
Object Oriented Metrics: Precision Tools and Configurable Visualisations

Warwick Irwin and Neville Churcher
Software Visualisation Group, Department of Computer Science,

University of Canterbury, Private Bag 4800,
Christchurch, New Zealand

{wal,neville}@cosc.canterbury.ac.nz

Abstract

Software metrics are a valuable tool in helping software en-
gineers to develop large, complex software systems. How-
ever, it is vital that transparency and precision are main-
tained at all stages. We contend that without grammars we
cannot define metrics rigorously, without transparent and
powerful parsing tools we cannot collect data accurately
and without flexible configurable visualisation we cannot
exploit the full potential of our data. In this paper, we re-
port the development of JST, a semantic analyser for Java,
and show how it is incorporated into our pipeline-based ap-
proach to metrics collection and visualisation. We describe
a new visualisation, class clusters, which not only demon-
strate the data generated by our tools but also illustrate the
value of 3D virtual worlds for visualising software metrics.

Keywords: software visualisation, metric visualisation,
static analysis, VRML, XML, software metrics, object-
oriented metrics, empirical software engineering

1. Introduction

The advantages of object-oriented (OO) and other mod-
ern software engineering techniques are offset by the con-
tinuing increases in the size and complexity of software sys-
tems. These remain among the greatest challenges faced
by software engineers and contribute to the failure of many
projects [17]. Projects involving millions of lines of code
are no longer exceptional. Such systems are beyond the
abilities of individuals to comprehend and their evolution
poses further challenges.

The richer semantic models underlying approaches such
as OO involve more kinds of components and relationships
than their procedural counterparts. Consequently, envisag-
ing the “neighbourhood” of a component (related classes,
methods,. . . ) is often far from simple, particularly when
subtle effects such as overloading are taken into account,

yet this knowledge is necessary for many design and devel-
opment activities.

Software engineers have typically addressed these is-
sues by adopting some form of the Goal/Question/Metric
(GQM) paradigm [2] whereby direct or indirect measure-
ments allow specific properties of software to be evaluated
in order to address specific issues. This process must occur
in the context of models which relate the observable metrics
to the more abstract quantities, such as reusability, which
are ultimately required.

Many software metrics have been proposed [11, 24, 22,
16] in order to represent particular aspects of software. Typ-
ically, a number of distinct concepts must be represented so
multiple metrics are needed. This leads to large volumes of
inter-related data and consequent difficulties in interpreting
and acting on it.

Although many advances have been made, several major
problems remain. We advocate transparent strong parsing
techniques and pipeline-based visualisation as a way to ad-
dress them. Examples of outstanding issues considered in
this paper include the following:

precise definition of the most suitable set of metrics to col-
lect in order to answer particular questions can be re-
markably challenging. Even relatively straightforward
metrics, such as the number of methods in a class,
can be difficult to define precisely [10]. The details
are often very significant (e.g. are constructors, inher-
ited, overloaded, overridden, private, . . . methods in-
cluded?) and may be hard to change later, during ex-
ploratory analysis. We advocate basing metric defini-
tions strictly on publicly-available grammars, and ex-
posing detail and design decisions through XML for-
mats, in order to enable precision later in the process.
Through our visualisations, we attempt to present met-
rics data in such a way that consistent visual metaphors
can help to convey such details.

data integrity has been a long-term concern for empiri-
cal software engineering and metrics researchers. In



practice, available tools are rarely able to guarantee
the correctness, completeness and self-consistency of
data (i.e. that it is accurate and measures what we
think it does). Sometimes, potentially important data is
silently ignored or decisions are not recorded. For ex-
ample, how do Java’s anonymous inner classes and try-
catch blocks contribute to the cyclomatic complexity
of the methods which contain them? Our use of strong
parsing techniques allow instrumentation to record any
quantity defined in the grammar. By exposing the
intermediate products (which, in turn, are based on
grammars) used in metric calculations, we enable oth-
ers to compare, calibrate and re-compute values if de-
sired. We have chosen to face head-on the problem of
parsing potentially ambiguous or otherwise diseased
standard grammars rather than accept loss of data qual-
ity with its consequences for meaningful metrics anal-
ysis and visualisation.

information overload, with corresponding loss of produc-
tivity and increase in errors results from the enormous
amounts of data generated by collecting multiple met-
rics on large projects. The effort required to “see the
wood in the trees” may be comparable to the effort in-
volved in direct analysis of the source—negating the
usefulness of metrics in many cases. We use infor-
mation and software visualisation techniques not only
to present multiple variables but also to provide vi-
sual metaphors which assist the user by giving a more
“holistic” view of the system.

The essential message we aim to convey in this paper
may be summarised as “better parsing for better data; better
visualisation for better understanding”.

In our recent work, we have developed a pipeline-based
approach which encompasses each step from grammar to
visualisation. XML is used to provide self-describing data
representations at each stage and XSLT transformations are
used in many of the transformation steps [3, 35].

The pipeline begins with a grammar for the relevant pro-
gramming language. This is used to generate an instru-
mented parser which is used to extract raw parse tree data
from source code. At the end of the pipeline, we use sets
of mappings to transform the data into whatever form is re-
quired for visualisation. We have found the Virtual Reality
Modelling Language (VRML) [4] to be particularly effec-
tive as a means of communicating information about soft-
ware structure and encourage the reader to visit our web
page [33] to see some examples.

In this paper we describe an important new extension to
the pipeline: a semantic analyser (JST) for Java. This ex-
poses semantic information in a Java program, producing a
model of an entire, fully cross-referenced program. This
component greatly extends the range of quantities which
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Figure 1. The metrics visualisation pipeline
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may be analysed. The model is represented in XML and
fits naturally into the existing pipeline.

We present a new visualisation, the class cluster, (which
would not have been possible without JST) of some impor-
tant relationships between classes and illustrate how metrics
derived using JST enrich the visualisation as well as easing
its interpretation.

The remainder of the paper is structured as follows. In
the next section we describe our pipeline approach. We
introduce JST in Section 3 and discuss the critical rˆole of
parsing technology in obtaining reliable data. In Section 4
we discuss the visualisation of metrics and the rˆole of map-
pings. Class clusters are developed in Section 5 and an ex-
ample of the pipeline process is given. Our conclusions and
plans for further work are presented in Section 6.

2. The metrics visualisation pipeline

Figure 1 shows a typical metrics visualisation pipeline
used in our work. It consists of a sequence of filters for
parsing source code, augmenting it with metrics and trans-
forming it into visualisations.

The first step is parsing. This makes the syntactic struc-
ture of source files explicit, by adding to the source text
XML tags that describe the parse tree. The second step is se-
mantic analysis using JST. The semantic analyser reads the
parse trees and makes semantic information explicit. Un-
like parse trees, which can be directly imposed upon source
code, the semantic model is independent of lexical struc-
ture and so is described in a separate XML sub-tree. Re-
lationships between the semantic model and parse trees are
captured in XML.

Parsing and parser generation are discussed further in
Section 3 and examples of the XML representation of the
products at each pipeline stage are given in Figure 4.

Pipelines need not be linear: they may branch, merge
and even contain cycles. This contributes significantly to
the flexibility of the architecture, and is particularly helpful
for experimenting with metrics and visualisations. A given
intermediate file may be transformed in a variety of ways
with little extra effort, making the approach highly suitable
for exploratory activities.

Different programming languages are accommodated by
generating a parser specific to each and developing appro-
priate downstream transformations. Parser generation is
achieved using theyakyacc tool described elsewhere [26].
The parser generation process, which produces the parsers
used in the first stage of Figure 1, is illustrated in Figure 2.

The use of XML for intermediate files makes their struc-
ture explicit: the files contain their own metadata. This
makes the pipeline much more transparent than would be
the case for implied metadata. More importantly, the em-
bedding of metadata in the files decouples filter programs



from each other by externalising file formats. Exposing
metadata in this way enables others to make meaningful
comparison with our results.

Filters are used at several stages in the pipeline to select
and transform data for use in subsequent steps. Transfor-
mation of XML is well supported by existing tools, partic-
ularly XSLT [28, 35] which employs a powerful stylesheet
language to transform the data into a new format (usually
another XML file in our application). XML processing sup-
port (such as DOM and SAX parsers) is available for a range
of scripting and programming languages and these may be
used to write filters if desired.

Once the syntactic and semantic structure of a program
has been made explicit, it is relatively straightforward to de-
rive diverse metrics and models of the software. Using the
later stages of the XML pipeline, we can transform the JST
model into conceptual and visual models by selecting and
combining the features of interest as described in Sections 4
and 5.

3. Parsing, semantic analysis and JST

Parsing of source code is a necessary precursor to pro-
ducing metrics and visualisations of software structure.
Detailed information on grammars and parsing is avail-
able in standard texts [1, 20, for example]. In earlier pa-
pers [25, 26, 7] we argued the importance of a strong trans-
parent parsing approach when parse information is to be
used in metrics and visualisations. Metrics that convey syn-
tactic information ought to be defined in terms of a standard
definition of a programming language.

In the absence of a rigorous and detailed specification
mechanism, even relatively straightforward metrics, such
as the number of statements in a method or the number of
methods in a class, are difficult to define, capture and in-
terpret [10]. Even widely-used metrics, such as WMC and
LCOM from the Chidamber & Kemerer suite [5] have gen-
erated confusion and debate [9, 22, for example]. Gram-
mars provide an essential reference point for defining met-
rics, calibrating tools, resolving inconsistencies, and en-
abling reproducibility by comparing results from different
researchers.

Frequently, standard grammars for programming lan-
guages are designed to aid communication of the concepts
of the language, rather than to yield to conventional pars-
ing approaches such as LL(k) and LALR(1). As a result,
the grammar may contain ambiguities or other undesirable
properties.

Consequently, as we have discussed elsewhere [25],
parsers used in practice are often generated from non-
standard grammars adapted from the standard grammars in
order to conform to the constraints of a given parsing ap-
proach. Such modified grammars significantly complicate

the definition and production of metrics. Either a metric
must be defined in terms of the modified grammar (in which
case the modified grammar must be understood by anyone
interpreting the metric’s values), or the parse information
must be translated to a form consistent with the standard
grammar before the metric is calculated.

Difficulties such as these can be avoided if a stronger
parsing approach capable of recognising the standard gram-
mar is used. We have found that Tomita (GLR) parsing [34]
is well suited for this purpose. It can parse complex am-
biguous programming languages (including C++) using the
standard grammar, in near-linear time.

Tomita parsing has the further advantage of simplify-
ing parsing that relies on semantic disambiguation. Weaker
parsing techniques do not tolerate syntactic ambiguity, so
parsing must be closely coupled to semantic analysis; the
semantic information is used to eliminate ambiguous syntax
during the parse. In some languages, notably C++, this cou-
pling greatly complicates both the parsing and the semantic
analysis [31]. With a Tomita parser, syntactic ambiguity is
tolerated during parsing and subsequently may be resolved
by a semantic analyser. Consequently, parsing and semantic
analysis are decoupled, and semantic analysis is simplified
by the explicit identification of all syntactic ambiguities.

Our yakyacc tool (see Figure 2), which generates the
parsers used in the pipeline, will generate a Tomita parser if
the grammar contains ambiguities.

3.1. Semantic analysis and JST

The separation of parsing and semantic analysis fits nat-
urally with our pipeline approach.

A parse tree represents the syntactic structure of a source
file. The syntactic structure of an individual file con-
tains sufficient information for metrics and visualisations
of many aspects of program structure, including some rep-
resentations of class cohesion [7]. However, metrics and
visualisations based on raw parse trees are restricted to fea-
tures that can be discerned from syntax alone.

In a parse tree, semantic information is not evident. So,
for example, separate branches of a tree represent a method
invocation expression and the declaration of the method
which is being invoked. If, as is likely to be the case, an in-
vocation occurs in a different source file from a declaration,
the branches will be in separate parse trees. Consequently,
metrics and visualisations based on syntactic information
alone cannot include method invocations, or other seman-
tic connections such as field (attribute) accesses. This is a
severe restriction for metrics since, without such connec-
tions, complete and accurate measurements of metrics such
as module coupling cannot be made.

Many of the connections between the structural elements
of a program are discernable only at a semantic level. Se-



mantic analysis identifies the structural elements in parse
trees, and exposes their interconnections by finding seman-
tic relationships between branches of parse trees. Once all
semantic connections have been found, a complete model
of the static structure of a program is available.

The essential data structure of a semantic analyser is a
symbol table, which represents the semantic features of a
program and allows them to be looked up by name. Using
a symbol table, a reference in one branch of a parse tree
can be resolved by finding the appropriate definition in the
symbol table.

We have developed an experimental tool, JST, that reads
XML parse trees (as produced by our Java parser [25, 26]),
constructs definitions in a symbol table, and looks them up
to resolve references. Once all source files have been pro-
cessed this way, an XML file is produced. It contains an-
notated versions of the original parse trees, and symbol ta-
ble information that exposes all the structural elements and
connections between them.

The resulting XML file describes the semantically cross-
referenced syntactic structure of a Java program. It may
subsequently be filtered and transformed to produce a wide
range of visualisations and metrics, including characterisa-
tions of coupling and reuse.

3.2. Developing A Java symbol table

Our primary motivation for developing JST was to be
able to obtain correct, complete and consistent values for
arbitrary metrics. For an object-oriented language such as
Java, designing a symbol table is not a trivial task. If it is
to correctly resolve all references, it must conform to the
language standard, including the scope rules and naming
practices of features such as packages, superclasses, inner
classes, interfaces, static members, and most significantly,
overloaded methods.

A small number of public domain Java symbol tables are
available. One, which was part of a simple cross-reference
tool for Java 1.1 [32], was subsequently developed into
javasrc, an open-source hypertext cross-referencer for Java
1.3 [27]. Unlike JST, these tools do not attempt to resolve
overloaded method calls, and have several other limitations,
including simplified package naming, some syntax limita-
tions, and no handling of anonymous classes or member ac-
cess specifiers.

We investigated improving code from javasrc as the basis
for our symbol table, replacing its ANTLR [29]-generated
parser with a simple reader of our XML parse trees. How-
ever we ultimately chose to design our own classes to more
closely reflect the concepts described in the Java Language
Standard [19]. This not only allowed us to be more confi-
dent that our code conforms to the standard but also gave
us a good structure on which to graft the missing—but

essential— features, including overloaded method resolu-
tion.

An alternative approach, deriving symbol table informa-
tion from .class files using Java’s reflection API, was
also considered. We are interested only in analysing syntac-
tically correct source code, and such code will usually have
a corresponding.class file emitted by javac (or some
other Java compiler). Java compilers embed symbol table
information in .class files so that this information may
be reported by the reflection API. Typically, Java programs
use reflection to dynamically load classes that were unavail-
able at compilation time.

We investigated using reflection to extract symbol table
information, and then using that information to connect se-
mantically related portions of our parse trees. The apparent
appeal of this approach was threefold:

• All of the symbol table information was available in
advance, so it reduced the complexity added by or-
der dependencies between declarations and look-ups
as they were discovered in the parse trees (e.g. because
properties may be used before they are declared).

• Symbol table information was available for classes for
which source code was not present, including stan-
dard library classes such asjava.lang.Object or COTS
components.

• Third-party support for resolving overloaded method
calls was potentially available.

The reflection API can look up a method, given its name
and parameter types. This is sufficient data for the API
to perform method resolution, but as other authors have
noted [23], it does not. The reflection API performs only an
exact match on parameter types, whereas full method reso-
lution must consider type promotions and find the most spe-
cific method from a set of applicable methods. Holser [23]
provides aBetterMethodFinder class that extends the re-
flection API to include proper method resolution.

This reflection-based method resolution proved to be less
helpful to us than anticipated. The reflection API is de-
signed to expose thepublic interface of a class, and the
method resolution is accordingly suitable for client classes
that are not part of the protected, private or default (pack-
age) scopes. This restriction, while appropriate for reflec-
tion’s intended purpose, does not necessarily hold for the
classes we are analysing; we need to resolve calls of all
methods, not just public ones. In addition, we are interested
in a class’ internal use of methods, fields, local variables,
and parameters. This information is not available through
reflection but is necessary in order to evaluate many metrics
of interest.

We concluded that reflection did not eliminate the need
to build our own complete symbol table from parse tree in-



formation, but was useful for resolving references to classes
for which we did not have source code. This means that
the symbol table is populated with declarations found in
parse trees, and whenever a look-up references some ex-
ternal symbol, such asjava.lang.String, the missing infor-
mation is supplied by reflection.

3.3. JST

The resulting tool, JST, runs once per program, (much
like a conventional linker). It reads parse trees into mem-
ory, and then walks through them to discover declarations
and references. This information is stored in the symbol ta-
ble; each declaration retains links to parse tree portions that
reference it. Any references that are not resolved by decla-
rations found in the source code are supplied by reflection.
Finally, the complete structure is written out as an XML file.
Figure 1 shows JST’s placement in a typical pipeline.

The symbols in the symbol table represent components
of a Java program such as packages, classes, interfaces,
fields and methods. Together, these objects form a semantic
model of the program. Figure 3 shows a UML class dia-
gram of the meta-model. Although it appears complex at
first glance, most classes represent concepts with which ev-
ery Java programmer is familiar. For example, every class
declaration is represented by an instance ofClassType, and
every method declaration by an instance ofMethodDecl.
Inheritance is used wherever properties can be generalised.

The purpose of most classes in Figure 3 is self-evident,
and need not be discussed in detail here. The following list
describes some of the less obvious features of the model:

• ClassSymbolTable is the main entry point to the se-
mantic model. It is a lightweight class (for a symbol ta-
ble) that delegates model representation and lookup to
the declaration classes. Classes unavailable in source
code are referred to theReflection class.

• ClassDecl is the root of the declaration hierarchy.
Packages, classes, fields, methods and parameters each
inherit from Decl. Each declaration has a name and
occurs in some scope. Names are generated for anony-
mous declarations. The concept of a declaration has
been loosened to encompass all relevant semantic fea-
tures in a Java program. Specifically, source files and
blocks (sequences of statements delimited by braces)
are also considered to be declarations. This simpli-
fies the design by allowing all program features to be
treated consistently at an abstract level.

• Scope is an interface that declares methods for look-
ing up declarations by name. Any declaration that can
contain other declarations is aScope, and provides
lookup methods to retrieve its contents by name. Thus,

declarations implement the scope and lookup rules of
the language; each type of declaration knows its own
structure and rules for looking up names. If a lookup
fails within a declaration, the request is passed up to
the declaration’s owner scope. In this way lookups
search progressively wider scopes without the need for
a current scope stack.

• SourceFiles are explicitly represented in the model.
This is helpful because source files provide lexical
scope and participate in the lookup of classes by im-
porting packages and classes.

The data needed in order to evaluate arbitrary code metrics
is now available: the semantic model allows it to be deliv-
ered in a form suitable for analysis.

3.4. Building the semantic model

Each source file in a Java program is syntactically com-
plete (i.e. is a translation unit), but usually has semantic de-
pendencies on other source files. For example, a class typ-
ically inherits from, and uses methods of, classes in other
source (or.class ) files. In order to make all semantic
dependencies explicit, the semantic model must span an en-
tire program. The current version of JST builds the seman-
tic model monolithically: all parse trees for a program are
loaded and the complete model is assembled before being
saved as an XML file. This approach keeps implementa-
tion relatively simple, though its memory requirements are
higher. However, it has the advantage that metrics and se-
mantic data are evaluated in the context of a well-defined
snapshot of the classes constituting the program. This is
particularly important for Java, where CLASSPATH set-
tings can determine at run-time precisely which classes are
loaded.

Many semantic checks in Java must occur in an order
different from the syntactic structure of a file. For exam-
ple, attributes may be used in a source file before they are
declared. More fundamentally, Java (unlike C++) does not
distinguish the declaration of a feature from its definition,
so the syntactic structure does not guarantee that features
will be declared before they are used. A semantic analyser
for Java might choose to remember unresolved references
until the target declarations are discovered, or alternatively,
might process the information in parse trees in an order that
ensures declarations occur before usages. JST takes the lat-
ter approach.

JST constructs the semantic model in a series of steps.
The order in which parse trees are processed ensures that
every feature (package, class, method, parameter,. . . ) of a
program is declared before it is looked up. This means that
when a method invocation lookup occurs, the class inheri-
tance hierarchy is known fully and can be searched to find



// 19.8.3) Method Declarations
method declaration :

method header method body
;

method header :
modifiers opt type method declarator throws opt

| modifiers opt VOID method declarator throws opt
;

method declarator :
IDENTIFIER LPAREN formal parameter list opt RPAREN

| method declarator LBRACK RBRACK // deprecated
;

(a) Grammar productions

public abstract class TypedDecl extends Decl {
protected TypeDecl type;
public TypedDecl(Scope theOwner,

String theSimpleName,
Nonterminal theSource) {

super(theOwner,
theSimpleName,
theSource);

}
// ...

}
(b) Java code

<method header>
<modifiers opt>
<modifiers>
<modifier>
<token id=’PUBLIC’>public</token>
</modifier>

</modifiers>
</modifiers opt>

<type>
<reference type>
<class or interface type>
<name>
<simple name>
<token id=’IDENTIFIER’>TypeDecl</token>

</simple name>
</name>

</class or interface type>
</reference type>

</type>
<method declarator>
<token id=’IDENTIFIER’>getType</token>
<token id=’LPAREN’>(</token>
<formal parameter list opt>
</formal parameter list opt>
<token id=’RPAREN’>)</token>

</method declarator>
<throws opt>
</throws opt>

</method header>

(c) Parse tree

<method id=’MTH jst.symtab.TypedDecl.getType()’ name=’getType()’
source=’NTL 53719’
type=’TYP jst.symtab.TypeDecl’ modifier=’public’>

<block id=’BLK jst.symtab.TypedDecl.getType().@BODY’>
<reference to=’FLD jst.symtab.TypedDecl.type’ from=’NTL 53694’/>
</block>
</method>
...
<nonterminal id=’NTL 53719’ type=’method declaration’>
<nonterminal id=’NTL 53691’ type=’method header’>
<nonterminal id=’NTL 53682’ type=’modifiers opt’>
<nonterminal id=’NTL 53681’ type=’modifiers’>
<nonterminal id=’NTL 53680’ type=’modifier’>
<terminal type=’PUBLIC’>public</terminal>

</nonterminal>
</nonterminal>

</nonterminal>
<nonterminal id=’NTL 53687’ type=’type’>
<nonterminal id=’NTL 53686’ type=’reference type’>
<nonterminal id=’NTL 53685’ type=’class or interface type’>
<nonterminal id=’NTL 53684’ type=’name’>
<nonterminal id=’NTL 53683’ type=’simple name’>
<terminal type=’IDENTIFIER’>TypeDecl</terminal>

</nonterminal>
</nonterminal>

</nonterminal>
</nonterminal>

</nonterminal>
<nonterminal id=’NTL 53689’ type=’method declarator’>
<terminal type=’IDENTIFIER’>getType</terminal>
<terminal type=’LPAREN’>(</terminal>
<nonterminal id=’NTL 53688’ type=’formal parameter list opt’>
</nonterminal>
<terminal type=’RPAREN’>)</terminal>

</nonterminal>
<nonterminal id=’NTL 53690’ type=’throws opt’>
</nonterminal>

</nonterminal>
<nonterminal id=’NTL 53718’ type=’method body’>
...

(d) JST model

Figure 4. Representation of metrics visualisation pipeline intermediate products



all in-scope methods of the given name. The resulting set
of candidate methods is then filtered to find a single method
that is accessible, and has parameters that are applicable and
more specific than those of other candidate matches (as de-
scribed in the Java language standard). This process is es-
sential in order to obtain accurate values for metrics such as
RFC [5] which involve method invocation.

Initially, all parse trees are examined for declarations;
every declared feature in a nameable scope is instantiated
in the model. These declaration objects are, at this stage,
related only by their lexical containment structure (e.g. an
inner class is related to its outer class, which in turn is re-
lated to its source file. Each declaration is given a name, but
no names are looked up yet.

To complicate matters, some declarations (such as at-
tributes) have semantic scope while others (such as local
variables and classes declared inside blocks) have lexical
scope: They are accessible only from the point of declara-
tion to the next closing brace. Lexically scoped declarations
are omitted from the initial population of the model, as they
should not be found by lookups until the appropriate point
in the parse tree is reached.

Once all initial declarations are known, they are con-
nected together by looking up the names of features they
reference. This cross-referencing happens in the following
order:

• Packages and classes named in import statements are
found. These must be known before classes can be
looked up.

• Superclasses and interfaces named inextends and
implements clauses are found. This inheritance
structure is needed for subsequent lookups.

• The types of all class members (attributes and meth-
ods) are found. All types must be known in order to
analyse expressions such asa.b.c.d since the type
of a must be known to determine the existence and
type ofb, and so on.

• Each code block is processed statement-by-statement,
in parse tree order. Lexically scoped types and vari-
ables are instantiated. Identifiers in expressions are
looked up. At any point during cross-referencing, a
lookup of a named type (class or interface) will fail if
a parse tree for that class or interface was not provided
to JST. Whenever this happens, Java’s reflection API
is used to load public interface information from .class
files so that the semantic model is complete and all ref-
erences are resolved.

At the end of this processing, all connections between
declarations have been recorded and the semantic model is
complete. It is available as an XML file that may be trans-
formed to produce metrics and visualisations.

3.5. XML representation

The representation of some of the pipeline stages dis-
cussed in this section is illustrated in Figure 4. Figure 4(a)
shows part of the EBNF representation of the Java grammar
which is used in the generation of the parser byyakyacc.

Figure 4(b) shows a Java source code fragment
(from TypedDecl.java ), the input to the first
stage of the pipeline shown in Figure 1, while Fig-
ure 4(c) shows the part of the corresponding parse
tree (TypedDecl.xml ) corresponding to the phrase
public TypeDecl getType() , which is a
method_header .

Figure 4(d) shows two parts of the semantic model pro-
duced by JST fromTypedDecl.xml . The first part shows
the semantic model ofTypeDecl.getType() , and the
second shows the syntax tree as it appears in the same XML
file, including the cross-references to other parse trees.

XML’s text-based, self-describing formats provide ready
transparent access to this data.

4. Visualisation

The interpretation of software metrics data poses many
challenges apart form the sheer volume of data. There are
typically many variables; outliers occur and are likely to
be significant; data distributions are skewed and have large
ranges.

In our previous work [8, 21, 6, 26, 7], we have demon-
strated the advantages, such as the ability to represent more
information and to facilitate exploratory analysis, of 3D
virtual worlds in software visualisation with application to
concepts such as class cohesion. We have used VRML
as a platform-independent means of deploying our visual-
isations to the desktop. Figure 5 shows a browser with a
VRML plug-in displaying a 3D VRML world containing a
class cluster visualisation (class clusters are described fur-
ther in Section 5).

Some researchers have considered 2D visualisation of
metrics [12, for example] and some initial attempts have
been made to explore 3D visualisations of 2D UML nota-
tions [18, 30, 14]. Strengths of our approach include its
emphasis on the entire pipeline and its provision of a solid
flexible basis for extension to a wide range of metrics visu-
alisations.

Ultimately, we are aiming to use metrics to understand
relatively abstract properties of the system such as abstrac-
tion, encapsulation, inheritance, associations and communi-
cation via messages.

This requires an underlying meta-model of software and
metaphors for representing it. The meta-model describes
the relevant components (classes, methods,. . . ) and con-
nections (inheritance, invocation, . . . ). Common metaphors



Figure 5. Class cluster world in VRML browser

<node type=”class” label=”TypedDecl” size=”2”>
<name>TYP jst symtab TypedDecl</name>

</node>
<node type=”method” label=”getType()”>
<name>MTH jst symtab TypedDecl getType </name>

</node>
<edge type=”contains” stiffness=”2” l0=”2”>
<from>TYP jst symtab TypedDecl</from>
<to>MTH jst symtab TypedDecl getType </to>

</edge>
<edge type=”invokes” stiffness=”.02”>
<from>MTH jst symtab MethodDecl getSignature </from>
<to>MTH jst symtab TypedDecl getType </to>

</edge>
(a) NGML graph representation

DEF MTH jst symtab TypedDecl getType
LabelledMethodNode {
label ”getType()”
location 21.362E0 5.2825E0 36.967E0
size 5

}
Edge {color 1 1 0 scale 0.1 0.1
backBone [28.876E0 36.852E0 45.448E0,
21.362E0 5.2825E0 36.967E0]
}

(b) VRML

Figure 6. Pipeline products for visualisation

emphasize particular aspects of the meta-model: examples
include UML sequence diagrams (message passing) and
class diagrams (attributes, methods and associations).

Our long-term goals include the development of richer
metaphors and their realisation through 3D virtual worlds.
We begin by exploring applications of the metrics available
from our pipeline.

As indicated in Figure 1, the visualisation process takes
as input a JST model augmented with metric data and re-
sults in the production of specific visualisations. There are
three major steps in this process:

pre-filters determine thecontentof the visualisation. Data
is selected and transformed into a graph model rep-
resented in NGML, an XML-based format. For ex-
ample, methods might be mapped to graph nodes with
attribute valuestype="method" while their cyclo-
matic complexity values might be mapped to other
attribute values. Similarly, inheritance relationships
might be mapped to edges connecting the appropriate
nodes.

ANGLE [6], computes a 3D layout of the graph constructed
by the pre-filters. It uses a force-based approach [13]
in which nodes repel each other as if they were sim-
ilarly charged particles while edges act like springs
which pull connected nodes towards each other.

post-filters determine thelook of the visualisation. Fac-
tors such as geometry, colours and visibility are de-
termined in this step. For example, post-filters de-
termine whether public methods will be denoted by
shape, transparency, size or colour. Output is typically
a VRML file or an XML file destined for further pro-
cessing before being displayed.

The pre- and post-filter mappings are independent. This
important feature allows the appearance of a visualisation
to be decoupled from its content. Filters are typically im-
plemented as XSLT stylesheets.

Figure 6 illustrates the representation of the products at
this stage. Figure 6(a) shows part of the NGML graph repre-
sentation involving thegetType() method whose earlier
pipeline representations were shown in Figure 4, while Fig-
ure 6(b) shows VRML code specifying the corresponding
geometry as it appears in Figure 7.

5. Class clusters

To illustrate our approach, we derive a new visualisa-
tion, which we call aclass cluster. Class clusters high-
light aspects of the “neighbourhood” of individual classes
(those related by inheritance or method invocation and
hence likely to be considered together during development)
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Figure 7. Class cluster visualisation of JST’s jst.symtab package (see also Figure 3)

while also showing large-scale structure of a system (a sin-
gle package in our example). The idea is that strongly-
related classes should be physically close to each other in
a manner reminiscent of statistical clustering [15]. Conven-
tional layout algorithms (such as those commonly employed
by IDEs and diagramming tools) generally do not have this
property.

Figure 7 shows a snapshot of a 3D VRML world con-
taining a class cluster representing several aspects of the
jst.symtab package which is part of the JST source code.
Some classes in the snapshot have been labelled for clarity.
Figure 3 is a 2D UML diagram containing the same classes.
Static greyscale images do not convey the full impression of
these worlds—please visit our web page [33] to experience
the interactive colour versions for yourself.

The visualisation is based on a set of mappings which
map elements of the JST model to the nodes and edges
of a graph. The nodes of the graph represent 23 classes
and 153 methods of thejst.symtab package. The edges
of the graph represent relationships between the elements
mapped to nodes: 19 inheritance connections, 153 class-
has-method occurrences and 81 method invocations. This
set of mappings corresponds to the pre-layout filter stage in
the pipeline shown in Figure 1.

A range of parameters is available to configure layout al-

gorithms used by ANGLE. Those chosen here correspond
to class-has-method edges which are very stiff and whose
length is proportional to the number of methods in the class.
Both inheritance and invocation edges prefer to be some-
what longer and are more easily stretched or compressed,
with the invocation edges being the more flexible. This al-
lows the overall structure to take on the shape of intercon-
nected spheres whose relative placement is primarily deter-
mined by their inheritance relationships.

In this example, the pre-filter mappings omit many pos-
sible elements and connections—such as those representing
aggregation relationships and visibility. Hence these do not
contribute to the layout process. No visualisation can ef-
fectively convey all relevant variables simultaneously. Our
approach enables the user to select and modify mappings
(including metrics) at will and hence greatly enhances its
usefulness in exploratory analysis.

Features to note include:

• Inheritance edges are denoted by (red) edges with ar-
rows pointing to the superclasses. In Figure 7, the
thickness of inheritance edges indicates thenumber of
leaf classes supported(NLCS) metric.

• Each class is represented by a (red) sphere whose ra-
dius is proportional to the number of methods (public,
locally-defined, excluding constructors) in the class.



• The sphere representing each class node is studded
with smaller (blue) spheres representing its methods.
The edges which attach these to the corresponding
class nodes are not visible in Figure 7 because they
lie within class spheres which the post-filter mappings
used did not make transparent.

• Invocation of methods is indicated by the thinner (yel-
low) lines connecting methods. The edge direction
(caller to callee) is not shown but this information is
available in the JST model.

The layout algorithm has placed the class,Decl, which
is the root of the inheritance structure near the centre of
the world. This contrasts with the conventional 2D draw-
ing convention of placing child classes below their parents.
However, the worlds produced by this set of mappings place
leaf classes closer to the periphery of the (roughly) spherical
structure—an arrangement which emphasises the availabil-
ity of leaf class services to potential clients. The mapping
of NLCS to inheritance edge thickness serves to highlight
characteristics of inheritance structure.

SymbolTable has no inheritance relationships so is lo-
cated close to classes its methods call (or are called by).

Some classes, such asVariableDecl and TypedDecl,
are represented by small spheres because they have few
methods (apart from constructors) but nevertheless play im-
portant rôles in the inheritance structure. The mapping
of NLCS to inheritance edge thickness draws attention for
such classes.

Classes which have invocations of parent methods have
both inheritance and invocation links. The method of
OperationDecl at the “11 o’ clock” position is invoking
a method of its parentTypedDecl.

By selecting post-filter mappings, it is possible to gen-
erate many variations. The worlds shown in Figure 8 il-
lustrate two ways of adding the method level metrics cy-
clomatic complexity (ν) and number of statements (STMT)
to the class cluster visualisation. Figure 8(a) results from
mappings which represent methods by cones whose base
radii representsν and whose heights represent STMT val-
ues. The user can identify outliers by their aspect ratios. In
Figure 8(b), the mappings used include more specific cri-
teria: cubes denote methods whereSTMT

ν ≥ 2 and darker
colour denotes lowerν values.

Similarly, visualisations other than class clusters may be
derived from the same JST model simply by selecting ap-
propriate filters.

6. Conclusions

In this paper, we have made two major points. Firstly,
it is not only possible to derive robust parsers and metrics
generators from standard grammars for real languages but

(a)

(b)

Figure 8. Inclusion of method metrics

it is necessary to do so in order to address issues which
arise in understanding software. The addition of JST to our
pipeline-based approach essentially removes the limits on
the range of static metrics we can compute.

Secondly, having achieved our goal of capturing com-
plete, correct and consistent metrics data through the use of
stronger parsing techniques, we demonstrated that 3D visu-
alisation is a valuable tool to help software engineers under-
stand and explore large and complex metrics data sets. Our
pipeline approach uses a flexible system of mappings to de-
termine not only which data contribute to the visualisation
but also their visual representations.

We hope our tools will permit implicit extension of the
GQM paradigm to include visualisation as an integral part.

Exactly how software should be visualised remains an
open question, but our approach provides a strong basis for
experimentation. Our work in progress includes experimen-
tation with a range of metrics and visualisation metaphors.
Anecdotal evidence suggests that our visualisations are use-
ful in practice—however, we intend to conduct user trials to
attempt to quantify the benefits of 3D worlds as well as par-
ticular visualisations.
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