
Object-Oriented Metrics: An Overview*

David Bellin, Ph.D.
Manish Tyagi
Maurice Tyler

Computer Science Department

North Carolina A & T State University
Greensboro, NC 27411-0002

910-334-7245
Fax: 910-334-7244
dbellin@ncat.edu

Abstract

Object-Oriented Analysis and Design (OOAD) techniques appear to be at the forefront of

software engineering technologies. Nevertheless, as with the introduction of any

relatively new technique, there is a tendency for people to attempt to maximize efficiency

without always having a corresponding factual basis for their actions. This paper

discusses important “bullets of measure” that should be taken into consideration during

and after the development of an Object-Oriented System, particularly as it pertains to the

static analysis of OO source code. The proposed metrics are consistent with the

suggestions of many individuals who are well known for their experience.

OOPSLA CATEGORY: Research

OOPSLA TOPIC AREAS: language design & implementation; software engineering

practices; principles and theory.

*Research supported by Grant from IBM SWS, Cary Laboratory.

1. Introduction

In designing a complex software system,

Object-Oriented Analysis and Design

techniques provide many benefits. These

benefits include, but are not limited to,

the following: reusability, decomposition

of a problem into easily understood

objects, and the facility of future

modifications and enhancements.

Despite all of its benefits, the OOAD

software development life cycle is by no

means less difficult than the typical

procedural approach. In fact, it has

become even more complicated. Many

software engineers are finding it

troublesome to make the transition into

this new way of thinking. In a variety of

ways it is orthogonal to the traditional

procedural approach. Therefore, it is

necessary to provide dependable

guidelines that one may follow to help

ensure good OO programming practices

and furnish reliable code. One of the

most difficult problems in the software

engineering realm is producing software

that is within budget, complete, on time,

and that meets the requirements of the

end user [1]. This paper presents a

compilation of Object-Oriented

programming metrics that we think

should be considered. In this instance,

we mean metrics to be a set of standards

against which one can measure the

effectiveness of Object-Oriented Analysis

techniques in the design of a system.

Metrics are a useful means for

monitoring progress, attaining more

accurate estimations of project

milestones, and developing a software

system that contains minimal faults.

Software metrics also help to quantify

the problem complexity, design

complexity, and the program or product

complexity [4].

Our particular interest is in metrics which

can be applied to analyze source code as

an indicator of quality. The source code

could be Smalltalk, C++, Eiffel, or any

other OO language. We are engaged in

research which will result in validating

metrics in the Smalltalk environment.

2. Problem Statement

One of the classical problems of software

development is figuring out how to

predict the resources necessary to

complete a project while at the same time

maximizing the quality and efficiency of

the effort. The development of metrics is

a procedure that has been used for

previous generations of software

technology. Since OOAD is a relatively

new technology as compared to

structured analysis and design, most

work in this area is relatively new [2].

However, the metrics which were useful

for evaluating procedural programs may

not necessarily apply to software

-3-

developed using Object-Oriented

languages. For example, the Lines of

Code (LOC) metric which may have

been applicable in algorithmic-based

programming code is not so useful in

determining the quality of Object-

Oriented code. In addition, metrics such

as Lines of Code used on conventional

source code are generally criticized for

being without solid theoretical basis [5].

As a result, there exists no set of rules or

standards against which today's Object-

Oriented software engineer can measure

the development of an OO-based system.

As a result, a new set of metrics must be

cultivated in order to satisfy the needs of

OO Analysis and Design practices.

3. Suggested Solution

This paper presents an overview of a

compilation of Object-Oriented

programming metrics that we think

should be considered throughout the OO

development life cycle. We have divided

the set of metrics into three main

groups. Group A consists of the

statistical aspects of OO design captured

via a static analysis of the source code.

Group B focuses on code reuse and how

it may effect the OO development

process. Group C investigates the

"human" aspect of OO programming.

3.1 Group A

This group contains metrics that count

the important structures in Object-

Oriented code, such as methods, objects,

and global variables. The main purpose

of group A is to assess the relationships

amongst the various building blocks of

an Object-Oriented software system.

Some of the metrics that should be

collected in this group are:

Number of Methods: This metric could

be important in judging the complexity of

each object. It may be concluded that

the more methods a class contains, the

higher the complexity of the class. In

addition, collecting and studying this

metric allows determination of the ideal

complexity of a class and establishment

of a standard.

Number of Classes: This metric may

give an idea of the overall complexity of

a system. It could be important to

determine, after enough data are

collected from various completed

projects, a relationship between the

complexity of the problem domain and

the number of classes.

Number of Messages: By counting the

number of messages a class sends, one

can determine the communication

behavior of a class. This will help in

analyzing the idea of coupling in classes.

-4-

If a class can respond to a wide variety of

messages from a number of other classes,

then it is possible to conclude that this

particular class has tight coupling with

respect to other classes. A tightly

coupled class design is not a favorable

feature as far as code reuse, testing, or

debugging is concerned.

Number of Receiving Classes (Servers):

If there are many server classes in a

system then it is probable that many of

the classes are performing very small

functions within the system. This could

be a hint that the system might have been

constructed using many classes, which is

generally favorable.

Number of Sender Classes (Actors):

Using too many sender classes can have

the same effect as having too many

receiver classes. An ideal ratio of actors

to servers should be derived. However,

this ratio may vary for differing

application domains.

Number of Agent Classes: Agent classes

contain the properties of both actors and

servers. Therefore, if a system contains

an abundance of agent classes, there may

be too much message passing amongst

the various classes. This will result in a

tightly coupled system and drastically

reduce the amount of reusable code. In

addition, the system could be more

difficult to debug should a problem arise.

Number of Global Variables in each

Class: This count would be helpful in

determining the inheritance relationship

shared among different classes. If there

are a large number of global variables,

the classes lower in the hierarchy can

inherit many characteristics of the classes

that are "higher up" in the hierarchy.

However, too many global variables can

destroy the independence of a class.

Thus, a reasonable figure for this metric

is also an important determinant in

Object-Oriented code design quality.

Number of Levels in the Class Hierarchy

Tree: By measuring the depth of the

hierarchy tree, one will be able to

ascertain the level of class abstraction.

This metric may be useful when one is

trying to decide upon the proper level of

specialization and dependence amongst

similar classes in a system.

Number of Leaves in the Class

Hierarchy Tree: Measuring the breadth

of a class hierarchy tree is as important

as knowing the depth. This metric may

shed additional light on the inheritance

relationship between superclasses and

subclasses. It may be a significant

indicator of overall complexity.

Ratio Between Depth and Breadth: The

ratio between the depth and breadth of a

class hierarchy tree may be more

-5-

important than measuring the individual

number of each. Through developmental

experience, one may derive a suitable

ratio between the two.

Ratio of Methods/Class: By measuring

the number of methods per class, one will

be able to determine the complexity of

each class. For example, if a particular

class contains many methods, then it can

be concluded that the class is complex.

Ratio of Private/Public Methods: This

metric is helpful in determining the

"trade-off" between data abstraction and

the inheritance. This "trade-off" figure

can be adjusted to comply with various

OO programming languages and

application domains.

Ratio of Abstract/Instantiated Classes:

By noting the ratio of abstract classes to

instantiated classes one may derive an

idea of the hierarchical relationships

within a system. For instance, having

many abstract classes versus instantiated

classes may indicate a hierarchical

structure rich in inheritance.

Ratio of Lines of Code/Method: This

metric might be important in determining

the complexity of each method. It is

generally desirable to keep the number of

lines per method to a relatively small

number. Thus far, the optimum number

for a specific language is a matter of

speculation.

Ratio of Lines of Code/Comment: This

ratio may vary drastically depending

upon the designer(s) of the system. It is

a good programming practice to

document well all aspects of a system. In

addition, commenting facilitates the reuse

and modification of code. However, too

much commenting may actually result in

a decrease in utility.

3.2 Group B

This group of metrics focuses on the

reusability. Code reuse is one of the

most desirable attributes of the Object-

Oriented paradigm. It yields versatility

and contributes to an efficient, cost-

effective means of producing viable

software systems. It has been

determined that the more reused classes a

system contains, the more reliable the

finalized system will be. Subsequently,

the classes reused have already been fully

tested, hence there will be a decrease in

the need for program maintenance.

Unfortunately, the creation of new

classes does not provide such benefits.

Two important metrics that can be

covered by this group are:

Number of Classes Reused: This

consists simply of keeping track of the

-6-

number of unmodified, pre-coded classes

that are used by the “parasite” system.

In general, if a system contains an

abundance of reused classes, then it is

likely that the system will be more

reliable. This is because prefabricated

classes, often contained in a reuse library,

are thoroughly tested before being made

readily accessible. As a result, the

number of faults contained within the

resulting system is minimized.

Percent of Reused Classes Modified:

Once a reused class is modified, it may

no longer possess the trait of reliability.

Therefore, it is wise not only to know the

number of classes reused, but to have an

idea of how many reused classes were

modified. It is suggested that any

modified, reused class should be

subjected to additional testing before it is

implemented.

3.3 Group C

The previous metrics delved into the

statistical realm and do not encompass

the subjective aspects of Object-Oriented

Analysis and Design techniques. The

"human" factor is often overlooked, yet it

is one of the most important components

in the design of an Object-Oriented

system. The popularity of

anthropomorphic techniques such as

CRC cards is evidence of this side of OO

development. The only dilemma is that it

is very difficult to measure subjective

factors. How does one go about

appraising the quality of an abstraction in

an OO system? How can one know if a

given class or object is well designed?

Booch suggests five meaningful metrics

[3]:

Coupling: In an ideal system weak

coupling, with regard to objects and

classes breadth wise on a hierarchy tree,

is preferable. However, strong coupling

is desirable among superclasses and

subclasses.

Cohesion: Coincidental cohesion, in

which entirely unrelated abstractions are

put into the same category, is least

desirable. On the other hand, functional

cohesion, which is just the opposite of

coincidental cohesion, is most desirable.

Sufficiency: Sufficiency is needed to

ensure that a class or module

encompasses components that make it

useful to the overall system.

Completeness: An abstraction is

complete when the interface of the class

or module captures all of the meaningful

characteristics of the abstraction.

Primitiveness: Booch maintains that,

"Primitive operations are those that can

be efficiently implemented only if given

-7-

access to the underlying representation of

the abstraction."

Even with these metrics, quantifying

abstractions still seems a little "fuzzy".

The task still remains highly subjective in

nature. After all, we are only human and

often have differing opinions. Therefore,

to help ensure the quality of an OO

system, it is suggested that developer(s)

consider dispersing their projects among

individuals who are considered

experienced in this area.

We suggest that an additional input in

determining the validity of OO source

code metrics will be the opinions of

known domain experts. Therefore, we

intend to correlate static analysis metrics

against recognized domain expert

analysis of the same source code.

4. Future Studies

In the near future, our research team

plans to apply these metrics to various

software systems and assess their

importance. This will be a four-step

process. First, static analysis of the

source code will collect metrics along

each of the parameters outlined in this

overview paper. Second, cooperating

vendors will provide quality data from

customers using the products whose

source code has been analyzed. Third,

recognized coding experts will provide

subjective evaluations of the source

code. Finally, statistical analysis will

provide correlations (both high and low)

between our suggested metrics set and

the “real world”. We argue that this will

be a significant validation that will

indicate which OO metrics contribute to

product quality. Such metrics will have

obvious utility to all OO developers. Our

first language focus will be Smalltalk.

5. Conclusion

The metrics supplied in this paper will

help in analyzing any Object-Oriented

system with respect to the four major

elements of the Object-Oriented Analysis

and Design paradigm: Abstraction,

Encapsulation, Modularity, and

Hierarchy. For instance, given such

measures as the number of classes and

the number of objects, it is more simpler

to see inherent OO ideas such as

modularity and abstraction. This will

assist in developing a clearer picture of a

system with regard to whether the notion

of OOD has been fully applied to the best

of its capabilities. Moreover, they will be

useful in estimating any shortcomings of

a similar nature that can be rectified in

future systems. In addition, these

standards of measure will provide

enough information to derive some

mathematical relations between a good

-8-

and inferior Object-Oriented software

system. Likewise, these mathematical

relations can be used to analyze OO code

and give some insight into the quality of

the different abstractions. However, all

of the metrics listed may not be useful for

different varieties of OO languages.

Nevertheless, some should hold true for

all classes of Object-Oriented languages.

It should be noted that any mathematical

relationship derived can only be useful if

it is cross-referenced against some

practical preexisting data. Once

correlated and used as a guide for certain

segments of the software development

process, these metrics should be cross-

referenced again and this feedback cycle

should continue until there is a perfect

correlation between these mathematical

estimates and actual quality data

available from the end-user. These

metrics are not meant to restrict the

creativity of Object-Oriented software

developers. They are merely suggested

measures that may increase efficiency

and reliability in Object-Oriented

Analysis and Design.

-9-

References

1. Barnes, G.M. and Swim, B.R. Inheriting Software Metrics. Journal of Object-

Oriented Programming (November - December 1993), 27-34.

2. Berard, E.V. Essays on Object-Oriented Software Engineering. Prentice-Hall,

Englewood Cliffs, N.J., 1993.

3. Booch, G. Object-Oriented Analysis and Design with Applications. The

Benjamin/Cummings Publishing Company, Redwood City, C.A., 1994.

4. Samadzadeh and Nandakumar, K. A Study of Software Metrics. The Journal of

Systems and Software 16, 3 (November 1991), 229-234.

5. Vessey, I. and Weber R. Research on Structured Programming: An Empiricist's

Evaluation. IEEE Transactions on Software Engineering 10, 4 (), 394-407.

