
bugging API to capture execution events and uses a Prolog
variant to express and execute queries on a dynamic trace.
The main difference with TESTLOG is that Caffeine has a
linear representation of a trace, and hence it is not possible
to reason about nested events. Caffeine is also missing state
reification. The reason is that its main context is not testing
but reasoning about dynamic properties.

OPIUM [8] is a tool that allows a user to debug Prolog
program using a set of debugging queries on event traces.
Prolog is used as a base language and as meta language to
reason about events. The main usage scenario of OPIUM
is the implementation of a high level debugger for Prolog
that allows forward navigation to the next event that satis-
fies a certain condition. Coca [7] supports the debugging of
C programs based on events. Opium and Coca are mainly
used to show the values of variables. In addition, both
Opium and Coca do not support object-oriented program-
ming and object state analysis. They do not have been used
to specify large application tests.

While not exactly related to testing object-oriented ap-
plications, enhancements of traditional debuggers use dy-
namic information to display traces. Visualising debuggers
can work directly via instrumentation on the program be-
ing executed, or are based on post-mortem traces [5, 16].
Visualisation of dynamic information is also related to our
work in the sense that it is based on a program trace. De-
Pauw et al. [20] and Walker et al. [22] use program events
traces to visualise program execution patterns and event-
based object relationships such as method invocations and
object creation.

9 Conclusion

For a reengineering effort to be successful it is crucial
to have a reliable automated test suite because we want
to ensure that the functionality remains the same after the
change. Furthermore, automated testing can be used as an
understanding tool by encoding the assumptions as tests and
then running these tests to check the assumptions.

Testing requires bringing the system into a testable state.
The problem with writing tests for legacy object-oriented
systems is that it is difficult to bring the system into the

9

wanted state due to multiple reasons: lack of knowledge of
the system, poor design, lack of time etc.

In this paper, we showed how to use the execution traces
as a basis for expressing tests. We represent these traces in
the form of logic facts and express the tests in the form of
logic queries. We implemented our approach in the form
of a query library using SOUL, a logic engine implemented
in Smalltalk. Although our implementation is in Smalltalk,
the approach itself is not specific for Smalltalk but can be
applied to other languages as well – e.g., Java.

We applied our approach on several Smalltalk case stud-
ies and we reported the experience by detailing several test-
ing patterns. The tests patterns expressed are generic and
can be applied to any traces of a given application. Further-
more, the definition of new abstractions to manipulate the
trace information is simple.

We paid special attention to the performance issue and
we showed that even our naive implementation scales for
medium sized applications. Another problem posed by our
approach is the coverage problem. Although it is not in the
scope of this paper, we briefly pointed out complementary
approaches from the literature.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science Foundation for the project
Recast: Evolution of Object-Oriented Applications (SNF 2000--
061655.00/1).

References

[1] M. Auguston. Program behavior model based on event gram-
mar and its application for debugging automation. In 2nd
International Workshop on Automated and Algorithmic De-
bugging, France, May 1995.

[2] M. Auguston. Building program behavior models. In Euro-
pean Conference on Artificial Intelligence ECAI-98, Work-
shop on Spatial and Temporal Reasoning, Aug. 1998.

[3] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. In Proceedings ECOOP ’98, volume 1445 of
LNCS, pages 396–417. Springer-Verlag, 1998.

[4] A. Chan, R. Holmes, G. Murphy, and A. Ying. Scaling
an object-oriented system execution visualizer through sam-
pling. In International Workshop on Program Comprehen-
sion, 2003.

[5] M. P. Consens and A. O. Mendelzon. Hy+: A hygraph-based
query and visualisation system. In Proceeding ACM SIG-
MOD International Conference on Management Data, pages
511–516, 1993.

[6] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[7] M. Ducassé. Coca: An automated debugger for C. In Inter-
national Conference on Software Engineering, pages 154–
168, 1999.

[8] M. Ducassé. Opium: An extendable trace analyser for pro-
log. The Journal of Logic programming, 1999.

[9] J. Fabry and T. Mens. Language-independent detection of
object-oriented design patterns. Elsevier Computer Lan-
guages, Systems and Structures, 30(1-2):21–33, 2004.

[10] M. Freidig. Trace based object-oriented application testing.
Diploma thesis, University of Bern, Jan. 2004.

[11] O. Greevy and S. Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. In Pro-
ceedings CSMR 2005, pages 314–323, 2005.

[12] Y.-G. Guéhéneuc. Un cadre pour la traçabilité des motifs de
conception. PhD thesis, Ecole des Mines de Nantes, 2003.

[13] Y.-G. Guéhéneuc and H. Albin-Amiot. Using design pat-
terns and constraints to automate the detection and correction
of inter-class design defects. In Proceedings TOOLS 2001,
pages 296–305, 2001.

[14] P. C. Jorgenson and C. Erickson. Object-oriented integration
testing. CACM, 37(9):30–38, Sept. 1994.

[15] P. Kilpelinen. Tree Matching Problems with Applications
to Structured Text Databases. PhD thesis, University of
Helsinki, Departement of Computer Science, Nov. 1992.

[16] D. B. Lange and Y. Nakamura. Interactive Visualization of
Design Patterns can help in Framework Understanding. In
Proceedings of OOPSLA ’95, pages 342–357, 1995.

[17] R. Lencevicius, U. Hölzle, and A. K. Singh. Query-based de-
bugging of object-oriented programs. In Proceedings OOP-
SLA ’97, ACM SIGPLAN, pages 304–317, Oct. 1997.

[18] R. Lencevicius, U. Hölzle, and A. K. Singh. Dynamic
query-based debugging. In Proceedings ECOOP ’99, vol-
ume 1628 of LNCS, pages 135–160, Lisbon, Portugal, June
1999. Springer-Verlag.

[19] O. Nierstrasz, S. Ducasse, and T. Gı̂rba. The story of
Moose: an agile reengineering environment. In Proceedings
ESEC/FSE 2005, pages 1–10, 2005. Invited paper.

[20] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution patterns in object-oriented visualization. In Proceed-
ings COOTS ’98, pages 219–234. USENIX, 1998.

[21] T. Richner and S. Ducasse. Recovering high-level views of
object-oriented applications from static and dynamic infor-
mation. In Proceedings ICSM ’99, pages 13–22, Sept. 1999.

[22] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. In Proceedings
OOPSLA ’98, pages 271–283, Oct. 1998.

[23] R. Wuyts. Declarative reasoning about the structure object-
oriented systems. In Proceedings TOOLS USA ’98 Confer-
ence, pages 112–124, 1998.

[24] R. Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, 2001.

[25] R. Wuyts and S. Ducasse. Unanticipated integration of de-
velopment tools using the classification model. Journal of
Computer Languages, Systems and Structures, 30(1-2):63–
77, 2004.

[26] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event exe-
cution frequency. In Proceedings CSMR 2004, pages 329–
338, Mar. 2004.

10

