
 Open access Proceedings Article DOI:10.1117/12.2054470

Object-oriented Matlab adaptive optics toolbox — Source link

Rodolphe Conan, Carlos Correia

Institutions: Australian National University

Published on: 07 Aug 2014 - Proceedings of SPIE (SPIE)

Topics: Laser guide star, Adaptive optics, Guide star, Giant Magellan Telescope and Deformable mirror

Related papers:

 On the optimal reconstruction and control of adaptive optical systems with mirror dynamics

 Pupil plane wavefront sensing with an oscillating prism

 Optimal control, observers and integrators in adaptive optics

 Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques.

 On the nature of the measurements provided by a pyramid wave-front sensor

Share this paper:

View more about this paper here: https://typeset.io/papers/object-oriented-matlab-adaptive-optics-toolbox-
2xs5nqcy07

https://typeset.io/
https://www.doi.org/10.1117/12.2054470
https://typeset.io/papers/object-oriented-matlab-adaptive-optics-toolbox-2xs5nqcy07
https://typeset.io/authors/rodolphe-conan-326ugbvmac
https://typeset.io/authors/carlos-correia-2vf6wbtzdl
https://typeset.io/institutions/australian-national-university-1u3b0omq
https://typeset.io/journals/proceedings-of-spie-10ug5cgv
https://typeset.io/topics/laser-guide-star-228wudwv
https://typeset.io/topics/adaptive-optics-51y76ofr
https://typeset.io/topics/guide-star-1smlhn4z
https://typeset.io/topics/giant-magellan-telescope-l17zp1fv
https://typeset.io/topics/deformable-mirror-3tkr785i
https://typeset.io/papers/on-the-optimal-reconstruction-and-control-of-adaptive-4bn7u8fc57
https://typeset.io/papers/pupil-plane-wavefront-sensing-with-an-oscillating-prism-1pwelpaks2
https://typeset.io/papers/optimal-control-observers-and-integrators-in-adaptive-optics-1k10r65i0q
https://typeset.io/papers/efficient-computation-of-minimum-variance-wave-front-509g22hxu6
https://typeset.io/papers/on-the-nature-of-the-measurements-provided-by-a-pyramid-wave-4fvmmg2u1q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/object-oriented-matlab-adaptive-optics-toolbox-2xs5nqcy07
https://twitter.com/intent/tweet?text=Object-oriented%20Matlab%20adaptive%20optics%20toolbox&url=https://typeset.io/papers/object-oriented-matlab-adaptive-optics-toolbox-2xs5nqcy07
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/object-oriented-matlab-adaptive-optics-toolbox-2xs5nqcy07
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/object-oriented-matlab-adaptive-optics-toolbox-2xs5nqcy07
https://typeset.io/papers/object-oriented-matlab-adaptive-optics-toolbox-2xs5nqcy07

Object–Oriented Matlab Adaptive Optics Toolbox

R. Conana and C. Correiab

aRSAA, The Australian National University, Weston Creek, ACT 2611, Australia b Centre for

Astrophysics, University of Porto, Rua das Estrelas 4150-762 Porto, Portugal

ABSTRACT

Object–Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO)
systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront
sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating
Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO
systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that
make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales.
OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone
effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling
approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the
statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are
object–oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to
simulate and to design the Multi–Object AO prototype Raven at the Subaru telescope and the Laser Tomography
AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is
simulated with OOMAO. In the first part, we set–up the class parameters and we link the instantiated objects
to create the source optical path. Then we build the tomographic reconstructor and write the script for the
pseudo-open-loop controller.

Keywords: adaptive optics, wavefront sensing, laser guide star, numerical modeling

1. INTRODUCTION

Object–Oriented Matlab R© Adaptive Optics (OOMAO) is a library of Matlab R© classes. Objects from the different
classes are assembled to perform the numerical modeling of Adaptive Optics systems. OOMAO can be seen as an
extension of the Matlab R© language. Overloaded Matlab R© operators are used to propagate the wavefront through
the system and to update object properties.
A class is a container for a set of parameters and functions. In the Matlab R© nomenclature, the parameters
and the functions of a class are called the properties and the methods, respectively. An object is created (or
instantiated) from a class by calling the class constructor method. The proper syntax of the constructor can
be discovered by invoking help class name at the Matlab R© prompt. A more complete description of a class
properties and methods is given by doc class name.
The constructor method will set only a limited number of properties, other properties will be set to a de-
fault value. All the properties can be altered afterwards anyway. A property is read or set through ob-
ject name.property name.
The main classes used during a simulation are

• source,

• atmosphere,

• telescope,

shackHartmann,•

Further author information: (Send correspondence to R. Conan)
R. Conan: E-mail: rod.conan@anu.edu.au

•••

Adaptive Optics Systems IV, edited by Enrico Marchetti, Laird M. Close,
Jean-Pierre Véran, Proc. of SPIE Vol. 9148, 91486C · © 2014 SPIE

CCC code: 0277-786X/14/$18 · doi: 10.1117/12.2054470

Proc. of SPIE Vol. 9148 91486C-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

source

ngs

telescope

tel

·× deformableMirror

dm

× shackHartmann

wfs

×

imager

×laserGuideStar

stochasticWave

telescopeAbstract

atmosphere

atm

+/-

turbulenceLayer

giantMagellanTelescope

zernike

influenceFunction

lensletArray

detector

pyramid

curvature

class OOMAO class

class
OOMAO class in
development

Inherit from

Embed

Class method

object Class instance

Optical path:
ngs·×tel×dm×wfs

Figure 1. OOMAO class diagram.

• deformableMirror.

Fig. 1 shows the relations between the main classes of OOMAO. The classes are setup along an optical path
for a closed–loop AO system. The operators used to optically link the classes are superimposed to the optical
link. Classes are documented following Matlab R© documentation standard and can be extracted with the doc

command. The classes description generated with doc is the library reference documentation.
In addition to the classes to model AO systems, OOMAO has a rich library of functions to compute various
statistical properties of the wavefront. These functions are contained within the phaseStats and zernikeStats

classes and the list of their methods are given in Fig. 2. The figure of merit of an AO system is often the
image of a point–like star after correction. The PSF is collected with the imager class (Fig. 1) which properties
frame , strehl and ee correspond to the star image and the Strehl ratio and the ensquared energy of the
point–spread–function, respectively. OOMAO relies on sparse matrices where possible, in order to minimize the
computer memory load, and uses Matlab R© transparent parallel loop for the heftiest computations. Parallel for
loops require the Parallel Computing Toolbox R©.
OOMAO is used by several projects. For example, the control software of RAVEN1 is based on OOMAO and
OOMAO was used during the conceptual and preliminary design phases of the GMT LTAO system2 to compare
different design options.

2. SETTING-UP AN OOMAO SIMULATION

In this section, we describe the different steps to model an AO system. OOMAO does not have configuration
files like many other AO simulation software.3,4 An OOMAO simulation is build in the same way an AO optical
bench is build. The main steps in the construction and deployment of an AO system are

1. selection of the components

Proc. of SPIE Vol. 9148 91486C-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

phaseStats

spectrum(f,atm)
temporalSpectrum(nu,atm)
variance(atm)
closedLoopVariance(atm,T,tau,gain)
covariance(rho,atm)
angularCovariance(theta,atm)
temporalCovariance(tau,atm)
covarianceMatrix(rho1,rho2,atm)
spatioAngularCovarianceMatrix(sampling,range,atm,src1,src2)
structureFunction(rho,atm)
angularStructureFunction(theta,atm)
temporalStructureFunction(tau,atm)
otf(rho,atm)
psf(f,atm)
upwardJitter(L,D,atm,zSrc)

zernikeStats

spectrum(f,atm)
temporalSpectrum(nu,atm)
anisoplanatismSpectrum(f,o,atm,zern,src)
anisoplanatismTemporalSpectrum(nu,atm,zern,src)
variance(zern,atm)
closedLoopVariance(zern,atm,T,tau,gain)
rms(zern,atm,unit)
rmsArcsec(zern,atm)
closedLoopRmsArcsec(zern,atm,T,tau,gain)
covariance(zern,atm)
angularCovariance(zern,atm,src1,src2)
temporalAngularCovariance(zern,atm,tau,src1,src2)
residualVariance(N,atm,tel,src)

imager

frame
strehl
ee

Figure 2. OOMAO classes for performance estimation.

Proc. of SPIE Vol. 9148 91486C-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

2. initialization of the components

3. calibration of the components

4. link the components with a control system

2.1 Component selection

2.1.1 The source

The source class has a very important role in the OOMAO library as it is the link between other classes. A source

object carries a wavefront, both amplitude and phase, through different objects representing the atmosphere,
the telescope, the wavefront sensor, ... Both natural guide star and Laser guide star Adaptive Optics can be
simulated. For a NGS, the source height is infinite. For a LGS, the source height is finite and can be set to a
vector of heights depending on the thickness of the source. A simple on–axis natural guide star object is created
by calling the source constructor without parameters:

ngs =source;

The first time an object from an OOMAO class is created a message let the user aware he is using the library.
A summary of the object main parameters is also displayed. In this example, zenith and azimuth angle are both
set to zero, the star height is infinite, the wavelength is 550nm and the magnitude is set to 0.

2.1.2 The atmosphere

Next, we create the atmosphere the source will propagate through. The atmosphere class contains all the
parameters defining the atmosphere including the turbulence profile. A 3–layer atmosphere with a 20cm Fried
parameter in the visible and a 30m outer scale is created with:

atm = atmosphere(photometry.V,20e-2,30,...

’fractionnalR0’,[0.5,0.3,0.2],’altitude’,[0e3,5e3,12e3],...

’windSpeed’,[10,5,20],’windDirection’,[0,pi/2,pi]);

The photometry class contains the definition of the photometric systems. If an altered photometric system is
needed, modification must be done into the class itself.

2.1.3 The telescope

Lest first make the NGSAO model scalable by defining the number of lenslet nL of the wavefront sensor, the
number of pixel per lenslet nPx, the telescope diameter D in meter and the sampling frequency samplingFreq in
Hz.

nL = 60;

nPx = 10;

nRes = nL*nPx;

D = 25;

d = D/nL; % lenslet pitch

samplingFreq = 500;

Now, we create a telescope of diameter D with a pupil sampled with nRes pixel. The telescope field–of–view
is 30arcsec and the temporal evolution of wavefront in the telescope pupil will be sampled at samplingFreq.

tel = telescope(D,’resolution’,nRes,...

’fieldOfViewInArcsec’,30,’samplingTime’,1/samplingFreq);

Proc. of SPIE Vol. 9148 91486C-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

600

500

400

300

200

100

Frame #0

60

40

20

200 400

20 40 60 80

600

100 120

x 10
5

1

4

3

2

1

o

-1

2.1.4 The wavefront sensor

To be complete an Adaptive Optics Systems needs a wavefront sensor (WFS). OOMAO uses the Shack–Hartmann
wavefront sensor, the pyramid and the curvature wavefront sensors are currently developed. A Shack–Hartmann
wavefront sensor is made of a lenslet array and a detector. The numerical model follows the physical model by
embedding a lenslet array (lensletArray) class and a detector (detector) class in the shackHartmann class. The
lensletArray class perform the numerical Fraunhoffer propagation of the wavefront to the detector. The detector

class implements a CCD camera detection process including Poisson and read–out noise. The lenslet images are
Nyquist sampled per default.
A shackHartmann object with a nL × nL lenslet array and a nRes × nRes resolution camera is created. The
minLightRatio property of the lensletArray object set the minimum ratio of light intensity between a partially
and fully illuminated lenslet. In the following, minLightRatio is set to 85%:

wfs = shackHartmann(nL,nRes,0.85);

Wavefront sensor initialization The next component to define is a deformable mirror (DM). The WFS and
the DM are optically conjugated to the telescope pupil and the DM actuators are aligned to the WFS lenslet
array following the Fried geometry i.e. they are located at the lenslet corners. To fully define the DM, one
needs to initialized the WFS first by computing the ”valid lenslet” which are the lenslet receiving sufficient light
according to the value of minLightRatio . The propagation of the wavefront is performed with the overloaded
Matlab R© operators times or .* and mtimes or * .

ngs = ngs.*tel*wfs;

The ngs is propagated through the telescope, the WFS lenslet array and imagelets are formed on the WFS
camera. Each time a call to .* is done the amplitude and phase values are reset to they default value 1 and 0,
respectively and then * is called. When * is called the amplitude is multiplied by the amplitude of the right
hand side object and the phase of the right hand side object is added to the phase of the source object.
The * method is calling the relay method of the right hand side object. Most of the OOMAO classes have a
relay method allowing them to be used with the .* and * operators of the class source.

A warning is issued because the lenslets at the corner of the array are in the dark. This issue is solved by
selecting the lenslets that are receiving enough light to be useful to the wavefront detection.

wfs.INIT

When the WFS detector is read again and a new process-
ing of the frame is done, there is no more warning as only
the ”valid lenslet” are now processed; a new read–out and
centroiding computation is force by calling the overloaded
uplus or simply + operator:

+wfs;

figure

imagesc(wfs.camera,’parent’,subplot(3,2,[1,4]))

slopesDisplay(wfs,’parent’,subplot(3,2,[5,6]))

The next 2 commands allow the displays of the frame
and of the slopes to be updated when a new frame and new
slopes are computed

wfs.camera.frameListener.Enabled = true;

wfs.slopesListener.Enabled = true;

The WFS must be calibrated such as for 1rd of tip–tilt
wavefront , it will measure a slope of 1rd. To do so, the
pointingDirection property is set on-axis

Proc. of SPIE Vol. 9148 91486C-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

wfs.pointingDirection = zeros(2,1);

whereas the source is progressively moved off-axis

pixelScale = ngs.wavelength/...

(2*d*wfs.lenslets.nyquistSampling);

tipStep = pixelScale/2;

nStep = floor(nPx/3)*2;

sx = zeros(1,nStep+1);

u = 0:nStep;

wfs.camera.frameListener.Enabled = false;

wfs.slopesListener.Enabled = false;

warning(’off’,’oomao:shackHartmann:relay’)

for kStep=u

ngs.zenith = -tipStep*kStep;

+ngs;

drawnow

sx(kStep+1) = median(wfs.slopes(1:end/2));

end

warning(’on’,’oomao:shackHartmann:relay’)

Ox_in = u*tipStep*constants.radian2arcsec;

Ox_out = sx*ngs.wavelength/d/2*constants.radian2arcsec;

%figure

%plot(Ox_in,Ox_out)

%grid

slopesLinCoef = polyfit(Ox_in,Ox_out,1);

wfs.slopesUnits = 1/slopesLinCoef(1);

The source is reset on–axis and theWFS is set to always be aligned to the source by setting pointingDirection
to empty.

ngs.zenith = 0;

wfs.pointingDirection = [];

2.1.5 The deformable mirror

In a closed–loop Adaptive Optics Systems, the deformable mirror is the first active component encounter by the
wavefront. A numerical deformable mirror is made of a set of influence functions or modes. In OOMAO, a mode
shape is derived from two cubic Bézier curves

B1(t) = (1− t3)P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1] (1)

B2(t) = (1− t3)P3 + 3(1− t)2tP4 + 3(1− t)t2P5 + t3P6, t ∈ [0, 1] (2)

Pk = (xk, zk) are point in the x− z plane. As t varies from 0 to 1, B1(t) will go from P0 to P3 and B2(t) will go
from P3 to P6. P0 will correspond to the highest point of the mode and is set to the coordinates (x0 = 0, z0 = 1).
The derivative of the mode at P0 must be zero, this is ensured by setting z1 = 0. The mode is forced to zero
at P6 by setting z6 = 0. x6 is set to 2. The derivative of the mode in P6 is forced to zero by setting z5 = 0.
To ensure a smooth junction between both Bézier curves, the following condition is imposed ~P3P2 = −α~P3P4

leading to P4 = −P2/α+ (1 + 1/α)P3.
From the conditions stated above, a deformable mirror mode is set with the following parameters: x1, (x2, z2),
(x3, z3), α and x5.
The 1–D half plane mode is obtained by concatenated both Bézier curves

B(t) = [B1(t), B2(t)] .

Proc. of SPIE Vol. 9148 91486C-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

Monototic influence function Overshooted influence function
1 1

0.8

0.6
0.8

d
Y
f, 0.6
N
ß
Ñ

E 0.4
ó

Z

0.2

d
o 0.4
Ñ
N
ß
Ñ

E
ó
Z

0.2

0

- 0.2

- 0.4

0 - -0.6
0 2 4 6 0 5 10

Normalized actuator pitch Normalized actuator pitch

B(t) is a vector of x − z coordinates, B(t) = (Bx(t), Bz(t)). Bx(t) is normalized by Bx(tc); Bx(tc) is the x
coordinate where Bz(t) = c, c is the mechanical coupling of the deformable mirror actuators. The full 1–D mode
M(t) is made by concatenating B(t) and is symmetric with respect to the z axis, i.e.

Mx(t) = ([B−x(t), Bx(t)] , [Bz(t), Bz(t)]) .

The 2–D mode is the product of the 1-D modes in the x− z plane and in the y − z plane,

M(t) = Mx(t)My(t).

An influence function is created with two arguments passed to its constructor: the list of Pk coordinates
in a cell and the mechanical coupling value. Instead of the list of parameters, the keywords ’monotonic’

(0.2, [0.4, 0.7], [0.6, 0.4], 1, 1) and ’overshoot’ ({0.2, [0.4, 0.7], [0.5, 0.4], 0.3, 1}) can be used to call predefined pa-
rameter lists, as shown in the next examples:

bifa = influenceFunction(’monotonic’,0.75);

figure,show(bifa,’parent’,subplot(1,2,1))

title(’Monototic influence function’)

bifb = influenceFunction(’overshoot’,0.75);

show(bifb,’parent’,subplot(1,2,2))

title(’Overshooted influence function’)

The markers in the figures correspond to, from left
to right, the points Pk from k = 0 to 6.

In addition to the synthetic influence functions, the
measured influence functions of a real deformable mir-
ror can be used in OOMAO by setting the property
modes in a deformableMirror object.

A deformable mirror with (nL + 1) × (nL + 1) ac-
tuators and the previously defined influence function
sampled at the same resolution than the telescope is
created with

dm = deformableMirror(nL+1,’modes’,bifa,...

’resolution’,tel.resolution,...

’validActuator’,wfs.validActuator);

The validActuator property of the WFS class,
derived from the validLenslet property, is used to
define the DM actuators corresponding to the ”valid lenslet”.

Interaction matrix Once the WFS and the DM components have been initialized, the calibration matrix can
be computed.

Let’s switch off the display automatic update:

wfs.camera.frameListener.Enabled = false;

wfs.slopesListener.Enabled = false;

and setup the optical path before the DM/WFS subsystem:

ngs = ngs.*tel;

The interaction matrix is generated by pushing all the valid actuators sequentially and saving the correspond-
ing WFS measurements in a matrix. The process is done with the calibration method of the deformableMirror

Proc. of SPIE Vol. 9148 91486C-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

1000

2000
Vi

Q
o

Tn

LA 3000

§

4000

5000

500500001:6COCE600

DM actuators

x 10

2

1

:30

-1

-2

-3

6

N
d
3
l
>
Cd

a7 Of
Y LLo
+,

Ñ

Ñ
U

f°Ñ
á

"

io
10

5

10

u

10

0

200:'

400

600

1000 2000

Eigen modes
3000

_$

x10
4

2

0

2

:

200 400 600

0.0km: 50.0%
25.00m _ 600px

5.0km: 30.0%
25.73m - 617px

12.0km: 20.0%
26.75m - 642px

-20 -10 0 10 20 30

class. The arguments of the method are the deformable mirror, the wavefront sensor, the calibration source and
the actuator amplitude in meter. In OOMAO, the generation of the interaction matrix is vectorized meaning it
can be done in 1 step at the expense of requiring a lot of memory. Here the process is divided in as many steps
as actuators across the pupil.

calibDm = calibration(dm,wfs,ngs,ngs.wavelength,nL+1,’cond’,1e2);

At the end of the calibration process, the inter-
action matrix is saved into the object calibDm of
the class calibrationVault. The interaction matrix is
saved into the property D . The singular value de-
composition of D is immediately computed and the
pseudo–inverse of D is saved into the property M .
A display window shows on the left the interaction
matrix D on the top right the eigen values of D and
in the bottom right the eigen modes corresponding
to the eigen values given by the red line in the plot
above, which here is essentially the piston mode.
The truncated pseudo–inverse of D is obtained by
eliminating the lowest eigen values. The filtering
of the lowest eigen values is obtained by changing
the value of one of these properties: threshold set-
ting the minimum eigen values for the computing of
M , nThresholded setting the number of discarded
eigen value starting from the lowest one or cond

forcing the condition number of D .

3. WAVEFRONT ESTIMATION

In OOMAO, a wavefront can be described in a modal or zonal basis. In this basis, the wavefront can be
reconstructed using either a Least-Square reconstructor (LSR) or a Minimum–Mean–Square–Error reconstructor
(MMSE). In the following, several wavefront reconstruction methods are compared.
First lets bound the atmosphere to the telescope, without binding the atmosphere object to a telescope object,
phase screens cannot be generated. Then the phase screens are displayed and the ngs optical path is set up. A
source object saves its optical path into the opticalPath property allowing the source to be propagated again
with a simple call to the uplus or + operator.

tel = tel + atm;

figure

imagesc(tel)

ngs = ngs.*tel*wfs;

The wavefront reconstruction is done by estimating
the wavefront values at the corner of the lenslets. A
new telescope is defined identical to the previous one
but with a lower resolution and a pupil defined by the
map of ”valid actuator”.

telLowRes = telescope(tel.D,...

’resolution’,nL+1,...

’fieldOfViewInArcsec’,30,...

’samplingTime’,1/500);

telLowRes.pupil = wfs.validActuator;

Proc. of SPIE Vol. 9148 91486C-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

The atmosphere is now bound to the new telescope,
the ngs is propagated through the atmosphere to the
new telescope and the piston free wavefront is saved.

telLowRes= telLowRes + atm;

ngs = ngs.*telLowRes;

phase = ngs.meanRmOpd;

The first method to estimate the wavefront is the finite difference (FD) method using the inverse of the sparse
gradient matrix computed with the method sparseGradientMatrix .

phaseEst = tools.meanSub(wfs.finiteDifferenceWavefront*ngs.wavelength ,...

wfs.validActuator);

The source is propagated through the finite difference phase screen and the residual wavefront and residual
wavefront rms are retrieved from the ngs meanRmOpd and opdRms properties.

ngs = ngs.*telLowRes*{wfs.validActuator,-2*pi*wfs.finiteDifferenceWavefront};

phaseEstRes = ngs.meanRmOpd;

phaseEstResRms = ngs.opdRms;

The second method uses the interaction matrix to compute DM actuators amplitude in the property coefs .
As the telescope earlier, a lower resolution DM is created,

bifaLowRes = influenceFunction(’monotonic’,0.75);

dmLowRes = deformableMirror(nL+1,’modes’,bifaLowRes,’resolution’,nL+1,...

’validActuator’,wfs.validActuator);

The coefs are derived from the product of the pseudo-inverse of the calibration matrix D by the wavefront
sensor slopes .

dmLowRes.coefs = -calibDm.M*wfs.slopes;

The DM deformation is read from the surface property. The factor 2 takes into account the reflection off
the mirror. The source is propagated to the deformable mirror and as previously the residual wavefront and
residual wavefront rms are retrieved from the ngs meanRmOpd and opdRms properties.

dmSurface = tools.meanSub(dmLowRes.surface.*wfs.validActuator*2 , wfs.validActuator);

ngs = ngs.*telLowRes*dmLowRes;

phaseDmRes = ngs.meanRmOpd;

phaseDmResRms = ngs.opdRms;

The last method is the Linear Minimum Mean Square Error (LMMSE) wavefront reconstructor where the
wavefront ϕ is derived from the WFS slopes s from

ϕ = CϕsC
−1
ss s (3)

where Css is the slope covariance matrix and Cϕs is the cross–covariance between the wavefront and the slopes.
The covariance matrices are computed by the slopesLinearMMSE class.

slmmse = slopesLinearMMSE(wfs,tel,atm,ngs,’mmseStar’,ngs);

The guide star is propagated through the atmosphere and the telescope to the wavefront sensor. The LMMSE
wavefront estimate is obtained by multiplying the slopesLinearMMSE object and the shackHartmann object. The
wavefront estimate ps e is sampled at the DM actuator locations. The piston is removed from ps e using the
meanSub method.

Proc. of SPIE Vol. 9148 91486C-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

ngs = ngs.*tel*wfs;

ps_e = slmmse*wfs;

ps_e = tools.meanSub(ps_e , wfs.validActuator);

ps e is removed from the NGS wavefront to obtain the zero–piston residual wavefront as well as the residual
wavefront error rms.

ngs = ngs.*telLowRes*{wfs.validActuator,-ps_e*ngs.waveNumber};

ps_eRes = ngs.meanRmOpd;

ps_eResRms = ngs.opdRms*1e9;

A Laser guide star (LGS) and the corresponding slopesLinearMMSE object are created.

lgs = source(’height’,90e3);

lgs_slmmse = slopesLinearMMSE(wfs,tel,atm,lgs,’mmseStar’,ngs);

The LGS is propagated through the atmosphere and the telescope to the wavefront sensor. The LGS LMMSE
wavefront estimate is obtained by multiplying the slopesLinearMMSE object and the shackHartmann object.
lgs ps e is removed from the NGS wavefront to obtain the zero–piston residual wavefront as well as the residual
wavefront error rms.

lgs = lgs.*tel*wfs;

lgs_ps_e = tools.meanSub(lgs_slmmse*wfs , wfs.validActuator);

ngs = ngs.*telLowRes*{wfs.validActuator,-lgs_ps_e*ngs.waveNumber};

lgs_ps_eRes = ngs.meanRmOpd;

lgs_ps_eResRms = ngs.opdRms*1e9;

A 3 LGS asterism evenly located on a 20arcsec diameter ring and the corresponding slopesLinearMMSE object
are created.

lgsAst = source(’asterism’,{[3,arcsec(10),0]},’height’,90e3);

% figure, imagesc(tel, [ngs,lgsAst])

lgsAst_slmmse = slopesLinearMMSE(wfs,tel,atm,lgsAst,’mmseStar’,ngs,’NF’,1024);

The LGSs are propagated through the atmosphere and the telescope to the wavefront sensor. The LMMSE
wavefront estimate is obtained by multiplying the slopesLinearMMSE object and the shackHartmann object.
lgsAst ps e is removed from the NGS wavefront to obtain the zero–piston residual wavefront as well as the
residual wavefront error rms.

lgsAst = lgsAst.*tel*wfs;

lgsAst_ps_e = tools.meanSub(lgsAst_slmmse*wfs , wfs.validActuator);

ngs = ngs.*telLowRes*{wfs.validActuator,-lgsAst_ps_e*ngs.waveNumber};

lgsAst_ps_eRes = ngs.meanRmOpd;

lgsAst_ps_eResRms = ngs.opdRms*1e9;

The NGS wavefront is plotted at the top of the left column and the estimates below. The right columns
display the corresponding residual wavefront.

Proc. of SPIE Vol. 9148 91486C-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

50

100

150

200

250

300

350

20 40 60

43

2

1

E
o

-3

Wavefront error rms:
LSR(FD) : 188nm
LSR(DM) : 114nm

LMMSE:
NGS : 121 nm

LGS : 320nm
LTAO: 184nm

50

100

150

200

250

300

20 40 60

1000

500

o

- 500

-1000

figure(314)

subplot(6,2,[1,11])

imagesc(1e6*[phase; phaseEst; dmSurface; ps_e;lgs_ps_e;lgsAst_ps_e])

axis equal tight

ylabel(colorbar,’micron’)

subplot(6,2,[4,12])

imagesc(1e9*[phaseEstRes; phaseDmRes; ps_eRes;lgs_ps_eRes;lgsAst_ps_eRes])

axis equal tight

title({sprintf(’Wavefront error rms:’),...

sprintf(’LSR(FD) : %3.0fnm’,phaseEstResRms*1e9),...

sprintf(’LSR(DM) : %3.0fnm’,phaseDmResRms*1e9),...

sprintf(’LMMSE:’),...

sprintf(’ . NGS : %3.0fnm’,ps_eResRms),...

sprintf(’ . LGS : %3.0fnm’,lgs_ps_eResRms),...

sprintf(’ . LTAO: %3.0fnm’,lgsAst_ps_eResRms)},...

’HorizontalAlignment’,’Center’)

ylabel(colorbar,’nm’)

pos = get(314,’pos’);

set(314,’pos’,[pos(1:3) pos(4)*5/3])

drawnow

Proc. of SPIE Vol. 9148 91486C-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

80

60

40

20

Frame #0

20 40 60 80

x10
6

4

2

4. CLOSED–LOOP NGS AO SYSTEMS

OOMAO can simulate AO systems in closed–loop, open–loop and in pseudo–open loop. A LQG controller5 for
OOMAO is currently in development. In this section, a closed–loop NGS AO is modeled. Lets first create an
on–axis science celestial object in J band. Then, the science imaging camera is created with the class imager.

science = source(’wavelength’,photometry.J);

cam = imager(tel);

The atmosphere object is detached from the telescope and the science star is propagated through the telescope
to the science camera producing a perfect diffraction limited image. The camera display can also be set to update
itself when a new camera frame is generated.

tel = tel - atm;

science = science.*tel*cam;

figure(31416)

imagesc(cam,’parent’,subplot(2,1,1))

%cam.frameListener.Enabled = true;

The diffraction limited image is set as the reference frame allowing
computing the image Strehl ratio on the subsequent frame captures.

cam.referenceFrame = cam.frame;

+science;

fprintf(’Strehl ratio: %4.1f\n’,cam.strehl)

The atmosphere is re–attached to the telescope, the science star
is propagated again, this time first through the atmosphere and the
atmosphere limited Strehl is obtained.

tel = tel + atm;

+science;

fprintf(’Strehl ratio: %4.1f\n’,cam.strehl)

Two types of controller are compared: a closed–loop LSR and a pseudo–open loop LMMSE. The two con-
trollers can be tested side–by–side by using a unique feature of OOMAO: the fact that some classes like shackHart-
mann or deformableMirror can duplicate some of their properties when they are faced with multiple sources. This
means that if one needs to analyze the wavefront of several sources with the same Shack–Hartmann wavefront
sensor, a single shackHartmann object is only needed.
Two NGSs and two science objects are created and their optical paths set. Both are going through the atmo-
sphere, the telescope and the DM, but the NGSs end up on the WFS and the science stars are both imaged with
the science detector. The WFS display now shows the imagelets and slopes corresponding to the wavefronts of
both NGSs.

ngsCombo = source(’zenith’,zeros(1,2),’azimuth’,zeros(1,2),’magnitude’,8);

ngsCombo = ngsCombo.*tel*dm*wfs;

scienceCombo = source(’zenith’,zeros(1,2),’azimuth’,zeros(1,2),’wavelength’,photometry.J);

scienceCombo = scienceCombo.*tel*dm*cam;

The science camera clock rate is set to an arbitrary unit of 1 meaning it is slaved to the sampling rate of the
telescope i.e. 500Hz. The camera exposure is set to 500 frames at rate of then 500Hz and the camera integration
starts after the first 20 frames. The startDelay property is reset to 0 when the exposure starts.

Proc. of SPIE Vol. 9148 91486C-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

i

80

60

40

20

600

400

200

Frame #0We

i

50 100 150

200 400 600 800 1000 1200

x 10
2.5

2

1.5

1

0.5

20

10

0

-10

- 20

flush(cam)

cam.clockRate = 1;

exposureTime = 100;

cam.exposureTime = exposureTime;

startDelay = 20;

figure(31416)

imagesc(cam,’parent’,subplot(2,1,1))

% cam.frameListener.Enabled = true;

subplot(2,1,2)

h = imagesc(catMeanRmPhase(scienceCombo));

axis xy equal tight

colorbar

The closed–loop controller is a simple integrator
where the DM coefficients c are given by

cn+1 = cn − gclMs (4)

with gcl the integrator gain, M the truncated pseudo–
inverse of the poke matrix and s is the vector of wave-
front sensor slopes

gain_cl = 0.5;

The pseudo–open loop controller is given by

cn+1 = (1− gpol)cn + gpol ∗ F
−1

(

CϕsC
−1
ss (s−Dcn)

)

.
(5)

gpol is the low–pass filter gain, F is the matrix of the
DM influence functions and D is the poke matrix.

gain_pol = 0.7;

F = 2*bifaLowRes.modes(wfs.validActuator,:);

iF = pinv(full(F),1e-1);

Before closing the loop, the DM coefficients are set to 0 and the science detector is reset. The logging of
the wavefront variance of the science object is turned on. The phase variance will be stored into the phaseVar

property. The LMMSE object is set to return the wavefront estimate in a vector and the iterative solver will use
the previous estimate as first guess.

dm.coefs = zeros(dm.nValidActuator,2);

flush(cam)

set(scienceCombo,’logging’,true)

set(scienceCombo,’phaseVar’,[])

slmmse.wavefrontSize = [dm.nValidActuator,1];

slmmse.warmStart = true;

cam.startDelay = startDelay;

cam.frameListener.Enabled = false;

% set(ngsCombo,’magnitude’,8)

% wfs.camera.photonNoise = true;

% wfs.camera.readOutNoise = 2;

% wfs.framePixelThreshold = wfs.camera.readOutNoise;

The loop is closed for one full exposure of the science camera.

Proc. of SPIE Vol. 9148 91486C-13

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

80

60

40

20

600

400

200

Frame #0

50 100 150

200 400 600 800 1000 1200

9

X 10

2

1

5

Io-5

nIteration = startDelay + exposureTime;

for k=1:nIteration

% Objects update

+tel;

+ngsCombo;

+scienceCombo;

% Closed-loop controller

dm.coefs(:,1) = dm.coefs(:,1) - gain_cl*calibDm.M*wfs.slopes(:,1);

% Pseudo-open-loop controller

dm.coefs(:,2) = (1-gain_pol)*dm.coefs(:,2) + ...

gain_pol*iF*(slmmse*(wfs.slopes(:,2) - calibDm.D*dm.coefs(:,2)));

% Display

% set(h,’Cdata’,catMeanRmPhase(scienceCombo))

% drawnow

end

imagesc(cam)

set(h,’Cdata’,catMeanRmPhase(scienceCombo))

The time series of wavefront variance is saved in
the phaseVar property of the scienceCombo object ar-
ray. With the logging property turned on, each time
the phase property is updated, its variance is com-
puted and saved into phaseVar . The phase property
is updated twice, first after propagation through the
atmosphere+telescope system and second after reflec-
tion off the DM. So for each loop iteration, 2 phase
variance are saved. The phaseVar vector is reshaped
in a nIteration×2 array, the first column and second
columns correspond respectively to the time series of
the variance of the full and residual atmospheric aber-
rations.
The Strehl ratio is estimated from the residual phase
variance using the Marechal approximation and it is
compared to the Strehl ratio derived from the long ex-
posure image.
For reference, the theoretical piston removed turbu-
lence wavefront rms wfe lsq is also plotted (the black
dashed line). wfe lsq is computed with the residualVariance method. This method computes the residual variance
after removal of Zernike modes from the atmosphere wavefront on a given telescope. The first argument of the
method is the number of Zernike modes to be removed starting from the piston mode.

var_wfe_lsq = reshape(scienceCombo(1).phaseVar(1:nIteration*2),2,[])’;

wfe_lsq = sqrt(var_wfe_lsq)/scienceCombo(1).waveNumber*1e6;

var_wfe_lmmse = reshape(scienceCombo(2).phaseVar(1:nIteration*2),2,[])’;

wfe_lmmse = sqrt(var_wfe_lmmse)/scienceCombo(1).waveNumber*1e6;

atm_wfe_rms = sqrt(zernikeStats.residualVariance(1,atm,tel))/ngs.waveNumber*1e6;

marechalStrehl_lsq = 1e2*exp(-mean(var_wfe_lsq(startDelay:end,2)));

marechalStrehl_lmmse = 1e2*exp(-mean(var_wfe_lmmse(startDelay:end,2)));

psfStrel = 1e2*cam.strehl;

5. LASER TOMOGRAPHY ADAPTIVE OPTICS

In this section, the performance of an LTAO system on the same telescope is compared to the two NGS AO
systems of the former section.

Proc. of SPIE Vol. 9148 91486C-14

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

Frame #0
80

x 10

60

40

3

2

1

ii
20MI

20 40 60 80

600
4

ann 2

0

200
-2

i -4
200 400 600

9

x 10

2

1.5

1

0.5

20

10

200 400 600

0

-10

Lets reset the atmosphere to start with the same initial conditions that the NGS AO systems and also the DM.

reset(tel)

dm.coefs = zeros(dm.nValidActuator,1);

The optical paths of both the LGS constellation and the science
star are defined and the display is updated accordingly. Note how the
WFS display is now showing the imagelets and slopes corresponding
to the 3 LGSs. The WFS frame and slope listeners are turned off to
speed up the computation.

science = science.*tel*dm*cam;

lgsAst = lgsAst.*tel*dm*wfs;

figure(31416)

imagesc(cam,’parent’,subplot(2,1,1))

subplot(2,1,2)

h = imagesc(catMeanRmPhase(science));

axis xy equal tight

colorbar

wfs.camera.frameListener.Enabled = false;

wfs.slopesListener.Enabled = false;

The logging of the wavefront variance of the science object is turned
on. The LGS LMMSE object is set to return the wavefront estimate in a vector and the iterative solver will use
the previous estimate as first guess.

flush(cam)

cam.startDelay = startDelay;

set(science,’logging’,true)

set(science,’phaseVar’,[])

lgsAst_slmmse.wavefrontSize = [dm.nValidActuator,1];

lgsAst_slmmse.warmStart = true;

cam.frameListener.Enabled = false;

The loop is closed for one full exposure of the science camera.

for k=1:cam.startDelay + cam.exposureTime

% Objects update

+tel;

+lgsAst;

+science;

% Pseudo-open-loop controller

dm.coefs = (1-gain_pol)*dm.coefs + ...

gain_pol*iF*(lgsAst_slmmse*...

(bsxfun(@minus, wfs.slopes, calibDm.D*dm.coefs)));

% Display

% set(h,’Cdata’,catMeanRmPhase(science))

% drawnow

end

imagesc(cam)

set(h,’Cdata’,catMeanRmPhase(science))

The time series of wavefront variance is read from the phaseVar property of the science object. The Strehl
ratio is estimated from the residual phase variance using the Marechal approximation and it is compared to the
Strehl ratio derived from the long exposure image. The Marechal Strehl is in parentheses in the legend of the
plot.

Proc. of SPIE Vol. 9148 91486C-15

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

10

C

2 10

(0:

a
2
cu

ss> 10

-2

10

Full

LSR Residue : SR: 79(77)%

LMMSE Residue: SR: 78(77)%

LTA° Residue: SR: 63(54)?

0 20 40 60 80 100 120

Time [2ms]

var_wfe_ltao =

reshape(science.phaseVar(1:nIteration*2),2,[])’;

wfe_ltao =

sqrt(var_wfe_ltao)/science.waveNumber*1e6;

marechalStrehl_ltao = ...

1e2*exp(-mean(var_wfe_ltao(startDelay:end,2)));

psfStrehl_ltao =1e2*cam.strehl;

figure(fix(exp(1)*1e2))

u = 1:nIteration;

semilogy(u,wfe_lsq,u,wfe_lmmse(:,2),u,wfe_ltao(:,2))

line([1,nIteration],ones(1,2)*atm_wfe_rms,...

’color’,’k’,’LineStyle’,’--’,’linewidth’,2)

grid

xlabel(’Time [2ms]’)

ylabel(’Wavefront rms [micron]’)

legend(’Full’,...

sprintf(’LSR Residue : SR: %2.0f(%2.0f)%%’,psfStrel(1),marechalStrehl_lsq),...

sprintf(’LMMSE Residue: SR: %2.0f(%2.0f)%%’,psfStrel(2),marechalStrehl_lmmse),...

sprintf(’LTAO Residue: SR: %2.0f(%2.0f)%%’,psfStrehl_ltao, ...

marechalStrehl_ltao),0)

Proc. of SPIE Vol. 9148 91486C-16

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

6. CONCLUSION

OOMAO is a versatile Matlab R© toolbox for the simulations of adaptive optics systems. With OOMAO, AO
systems are modeled using an object–oriented approach where there is a class for each AO component. The
components can then be chained to each other to form the system optical path. Properties inside the classes
allow to either get wavefront information or to shape it. The simple framework of OOMAO makes it a versatile
simulation tool capable of simulating many systems from eXtreme-AO to LTAO on ELTS. OOMAO is a mature
software backed up by several years of development and it is now used by several projects. The source code can
be retrieved from GitHub (http://github.com/rconan/OOMAO).

Acknowledgments

C. Correia acknowledges the support of the European Research Council through the Marie Curie Intra-European
Fellowship with reference FP7-PEOPLE-2011-IEF, number 300162

REFERENCES

[1] D. R. Andersen, K. J. Jackson, C. Blain, C. Bradley, C. Correia, M. Ito, O. Lardière, and J.-P. Véran,
“Performance Modeling for the RAVEN Multi-Object Adaptive Optics Demonstrator,” PASP 124, pp. 469–
484, May 2012.

[2] R. Conan, , B. Espeland, S. Parcell, M. V. Dam, A. Bouchez, and P. Piatrou, “Laser Tomography Adaptive
Optics for the Giant Magellan Telescope,” in Adaptive Optics for Extremely Large Telescopes III, May 2013.

[3] F. Rigaut and M. Van Dam, “Simulating Astronomical Adaptive Optics Systems Using Yao,” in Proceedings

of the Third AO4ELT Conference, S. Esposito and L. Fini, eds., Dec. 2013.

[4] M. Carbillet, C. Vérinaud, B. Femeńıa, A. Riccardi, and L. Fini, “Modelling astronomical adaptive optics -
I. The software package CAOS,” Monthly Notices of the RAS 356, pp. 1263–1275, February 2005.

[5] C. Correia, K. Jackson, J.-P. Véran, D. Andersen, O. Lardière, and C. Bradley, “Static and predictive tomo-
graphic reconstruction for wide-field multi-object adaptive optics systems,” Journal of the Optical Society of

America A 31, p. 101, January 2014.

Proc. of SPIE Vol. 9148 91486C-17

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/24/2015 Terms of Use: http://spiedl.org/terms

