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1 Introduction: The basic issue

Traditionally, there has been the distinction between pure and applied mathe-
matics. Pure mathematics – so the story goes – discovers, creates and investi-
gates abstract structures (see [52]) for their own sake, while applied mathematics
applies existing mathematical tools and develops new ones for specific problems
arising in other sciences. The interaction between pure and applied mathemat-
ics takes place in both directions. Applied mathematics utilizes concepts and
methods developed in pure mathematics, and problems from diverse applica-
tions in turn stimulate the development of new mathematical theories. And
traditionally, those problems arose within a clear conceptual framework of a
particular science, most notably physics. In this essay, I want to argue that
this distinction between pure and applied mathematics is no longer useful – if
it ever was –, and that the challenge of large and typically rather diverse data
sets, typically arising from new technologies instead of theoretically understood
and experimentally testable concepts, not only calls for new mathematical tools,
but also necessitates a rethinking of the role of mathematics itself.

In fact, already in the past, what was called applied mathematics often de-
veloped domain independent methods. And this domain independence typically
led to a gain in generality and mathematical depth. Statistics, for instance, has
become so powerful precisely because it developed methods and concepts that
apply to essentially any field, from particle physics to the social sciences. And
the error estimates and convergence rates provided by numerical analysis are
valid for any application of a particular numerical method in the engineering
sciences or elsewhere. Nevertheless, such applications usually took place within
a particular field with a well developed theoretical framework that provided in-
terpretations for the statistical or computational results obtained. And in other
cases, like modeling with differential equations, the specific properties of a con-
crete scientific theory yielded key ingredients for the mathematical structures.
The development of the underlying scientific theory and the mathematical model
often went hand in hand, and they deeply depended upon each other. Math-
ematical modeling was an essential ingredient of the scientific strategy, and in
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that sense, mathematics was more than a tool. In contrast, nowadays mathe-
maticians are often confronted with data sets of obscure quality, perhaps even
of dubious origin, and without any firm theoretical foundation. Even the dis-
tinction between meaningful data and meaningless noise may not be clear at
all.

Therefore, as data collection these days is typically ahead of theoretical
understanding, mathematics should radically face the lack of theory and look at
what there is, the data, and see what it can do with them. And what I want to
call for are not ad hoc methods for every concrete data set, but rather an abstract
analysis of the deeper structural challenges. Of course, modern mathematics is
developed and sophisticated enough to provide appropriate and helpful tools for
basically any data set, but this by itself is too narrow a scientific perspective.
For me as a mathematician, mathematics is more than data analysis. We need
a conceptual rethinking.

Let us take a look at the situation from the perspective of the sciences. It
seems to me that in the presence of data, there are two different, but interwoven
issues:

1. The epistemic question, or the role of theory: Can we have data without
a theory? And if not, does the theory have to be specific for the domain
from which the data are collected?

2. The ontological question, or the role of models: Do we need, or have to
postulate, specific objects underlying the data? What is it that the data
tell us something about, and how can we, or should we model that?

This distinction may sound a little like issues debated between scientific realists,
positivists, and empiricists. But even if we adopt the latter stance and use, for
instance, van Fraassen’s criterion that a “theory is empirically adequate if it has
some model such that all appearances are isomorphic to empirical substructures
of that model” where “appearances” are “structures which can be described
in experimental and measurement reports” ([87], p.64), the problem of data
without such an empirically adequate theory remains.

Of course, there are some easy answers that seem rather obvious:

• Data that cannot be interpreted within some theoretical framework are
meaningless. Much of current data collection is solely driven by particular
technologies rather than by scientific questions. As Sir Peter Medawar
put it, “No new principle will declare itself from below a heap of facts”.1

And for “facts”, we might want to substitute “data”.

• If we simply analyze data with intrinsic formal tools whose precise func-
tioning we may not even understand, then science becomes agnostic [65].
We need to know first about what the data are telling us something. That
is, we need an underlying structure from which the phenomena revealed
by the data are derived. The meaning of data depends on the context
from which they are collected.

1I learned this quote from Peter Schuster.
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These concerns are clearly valid. Nevertheless, I think that the issues are
somewhat more subtle.

1. To what extent does theory have to be domain specific? Or more pre-
cisely, what is the relationship between general theoretical issues – to be
elaborated below – and domain specific ones? Or more positively, will the
current situation of “big data” lead to new types of theories that start
from a data intrinsic rather than a domain specific perspective, and could
that possibly lead to theoretical insights at a higher level of abstraction?

2. What is the right balance between a purely phenomenological approach
and one that starts with a model involving underlying objects? Such
objects could be either the carriers of the properties revealed by the data
or at least offer formal structures to which quantities measured on the
data are isomorphic.

A traditional perspective would consider mathematics only as a tool when –
possibly very large – data sets are to be analyzed. One of the theses of this essay
is that this process itself, data analysis, can and already has become an object of
mathematical research. Thus, mathematics not only serves as a powerful tool,
but by reflecting this role, gains a new perspective and lifts itself to a higher
level of abstraction. Then, the domain of such mathematical inquiry no longer
is a specific field, like physics, but mathematical technique itself. Mathematics
then is no longer, if it ever was, a mere formal tool for science, but becomes the
science of formal tools.

Another thesis of this essay is more concerned with the traditional role of
mathematics as the formal analysis of models arising from specific domains. I
shall argue here against the principle of reductionism. The thesis will be that in
the empirical domains where regularities have been identified that could be cast
into mathematical structures, the relations between the different levels at which
such structures emerge are very intricate. A simple formal structure at one
level typically can neither be derived from an even simpler structure at a lower
level, nor can be used to identify the relevant structure at a higher level. The
structures at both lower and higher levels can be substantially more complex.
Again, it is a general task for mathematical research to identify and more deeply
understand the principles of such transitions between different scales and levels.
That is, what is at issue are not so much the phenomena at the different levels,
but rather the transition laws between levels. Much is known here already, both
from the side of mathematics and that of physics, but a more abstract and
fundamental mathematical theory is still missing.

There might even be unexpected connections between those two aspects, a
mathematics of and not only for data analysis on one side, and the principles
of transitions between different levels on the other side. At least, there is the
question of how such transitions can be inferred from the data. I regard this as
a fundamental question for any abstract theory of data.

Before addressing these issues in detail, I should point out that there is
another, perhaps even more fundamental and important role for mathematics
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in the sciences, although that role will not be discussed in this essay. This
consists in providing a framework for conceptual thinking and formal reasoning.
This is valid across all disciplines, and actually badly needed in many of them.
I shall address this aspect elsewhere.

2 The role model of physics

In some way or another, there is a particular role model behind many discus-
sions, that of classical physics. According to that perspective, every science
should strive towards such a model. We should have objects whose proper-
ties and interactions can be formally described by mathematical relations, in
particular, differential equations. And we should be able to conduct experi-
ments whose outcomes can be understood within an encompassing theoretical
framework. Deviations from that role model are regarded as deficits.

Newton’s theory combined the terrestial dynamics as developed by Galilei
and others and Kepler’s laws of celestial motions in a unified theory of gravity.
The basic objects were pointlike masses. Such a concept would have appeared
meaningless to Descartes who considered extension as the basic quality of mat-
ter. In Newtonian dynamics, however, the essential feature is the mass of an
object, and this allowed him to work with extensionless points carrying a mass as
idealized objects. Newton’s theory allows for an exact solution of the two-body
problem.2 Besides points, there are other fundamental constituents of physical
theories. These are the fields, like the electromagnetic one. In physical theories,
fields are considered to be no less real than material objects. In particular,
they also carry forces which make physical interactions possible. Also, while
the two-body problem admits an exact solution in Newton’s theory, this is no
longer true for the three-body problem. Although that problem is perfectly well
posed within Newton’s theory of gravity, it can in general no longer be solved
in closed form, unless particular symmetries pertain. This was first realized by
Poincaré. Nevertheless, one can develop approximation schemes or compute nu-
merical solutions of the differential equations to any desired degree of accuracy
with sufficiently large computer power. At a more theoretical level, the stability
against perturbations becomes a subtle issue, as developed in KAM theory (af-
ter Kolmogorov, Arnol’d, and Moser), see [82, 85]. Also, there are mathematical
examples [91, 75] where internal fluctuations in such a system can grow without
bounds until one of the bodies is ejected to infinity.

The paradigmatic objects of this theory are the celestial bodies in the solar
system, and the theory is concerned with their orbits. Even when the theory is
restricted to the basic configuration of the sun, the earth, and the moon, there
are more than two such objects. And these objects are by no means pointlike,

2The one-body problem, however, was eventually understood as being ill posed. As Leibniz
first saw, any physical theory has to be concerned with relations between objects, and an
irreducible point mass can only entertain relations with other such objects, but not with
itself, because there is no fixed external frame of reference independent of objects. The latter
aspect is fundamental in Einstein’s theory of general relativity. (See for instance the exposition
by the author in [73].)
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but rather extended and possessing a non-homogeneous internal structure. If
one models them in more detail, the resulting theory becomes much more com-
plicated, and at best one may hope for numerical approximations, but these will
inevitably be of limited scope and validity.

But this then raises the question why such a simple theory as Newton’s
is applicable at all to such a complicated configuration, and in particular, why
numerical solutions of Newton’s equations lead to such accurate descriptions and
predictions of the movements of the planets. (For the sake of the argument, we
ignore here the corrections necessitated by Einstein’s theory.) When we change
the scale, either going down to the internal structure of the celestial bodies, or
up to configurations of many gravitating objects, no such simple theory applies.

Is Newton’s theory then a completely singular instance, and would we there-
fore be ill-advised to consider it as a role model of a scientific theory? Well, it is
not completely singular, and in order to understand the issues involved better,
let us consider another example.

The fundamental equation of quantum mechanics is Schrödinger’s equation

√
−1~

∂φ(x, t)

∂t
= − ~2

2m
∆φ(x, t) + V (x)φ(x, t) (1)

for the quantum mechanical state φ(x, t) at position x and time t, where ∆
is the Laplace operator, a second order partial differential operator, V (x) is
the potential at x, and ~,m are physical constants. The Schrödinger equation
no longer describes the deterministic behavior of pointlike objects, but rather
the evolution of probabilities. The dynamics of these probabilities are still
deterministic. And in fact, for the hydrogen atom, the Schrödinger equation
is exactly solvable. For more complicated atoms, we encounter the difficult
numerical problems of quantum chemistry. The reason why it applies so well to
the hydrogen atom is that its nucleus consists of a single proton which under
normal conditions essentially behaves like an elementary, indivisible (“atomic”
in the literal sense) particle. In fact, however, the proton is not elementary, but
is composed of more elementary particles, the quarks. That is, the fact that the
hydrogen atom can be described by the Schrödinger equation does not have a
theoretical, but an empirical reason, the so-called quark confinement. Of course,
one may then try to derive this from the standard model of particle physics, but
that is a different issue. (For the theoretical background, see e.g. [89].) What
remains is the empirical validity of Schrödinger’s equation. The standard model,
in contrast, is a model whose deeper justification still is a matter of intense
debate. There are approaches like string theory (see e.g. [32, 71, 49, 48, 93])
which, however, are beyond the range of experimental testing for the time being.
Why Schrödinger’s equation applies so well (at least to the hydrogen atom)
then remains mysterious at a deeper level. And it even applies to other atoms,
although it is no longer exactly solvable already for the Helium atom. This is
analogous to Newton’s equation and the three-body problem.

The equations of Newton and Schrödinger may possess certain universal
properties, and some aspects might be considered with the modern tools of
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renormalization groups, see for instance [5], but the question why such equa-
tions appear at particular scales and not at others remains. Thus, my question
is not why a mathematical description of nature is possible, or why mathemat-
ics is so effective as a tool for describing physical reality, but rather why it
works so well at particular scales or under certain circumstances, but not in
other situations. Historically, when the mechanical natural philosophy of the
17th century could capture so well the movements of celestial bodies, explain
the acceleration of falling bodies or the parabolic trajectories of canon balls or
identify the conservation laws of inelastic collisions, it was expected that this
success could easily be extended to other domains and achieve, for instance,
a mechanical explanation of animals, and, as some, like La Mettrie, believed,
even of humans. Of course, this scientific program turned out to be a miserable
failure, and biology as a modern science got off the ground only in the 19th cen-
tury, on the basis of completely different principles than those of the mechanical
natural philosophy of the 17th century.

I shall return in Section 3 to the difference between the theoretical validity
of an equation and its exact solvability, as this is important for our topic. Before
that, however, I’ll proceed to larger physical scales. In the area of the physics
of nano- and microstructures, on the one hand, there are atomic or molecu-
lar models, and on the other hand, there are continuum models. Either type
of model can yield accurate descriptions within its range of validity and make
precise predictions. One might then argue that the discrete (atomic or molecu-
lar) models are the basic ones that capture the underlying objects whereas the
continuum models are purely phenomenological. This, however, will miss the
fundamental mathematical question, the relationship between these two types
of models and the transition between them when changing the scale. Again,
this is an aspect to which I need to return. For instance, it seems that in many
respects, the Navier-Stokes equations correctly – whatever that means – or at
least adequately describe the behavior of fluids. These are continuum equations.
The numerical solution, that is, an approximation by a numerical scheme, is one
of the most important topics of scientific computation, and by now, there exist
numerical schemes that can solve them to a very high degree of accuracy. Nev-
ertheless, within the mathematical theory of partial differential equations, the
general existence of a solution to date has not been established, and in fact, this
is considered to be a challenging and difficult problem. The issue of turbulence
which is still not understood reveals that there are some deep problems lurking
here. Interestingly, while turbulent flow seems to be rather chaotic, there might
exist some statistical regularities. In any case, the Navier-Stokes equation serve
as the most important model in fluid dynamics.

When we move further up with regard to the physical scale, we come to the
example already discussed, the dynamics of the orbits of the planets in the solar
system which (except for relativistic corrections) are so well described by New-
tonian mechanics. Planets, however, are no elementary bodies, but composite
objects. So, let us repeat the question why such complicated objects as planets,
just think of the geology of the earth, follow such elementary laws. If we go to
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a smaller scale, everything breaks down, or at least becomes substantially more
complicated. For instance, which mathematical or physical theory can explain
the rings of Saturn?

And if we go to configurations of large numbers of gravitating bodies, New-
ton’s theory, although applicable in principle (modulo relativistic corrections,
again), becomes useless. We should need to change to a statistical description
à la Boltzmann [8]. Such a statistical description would still be mathematical;
it would derive its power from ignoring the details of the lower level structure.

Physics then loses some of its special role. It seems to be a general phe-
nomenon that in many domains particular scales exist at which a rather simple
mathematical model can capture the essential aspects, sometimes even accu-
rately in quantitative terms, while that need no longer hold for smaller or larger
scales. It might seem that this occurs less often in domains other than physics,
but there do exist positive examples. In chemistry, we have the reaction ki-
netics. For instance, reaction kinetics of Michaelis-Menten type are important
in biochemistry. They depend on important simplifications. In particular, they
assume that the chemical substances participating in the process in question are
uniformly distributed across the cell. The internal spatial structure of the cell is
completely ignored. As another example, the differential equations of Hodgkin-
Huxley type model [42] the generation of the spike of a neuron in a quantitatively
exact manner, see e.g. [64, 58]. The model operates at the cellular level and
describes the dynamics there in a deterministic manner. If one goes down to
the lower, molecular, scale, things get much more complicated, and the deter-
ministic quantities in the Hodgkin-Huxley equations become stochastic, that is,
probabilities for the opening and closing of certain ion channels. Similarly, if
one moves up and considers interacting systems of neurons, things become quite
complicated, and completely different types of models are called for. Thus, we
have a relatively simple, formally closed, and quantitatively accurate model at
the cellular level, but no such model at the smaller molecular or the larger tis-
sue scale. I shall present the mathematical structure of biochemical reaction
kinetics and the biophysics of the Hodgkin-Huxley model in detail below – and
readers not interested in those mathematical or physical details can skip those
–, but let me first emphasize again the general point. Not only in physical,
but also in biological systems, there may exist one or more particular scales at
which a gross simplification can lead to simple, but nevertheless quantitatively
accurate models, and these scales then correspond to particularly useful levels
of description. Typically, however, this is no longer so when we move to either
smaller or larger scales. This leads to the question why and how such particular
levels emerge, at which such simple quantitative models work. And also, why
are such levels apparently so rare?

Let us now describe the mechanism of biological reaction kinetics in some
detail to see what is involved. General references for biochemical kinetics are
[64], [57], and we follow here the presentation in [50]. The basis is the law
of mass action which states that the reaction rate of a chemical reaction is
proportional to the concentrations of the reactants raised to the number in which
they enter the reaction. That expression is proportional to the probability that
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the reactants encounter and react with each other. Let us consider the simple
reaction

S1 + S2 � 2P (2)

that converts S1+S2 into 2P with forward rate k+ and backward rate k−. That
is, when a molecule of substance S1 encounters one of S2, they react and form
two copies of P with rate k+. Conversely, two P -molecules together can decay
into a copy of S1 and a copy of S2 at the rate k−. Thus, the chemical reaction
can take place in either direction, but at possibly different rates. If we denote
the respective concentrations by s1, s2, p and consider them as functions of time,
then (2) leads to the differential equations

ds1
dt

= −k+s1s2 + k−p
2

ds2
dt

= −k+s1s2 + k−p
2

dp

dt
= 2(k+s1s2 − k−p2) (3)

whose solutions s1(t), s2(t), p(t) then give the respective concentrations at time
t as functions of their initial values. In enzymatic reactions, there also is the
complex ES of the enzyme E and the substrate S. The Michaelis-Menten
theory makes the simplifying assumption of a quasi-steady state for the complex
ES, that is, its concentration is not changing in time, and this concentration
can then be simply computed. This assumption, that the concentration of an
intermediate product remains constant, reduces a multidimensional process to a
single equation. The resulting simple systems of ordinary differential equations
capture the concentration level of substances involved in biochemical reactions in
the cell well enough for many purposes. In contrast to the Schrödinger equation
which considers the state φ(x, t) as a function of the position x and time t,
the chemical concentrations s1, s2, p in (3) are considered as functions of t only.
That is, the model assumes that they are homogeneously distributed in the
cell. This means that the concentrations are assumed to be the same across
the cell at each fixed time t. This is, of course, a gross simplification, and
the model can be refined by allowing for varying concentrations and diffusion
effects. The point I want to make here, however, is that even under this (and
the further Michaelis-Menten type) simplification, the solutions of systems like
(3) can effectively describe the values of concentrations of chemical reactants in
cells.

We next turn to the other example discussed above, the Hodgkin-Huxley
model [42] for the generation of spikes in neurons,3 and give a brief description
of the model and its dynamics, see e.g. [50, 51] for more details. Formally, the
model consists of four coupled (partial) differential equations, but they are more
difficult than those for biochemical reactions, and so, we refrain from writing

3The original model was developed only for a particulat type of neuron, the giant squid
axon, but similarly models have subsequently been developed for other classes of neurons as
well.
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them down here. Instead, we only discuss the qualitative features of the model.
The basic dynamic variable is the membrane potential V of the neuron. The po-
tential is caused by the different densities of charged ions in- and outside the cell.
The boundary of the cell, the cell membrane, is impermeable to most charged
ions, except for channels that are selectively permeable for certain specific ions.
That permeability in turn depends on the membrane potential as well as on
the concentration of certain intracellular and extracellular substances. The dif-
ferential equations of Hodgkin and Huxley then link the temporal changes of
these quantities, that is, the membrane potential and three gating variables that
control the permeability of the cell membrane for specific electrically charged
ions. Concerning the evolution of the membrane potential, the idea is that the
time derivative of this potential is proportional to the derivative of the electri-
cal charge, hence to the current flowing. That current in turn is the sum of an
internal membrane current and an external current. The latter represents the
external input to the cell. The internal membrane current is a sum of specific
terms, each proportional to the difference between the potential and some spe-
cific rest term. These proportionality factors then depend on the corresponding
gating variables. Thus, the dynamical interplay between the membrane current
and the gating variables is the key point. When the system is near its resting
value and some positive current is injected that lifts the membrane potential V
above some threshold, then a positive feedback between V and the fast one, m,
among the gating variables sets in. That is, the potential V rises, and positively
charged sodium ions flow in, rising the potential further. Soon, the neuron emits
a spike. But then, the two slower gating variables, h and n, take over, causing
an inactivation of the inflow of the sodium ions and reversing the potential by an
outflow of potassium ions. The potential then drops even below its resting value,
but after some time, during which no further spike is possible, recovers to that
latter value, and the neuron is receptive again to repeat the process in response
to some new external current. The interaction of two time scales is important
for these dynamical properties. The positive feedback between the fast variables
V and m triggers the spike, whereas the slow variable h ultimately stops the
inflow of positive ions, and n causes other positive ions to flow outwards, to
reverse the effect and bring the potential back to (or, more precisely, below) its
resting value. As already mentioned, this particular model was conceived for
the giant squid axon. For this neuron, quantitative measurements were easier
than for other neurons, and therefore, Hodgkin and Huxley could carefully fit
the parameters of their model. Following the pioneering work of Hodgkin and
Huxley, then also models for other classes of neurons were developed. While
the details are different, the essential principles are the same. Thus, we have
quantitative accurate models of the biophysics of neurons that operate at the
cellular level, even though the details at the smaller, molecular level are much
more intricate. No such simple models exist at that scale.
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3 Validity vs. computability

We return to Poincaré’s insight into the impossibility of an exact solution (a
solution in closed form, that is, in the form of an explicit formula for the positions
of the bodies involved at every instance of time) of the three-body problem.
Even if a mathematical theory of nature were exactly valid in principle – let
us ignore the quarks and the internal structure of the planets for the sake of
the argument here and assume that for instance, Newton’s or Schrödinger’s
equations were exactly valid –, it could not offer an exactly solvable description
of the dynamical behavior of its objects. It is a mathematical question when
and under which particular conditions an exact solution by an explicit formula
is possible. This has nothing to do with the range of validity of the theory
in question. Almost all differential equations cannot be solved by an explicit
formula (they do not constitute completely integrable systems in the language of
classical mathematics). The search for closed solutions, that is, to demonstrate
the complete integrability of a dynamical systems, was one of the highlights
of 19th century mathematics. In the 20th century, in the wake of Hilbert,
mathematics turned to a different approach. Instead of attempting to construct
an explicit solution of a specific differential equation, the problem was converted
into showing the existence of solutions for large classes of differential equations.
This was the guiding theme in particular for partial differential equations, see for
instance [45]. A key point was to separate the abstract question of the existence
from the explicit representation of a solution. Once the existence of a solution
had been demonstrated from abstract principles, it then became the task of
mathematics to understand the properties of such abstract solutions, and in
particular to find out under which conditions singularities can be avoided, and
then to derive approximation schemes for such solutions and to convert them
into algorithms for their numerical construction with a precise error control.
This is basic for all the modern applications of partial differential equations
in the engineering sciences and elsewhere. This does not mean, however, that
mathematics becomes purely instrumental.

A similar issue arises for the weather forecast. Again, it was Poincaré who
first realized the specific aspects of chaotic dynamics. Some meteorological
models like the Lorenz equations indeed exhibit chaotic behavior. Therefore,
we cannot accurately predict next week’s weather, because of the amplifications
of tiny fluctuations by chaotic dynamics. It is claimed, however, that the global
climate 50 years from now can be predicted within certain bounds, for any
scenario of greenhouse gas emissions. The reason why this is feasible is that
on a longer time scale, the daily weather fluctuations average out, and only
the long term trend remains, and that is precisely what the climate models try
to capture. In any case, the pecularities of chaotic dynamics as exhibited by
weather models are not an artefact caused by any deficiency of a model, but
are – according to deep mathematical insights – rather grounded in specific
structural features of the pertinent equations. The mathematics of chaos goes
much beyond the rather simple exponential divergence of individual trajectories,
and gains positive insight via such concepts as invariant measures (for details,
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see e.g. [46]). It can even elucidate the universal nature of many aspects of
chaotic dynamics, thereby going much beyond any specific object domain.

In this section, I have described two different trends that distinguish 20th
century from 19th century mathematics. On the one hand, the ideal of writing
down an explicit solution has been abandoned for the less ambitious aim of ap-
proximating a solution to any specified degree of accuracy, or in practice at least
as accurately as the computing facilities permit. When one has a good theoret-
ical control of the numerical scheme, then higher accuracy simply requires more
computer power. In that regard, mathematics has become more instrumental,
concentrating on the computational tools rather than on the explicit formulae.
On the other hand, general structural insights into chaotic dynamics teach us
that gains in accuracy may require an exponential increase in computational
effort and therefore quickly become unrealistic. Thus, in most problems we
cannot hope to be able to write down an explicit solution of the mathemati-
cal model, and even a very accurate approximation of a solution may not be
computationally feasible.

4 What are the objects?

As described at length, the objects of Newton’s theory are modelled as points
that possess masses, but no extension. In solid state physics, physicists are work-
ing with objects that have more internal properties and structure and therefore
might appear more realistic. Electromagnetic and other fields are objects of
physical theories with less material substrate. The nature of subatomic parti-
cles is not so clear, even though one might grant them some reality because they
produce discernible effects [36, 26]. When we go to string theory, particles are
nothing but excitation modes of completely virtual “objects”, the strings (see
e.g. [32, 71, 49, 48, 93]). Such an excitation mode is similar to a Fourier coef-
ficient. There is nothing material about it, and it is a good question in which
sense that should be considered as a physical object. Clearly, however, it is a
theoretical object, even though it might not possess any independent reality.

Many biological structures are modelled as discrete entities, even though
they might be composed of atoms, molecules, cells, or individuals in a com-
plex manner. Mendel’s laws are a good example. Mendel conceived of genes
as abstract entities, without any clue about their physical implementation or
realization. Although Mendel’s laws are not exactly valid, for many purposes
this does not matter. This leads to the question how such discrete entities
can emerge from some continuum at a lower scale. Conversely, large ensembles
of such discrete objects are often best modelled by continuum models, as in
population genetics, see e.g. [43].

In any case, even though it has been discovered in molecular biology that
the material substrates of genes are nucleotide sequences, the modern biological
conception of a gene is more abstract than such a nucleotide sequence. We
refer to [77] and the discussion in the journal Theory in Biosciences about this
issue [78]. Similarly, the other fundamental biological concept, the species, is
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more abstract than the collection of individuals composing a population (see
for instance [9]). Thus, “objects” in modern biology are abstracta like genes or
species that do not directly correspond to physical entities.

This is not fundamentally different in the social sciences, even though there
are fewer examples of successful mathematical models. At present, the validity
of the mathematical models of macroeconomic theory is somewhat controversial.
Likewise, it is an issue of debate to what extent game theory can adequately cap-
ture human behavior (see for instance the discussion in [55]). On the other hand,
in recent years there has been definite progess in modelling traffic dynamics with
quasi-physical theories inspired by microscopic particle physics, gas kinetics or
fluid dynamics (see [41]), notwithstanding the fact that individual drivers can
behave very differently from each other.

Another issue that has been debated already 200 years ago by social scientists
and mathematicians is to what extent the law of large numbers provides not
only an empirical, but also a conceptual basis for mathematical modelling of
social phenomena and dynamics, see [35]. When the samples are large enough,
statistical laws can lead to arbitrarily precise predictions. This is the foundation
of such domains as demography or demoscopy. When we recall Boltzmann’s
description of statistical ensembles or the above scale transitions, this appears no
longer fundamentally different from what has been discussed above for physics
and biology.

5 Scales and levels

In the preceding, I have already discussed the fact that the difficulty and feasabil-
itity of a description or a model of a complex system can be rather different at
different levels. In this section, I want to analyze this issue more systemati-
cally, drawing upon the collaboration with Nihat Ay, Nils Bertschinger, Robin
Lamarche-Perrin, Eckehard Olbrich and Oliver Pfante within the EU Project
MatheMACS (Mathematics of Multilevel Anticipatory Complex Systems). Let
me start with the terminological distinction between levels and scales. Accord-
ing to the definitions that we propose

• Scales refer to observables. Scales are determined by the measurement
process, the data and their representations at different resolutions. For
instance, concerning the dimension of length, we might consider the scales
of micrometers, millimeters, meters, and kilometers, or other, smaller or
larger ones.4

• Levels refer to descriptions or models. Levels arise in the modeling process
through the identification of entities that lend themselves to useful anal-

4In different fields, it may be different what is considered as a larger or a smaller scale.
In geography, for instance, larger scale means higher resolution, that is, a smaller reduction
factor. In other areas, like physics, a larger scale means the opposite. We shall follow the
latter terminology. Thus, at a larger scale, many details from a smaller scale may disappear
whereas larger structures might become visible.
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ysis. Thus, we could model a biological system at the molecular, cellular,
tissue or organismal level.

Clearly, the two concepts are interdependent. Levels rely on measurements
taken at characteristic scales. They also rely on a choice of observables that are
measured. Scales can be chosen relatively arbitrarily, as long as the relevant
measurements can be performed, but a useful choice of scale should depend
on the identification of a level. Levels, however, should be distinguished by
characteristic properties of the model they allow. That is, at a given level,
particular regularities should arise that do not pertain at other levels.

First of all, there are the systems that do not possess any characteristic
scale. Such systems have been objects of research in both mathematics and
physics. One of the concepts proposed here is that of self-similarity. A self-
similar structure looks the same at any scale. Such structures were popularized
by Mandelbrot [62] under the name of fractals. The relevant mathematical the-
ory had already been created earlier, by Hausdorff [39] in 1918. Hausdorff had
developed a general concept of dimension, and many fractals possess a non-
integer Hausdorff dimension. In particular, fractals are in some sense highly
irregular. Nevertheless, there also exist such fractals with an integer dimension,
and so, mathematically, a more subtle mathematical characterization is neces-
sary, see [83] and the references therein. The concept of a fractal also comes up
in the theory of chaotic dynamics where the attractors and the boundaries of
their domains of attraction could have such a fractal structure. The correspond-
ing discoveries about iterations of polynomial maps were also made in 1918/19,
by Julia and Fatou, see [23] for a more recent description. In the physics lit-
erature, scalefree structures are usually characterized by a power-law behavior,
as opposed to an exponential decay of correlations. That is, we essentially find
correlations at any scale. It turns out that such power-law behavior is rather
ubiquitous, from the financial data analyzed by econophysicists to the degree
sequences of empirical networks in different domains. From a more theoretical
perspective, such systems can even serve as some kind of universal models, when
arising as limits of renormalization group flows (see e.g. [12]), and they are basic
constituents of conformal field theory and the theory of critical phenomena, see
[24, 92].

Of course, no real system can be self-similar at all scales or possess correla-
tions of all orders. Such properties can only hold within a certain range of scales.
Nevertheless, as asymptotic idealizations, systems with such properties can be
quite useful as theoretical tools.5 Scalefreeness, however, is not an aspect I want
to focus upon here. Let me rather return to a system with well-defined objects
at some particular scales. For instance, take a couple of Newtonian particles,
at some scale, for instance gas molecules or celestial bodies. When there are
only a few of them, their kinetic or dynamical interactions can be described by
a mechanical model. For the celestial bodies, that is, when gravity is the active
physical force, we have already seen above that for more than two particles, an

5Batterman [5] and Lenhard[60] emphasize the fact that such idealized systems that arise
as asymptotic limits in some theory are employed as models for empirical systems.
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explicit solution of the equations of motion in general cannot be achieved. But
even worse, when the numbers of particles becomes large, like the stars in a
galaxy or the gas molecules in a container, the description in terms of classical
mechanics is no longer feasible, and we need to turn to a less explicit statis-
tical description à la Boltzmann. Here, a particular configuration of, say, gas
molecules, given in terms of their positions and momenta, is a microstate, but at
the macrolevel, one only has collective observables like entropy or temperature.
These observables are not meaningful at the level of the individual particles,
because they represent statistical averages. More precisely, any macrostate can
be the result of many different microstates, and the more microstates underlie
a given macrostate, the higher the latter’s entropy, that is, the more likely it
is to occur. (There are some subtle issues here concerning the interpretation
of the probabilities involved, see [44], but we do not enter into those here.) In
summary, here a deterministic description at the level of individual particles be-
comes unfeasible and useless due to their large numbers and the impossibility of
accurately measuring all their positions and momenta, and instead a statistical
description at a higher level is used. It can also be the other way around, that
a statistical description at a lower level yields to a deterministic description at
a higher level in terms of statistical averages. As fluctuations may average out,
these averages themselves may well obey deterministic laws. We see this, of
course, in the transition from the quantum level to that of micro- or mesoscopic
physics, but for instance also in cells when we go from the molecular to the
cellular level. Recall our discussion of the Hodgkin-Huxley equations in Section
2.

Besides the dichotomy between deterministic and stochastic models, there
also is the dichotomy between discrete and continuous models. When we move
up or down the scales, or better, from one level to the next, again the relation can
go either way. Discrete particles (atoms, molecules, stars, cells, individuals, ...)
can give rise to continuum models at a higher scale. However, out of underlying
continua, also discrete structures can emerge. Partly, these are simply physical
processes, for instance when interstellar dust condenses into a star by the force of
gravity. Partly, the discrete entities are crucial constructs of models. The gene
as a concept in molecular or evolutionary biology emerges from some underlying
level of molecular interactions or reproductions of individuals in a population,
see [54]. The continuous dynamics of the Hodgkin-Huxley model gives rise to
the discrete event of a spike. Or putting it somewhat differently, the neuron as
a biological system transforms an analogous input into a binary output, that
is, it chooses between the alternatives of spike vs. no spike. Thus, models of
information transmission in neural systems can operate with discrete events as
the carriers of discrete bits of information. From a formal point of view, such
phenomena are genuinely nonlinear, and there exist theoretical concepts, like
those of critical threshold, bifurcation, or phase transition, to analyze them,
see for instance [46, 50]. Here, however, rather than analyzing the dynamical
mechanisms that give rise to such discrete events in a continuous setting, I want
to utilize this as an example of a higher level description in discrete terms with
an underlying continuous dynamics at a lower level. Interestingly, at the level
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of discrete events, the spiking pattern of a neuron is often modelled as a Poisson
process (see for instance [21, 30, 51]), that is, as a stochastic process, instead of
a deterministic one. Here, the reason why one switches from a deterministic to
a stochastic description is somewhat different from the case of the Boltzmann
gas. In the latter case, a statistical description is called for because of the larger
number of particles involved and the infeasibility or impossibility to measure
all of them. Here, in contrast, we have a single event, the generation of a
spike by a neuron that at one level is modelled by a deterministic dynamical
system.6 Also, this system does not exhibit chaotic behavior that would make
long term predictions impossible. Of course, near the critical threshold above
which the neuron spikes and below which it returns to rest, the dynamical
behavior naturally is unstable in the sense that arbitrarily small perturbations
or fluctuations can induce a switch from one state to the other. At another,
more abstract, level it is instead modelled as a stochastic process. This is not
only simpler, because it dispenses us of having to deal with the subtle nonlinear
behavior of the Hodgkin-Huxley system, but it also offers the advantage that
we can now look at the relation between the strength of the neuron’s input and
the single parameter that characterizes the stochastic process, the firing rate of
the neuron. Put simply, the hypothesis would be that the neuron fires more
frequently on average when it receives a stronger input. (Whether, or perhaps
more precisely, to what extent neuronal systems really employ a rate coding
as the preceding might suggest is an unresolved and intensely debated issue in
the neurosciences, but here, I do not enter that discussion, and rather refer to
[33, 90] for the information theoretical analysis of neuronal spike trains.)

I now turn to the formal analysis of the relation between different levels,
following [69]. (Let me also mention earlier results in [80, 31] and many other
papers, and the case study in [70].)

We consider a process
φ : X → X ′. (4)

This could, for instance, be the transition from the state of a system at time t
to its state at time t+ 1. We assume that this is a Markov process, in the sense
that knowledge of the state at prior times t− 1, t− 2, . . . does not contain any
information beyond that contained in the state at time t relevant for the state
at time t+ 1. That is, the future is conditionally independent of the past given
the present. We also have an operator

π : X → X̂ (5)

that is considered as a projection, coarse graining, averaging, or lumping. This
simply means that the ˆ indicates a description at a higher level, with less detail
and resolution. The question then is whether we can transform the transition
directly at the higher level, that is, whether there exists a process

ψ : X̂ → X̂ ′. (6)

6Interestingly, stochastic perturbations of this deterministic system produce genuinely non-
linear effects, see [34, 86].
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that is self-contained in the sense that it does not depend on anything in X that
is not already present in the upper level X̂. In other words, we ask whether
we can close up the following diagram (make it commutative in mathematical
terminology [52]).7

X̂ X̂ ′

X X ′

............................................................................................................................................................................................ ............
ψ

.......

.......

.......

.......

.......

.......

.......

.......
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.......

.......

.......

.......

.......

...............
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π
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.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

π

............................................................................................................................................................................................ ............

φ (7)

Expressed as a formula, commutativity means that

ψ(π(x)) = π(φ(x)) (8)

for all x ∈ X.
There exist several criteria to make this precise.

I Informational closure: All we need to know to determine the state X̂ ′

or to predict its statistical properties is already contained in the state X̂.
The higher process is informationally closed, i.e. there is no information
flow from the lower to the higher level. Knowledge of the microstate
will not improve predictions of the macrostate. The upper level process
is self-consistent in the sense that it does not need to perpetually draw
information from or about the lower-level states.

II Observational commutativity: It makes no difference whether we per-
form the aggregation first, and then observe the upper process, or we
observe the process on the microstate level, and then lump together the
states. In that sense, the upper level process seems autonomous, as once
initialized, it appears to unfold on its own, without needing any further
updating by details from the lower level process.

III Commutativity in the sense of (8): There exists a transition kernel ψ
such that the diagram (7) commutes.

IV Markovianity: X̂, X̂ ′ forms again a Markov process. We recall that we
assume that X,X ′ yield a Markov process, that is, the current state of
lower level process contains everything needed to compute its next state,
and it does not need to draw upon past states any further, as these have
transmitted all relevant information to the current state. But it does not
follow in general that the upper process is Markovian as well, and so, IV

7A perhaps somewhat technical point concerning the representation by this diagram: Often,
one thinks of a projection as going down, instead of up, and one would then represent X in
the top and X̂ in the bottom row. Since, however, we think of X̂ as a higher, more abstract,
level, we rather represent that higher level in the top row of our diagram.
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indeed is a nontrivial condition. It could compensate a lack of information
about the current lower level state by structural constraints in order to
also utilize information from past states. In particular, at the upper level,
information about past states can improve its prediction about the next
state, whereas such information is not useful at the lower level. See the
example in [70], and also the discussion in Section 10.

We show in [69] that I implies both II and IV, and II implies III, whereas
IV does not imply III in general. Also, for a deterministic process, but not
necessarily for a stochastic one, conversely III implies II which in turn implies I.
III of course is a formalization of I and II, and as we show, in the deterministic
case, they are equivalent. In the stochastic case, the notions turn out to be
somewhat different, as information concerns statistical properties, and these
are different from the results of particular observations. IV, of course, is a
condition that is meaningful only for stochastic dynamics.

6 The structures of data sets

Let us look at an example that may seem very simple at a first glance, a col-
lection of minerals in a museum. How should the specimen be arranged and
ordered? There are many possibilities:

• according to geographical origin, that is, where they have been found

• by physical properties, like color, hardness, size, etc.

• by chemical composition

• by geological age

• by their process of generation, like volcanism, pressure, fossilization, etc.

Thus, with a heterogeneous data set, a good ordering scheme may be neither
easy to find nor unambiguous. In the case of the minerals, however, a solution
came from an important discovery in physics. Max von Laue, on the basis
of his work with Walter Friedrich and Paul Knipping on X-ray diffraction in
crystals, detected that crystallographic lattice structures could be determined by
X-ray spectroscopy (see for instance the account in [88]). And this implied that
minerals can be classified in terms of the symmetries of their crystallographic
structures. In fact, this classification by structural symmetries is the same
principle as that used by 19th century biologist Ernst Haeckel [37] in a very
different realm, for the classification of radiolariae, protozoa that provide much
of the plankton in the oceans and that produce mineral skeletons of highly
symmetric geometric shapes. This is another instantiation of the fact that one
and the same mathematical concept can be applied in very different data sets.

A look at the history of science may also be illuminating here. In particular
during the 17th century, there was a widespread belief in a natural order (as
imposed by God) within which each individual object or class of objects would
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find its place. Perhaps the most prominent application of this principle was to
the classification of plant and animal species. That is, there was an abstract
scheme where each species found its place in, and conversely, every position
within this scheme had to be filled by precisely one species, already known or still
to be discovered. The important step of the botanist Carl von Linné then was
to infer the natural order from a careful inspection and systematic comparison
of all known plant species, rather than from some a priori reasoning. Still,
the difference to the Darwinian concept of evolution is profound. According
to Darwin, there is no natural and systematic order, but rather the collection
of species is the result of a partly contingent historical process. An interesting
reference is [2].

7 Data without underlying objects?

When we start with data, then an object behind these data is first a hypothesis,
a construct. A well discussed example are the gigantic data sets created by
modern particle accelerators where the elementary particles that are supposed
to produce those data are postulated by theory, but where the only evidence
for them has to be extracted from those data (for a conceptual discussion, see
[26]). More generally, physics studies phenomena and data, like the scattering
matrix in quantum mechanics that records the input and output of a quantum
mechanical system. Physicists do not think in terms of objects, in contrast
to the picture of Newtonian physics depicted above. In fact, precisely these
scientists are those that drive the data analysis approach also in other domains.
For instance, neoclassical economic theory has developed elaborate models for
describing the functioning of an (idealized) economy, but then came the so-called
econophysicists that simply took the data from financial and other markets and
searched for statistical regularities [63]. They used methods from nonlinear time
series analysis, for instance. Those methods are not sensitive to the origin of
the data, nor do they depend on any object oriented models. Rather, they look
for intrinsic regularities in possibly chaotic dynamics [56]. For instance, they
identify (chaotic) attractors and determine their (possibly fractal) dimension.
These, however, are not ad hoc methods; they are based on deep insights from
the theory of dynamical systems. For example, the center manifold principle, see
e.g. [46], (which, for instance, is the basis of Haken’s slaving principle [38]) tells
us that in a dynamical system, typically most directions are quickly relaxing to
their equilibrium, and the essential aspects of the dynamics are determined by
very few slow variables.

In fact, it had already argued by Koopmans [59] in his review of a book
by Burns and Mitchell [10] that measurements of economic quantities without
underlying economic concepts are useless; and that time, the criticism was di-
rected against a use of econometric techniques without a theoretical framework
grounded in economics, but the same type of criticism would also, and perhaps
even more forcefully, apply to the approach taken by econophysics.

We should also remember that Newton’s theory that can derive and predict
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the motion of celestial objects is a rather exceptional feat even in the history
of astronomy. Astronomy started with data collection, and these data then
were typically organized by models with an ontological status that was dubious
at best. The old Babylonians simply interpolated between observational data
by assuming that the positions of the celestial bodies varied linearly between
the extrema and then suddenly changed direction, see the systematic studies of
Neugebauer [66, 67], who speaks of zigzag functions to describe this interpolation
scheme. The Ptolemaic model as described in the Almagest employed more
and more epicycles without really accounting for their ontological status. The
Aristotelian system of the celestial spheres was more explicit in that regard, but
more difficult to reconcile with the astronomical data. (In fact, Ptolemy also not
only tried to represent data as in the Almagest, but also developed a planetary
hypothesis in which Aristotle’s celestial spheres were fattened to provide space
for the epicycles needed in Ptolemy’s system to account for the astronomical
data.) And Kepler had to labor painstakingly for many years through the data
compiled by Brahe. He first tried a preconceived scheme, an organization of the
solar system in terms of Platonic solids, which he then abandoned because it
did not fit the data. In particular, he was concerned with the orbit of Mars. He
tried many variants before he finally arrived at fitting the orbit as an ellipse.
Thus, by trying to account for the data, in the end he succeeded in discovering
his laws of planetary motion. As already discussed, the laws that Kepler had
empirically discovered were then derived by Newton from his law of gravity,
that is, within an explicit physical model. Of course, without knowing Kepler’s
laws, Newton might not have found his theory of gravity.

I should concede, however, that this picture of large data sets that are first
collected without an adequate theory and only subsequently inspire deep phys-
ical theories is not without exceptions. At least one exception springs to mind,
Einstein’s theory of general relativity. This theory was developed on the basis
of an abstract principle, general covariance, and was only subsequently tested
against and confirmed by empirical data.

Also, the traditional view of physics is that it does not collect more or less
arbitrary data, but conducts specific experiments whose results acquire their
meaning within an established theoretical framework.

On the other hand, however, we should also discuss the approach of Alexan-
der von Humboldt. The novelty of his expeditions rests in the systematic and
comprehensive collection of all kinds of data with all the measuring devices
available at his time, at a time when there was still very little theoretical un-
derstanding of the processes shaping the ecology of the earth. His expedition in
South America took some years, but the evaluation of the data collected during
that expedition took him several decades. His work then launched the scientific
discipline of physical geography and helped and inspired several other scientific
fields, even though no single coherent and encompassing theory emerged from
his data. Thus, Humboldt had gathered huge amounts of data, but these data
did reveal only very few coherent patterns, like the dependence of climatic zones
on altitude and latitude. In other words, not only was the model missing, but
also the data analysis largely failed in discovering general structures.
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8 Towards an abstract theory

In fact, it is a quite general finding that there exist profound analogies between
models in physically very different domains. It is actually one of the main driv-
ing forces of mathematics to consider the corresponding structures and relations
abstractly and independently of any particular instantiation and to work out
general theories. This will then make it possible, in turn, to apply these math-
ematical theories to new domains. It is then irrelevant whether such a domain
constitutes some independent reality or whether one simply has a collection of
data. For instance, similar statistical phenomena show up in quantum mechan-
ics, in the analysis of biological high-throughput data, or in the description of
social phenomena.

Understanding the laws and regularities of the transition between scales (see
e.g. [68] for the mathematical background), or in a more ambitious formulation,
a mathematical approach towards the issue of emergence (for instance, [53]), is
a theoretical challenge that transcends individual domains. Nevertheless, it
should lead to fundamental insight into the structure of reality, at an abstract
level.

In particular, it is a fundamental question in the theory of complex systems
to what extent general laws apply across different domains and disciplines, and
where the applicability of a general theory ends and a more concrete modelling
of the details of the specific system is required. For instance, which analytical
concepts and mathematical tools apply simultaneously to cells, neural systems,
psychological systems, and societies, or at least to several of them, and where
do the specific peculiarities of each of these fields enter?

In a different direction, we may ask for a theory of structure in high-dimensional
spaces. As will be explained below, even though the data may possess a large
number of degrees of freedom, these degrees of freedom typically do not vary
completely independently in large data sets, but rather obey some nonlinear
constraints. Thus, we are dealing with intrinsically lower dimensional geomet-
ric structures in high dimensional spaces. Since the particular structure will
usually not be known before having analyzed the data, we need to consider
spaces of such structures. This leads to new challenges for the mathematical
field of geometry. These spaces will then carry a probability density, telling us
about the a-priori likelihood of finding them in a particular data set. In statis-
tical terms, we then have some prior hypothesis about the data set, and such a
prior then has to be turned into a posterior by Bayes’ rule on the basis of the
data observed. Of course, this then should be done in an iterative manner. In a
different direction, we may employ methods from algebraic topology or metric
geometry in order to discover robust qualitative features of specific data sets,
see [13, 4].
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9 The challenge of big data

Both the abundance of huge data sets in almost all disciplines and the avail-
ability of the computational power to formally analyze them are quite recent
developments. We have the high-throughput data in molecular and cellular bi-
ology generated by gene sequencing, microarrays or various spectroscopic tech-
niques, the imaging data in the neurosciences, the email or movement data of
mobile phone users, the data of transactions in financial markets at millisecond
resolution, the linking patterns of the world wide web, and so on.

And almost uniformly across disciplines, we see a major transition from
model driven to data driven approaches. The latter approaches typically depend
on the statistics of large data sets. These statistics are utilized automatically,
and statistical regularities within large data sets are only used in an implicit fash-
ion, without making them explicit. Examples abound. In molecular biology, the
problem of protein folding had for a long time been approached by explicit phys-
ical models. The problem consists in predicting the three-dimensional folding
pattern from the linear sequence of the amino acids constituting a polypeptide
on the basis of molecular attractions and repulsions. As the energy landscape
is quite complicated, there are typically many metastable states, and finding
the configuration of minimal energy, i.e., the configuration supposedly assumed
by the polypeptide in the cell, therefore is computationally quite difficult, even
though powerful Monte Carlo type schemes have been developed. Recently, how-
ever, it turns out that the best predictions are achieved by data bank searches
without any physical model in the background. One simply compares the se-
quence at hand with those sequences where the folding pattern is already known,
for instance by X-ray cristallography, and then makes a statistical prediction
based on sequence similarities.

Perhaps the preceding becomes clearer when we consider a hypothetical ap-
proach to weather forecast. A model driven approach develops a detailed dy-
namical model of cloud formation and movement, ocean currents, droplet forma-
tion in clouds, and so on, and measures the many parameters of such a model,
or perhaps also tries to fit some of them on the basis of observations. Such
a model would be given by a system of coupled partial differential equations
(PDEs), for which one has to solve an initial value problem. The initial val-
ues are determined by current measurements on a grid of measurement stations
that is dense as possible, naturally with a higher density on land than on the
oceans. Since the dynamics described by the PDE model tends to have chaotic
aspects (see also the discussion in Section 3), the precision of the measurements
of the initial values is of utmost importance in order to have somewhat accurate
predictions for a few days. Likewise, the details of the model and its parameters
are crucial. In contrast, a data driven approach would like depend on accurate
measurements, but it would then try to identify those constellations in the past
whose values are closest to those presently recorded, and then use the known
weather dynamics from the past for those constellations to predict the weather
derived from the current values. This would simply require large data bases of
the past weather recordings, and perhaps some scheme of taking weighted av-

21



erages over similar constellations in the past, but it would not need any model
of weather dynamics. Such an approach should then naturally be expected to
improve as the data base grows over time.

In the geosciences, the standard scheme consists now in estimating 2-point
correlators from noise correlations at different locations (see e.g. [74, 29]), in-
stead of using physical models of, for instance, wave propagation in geological
media. The noise sources can be physical or caused by human activities. While
the differences matter at a technical level because of different noise characteris-
tics, this does not affect the principle of the method.

Or to present another example that plays a prominent role in [65], microar-
rays record the simultaneous expression of many different genes in a particular
cell condition by exposing the corresponding RNAs in the cell simultaneously to
an array of pieces of complementary DNA sequences and then simply recording
which of those DNA sequence pieces find RNA partners. The underlying bio-
logical rationale is the following. The DNA pieces are part of the genome that
is selectively transcribed into RNA which may then be further translated into
polypeptides, the building blocks of proteins. Proteins carry out most of the
essential operations in a cell. Therefore, mechanisms of gene regulation should
ensure that precisely those proteins are manufactured that are needed by the
cell in a particular situation. Therefore, precisely those pieces of DNA should be
transcribed into RNA that encode the right proteins (there are some problems
with this oversimplified account, see [77], but the microarray technology happily
ignores them). Thus, a microarray tests the expression patterns and intensities
of many DNA segments – which stand for genes in this simplified model – si-
multaneously, because the transcribed RNAs bind to the complementary DNA
pieces offered by the microarray.

In computer linguistics, for the purposes of automatic translation, models
grounded in syntactic and semantic theory are replaced by statistical techniques
that simply utilize cooccurence patterns of words in large corpora. In particular,
Google uses so-called n-gram models for the purpose of automatic translation.
This simply means that one derives the relative frequencies of strings of n words
from databases containing trillions of entries. n = 5 is a typical value. That is,
the meaning of a word – insofar as one should still speak about meaning here, in
the absence of any semantic concepts – is determined by the environment, that
is, a few words preceding and following it, in which it occurs. We shall analyze
the conceptual shifts that this implies in more detail in Section 10.

In economics, as already mentioned, techniques from statistical data anal-
ysis, like nonlinear time series analysis, are applied to financial data sets in
order to find subtle patterns that do not follow from theoretical models. This
is the new field called econophysics. Recently, econophysicists also started to
develop economic models. They thereby depart from a purely statistical ap-
proach that solely analyzes economic or financial data and now build models
of economies or financial markets themselves. Their models, however, are in
contrast to the classical economic models that employ a so-called representative
agent. The latter stands for models with many identical typical agents that
are ideally analytically tractable. The agent based models of econophysicists
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instead utilize very simple, but possible diverse and heterogeneous agents that
fit well to large scale computer simulations. That is, instead of a single type
of agent that might be rather sophisticated and grounded in economic theory,
here many simple agents are employed. These agents depend on a couple of
parameters, and the parameter values can and typically do differ between the
agents. The representative agents of economics are usually assumed to be fully
rational – the argument being that non-optimal agents are quickly exploited by
their more clever competitors and thereby driven out of the market. The diverse
agents of agent based models are not at all assumed to be rational. They rather
follow relatively simple empirical rules, and the purpose of the models is to un-
cover the collective effects of such behavior of many agents through systematic
computer simulations. The validity of the simulation results usually remains
unclear, however. An important issue is that the models of (neo)classical eco-
nomic theory strive for the ideal of exactly solvable equations, or at least for
describing the economy by a small and carefully specified set of explicit equa-
tions. On the basis of these equations and their solutions, they want to achieve
analytical insights into the working of the economy. The agent based models
of econophysicists, in contrast, employ much less rigid models, possibly with
many parameters, and large numbers of equations that can only be numerically
solved. Analytical insight no longer is the foremost aim, and one rather wants to
identify unexpected nonlinear effects and critical transitions between different
regimes triggered by small variations of crucial parameters.

Even in elementary particle physics, after the confirmation of the Higgs bo-
son, that is, a prediction made by the standard model, at the LHC, in the future
one will probably move towards the automatic analysis of large scale scattering
data in order to find unpredicted events that may not fit into any current the-
oretical model. In any case, already for finding evidence for the Higgs boson,
to a large extent automatic data analysis methods have been employed. Such
methods may find patterns of correlations or untypical events in huge data sets
by completely implicit methods. As described and analyzed for instance in [26],
the empirical evidence is gathered in four steps. At the basis, there are position
measurements. Adjacent position measurements are then combined into tracks.
Adjacent tracks in turn are combined into events. Finally, statistical ensem-
bles of scattering events contain resonances. All this is done in a completely
automated way. The tools have no special affinity to particle physics, even
though particle physicists are among the people making the most advanced use
of them. For instance, so-called neural networks encode the patterns of their
training sets in a rather indirect and completely implicit manner in synaptic
connection weights (see e.g. [7]). When they are subsequently applied to the
real data, they produce corresponding associations which may then be inter-
preted as patterns in the data set. Neural networks and other such schemes find
applications in a wide range of data domains. In fact, the methods themselves
also change, and for instance, neural networks are sometimes replaced by other
methods like support vector machines.8

8Support vector machines are efficient classifiers that use a high-dimensional linear feature
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This phenomenon, the transition from model to data driven approaches,
occurs not only in individual and specific domains, but also at the formal level.
The field of scientific computing currently undergoes a similar transition. The
field of machine learning is concerned with the development of techniques for the
automatic analysis of large data sets. Statistics, the science of finding structure
in data, is moving into a similar direction, and in fact a profound convergence
between machine learning and statistics seems to take place. In particular,
the computer intensive Bayesian methods take over much of more traditional
parametric statistics. Often, such methods are combined with stochastic search
algorithms like Monte Carlo methods or Markov type models. Lenhard[60]
also points out the interdependence between data dynamics and computational
modelling.

Big data are said to be characterized by large or even huge values of the
three Vs, that is,

• Volume: often petabytes (10005 = 1015 bytes)/day, possibly more

• Variety: heterogeneity of data types, representation, and semantic inter-
pretation

• Velocity: arrival rate and reaction time

Processing big data requires adapted strategies and methods, and it can be
decomposed into five phases

1. Acquisition and recording: filtering, compression, metadata generation

2. Information extraction, cleaning, and annotation

3. Integration, aggregation, and representation; data base design

4. Analysis and modeling; querying and mining the data

5. Interpretation; visualization; possibilities of interaction of human observers
with machine processing

For our purposes, phase 4 is the most relevant. Although computer power
is rapidly growing, and cloud computing or even access to supercomputers be-
comes ever more available, large data sets still may give rise to the “curse of
dimensionality”. This means that computer time will increase exponentially
with the number of degrees of freedom and therefore quickly exceed even the
capacities of supercomputers, unless clever use of specific structures within a
data set is made. Therefore, corresponding data analysis techniques are being
developed. An example is compressed sensing, see [25, 11, 27]. Here, the idea is
to use a specific sparsity assumption, for instance that a large and complicated
acoustic data set might be generated by a small number of sound sources only.
For instance, the sound sources might be humans carrying on conversations in
a crowd. Formally, sparsity means that a high-dimensional vector or matrix

space (see [19, 79, 84]).
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possesses only few entries that are different from 0. One does not know be-
forehand, however, which are the nontrivial ones and how many of them there
really are. Thus, there is a not very explicit, but still rather powerful and con-
straining structural assumption. Or, in a similar vein, one might assume that
the data points one has in some high-dimensional space are in fact constrained
to some low-dimensional manifold ([6]). This low-dimensional manifold, how-
ever, need not be a linear space, and therefore, even though it possesses only
few intrinsic degrees of freedom, it may still stretch into many of the ambient
dimensions. Thus, the data are supposed to possess some rather constraining
type of regularity, but again, this regularity is not explicit, and it is the task of
a machine learning scheme to use such an abstract assumption in an efficient
manner. When one incorporates such an assumption, one may drastically re-
duce the number of computations needed to identify the underlying structures
from the data set, for instance the sound sources in the above example. The
mathematical techniques required are typically nonlinear and therefore on the
one hand more flexible in discovering and utilizing hidden regularities and pat-
terns in the data, but then, on the other hand, require more specific, but ideally
still automatic, adaptations to the data set at hand.

In many respects, human cognition is still superior to automatic data anal-
ysis techniques. In order to utilize the power of human cognition, however, it
is necessary to convert the data into a format that is familiar to humans. This
leads us into the domain of visualization, a newly emerging scientific discipline
between computer science, mathematics, and psychology. Thus, the aim is to
develop formal methods that can convert a data set into a form in which humans
can easily discern patterns. At a more advanced level, the combination of ma-
chine learning tools and human perception may become interactive, which was
the goal of the EU funded research project CEEDs (The Collective Experience
of Empathic Data Systems).

10 Big data and automatic translation, or a paradigm
shift from linguistic theory to language pro-
cessing

Modern linguistic theory and philosophy is founded upon basic oppositions, for
instance between

• langue (the abstract system of a language) vs. parole (the concrete utter-
ance) (de Saussure [76])

• diachronous (across time) vs. synchronous (simultaneous) (de Saussure
[76])

• competence (the ability for the correct syntax of one’s native language) vs.
performance (the actual production of utterances) (Chomsky [14])
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• deep structure vs. surface structure, i.e., a language independent represen-
tation in an abstract structure is transformed into a sentence according to
the syntax of a specific language (Chomsky [14]), and this transformation
obeys the general rules of abstract grammar; the latter have become more
general and abstract themselves in the course of Chomsky’s work [15, 16]

• spoken vs written language, again from de Saussure [76] and emphasized
more recently by Derrida [22].

Perhaps the most important opposition is that between de Saussure’s [76]

• paradigmatic alternatives and syntagmatic series; this means that a word
at a given position in a sentence can be chosen paradigmatically from
a list of words that could grammatically occupy this position, but has to
obey the syntactic rules of the sentence. This is also an opposition between
absence and presence, or between selection and constraint; the alternatives
that have not been chosen are absent, but the syntactic constraints are
present through the other words in the sentence.

These oppositions are (more or less) formal, but not directly mathematical.
They gave rise to a formal theory of language, and for some time, one attempted
to utilize that theory for purposes of automatic translation. The idea was essen-
tially to automatically infer the grammatical relationships within a given sen-
tence, that is, the dependencies between the different words and grammatical
tokens and the internal references, like the referents of pronouns and anaphora.
That grammatical structure could then be transformed into the corresponding
structure of another language, and the meanings of the individual words could
be correlated with the help of good lexica. For instance, for some time [72] was
popular as a suitable grammatical theory for such purposes. All such attempts,
however, have more recently been brushed aside by the big data approach to
automatic translation, as developed and pushed in particular by Google. That
approach completely ignores, and often even ridicules, linguistic theory, and
rather draws upon correlations in huge linguistic corpora. My purpose here is
to analyze the underlying conceptual shift and to describe what mathematical
structures are behind this approach. Those mathematical structures are com-
pletely different from those developed from the context of formal linguistics.
And the people working on automatic translation within this paradigm express
little interest, if at all, in the conceptual basis of their endeavor. Nevertheless,
that will be important for this essay.

Thus, the oppositions sketched above no longer play a role. Instead, we see
the corpus, that is, a data base of texts in the language(s) in question, as the
single basic element. The corpus scales by size. Thus, a small corpus might be
seen as corresponding to parole, whereas big corpora can approach the langue
side of de Saussure’s dichotomy, and the same applies to Chomsky’s dichotomy
between competence and performance. More precisely, there no longer is any
such abstract thing as competence. The possibly huge collections of linguistic
data are all there is. Corpora do not care much whether they have been as-
sembled from contempory, hence essentially simultaneous texts or whether they
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result from scanning texts over longer periods of time. The only relevant criteria
are of a practical nature, digital availability and computational capacity. Also,
corpora can as well be based on automatically recorded spoken language as on
written texts. The difference is again largely irrelevant, or at least plays no
basic conceptual role. (More precisely, what remains is the technical difference
between off-line and on-line processing and translation.)

More importantly and interestingly, the opposition between de Saussure’s
paradigmata and syntagmata is also resolved. This best explained through the
mathematical concepts of stochastic processes and Shannon information (see
e.g. [18, 81, 61, 46]). De Saussure talked about alternative words at a given
position in a sentence. This is qualitative, but not quantitative. Information
theory, in contrast, would quantify the probabilities of different words to occur
at such a position. These probabilities then will not only depend on the abstract
properties of that position, but also on the concrete words before and behind
it in the sequential string forming the sentence or the text. That is, we do not
just have probabilities for the occurrences of words at a given position, but we
rather have transition probabilities from a word, or more precisely, a segment of
a few words, to the next. In fact, automatic translation today mostly works with
pentagrams, that is, overlapping strings of five words.9 Thus, we no longer have
de Saussure’s qualitative opposition between selection and constraints, but both
aspects are combined and made quantitative within the concept of a stochastic
process. (In fact, this is a slight oversimplification. A stochastic process would
occur if one has to guess or produce the next word on the basis of those preceding
it. Thus, a process describes a temporal sequence as in actual speech. A cor-
pus, however, is not a process unfolding in time, but is simultaneously given as
a whole. Therefore, the probabilities are determined not only by the preceding
words, but also by the following ones. The underlying mathematical principle,
however, is not fundamentally different.) Thus, while the big data approach to
automatic translation does not care about an underlying conceptual structure,
its analysis nevertheless sheds some light on the limitations of formal language
theory, and it points towards mathematical structures that replace the qualita-
tive oppositions by quantitative probabilities. These probabilities are nothing
but relative frequencies of pentagrams, i.e., certain word constellations, and
they can be automatically computed from the corpora at hand. The larger the
corpus, the more accurately such probabilities can be determined, in the sense
that further additions to the corpus will likely change them only very little. In a
certain sense, this approach asks more precise questions than formal linguistics.
When analyzing a temporal sequence, like a spoken text, it would not simply
ask at each instant “what could come next?”, but rather “how well can I guess
what comes next?”, and the latter is quantified by Shannon’s information [81].

9In the terminology of statistical physics, the correlation length of word sequences in texts
becomes relatively small after five words. In fact, one would expect that it never becomes
exactly zero, that is, there do exist correlations of arbitrary length, whatever small. Thus, in
technical terms, when moving from a word to subsequent ones in a text, we have a stochastic
process that does not satisfy a Markov property for strings of words of any finite length.

27



Of course, this approach to automatic translation has its limitations. It
cannot capture long range dependencies. In a nutshell, the basic assumption
underlying the approach is that the transition between overlapping pentagrams
satisfies a Markov property, that is, no information from more than five words
back in the sequence is needed for the probability of the next word. From
the syntactic perspective, this for instance does not adequately capture the
structure of the German language where the different components of the verb
can be separated by many words in a sentence. From the semantic perspective,
the meaning of some sentence in a text may refer to other, much earlier parts
of that text, or even to a context outside the text itself. In formal terms, let us
recall also our discussion about Markovianity at different levels in Condition IV
in Section 5.

One of the central, but to a large extent still unresolved, issues of linguistics,
that between syntax and semantics, between structure and meaning, is simply
bypassed by automatic translation. A human translator would first try to ex-
tract the meaning of a text and then express that meaning as well as she can in
the other language. Automatic translation, in contrast, simply transforms one
structure into another one.

11 The issue, again and hopefully clearer

We are faced with the following alternative to which no general answer can be
given, but which needs to be evaluated in each individual situation.

1. The significance of data collected depends on the specific context from
which they are taken, and they cannot be fully understood without that
context.

2. Data sets typically possess internal structure, and much of such structure
generalizes across different disciplines, domains and contexts, or is at least
accessible to context independent methods. Identifying and understanding
that structure with formal tools will then in turn enable us to use the data
to learn something new and insightful about their context.

This is nothing but the old alternative between specificity and generality, as,
for instance, already described by Kant. It is easy to deplore too much of an
emphasis on either side and support this by supposedly misguided scientific case
studies, and to declare a one-sided practice as agnostic or unscientific. The real
challenge consists in finding the appropriate balance between the two aspects in
each case. Currently, big data sets offer new opportunities for formal methods
and computational models, and this may shift the balance for a while.

Concerning the role of mathematics, this might transcend the alternative be-
tween a mathematics of content that establishes and analyzes relations between
the concepts of a theory and a purely auxiliary mathematics that is relegated
to the role of data handling and preprocessing. What should emerge rather is a
mathematics that develops new abstract concepts for analyzing and representing
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data spaces. For instance, a partial merging of the domains of statistics, high di-
mensional geometry, information theory and machine learning might take place.
Such a mathematics would help to detect structures, as opposed to either for-
malizing structures proposed and developed by other scientific disciplines or to
offering tools for fitting given data into such a structure. This process can only
enhance the role and the importance of mathematics, as it becomes liberated
from being instrumentalized by conceptualizations that are externally imposed.
Instead of accepting models from particular domains, mathematics would itself
propose abstract metamodels, like sparsity, smoothness, or symmetry.

12 Some consequences

The preceding has important implications for the role of models and hypotheses
in the scientific process. From the perspective of Bayesian statistics, we begin
the process of scientific inquiry with prior hypotheses constructed by us, in what-
ever way we may find reasonable or on the basis of whatever prior experience we
may have. During the process, such a prior hypothesis gets transformed into a
posterior one on the basis of the observations made or the data acquired. This is
achieved by applying a fixed rule, that discovered by Bayes. The role of models
then is relegated to provide sets of parameters that have to be fitted to the
data. This is in stark contrast to the ideal of a model in physics. Such a model
should contain only very few, and ideally no free parameters at all that are not
theoretically determined but need to be measured. Even for such a nearly ideal
model, one may question whether empirical adequacy should constitute a proof
of the correctness of the model. In a model with many free parameters that
need to be fitted to the data, certainly empirical adequacy can no longer count
as a proof of the correctness of the models, and indeed, in complex situations,
the term “correct model” may lose its meaning entirely. There no longer is
such a thing as a correct model. There may only be a superior fit of the
parameters to the data collected according to unknown probabilities. Alterna-
tively, we might be seeking regularities in data on the basis of certain structural
hypotheses, as described in Section 9. Again, such structural hypotheses like
sparsity do not come from the data at hand, but are applied by us in order to
get some handle on those data. In a certain sense, they constitute a structural
prior, although that prior is usually not updated in a Bayesian manner.

While all this may sound rather agnostic, in practice one might get quite
far with those schemes of Bayesian updates, parameter fitting, and structural
hypotheses. It is challenge for mathematics to analyze this issue theoretically.

Putting it somewhat differently: Data analysis depends on prior structural
assumptions. That could be the prior of a Bayesian approach, or it could be
the choice of a family of models as in parametric statistics. It could be a
general structural hypothesis like sparsity, a low-dimensional manifold (for in-
stance arising as the center manifold of a dynamical system), certain invariances
or symmetries etc. This is the epistemic side. At the ontological side, is there
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anything underlying the data matching those assumptions? One may argue that
these assumptions are our constructions, and that therefore there is no guaran-
tee of any correspondance with the data source. However, a simple theory can
sometimes enable us to discover specific phenomena that would otherwise not
emerge from beneath the heap of data. One may also argue, as I have tentatively
done in this essay, that in some situations, such assumptions could be justified
by the structures from which the data are derived, but there is no guarantee
for that. The question then is whether those instances where it holds – we have
discussed Newton’s theory of planetary motion, the Schrödinger equation, bio-
chemical reaction kinetics, the Hodgkin-Huxley equations or traffic dynamics
– are just lucky coincidences, or whether there are more systematic structural
aspects of reality – whatever that is – that make our speculations sometimes so
successful.

13 The dream of mathematics

Does this bring mathematics closer to its dream of a pure structural science,
abstract and independent of specific content? We have argued already above
that mathematics seeks regularities. Perhaps these regularities are discovered
in specific domains, but hopefully, they should apply also in other domains, and
ideally, they should be universal. For instance, while Lie’s theory of symmetry
groups was originally motivated by the symmetries of the systems of classical
mechanics, the theory as such is abstract. In particular, through the work of
W.Killing and E.Cartan, it lead to the classification of all possible continuous
symmetries (see [40] for the history). This turned out to be of fundamental
importance for quantum mechanics, and even further for quantum field theory.
It permeates much of pure mathematics. It is also relevant in all applications
where continuous symmetries arise. Even more generally, the notion of a group
(Lie groups are a special type of continuous groups), as developed by Gauss
and Galois, first arose from studying solutions of algebraic equations, that is, a
specific mathematical problem, but it then become something of a paradigm of
a mathematical structure as such, and it is now important in almost all fields
of mathematics, as well as in many areas of physics and other disciplines.

Perhaps data science enables further steps in this direction. Here, even the
original problems are no longer domain specific, as the symmetries and invari-
ances of the systems of classical mechanics, but by their very nature already
general and abstract when they apply to all kinds of large data sets. It is then
natural that the mathematical tools developed to investigate these problems
are at least as abstract as those problems themselves. Thus, data science may
lead to an abstract theory of structures, that is, the purest form of mathemat-
ics. Incidentally, this brings fields of mathematics into focus that hitherto have
been considered as applied and not pure mathematics. Statistics is an example.
On the one hand, it can be mathematically treated in terms of the geometry
of families of probability distributions, see e.g. [1, 3], and on the other hand,
high-dimensional statistics and machine learning might also become a science
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of distributions of geometric objects in high-dimensional spaces, again indepen-
dent of any specific content. But there should be mathematical structures even
more abstract and general than that.
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[73] B. Riemann, Über die Hypothesen, welche der Geometrie zu Grunde
liegen, edited with a historical and mathematical commentary by J. Jost,
Springer, 2013; English translation: On the hypotheses which lie at the
bases of geometry, Birkhäuser, in press
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