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This paper discusses the application of object-oriented
programming (OOP) design concepts to the development
of molecular simulation code. A number of new
languages such as Fortran 90 (F90) have been developed
over the last decade that support the OOP design
philosophy. We briefly describe the salient features of
F90 and some basic object-oriented design principles. As
an illustration of the design concepts we implement a
general interface in F90 for calculating pairwise inter-
actions that can be extended easily to any number of
different forcefield models. The ideas presented here are
used in the development of a multipurpose simulation
code, named Music. An example of the use of Music for
grand canonical Monte Carlo (GCMC) simulations of
flexible sorbate molecules in zeolites is given. The
example illustrates how OOP allowed existing code for
molecular dynamics and GCMC to be easily combined to
perform hybrid GCMC simulations with minimal coding
effort.
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INTRODUCTION

Computer simulation consists of two levels of
abstraction. The first level involves taking a physical
phenomenon we wish to simulate and, after making
suitable assumptions and approximations, descri-
bing it as a sequence of mathematical steps. The
second level then involves communicating the
mathematical model to the computer using a suitable
form of programming abstraction called a program-
ming language. Many programming languages have
been developed since the early days of assembly

language. This development has been spurred by the
constant need to enable the programmer to write
programs faster with greater program efficiency,
understandability, portability and extensibility. Also
as new programming paradigms were defined, new
languages had to be developed to support these
paradigms. Structured programming and object-
oriented programming (OOP) are two important
paradigms that have shaped the development of
most modern languages.

In the 1970s and early 1980s structured programming
[1] was the dominant programming methodology.
Higher-level languages such as Fortran, C and Pascal
which supported this form of coding became very
popular during that period. The idea behind
structured programming was to divide each pro-
gram into a series of smaller tasks, which in turn
could be further simplified until the task could be
implemented without further decomposition. This
was referred to as the “top-down” design approach,
and it worked well since most complex problems are
inherently hierarchical. However, each top-down
design produced a solution unique to that problem,
and hence it was difficult to reuse subroutines in
other projects without extensive modifications. Also,
this approach did not give adequate consideration to
the data being used.

Then in the last one and half decades another
approach was developed, where instead of sub-
dividing the problem into tasks the design focus was
shifted to the data structure. This came from the
realization that a system’s functionality tends to
change more than the data on which it acts. Data and
ways of structuring it were given primary impor-
tance and the code was organized in modules
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around it. By combining the data structure with its
intrinsic functionality, these modules were “self-
sufficient” entities. These modules could be just
“plugged” into new programs, thus improving
reusability and reducing coding time. Also, since
these modules were designed to emulate real world
objects they also made the code easier to understand
and maintain. These modules were called objects and
the programming approach was referred to as object-
oriented programming, often abbreviated as OOP. That
some of the most popular languages such as C++,
Java and Fortran 90 (F90) today support this coding
methodology is a testament to its advantages.

OOP with F90 has found widespread application
in the simulation community over the last few years
[2]. The principal advantage of FO90 over the other
OOP languages is that it is fully backwards
compatible with Fortran 77 (F77), allowing program-
mers to use the vast amount of F77 code that has been
developed over the years. Recently, Morieira and
Midkiff [3] analyzed the features of F90 with a
program for calculating the electrostatic potential in
a shielded microstrip structure. They compared the
performance of F90 with High Performance Fortran
(HPF) and C++. They found that while HPF even on
a single node was faster than F90 for some systems,
F90 was faster than C++ for every system. Akin [4]
illustrates a number of object-oriented features in F90
that are important for engineering computation, and
Carr [5] discusses how objects can streamline code
development by implementing a module for per-
forming vector operations in F90. These and a host of
other papers from the numerical computing com-
munity [6-9] are indicative that although this
community has its share of die-hard F77 users, FO0
has made significant headway in the last few years.
However, OOP in F90 has not yet made significant
inroads in molecular modeling.

This paper is organized as follows. In the next
section we review the basics of OOP. We then
describe some of the salient features of F90 and its
differences from F77. We then discuss some of the
typical challenges encountered while writing mole-
cular modeling programs and discuss how OOP can
be used to generate elegant solutions to some of these
problems. We then include source code for some
objects that are small and may be potentially useful
for molecular modeling. Finally, we present the use
of our Music code for developing a new type of
grand canonical Monte Carlo (GCMC) technique for
simulation of adsorption in zeolites.

BASIC TENETS OF OOP

As discussed in the previous section one of the key
features of any higher level language is its ability to
abstract data. Programming languages that support

OOP go further by providing features such as
encapsulation, inheritance and polymorphism,
which are described below. These features make it
easier to reuse and extend code while minimizing the
probability of introducing bugs. To understand how
these features work it is useful to divide program-
mers into two groups. One group is concerned with
providing fundamental subroutines or libraries
which form the building blocks of larger appli-
cations. The second group of programmers then are
those who use these fundamental libraries in their
applications.

Encapsulation refers to hiding information that the
creator of the object does not want the user to have
access to. The user can only access the properties of
any object by function calls provided by the creator.
This has a number of advantages. The user sees a
much cleaner interface by which the object can be
used rather than having to worry about the
unnecessary implementation details. The list of
functions provided by the creator to access the object
is referred to as the Application Programming Interface
(API). The more important benefit is that if the
creator of the object module wants to change the data
representation of the module it can be done without
worrying about breaking the code that uses the
object. All that the creator has to ensure is that the
functions in the API still work correctly.

OOP tries to give the programmer the power to
create objects that correspond closely to objects in the
real-world problem domain. Just as objects in the real
world are related by an “is-a” type of relationship
(e.g. an apple “is-a” fruit), so are objects in OOP. This
kind of relationship is implemented in OOP by
inheritance. Given two objects P and C, if C inherits
from P then it automatically gets all the data
structures and functionality of P. In addition, the
object C can further add to what it inherits, thereby
increasing its own functionality. Thus, inheritance is
a way of taking a general sort of an object and
tailoring to fit specific needs. For instance, every
square matrix “is a” matrix, so every function that is
possible on a matrix type object is also possible on a
square matrix object. In addition, the function
eigenvalue is only valid for a square matrix. So, the
module square_matrix could use inheritance to
get all the functionality for the module matrix and
in addition define its own function for calculating
eigenvalues. In OOP terminology module matrix
would be referred as the base class and module
square_matrix as the derived class. Inheritance
further emphasizes the data-centric nature of OOP
by enabling the user to create hierarchies of data
types.

Closely related to inheritance is the concept of
polymorphism. Polymorphism enables the program-
mer to provide a generic interface to a number of
related subroutines. Polymorphism comes in two
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flavors—static polymorphism also known as over-
loading and dynamic or run-time polymorphism. Static
polymorphism is used to resolve calls to subroutines
with the same names on the basis of parameters
passed to the subroutine. For instance, there are a
number of ways of specifying parameters to
calculate the area of a triangle. Imagine writing two
routines for calculating the area of a triangle as
follows:

Interface getarea
Module Procedure getarea2
Module Procedure getarea3d
End Interface

Real Function getArea3(a, b, c)
Implicit None
Real a, b, ¢

Real s

s = (a+b+c)/2.0
getArea3 = Sqrt(s*(s-a)*(s-b)*(s-c))
End Function getArea3

Real Function getArea2(base, height)
Implicit None
Real base, height

getArea2 = 0.5%basexheight
End Function getArea2

Then getArea (3.0, 4.0, 5.0) calls the first
function and getArea (3.0, 4.0) calls the second
function, thus providing a more uniform and
intuitive interface to the function.

Dynamic polymorphism involves resolving calls
to functions related by an inheritance hierarchy at
run-time as opposed to the compile-time resolution
provided by static polymorphism. By virtue of
inheritance a “parent” parameter object can be
replaced by anyone of its “child” objects in a
function or subroutine call. Inheritance guarantees
that a derived class object will have at least the same
functionality as its base class if not more. This
implies that different types of objects related by
inheritance can now be passed to the same routine.
In OOP since the functional implementations are
closely tied to the objects, this in turn implies that
depending on the object passed to the routine at run-
time different functions may have to be called. This
ability of a routine to take different types of objects as
parameters and resolve the function calls at run-time
is referred to as dynamic polymorphism. This sort of
polymorphism, while not directly supported in F90,
can be simulated with the use of pointers as
described by Decyk et al. [8,9].

Object-oriented program design requires the
programmer to think about the problem at a more

fundamental level to identify relevant objects and
then define the relationships among them. Language
features such as inheritance and polymorphism then
facilitate translation of these ideas into computer
code. Admittedly OOP ideas take some getting used
to. There are a number of excellent papers and books
[2,9,10] available to provide a deeper understanding
of these concepts and their applications.

FEATURES OF FORTRAN 90

Fortran 90 was designed by the Fortran committee
with some of the following goals in mind as
described by Reid [11].

e Provide greater expressive power;

e Enhance safety;

e Provide extra fundamental features (such as

dynamic storage);

Exploit modern hardware better;

e Improve portability between different machine
architectures.

In this section, we give a very brief overview of
some of the key differences between F77 and F90,
and we start building up some objects of use in
molecular simulations. For more details about F90
please refer to Refs. [9,12].

F90 makes a number of ornamental changes to
improve the source code formatting. F90 supports
free-formatting, which disables any special signifi-
cance that was attached to columns in F77. An “&” at
the end of a line indicates that the line is continued.
The comment character “!” can be placed anywhere
on a line with the compiler ignoring anything that
follows. We use this improved formatting in the code
listed in this paper.

User-defined Type Definitions

One of the biggest improvements over F77 is the
ability to abstract data into user-defined types (also
known as derived types). For instance, we can
associate a number of characteristics to the terms
“atoms” and “molecules”. Abstractions of these
terms can be defined using the Type keyword as
shown below:

Type AtomParams

Character(len=2) :: symbol ! Atomic Symbol
Character(len=100) :: name | Name
Real prowt ! Atomic Weight
Integer :: atno ! Atomic Number
End Type AtomParams
Type MoleculeParams
Character(len=100) :: name ! Name of the molecule
Real irowt ! Molecular Wt.

Integer :: natoms ! No. of atoms
Type (AtomParams), Dimension(MAX_ATOMS) :: atoms
! MAX_ATOMS is the maximum expected number of atoms
End Type MoleculeParams
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Now we can use these types just as we would use a
primitive data type to define our variables. To
declare an array of three molecules and then access
its individual fields we use the % symbol as in:

module. This list is specified with the Only keyword.
This makes the code more maintainable by immedia-
tely conveying to the reader the source of variables
and routines used in a module.

Type(MoleculeParams), Dimension(3) :: molList

moList(1)%name = ’Methane’ ! Assign name Methane to 1st molecule
moList(1)%wt = 16.0

moList(1)%natoms = 5

moList(1)%atoms(1)%name = ’Carbon’ ! assign name carbon to 1st atom

! of 1st molecule

Also note that we can use a derived type for the
definition of fields of another derived type. In this
case we used AtomParams in MoleculeParams. Thus,
we can start to build a hierarchy of data structures
with relationships that reflect the order in the
physical problem space.

Modules

In F77 the basic building blocks of a program were
functions and subroutines. F90 adds another build-
ing block called a module. A large part of the OOP
functionality of F90 comes from the use of modules
since they provide a way to couple the data and its
associated functionality into one programming unit.
We will use the skeleton implementation of a three-
dimensional vector object given in Appendix 1 to
illustrate a number of features of F90 in general and
modules in particular.

A module is defined using the keyword Module.
Modules can be broken up into two major parts
separated by the Contains keyword. The section
preceding this keyword primarily describes the data
type definitions and the inferface to the routines
defined in the module. The routines are then defined
after the Contains keyword.

Modules provide a mechanism for supporting
encapsulation in F90 through the keywords Public,
Private and Use, Only. Just as we can build a hierarchy
of user-defined type definitions, it is possible to build
a hierarchy of modules. The Use keyword provides
access to the variables and routines defined in
another module. As discussed before it is a good
practice to hide the implementation details from the
users of modules. The keywords Private and Public
can be used to change the visibility of the variables
and routines defined in a module. It is also good
programming to “use” only what is needed from a

Type (MoleculeParams), Allocatable, Dimension(:) ::

Integer 1l oerr
Read(*,*) nmoles

Allocate(moList (nmoles), STAT=err)
If (error /= 0) Then

In addition to data encapsulation, modules provide
explicit interfaces to the routines defined inside them.
This means that the compiler has complete infor-
mation regarding the type of parameters being passed
between routines, enabling it to do parameter type-
checking. Another advantage is when passing arrays
as arguments there is no longer any need to pass their
dimensions. This can be seen in the subroutine
vector3D_initl in Appendix 1 where the dimen-
sion of the variable arr is not specified. Explicit
interfaces thus help to reduce the number of
arguments and make the code less prone to insidious
errors arising from parameter type incompatibility.

The explicit interface provided inside modules is
also useful in supporting overloading. By using
the interface keyword a generic name can be assig-
ned to routines with different parameters defined
in a module. Thus, a call to vector3D_init will
be resolved to either vector3D_initl or
vector3D_init2 depending on whether the
second argument is an array or a number. In addition
to overloading subroutines and functions, it is also
possible to overload operators as shown with the
vector3D_add method. The Optional and Present
keywords provide another mechanism for designing
routines with flexible argument lists. The Optional
keyword makes the argument optional to the
routine. To check whether the optional argument
was passed, the keyword Present is used as
illustrated in the routine vector3D_display.

Arrays, Pointers and Dynamic Memory

A much sought after feature in F77 was the ability to
dynamically allocate memory. This feature was
added to F90. The dynamic memory is managed by
using the keywords Allocate, Allocatable and Deal-
locate. The dynamic allocation is done as shown
below:

moList

! Read the no. of molecules
| Get space for ’nmoles’ molecules

Write(0,*) ‘‘Could not allocate memory for moList’’

Stop
End If
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Allocate creates memory on the heap and it stays
for the length of the program. It is good program-
ming practice to return the memory to the operating
system once we are done with it. This is done by
using the Deallocate command.

Deallocate(molList, STAT=error)

If (error /= 0) Then
! We had problems returning the memory
Write(0,*) ‘Could not deallocate ‘‘moList’’’
Stop

End IF

Allocatable arrays make for more flexible code
while minimizing memory waste.

Often we want to have allocatable fields in an abs-
tract data type. For instance, in moleculeParams
we may want to make the atom array an allocatable
type to reduce memory waste.

Type MoleculeParams

Character (len=100) : name
Real oWt
Integer :: natoms

End Type MoleculeParams

Unfortunately, this is illegal in F90 since Allocatable
is not an allowed attribute for fields in the user
defined types (this will be fixed in Fortran 2000).
Instead we have to use the pointer attribute. Pointer
variables hold the location of memory as their
value. Depending on the type of the pointer, this
value could refer to the location of an integer, an
array or a derived data type. Another way to
think about pointers is as aliases to a particular
variable, e.g.

Integer, Target :: a

Integer, Pointer :: ptr

a=5t

ptr => a ! ptr is now an alias for a

ptr = 7 ! a is now 7

The variable ptr is said to point to a or be
Associated with the variable a. To dissociate the
pointer we use Nullify (ptr). To find out if a
pointer is associated we use the keyword Associated
as in

Integer, Target :: a
Integer, Pointer :: ptr
a=25

ptr => a

If (Associated(ptr)) Then ! Pointer is Associated
Write(*,*) ’ptr is associated’

End If

Nullify(ptr)

If (.Not. Associated(ptr)) Then

Not Associated anymore
Write(x,*) ’ptr is NOT associated’

End If

I Pointer is

Pointers can be used to solve the problem of
having dynamically allocatable fields in derived data

types as shown below. This piece of code will
initialize the number of molecules and number of
atoms as specified by the user.

Type MoleculeParams

Character(len=100) :: name ! Name of the molecule
Real oWt ! Molecular Wt.
Integer : natoms ! No. of atoms

Type(AtomParams), Dimension(:), Pointer :: atoms

End Type MoleculeParams

Type (MoleculeParams), Allocatable, Dimension(:) :: molList
Read(*,*) nmoles ! No. of molecules
Allocate(moList(nmoles), STAT=error)
Do i=1, nmoles
Read(*,*) natoms ! No. of atoms in molecule ’i’
Allocate(moList(i)%atoms(natoms), STAT=error)
End Do

Pointers also allow us to implement polymor-
phism in F90 [9] as we shall see later.

| Name of the molecule
! Molecular Wt.
! No. of atoms
Type (AtomParams), Dimension(:), Allocatable :

atoms ! * ILLEGAL *

In the style of Matlab ® [13], F90 provides
functionality so that arrays may be used in whole
expressions with scalars as in,

Real, Dimension(10) :: arA, arB, arC
Real :: sch

scD =1.0

arA = arB + scD*Cos(arC)

In addition, subarrays of larger arrays called
“sections” [11] may be used as arrays. For
instance,

Real, Dimension(10, 10)
arA(:,10) = arB(1,:)

I set 10th column of A to 1st row of B
arC(1:3,1) = arA(2:6:2,1)

1 C(1,1)=A(2,1), C(2,1)=A(4,1), C(3,1)=A(6,1)

:: ardA, arB, arC

Not only is this more succinct but it is also more
computationally efficient than writing Do loops since
the optimization is better [11].

Portability

With the proliferation of a large number of
architectures and operating systems it is difficult to
ensure portability especially with regard to numeric
operations. Towards this end, F90 provides a way to
specify the precision and range of numbers that
remains constant across platforms. This is done
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using the Selected_real_kind, Selected_int_kind and
Kind keywords. The usage is illustrated below:

involving intramolecular interactions work with
various forms of generalized coordinates.

! Define a Real Kind with Precision of 9 digits and

! Range of 10750
Integer, Parameter ::

RDbl = Selected_real_kind(9, 50)

! Define an Integer Kind with 10 significant digits

Integer, Parameter ::

IDbl = Selected_int_kind(10)

! Now use the kind values to declare variables

Real (kind=RDbl)

:: a ! This variable has 9 digits of

! precision and range of 10750

Integer (kind=IDbl) ::

The result of intrinsic functions Selected_real kind
and Selected_int_kind is a kind type that meets, or
minimally exceeds, the requirements specified by the
precision and range [12]. This mechanism ensures
program portability across platforms since different
architectures have different precisions for primitive
data types.

MOLECULAR MODELING WITH OOP

Two important aspects of molecular modeling that
are constantly evolving are move types and force-
fields. Examples of move types include molecular
dynamics integration, Monte Carlo translation of a
molecule, etc. New types of moves are developed to
accelerate the speed of the simulation, whether it is
to achieve equilibrium more quickly or to lower the
ratio of CPU time spent per unit of physical time
while tracking the system dynamics. While the
ability to sample a phase space more efficiently
increases the precision of the simulation result, the
accuracy of the simulation is determined by the
forcefield and the parameters employed. Conse-
quently, new and improved forcefields are also
constantly being developed.

As computer simulations become more reliable
there is an increased demand on the researcher to
cater to a wider array of problems. This often
requires the ability to deal with many different kinds
of forcefields, and as the problems get more complex,
greater functionality is also required to incorporate
different kinds of move types into one simulation.
The integration of various forcefields and move
types brings with it new challenges for data
representation. The different move types often
require different forms of representation for the
current configuration of the system. For instance, it is
usually most convenient to work in Cartesian
coordinates for molecular dynamics simulations
whereas generalized coordinates are preferred for
doing Monte Carlo simulations of molecules with
constraints. This is also true for various terms
comprising a forcefield. While terms for pairwise
interactions require Cartesian distances, terms

b ! This integer has 10 significant figures

The problem then is to find a “clean,” easily
extensible approach to represent the data in the
simulation, making the programs more flexible and
ensuring faster code development. The OOP para-
digm lends itself naturally to such an approach by
enabling the programmer to cast the data objects as
more direct representations of real world objects.
Recently, a number of groups [14-16] have described
the design of some basic objects that can be used as
building blocks for various types of molecular
simulations. They illustrate how relatively straight-
forward it is to extend the existing building blocks to
design objects for new simulations. The idea then is
to distribute these objects to other groups who can
customize them according to their needs. Huber et al.
[14] and Sadus [15] implement the objects using
C++, whereas Kofke et al. [16] use Java as their
language of choice. While F90 does not support OOP
in the full traditional sense of the word, it does lend
itself to a data-centric programming style. We
illustrate the design and implementation of OOP
objects in F90 by implementing a number of
forcefields describing pairwise interactions.

Since F90 does not have an OOP syntax, we define
a few programming style rules that enable us to
enforce the OOP paradigm more effectively. These
rules are given below:

1. All routines in a module start with the name of
the module to tie the function more strongly with
the module name.

2. Each module has defined within it a user defined
data type that is representative of the data in the
module.

3. All the public routines in the module take as their
first parameter a variable of this representative
data type. This enables a close coupling with the
data object and the functionality that is provided
by the routine.

4. Each module has an init routine to initialize the
data fields of the variable of the representative
data type.

5. Each module has a display routine to report the
values of data fields.

6. Each module has a cleanup routine to take care of
deallocating memory if necessary.
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A molecular simulation program can be viewed as
consisting of two distinct parts, the initialization and
the actual run. The initialization is responsible for
setting up the initial configuration, the forcefield
parameters and the parameters for the different
move types. One of the difficulties of designing a
general purpose simulation code is that parameters
and initialization for the different forcefields and
move types vary widely. OOP allows one to provide
a generic interface that is used by any driver program
to initialize different move types and forcefields.

We have used the ideas discussed above in the
development of the Multipurpose simulation code
(Music). All the forcefield calculations (estimation of
energies and forces resulting from interparticle
interactions) are wrapped into a forcefield
module. Similarly, all the calculations associated
with move types (molecular dynamics integration,
Monte Carlo insertions etc.) are wrapped under the
moves module.

The interface for forcefield is defined so that it
receives positions of all atoms in the system and
returns the energies and forces on particles of
interest. The calculation of forces is optional because
it is not required during Monte Carlo simulations.
Also it is not necessary to perform calculations on all
molecules every time. During a Monte Carlo
insertion move it is only necessary to calculate the
interaction energy of the newly inserted molecule
with rest of the system, whereas during an MD
simulation we need the forces on all particles during
each step of the integration. The forcefield object
contains all information regarding intermolecular
and intramolecular interactions. The intermolecular
interactions are usually calculated using pairwise
potentials like Lennard Jones potentials. The pair-
model module which does this is described later in
the section.

The interface for moves is defined so that it takes a
particular configuration of the system and changes it
to a different one. It returns the energies of old and
new configurations. For example a Monte Carlo
translation move will pick one of the molecules and
translate it into a different position and then return
the old and new energies. This new trial configu-
ration can be accepted or rejected by the main calling
program based on the Monte Carlo acceptance
criterion [17].

The actual run usually consists of a number of
iterations where the phase space is sampled by
perturbing the configuration according to move
types derived from statistical mechanics. This
process can be abstracted as illustrated in Fig. 1.
Now if we can define a generic interface that can be
used by all move types to “communicate” with any
type of forcefield then we can quickly create new
simulations by “plugging” together move types and
forcefields as we desire.

Configuration(i)

|

Moves

positions

F

| energy, forces Forcefield

3

Configuration(i+1)

FIGURE 1 The anatomy of a simulation run.

F90 enables us to create such generic interfaces. To
illustrate the methodology we implement an inter-
face that is used to initialize various models for
calculating pairwise atomic interactions. This object
will be used by the forcefield module. The object is
implemented in the module called PairModels and
consists of two main routines, PairModels_init
and PairModels_getinteraction (Appendix2),
as well as display and cleanup routines.

The responsibility for initializing parameters
and getting interactions is then passed on to the
relevant potential model object as specified in
PairModel_init. This makes sense since each
type of potential model object “knows” what
parameters it needs and how to use them. The
Lennard-Jones potential model object called ]j is
shown in Appendix 3. This scheme enables us to
specify the kind of potential model we want to use as
an input parameter string without changing any
code. Also, to add another pairwise potential model,
all we need to do is modify the module
PairModels, making it easy to extend the code.
These changes will not affect other objects dealing
with move types or intramolecular potentials.

The module PairModels presented here can
be downloaded from our website [18]. Along with
the source code in this paper the site has also a
number of other potentially useful modules for
download.

HYBRID GCMC USING MUSIC

In this section an example of the use of Music for
studying adsorption in zeolites is given. This example
highlights how object oriented programming facili-
tated the incorporation of new capabilities into the
code with minimal programming effort. Zeolites are
crystalline microporous materials with cavities and
pores about 3-12 A in diameter. They are used for
separation and catalysis applications. In these
processes, adsorption and diffusion of guest mole-
cules within the zeolite pores play an important role.



36 A. GUPTA et al.

GCMC simulations can be used to study the
adsorption of the guest molecules in the zeolite
cavities [19]. The regular GCMC procedures are
applicable only when the guest molecule being
adsorbed is considered rigid. We have used a method
called hybrid GCMC in which regular GCMC is
combined with the hybrid Monte Carlo method to
take care of the flexibility of the guest molecule.

Hybrid GCMC

The hybrid Monte Carlo (HMC) method was
introduced by Duane et al. [20] in 1987. A detailed
description is given in Ref. [21]. This method is
usually used for simulating an NVT ensemble, but in
the current work we have used HMC combined with
GCMC to simulate a grand canonical ensemble.
HMC uses overall system moves instead of the usual
translation and rotation moves of individual mole-
cules for exploring the configurations of the system.
In these hybrid moves, the particles in the simulation
volume are given velocities taken from a Maxwell-
Boltzmann distribution and then integrated for a
specific amount of time (7) using a specific
integration step (A7). The resulting configuration is
accepted or rejected based on a Metropolis accep-
tance criterion [21]. The hybrid GCMC simulation
thus consists of HMC moves, insertion moves and
deletion moves.

Prior to the hybrid GCMC simulation a library of
configurations of a single guest molecule in an ideal
gas phase is generated by doing HMC at the same
temperature as the main simulation. For insertion of
a molecule into the system during hybrid GCMC,
one of the configurations is selected from the library
and then inserted into the zeolite. The Eulerian
angles of orientation for the molecule are selected
randomly during each insertion. The insertions into
the simulation volume can be done randomly or with
bias towards the low energy regions of the zeolite
[22]. It can be shown that this scheme leads to the
same acceptance criterion for insertion as in regular
GCMC.

Pacc(N— N 4+ 1) = min exp(—AY"/kT)

1V
’(N—l—l)kT

where A7" denotes the potential energy of inter-
action between the whole system and the sorbate
molecule being inserted and f is the fugacity of the
sorbate at the given pressure.

Combining MD and GCMC

Using the Music framework, it was extremely easy to
develop the hybrid GCMC code. The integration
code (MD code) and the GCMC code had already
been developed. The different move types used for

1
.-“-l"“:.:'r ******* ¥ s
1
[Cimegrate ] [Cinser ] [ ][ wanstae ] [rome |

FIGURE 2 The hierarchy of move type modules. Dotted lines:
call tree for a GCMC simulation. Dashed lines: call tree for an MD
simulation. Solid lines: call tree for hybrid GCMC simulation.

these simulations were already developed as move
type objects and placed in the modules. See Fig. 2 for
an arrangement of the modules in Music. The
individual move types are wrapped under the
moves module which provides a common interface
for accessing all move types. This common interface
makes the process of calling individual move types
easier. The main calling programs (top level of Fig. 2)
need not know much about the interface for the
individual move types. During an MD simulation
the main calling program calls the moves module
repeatedly and moves subsequently calls the
integrate module. During a GCMC simulation
moves is called repeatedly and moves calls the
insert, delete, translate or rotate modules.
All of these move types access forcefield which
contains details about the interaction between
molecules to calculate the energies and accelerations.
To create a hybrid GCMC simulation a main driver
module called hybridgc was written, which calls
integrate, insert and delete move types.
Since all of these modules were well tested
previously and their API was well defined, the
creation of hybridgc and testing became very easy.
The flexibility added by defining the move types and
placing them under the common interface called
moves can be explained with the help of an example.
Suppose one of the developers in the Music
developers group wants to do a hybrid GCMC
simulation. If the developer also wants to include a
Monte Carlo translation move in the simulation in
addition to the insert, delete and integrate
moves, all that needs to be done is to add a few lines
of code in the hybridgc module which makes a call
to translate through the moves module. The
module translate was probably developed by
some other developer interested in regular GCMC.
However since the module is placed under the
common interface moves, the hybrid GCMC deve-
loper can also access it and use it. This makes code
sharing among developers working on different
move types easier.



PARADIGMS FOR MOLECULAR MODELLING 37

molecules/unit cell
w
T

-6 Rigid ]
—$— Flexible
—&- Reduced Torsion

0 0.02 0.04

0.06 0.08 0.1

Pressure, kpa

FIGURE 3 Change of loading with flexibility for butane in silicalite at 300 K.

The potential for a decrease in computational
speed may make some researchers cautious about
adopting OOP. However, with improving compilers,
differences in speed between F77 and F90 are
becoming quite small. To quantify this for our case,
we performed MD simulations of butane in the
zeolite silicalite, using 64 butane molecules (as
described below) in 16 unit cells of zeolite with
periodic boundary conditions. Comparing our older,
highly-optimized F77 code against the new Music
code, we found that the OOP code was 2.6 times
slower. We believe that there is room for optimi-
zation of the Music code, which would reduce this
factor, and again improved compilers will also help.
The reduced time in writing and maintaining the
code, however, fully compensates for any increased
run-time in our experience.

Effect of Sorbate Flexibility on Adsorption

Using hybrid GCMC we calculated the adsorption
isotherms of butane in the zeolite silicalite at 300 K.
The butane molecule was modeled using a united
atom model with bond stretching, bond bending and
bond torsion potentials. The forcefield parameters
were the same as the ones used by Macedonia and
Maginn [23]. In addition to those parameters (which
kept bond lengths fixed), we also included the bond
stretching potential energy using the Morse equation
[24]. We also performed regular GCMC simulations
of completely rigid butane in silicalite for compari-
son. One might expect to see larger number of
molecules adsorbed in the silicalite with the flexible
butane model compared to the rigid model, since a

flexible molecule will be able to adjust its shape and
fit inside the zeolite cavities more easily. However, it
was found that the loadings obtained from hybrid
GCMC are slightly lower as shown in Fig. 3.

To find out the cause of this effect, we conducted
additional simulations with varying flexibility of the
butane molecule. It should be noted that in all
simulations the butane-zeolite interactions were
modeled using the same potential model. Figure 3
also shows the loading for a simulation where the
magnitude of the torsional potentials was reduced
by a factor of 1/10 (Reduced Torsion), making the
molecule even more flexible. The loading here is
even lower than the previous cases. We also tried
changing the magnitudes of the bond stretching and
bond bending potentials. They did not have any
significant effect on the adsorption characteristics.
So, we conclude that as the torsion potential is made
more flexible the loading of butane in silicalite
decreases (at fixed temperature and pressure). The
distribution of the torsion angle is plotted in Fig. 4. In
the gas phase there are two peaks in the distribution:
at 0° (anti-conformer) and 120° (gauche-conformer). In
case of the hybrid GCMC simulation in silicalite, the
zeolite cavities further restrict the allowed confor-
mations of butane molecules. When a molecule is
transported from the gas phase to the adsorbed
phase it is forced to remain more at the anti-
conformation than was required in the gas phase. As
a result the peak corresponding to anti-confor-
mations increases and the one corresponding to
gauche conformations decreases. This constraining
effect of the zeolite pore walls which makes the anti-
conformation more preferable was also observed by
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FIGURE 4 Distribution of dihedral angle of butane for adsorption in silicalite at 300 K. Also shown are the simulated and analytical

distributions for butane in an ideal gas at 300 K.

June et al. [25]. This entropic loss leads to the
decreased loading observed when the molecule is
made flexible. The entropic loss on the torsional
degree of freedom is absent in the case of regular
GCMC simulation using the rigid butane model. A
similar effect was observed by Gupta et al. [26] while
comparing GCMC simulations of rigid and flexible
cyclohexane in silicalite.

CONCLUSIONS

OOP is difficult. Indeed, one of the challenges of
OOP is to create a one-to-one mapping between the
elements in the problem and objects in the program.
However, the solution is more readable, extensible,
and reusable. We have illustrated that though F90
does not have all the features traditionally associated
with an OOP language it does provide enough
functionality to facilitate object-oriented design.

The ideas discussed in this paper have been used
to develop a multipurpose simulation code (Music).
This code provides functionality for performing
molecular dynamics simulations, Monte Carlo in a
number of different ensembles, minimizations, free
energy calculations and other classical simulations in
bulk phase and adsorbed phases using a variety of
forcefields. The fact that a hybrid GCMC simulation
code could be very easily developed by mixing
already existing modules that were used for GCMC
and MD simulations demonstrates the usefulness of
an object-oriented framework. Music has been used
extensively in our group for a number of projects
[27,28] and is continually being developed and
improved.
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! Use module_xyz, Only: functions_in_xyz, variables_in_xyz

Implicit None
Save

! Make everything private by default, then specify which variables
! and functions are allowed for Public Use by other modules

Private
Public ::

VecType, Operator(+), Operator(#), Assignment(=), &

vector3D_init, vector3D_display, vector3D_getnormsq, &

vector3D_mult_scalar

Type VecType
Realx*8 X, ¥, 2
End Type VecType

I Static Polymorphism
Interface vector3D_init

Module Procedure vector3D_initl
Module Procedure vector3D_init2

End Interface

! Operator Overloading
Interface Operator(+)

Module Procedure vector3D_add
End Interface
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Interface Operator (%)
Module Procedure vector3D_mult_scalar
End Interface

! Operator Overloading
Interface Assignment(=)

Module Procedure vector3D_vec_eq_scalar
End Interface

Subroutine vector3D_initl(vec, arr)
Type(VecType), Intent(out) :: vec
Real*8, Dimension(:), Intent(in) :: arr

! Assign the value from the array

vec%x = arr(1l)
vechy = arr(2)
vechz = arr(3)

End Subroutine vector3D_initl

| Initialize all the components of the vec "object" to the value
! in "num"

Subroutine vectorSD_initQ(vec, num)
Type (VecType), Intent(out) :: vec
Real*8, Intent(in) {1 num

! Assign "num" to elements of "vec"
vec)kx = num
vechy = num
vecz = num
End Subroutine vector3D_init2

Type(VecType) Function vector3D_add(vecl, vec2)
Type(VecType), Intent(in) :: vecl, vec2

! Do the addition

vector3D_add%x = vecllx + vec2¥x
vector3D_addly = veclly + vec2ly
vector3D_add%z = vecllz + vec2)z

noHo
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End Function vector3D_add

Type(VecType) Function vector3D_mult_scalar(vec, num)
Type(VecType), Intent(in) :: vec
Real, Intent(in) :: num
vector3D_mult_scalar)x=num*vec/x
vector3D_mult_scalarjy=num*vecly
vector3D_mult_scalarz=num*vec/z

End Function vector3D_mult_scalar

Real Function vector3D_getnormsq(vec )
Type(VecType), Intent(in) :: vec
vector3D_getnormsq=(vec)x**2)+(vecly**2) +veclz**2

End Function vector3D_getnormsq

Subroutine vector3D_vec_eq_scalar(vec, num)
Type(VecType), Intent(out) :: vec
Real*8, Intent(in) :: num
vec)x=num
vecy=num
vecz=num

End Subroutine vector3D_vec_eq_scalar

Subroutine vector3D_display(vec, optunitno)
Type (VecType), Intent(in) :: vec
Integer, Optional, Intent(in) :: optunitno
Integer :: unitno
If (Present(optunitno)) Then
unitno = optunitno

Else
unitno = 6 ! Write to standard output
End If
Write(unitno,*) "Components of vector : ", veclx, vecly, vechz

End Subroutine vector3D_display
End Module vector3D

41
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APPENDIX 2

This is a "proxy" module to access different pairwise forcefields
using manually implemented polymorphism. It is used to provide

a generic interface to initialize different forcefield models and
then get interactions from them.

Lennard Jones potentials (1j) and Buckingham potentials (buck) are
accessible through this module. More potential models can be

added similarly.

Module pairmodels

Use vector3D, Only: VecType, vector3D_getnormsq
Use 1j, Only: LJ_Params, 1j_init, lj_getinteraction, 1j_display, &

1j_cleanup

Use buck, Only: BUCK_Params, buck_init, buck_getinteraction, &
buck_display, buck_cleanup

Use defaults, Only: RDbl

Implicit None

Save

Private
Public:: Pairmodels_Type, pairmodels_init, pairmodels_cleanup, &

pairmodels_getinteraction, pairmodels_display

Type Pairmodels_Type
Type(LJ_Params), Pointer i 1j
Type (BUCK_Params), Pointer 11 buck
End Type Pairmodels_Type

Contains

! Initialize the parameters for atom types "atomtypel" and

I "atomtype2" to the "modeltype" of forcefield from file

! "paramFilename". The parameters for all atoms are stored in
! "pmodels".

Subroutine pairmodels_init(pmodel, modeltype, paramFilename)
Type(Pairmodels_Type),Intent(inout) :: pmodel
Character(*), Intent(in) :: modeltype
Character(*), Intent(in) :: paramFilename

I Initialize the appropriate forcefield
If (modeltype == ’LJ’) Then
Call 1j_init(pmodel}lj, paramFilename)
Else If (modeltype == ’BUCK’) Then
Call buck_init(pmodel¥buck, paramFilename)
End If
End Subroutine pairmodels_init
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! Get the potential energy "pot" and force "f'" between atom types

I "atoml" and "atom2" separated by the vector "sepvec". This is in

! effect implementing dynamic polymorphism

! ___________________________________________________________________

Subroutine pairmodels_getinteraction(pmodel, sepvec, pot, f)
Type(Pairmodels_Type),Intent(in) :: pmodel

Type(VecType), Intent(in) 11 sepvec
Type (VecType), Intent (out) i f
Real (kind=RDbl), Intent(out) 1 pot
Integer :: ierr

If (Associated(pmodel’lj)) Then
Call 1j_getinteraction(pmodel)lj, sepvec, pot, f, ierr)
Else If (Associated(pmodelibuck)) Then
Call buck_getinteraction(pmodel’buck, sepvec, pot, f, ierr)
End If
End Subroutine pairmodels_getinteraction

Subroutine pairmodels_display(pmodel, optunitno)
Type(Pairmodels_Type),Intent(in) :: pmodel
Integer, Optional, Intent(in) :: optunitno

Integer :: unitno

If (Present(optunitno)) Then
unitno = optunitno
Else
unitno = 6 IStandard output
End If

If (Associated(pmodel%1lj)) Then
Call 1j_display(pmodel%lj, unitno)
Else If (Associated(pmodel’buck)) Then
Call buck_display(pmodelybuck, unitno)
End If
End Subroutine pairmodels_display

Subroutine pairmodels_cleanup(pmodel)
Type(Pairmodels_Type),Intent(inout) :: pmodel
If (Associated(pmodel%lj)) Then
Call 1j_cleanup(pmodel’lj)
Else If (Associated(pmodel’buck)) Then
Call buck_cleanup (pmodelybuck)
End If
End Subroutine pairmodels_cleanup

End Module pairmodels
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APPENDIX 3

! This module contains the data structure for Lennard-Jones type
! interactions

Module 1j

Use defaults, Only: RDbl, strlLen, kcalmole_kb

Use vector3D, Only: VecType, Assignment(=), Operator(+), &
Operator(*), vector3D_getnormsq, vector3D_mult_scalar

Implicit None

Save
Private
Public :: LJ_Params, 1j_init, lj_getinteraction, 1j_display, &
1j_cleanup
Type LJ_Params
Character(len=strlen) :: atom_namel, atom_name2
Real (kind=RDbl) :: sig, eps
Real (kind=RDbl) :: A, B | A=4*eps*sig~12, B=4*eps*sig”6
Real (kind=RDbl) :: cutrad,cutrad?
Real (kind=RDbl) :: lowcut ! lower bound to prevent overflow

End Type LJ_Params

Contains
[ e e e et e o e S ot S S . . T T o e S e e i i

! Initialize the interaction information from the file line. This
! module "knows" how the information is arranged in the

| paramsFilename and is able to read. This way the file format

! can be tailored for each specific forcefield initialization.

Subroutine 1j_init(params, paramsFilename)

Type(LJ_Params), Intent(INOUT) :: params
Character(*), Intent(IN) :: paramsFilename
Integer :: los, paramunit
Character(len=strLen) :: paramFilename
Character(len=strLen), Dimension(10) :: fields,chunks

I** Open the file
paramunit = 13
Open(unit=paramunit, file=paramFilename, status=’old’, I0STAT=ios)
If (ios /= 0) Then
Write(0,’(2a,i4,2a)’) __FILE__,": ",__LINE__, &
’  Could not open file ’,Trim(paramFilename)
Stop
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End If

I*¥*x Read the various parameters

Read (paramunit, *) paramsatom_namel, paramsjatom_name2
Read(paramunit, *) paramsjsig

Read (paramunit, *) params}eps

Read(paramunit, *) paramsjlowcut

Read (paramunit, *) paramsfcutrad

paramsjcutrad2 = paramsjcutrad**2

Close(paramunit)
I%* Generate the AB parameters

Call 1j_calc_AB(params)
End Subroutine 1j_init

Subroutine lj_getinteraction(params, sepvec, pot, fvec, ierr)

Type(LJ_Params), Intent (IN) i params

Type (VecType), Intent (IN) :: sepvec

Real(kind = RDbl), Intent(OUT) 11 pot

Type(VecType), Intent(0UT) 1. fvec

Integer, Intent(out) 11 lerr

Real(kind = RDbl) :: A,B,r2i,r61i,r12i,r2

pot = 0.0_RDbl

fvec = 0.0_RDbl ! Using the overloaded ’=’ operator
ierr = 0

I*x Get the square of the distance
r2 = vector3D_getnormsq(sepvec)

I*xCheck if it is within the cut-off radius
If (r2 > paramsjcutrad2) Return

1% Make sure the atoms are not too close
If (r2 < params)blowcut) Then

ierr = 1

Return
End If

A = paramsA
= params’B

= 1.0_RDbl/xr2
r6i = r2i*r2ixr2i
= r6i*réi

fvec = sepvec * Real( (12.0_RDbl¥A*r12i - 6.0_RDbl*B*r6i)*r2i )
pot = A*ri12i - Bx*r6i
End Subroutine 1j_getinteraction
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! This routine calculates A, B parameters from sigma
! and epsilon. A = 4xeps*(sig**12), B = 4*eps*(sig**6)
! __________________________________________________________________
Subroutine 1j_calc_AB(obj)
Implicit None
Type(LJ_Params), Intent (INOUT) :: obj

obj%B = 4.0_Rdbl*objleps*(obj%sig**6)*kcalmole_kb
obj%4 = obj%bxobj%ksig**6
End Subroutine 1j_calc_AB

! This routine calculates the sigma and epsilon values from A and B
| o e e o e

Subroutine 1j_calc_sigeps(obj)
Implicit None

Type(LJ_Params), Intent(INOUT) :: obj

Real (kind=RDbl) 11 sig6

sigé = (obj%A/obj%B)

obj%eps = (obj%B/(4.0_Rdbl*sig6*kcalmole_kb))

objhsig = sigb**(1/6.0)
End Subroutine 1j_calc_sigeps

éubroutine 1j_display(params, optunitno)

Type(LJ_Params), Intent(in) :: params
Integer, Optional, Intent(in) :: optunitmno
Integer :: unitno

If (Present(optunitno)) Then
unitno = optunitmno

Else

unitno = 6 IStandard output
End If
Write(unitno,’(4x,3a)’)"Atoms : ", Trim(paramsyatom_namel), &

Trim(paramsatom_name?2)

Write(unitno,’(4x,a,f8.3)’) "Sigma : ", params¥%sig
Write(unitno,’(4x,a,f8.3)’) "Epsilon : ", params%eps
Write(unitno,’(4x,a,el12.4)’)"Sigma : ", params)A
Write(unitno,’(4x,a,e12.4)’)"Epsilon : ", paramsB

End Subroutine 1j_display

Subroutine 1j_cleanup(params)
Type(LJ_Params), Intent{(inout) :: params
End Subroutine 1j_cleanup

End Module 1j
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