
Object-Oriented Service Clouds
for Transdisciplinary Computing

Michael Sobolewski

Abstract A computing platform includes a programming environment to create
applications with a coherent operating system and processor. The Service ORiented
Computing EnviRonment (SORCER) is an object-oriented cloud platform that
targets service abstractions for transdisciplinary complexity with support for high
performance computing. SORCER service-commands are expressed in Exertion-
Oriented Language (EOL) in convergence with two other languages: variable-
oriented language (VOL) and variable-oriented modeling language (VML). The
SORCER operating system (SOS) supports the two-way convergence of three
programming models for transdisciplinary computing in service clouds. On one
hand, EOP is uniformly converged with VOP and VOM to express an explicit
network-centric service-oriented (SO) computation process in terms of other im-
plicit (inter/intra) process expressions. On the other hand, VOM and VOP are
uniformly converged with EOP to express an explicit declarative service model with
multifidelity and multidisciplinary features in terms of other implicit (intra/inter)
process expressions including network-centric service clouds.

Keywords Process expression • Metacomputing • Concurrent engineering
• Cloud computing • Service object-oriented architectures • Service provisioning
• Var-oriented modeling • Var-oriented programming • Exertion-oriented
programming

M. Sobolewski (�)
Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA

Polish-Japanese Institute of Information Technology, Warsaw, Poland
e-mail: sobol@sorcersoft.org

I. Ivanov et al. (eds.), Cloud Computing and Services Science, Service Science: Research
and Innovations in the Service Economy, DOI 10.1007/978-1-4614-2326-3 1,
© Springer Science+Business Media New York 2012

3



4 M. Sobolewski

1 Introduction

In transdisciplinary computing systems each service provider in the collaborative
federation performs its services in an orchestrated workflow. Once the collaboration
is complete, the federation dissolves and the providers disperse and seek other
federations to join. The approach is network centric in which a service is defined
as an independent self-sustaining entity—remote service provider—performing a
specific network activity. These service providers have to be managed by a relevant
operating system with commands for expressing interactions of providers in the
network.

The reality at present, however, is that transdisciplinary computing environments
are still very difficult for most users to access, and that detailed and low-level
programming must be carried out by the user through command line and script
execution to carefully tailor jobs on each end to the resources on which they will
run, or for the data structure that they will access. This produces frustration on the
part of the user, delays in the adoption of service-oriented (SO) techniques, and
a multiplicity of specialized “cluster/grid/cloud-aware” tools that are not, in fact,
aware of each other which defeats the basic purpose of the cluster/grid/cloud.

A computer as a programmable device that performs symbolic processing,
especially one that can process, store and retrieve large amounts of data very
quickly, requires a computing platform (runtime) to operate. Computing platforms
that allow software to run on the computer require a processor, operating system,
and programming environment with related runtime libraries and user agents.
Therefore, the metacomputer requires a platform that describes a kind of networking
framework to allow software to run utilizing virtual distributed resources. Different
platforms of metacomputers can be distinguished along with corresponding types of
virtual network processors.

We consider a metaprogram as the process expression of hierarchically organized
collaboration of remote component programs. Its SO operating system makes
decisions about where, when, and how to run these components. The specification
of the service collaboration is a metaprogram—aprogram that manipulates other
programs remotely as its data. Nowadays the similar computing abstraction is
usually applied to the program executing on a single computer as to the program
executing in the network of computers, even though the executing environments
(platforms) are structurally completely different. Most, so called, SO programs
are still written using software languages such as FORTRAN, C, CCC (compiled
into native processor code), Java, Smalltalk (compiled into intermediate code),
and interpreted languages such as Perl and Python, the way it usually works on
a single host. The current trend is to have these programs and scripts define remote
computational modules as service providers.

Instead of moving executable files around the computer networks we can
autonomically provision the corresponding computational components (executable
codes) as uniform metainstructions of the service metaprocessor. Now we can
submit a metaprogram (service command) in terms of metainstructions (services)



Object-Oriented Service Clouds for Transdisciplinary Computing 5

Fig. 1 By providing easy-to-use, self-discovering pervasive services representing domain knowl-
edge (data), tools (operations), and management (control) with relevant metaprogramming
methodology, the SORCER environment reduces integration and deployment costs, facilitate
productivity, increases research collaboration, and advances the development and acceptance of
secure and fault tolerant transdisciplinary concurrent engineering solutions

to the metacompute OS that manages dynamic federations of service providers and
related resources, and enables the collaboration of the required service providers
according to the metaprogram definition with its own control strategy. We treat
services as service types (e.g. a form of the Java interface) and service providers
as service instances implementing that service types. A provider can implement
multiple service types so can provide multiple services.

One of the first metacompute platforms was developed under the sponsorship
of the National Institute for Standards and Technology (NIST)—the Federated
Intelligent Product Environment (FIPER) [15]. The goal of FIPER is to form a
federation of distributed service objects that provide engineering data, applications,
and tools on a network. A highly flexible software architecture had been developed
for transdisciplinary computing (1999–2003), in which engineering tools like
computer-aided design (CAD), computer-aided engineering (CAE), product data
management (PDM), optimization, cost modeling, etc., act as both service providers
and service requestors.

The Service-ORiented Computing EnviRonment (SORCER) [17–22, 24] builds
on the top of FIPER to introduce a metacomputing operating system with all
system services necessary, including service management (rendezvous services),
a federated file system, and autonomic resource management, to support service-
object oriented metaprogramming. It provides an integrated solution for complex
transdisciplinary applications (see Fig. 1) that require multiple complex solutions
across multiple disciplines combined at runtime into a transdisciplinary one.
The SORCER metacomputing environment adds an entirely new layer of abstraction
to the practice of metacomputing—exertion-oriented (EO) programming with a fed-
erated method invocation (FMI). The EO programming makes a positive difference



6 M. Sobolewski

in SO programming primarily through a new metaprogramming abstraction as
experienced in many SO computing projects including systems deployed at GE
Global Research Center, GE Aviation, Air Force Research Lab, SORCER Lab, and
SORCER partners in China.

As we look forward to metacomputing [12] globally distributed physical and
virtual machines should play a major role in architecting very large SO systems.
While there is a significant interest in high performance, grid [5], and cloud
computing [11], much of this interest is the artifact of the hype associated with
them as most of this computing is predominantly reduced to executable files.
Without understanding the behavior of metacomputing architectures and related
applications, it is unclear how future SO systems will be designed based on
these architectures. Thus, it is greatly important to develop a complete picture of
metacomputing applications and learn the architectures they require.

This chapter is organized as follows: Sect. 2 introduces used metacomputing and
SO terminology; Sect. 3 briefly describes the SORCER metacomputing platform;
Sect. 4 describes exertion-oriented programming; Sect. 5 describes var-oriented
programming and var-oriented modeling; Sect. 6 presents the SORCER operating
system (SOS) with its cloud processor; Sect. 7 describes the service cloud provision-
ing for exertion-oriented programming, and Sect. 7 provides concluding remarks.

2 Process Expressions and Metacomputing

In computing science the common thread in all computing disciplines are process
expression and actualization of process expression [4], for example:

1. An architecture is an expression of a continuously acting process to interpret
symbolically expressed processes.

2. A user interface is an expression of an interactive human–machine process.
3. A mogram [8] (which can be program or model) is an expression of a computing

process.
4. A mogramming (programming or modeling) language is an environment within

which to create symbolic process expressions (mograms).
5. A compiler is an expression of a process that translates between symbolic

process expressions in different languages.
6. An operating system is an expression of a process that manages the interpreta-

tion of other process expressions.
7. A processor is an actualization of a process.
8. An application is an expression of the application process.
9. A computing platform is an expression of a runtime process defined by the

triplet: domain—mogramming language, management—operating system, and
carrier—processor.

10. A computer is an actualization of a computing platform.
11. A metamogram (metaprogram or metamodel) is an expression of a metapro-

cess, as the process of processes.



Object-Oriented Service Clouds for Transdisciplinary Computing 7

12. A metamogramming language is an environment within which to create
symbolic metaprocess expressions.

13. A metaoperating system is an expression of a process that manages the
interpretation of other metaprocess expressions.

14. A metaprocessor is an actualization of the metaprocess on the aggregation of
distinct computers working together so that to the user it looks and operates like
a single processor.

15. A metacomputing platform is an expression of a runtime process defined by its
metamogramming language, metaoperating system, and metaprocessor.

16. A metacomputer is an actualization of a metacomputing platform.
17. Cloud computing is an expression of metaprocesses consolidated on a meta-

platform with virtualization of its services and required computing platforms.

Obviously, there is an essential overlap between the domains of computer science
and information technology (IT), but the core concerns with the nature of process
expression itself are usually ignored in IT since the IT community is mainly
concerned with the efficiency of process actualization independent of how that
process is expressed. Computer science is mainly concerned with the nature of the
expression of processes independent of its platform actualization.

The way of instructing a platform to perform a given task is referred to as entering
a command for the underlying operating system. On many UNIX and derivative
systems, a shell (command-line interpreter) then receives, analyzes, and executes
the requested command.

A shell script is a list of commands which all work as part of a larger process, a
sequence (program) that you would normally have issued yourself on the command
line. UNIX shells have the capability of command flow logic (foreach, while,
if/then/else), retrieving the command line parameters, defining and using (shell)
variables, etc. “Scripts” are distinct from the executable code of the application,
as they are usually written in a different language with distinctive semantics. Scripts
are often interpreted from source code, whereas application (command) source code
is typically first compiled to a native machine code or to an intermediate code (e.g.
Java bytecode). Machine code is the form of instructions that the native processor
executes as a command, while the object-oriented method (intermediate code) is
executed by an object-oriented virtual platform (e.g., a Java runtime environment)
by sending a message from a sender to the recipient object. The message may create
additional objects that can send and receive messages as well.

Consequently, a shell script can be treated as a compound command, while an
executable file as an elementary command on a command platform. In contrast,
object-oriented and SO programs run on virtual object-oriented and SO platforms
respectively.

In Fig. 2 each computing platform (P) is depicted as three layers: domain (D),
management (M), and carrier (C) with the prefix V standing for virtual, and m
for meta. Each distributed metacarrier mCk , k D 1; 2; : : :; n, consists of various
platforms. For example, the mC1 metaprocessor consists of the native command
platform P1;1, virtual command platform P2;1, and object-oriented virtual platform



8 M. Sobolewski

Fig. 2 Software cannot operate without a platform or be platform independent. The cloud platform
(mP: mD/mM/mC) with its meta-domain (mD), meta-management (mD), and meta-carrier (mC)
is composed of n distributed platform clouds mCi , i D 1; 2; : : : ; n

Pm1;1. All distributed metacarriers mCi , i D 1; 2; : : :; n, constitute the metacarrier
or simply the cloud processor (mC)—the processor of a metaplatform (mP).
The metaplatform mP is treated as a cloud platform for SO computing.

SORCER service commands (services) at the mD level are called exertions [15].
The SOS with its exertion command-line interpreter (exertion shell or SOS shell at
nM) allows us to execute SO programs—exertion scripts, by analogy to command
scripts executed by a UNIX shell. Exertions as commands of the cloud processor
(mC) invoke messages on service objects (at VD-Pm1;k) or commands (at VD-P1;1

and D-P2;1). Each distributed metaprocessor (mCk) runs multiple virtual platforms
(Pi;k; i D 1; 2; : : :; n and k D 2; : : :; mi) on the same native platform (P1,i), while
each virtual platform runs services implemented by objects and commands.

Before we delve into the SORCER metacomputing and metaprogramming
concepts, the introduction of some terminology used throughout the paper is
required:

• A computation is a process following a well-defined model that is understood
and can be symbolically expressed and physically accomplished (actualized).
A computation can be seen as a purely physical phenomenon occurring inside
a system called a computer.



Object-Oriented Service Clouds for Transdisciplinary Computing 9

• Computing requires a computing platform (runtime) to operate. Computing
platforms that allow mograms to run require a processor, operating system,
and mogramming (programming or modeling) environment with related tools
to create symbolic process expressions—mograms. A computation is physically
expressed by a processor and symbolically expressed by a mogram.

• A distributed computation allows for sharing computing resources usually
located on several remote computers to collaboratively run a single complex
computation in a transparent and coherent way. In distributed computing,
computations are decomposed into mograms, processes, and computers.

• A metacomputer is an interconnected and balanced set of computers that operate
as a single unit, which is an actualization of its metacomputing platform
(metaprocessor, metaoperating system, and metamogramming environment).

• A service node is a remote object that deploys/undeploys service providers.
A service node, that manages multiple service providers, shares the same virtual
platform for all its service providers in a common container.

• A service provider is a remote service object that provides services via its service
proxy to service requestors. Service providers are identified primarily by service
(interface) types and typically do not have a lifecycle of their own; any state they
do contain tends to be an aggregate of the states of the local entity objects (service
beans) that they offer to service requestors. A service provider that implements
multiple interface provides multiple services.

• A metacomputation is a form of distributed computation determined by
collaborating service providers that a metacomputer can interpret and execute.
A service provider selected at runtime by a metaoperating system implements
services that invoke what are usually commands and messages.

• A collection of service providers selected and managed for a metacomputation is
called a service federation.

• A metamogram is an expression of metacomputation, represented in a
mogramming language, which a metacomputer follows in processing shared
data for a service collaboration managed by its metaoperating system on its
virtual metaprocessor.

• A service-oriented architecture (SOA) is a software architecture using loosely
coupled service providers. The SOA integrates them into a distributed computing
system by means of SO mogramming. Service providers are made available
as independent components that can be accessed without a priori knowledge
of their underlying platform, implementation, and location. The client–server
architecture separates a client from a server, SOA introduces a third component, a
service registry. The registry allows the metaoperating system (not the requestor)
to dynamically find service providers on the network.

• If the application (wire) protocol between provider proxies and all corresponding
service objects is predefined and final then this type of SOA is called a
service-protocol oriented architecture (SPOA). In contrast, when the service
proxy-service object communication is based on remote message passing using
the wire protocol that can be chosen by a provider’s service object to satisfy
efficient communication with its requestors, then the architecture is called a



10 M. Sobolewski

service-object oriented architecture (SOOA). A service in SOOA, the work
performed by a service provider, is identified by a service type (interface type).

Let’s emphasize the major distinction between SOOA and SPOA: in SOOA, a
proxy object is created and always owned by the service provider, but in SPOA,
the requestor creates and owns a proxy which has to meet the requirements of
the protocol that the provider and requestor agreed upon a priori. Thus, in SPOA
the protocol is always fixed, generic, and reduced to a common denominator—one
size fits all—that leads to inefficient network communication with heterogeneous
large datasets. In SOOA, each provider can decide on the most efficient protocol(s)
needed for a particular distributed application. For example, SPOA wire protocols
are: SOAP in Web and Grid Services, IIOP in CORBA, JRMP in Java RMI.
SORCER implements its SOOA with the Jini service architecture [1, 7].

The computing platforms and related programming models have evolved as
process expression has evolved from the sequential process expression actualized
on a single computer to the concurrent process expression actualized on multiple
computers. The evolution in process expression introduces new platform benefits
but at the same time introduces additional programming complexity that operating
systems have to deal with. We can distinguish seven quantum jumps in process
expression and related programming complexity [19]:

1. Sequential programming (e.g., von Neumann architecture)
2. Multi-threaded programming (e.g., Java platform)
3. Multi-process programming (e.g., Unix platform)
4. Multi-machine-process programming (e.g., CORBA)
5. Knowledge-based distributed programming (e.g., DICEtalk [23])
6. Service-protocol oriented programming (e.g., Web and Grid Services)
7. Service-object oriented programming (e.g. SORCER)

SORCER introduces a special type of variable called var (Sect. 3) with var-
oriented (VO) programming, var-oriented modeling (VM), and exertion-oriented
(EO) programming model with FMI in its SOOA. FMI [17] defines the communi-
cation framework between three SORCER architectural layers: metamogramming,
management, and execution.

3 Service-Object Oriented Platform: SORCER

The term “federated” means that a single service invocation with no network
configuration creates at runtime a federation of required collaborating services.
SORCER (Service-ORiented Computing EnviRonment) is a federated service-to-
service (S2S) metacomputing environment that treats service providers as network
peers with well-defined semantics of a SOOA [20]. The SORCER platform has
evolved from the service-object abstractions introduced in the FIPER project (1999–
2003 [15]), the SO operating system at the SORCER Lab, Texas Tech University
(2002–2009 [24]), finally with metaprogramming languages for programming



Object-Oriented Service Clouds for Transdisciplinary Computing 11

convergence at the Multidisciplinary Science and Technology Center, AFRL/W-
PAFB (2006–2010) [22]. It is based on Jini semantics of services [7] in the
network and the Jini programming model [3] with explicit leases, distributed events,
transactions, and discovery/join protocols. The Jini network technology focuses on
service management in a networked environment, while SORCER is focused on
metamogramming and the environment for executing metamograms.

The languages in which languages are expressed are often called metalanguages.
A language specification can be expressed by a grammar or by a metamodel.
A metamodel is a model to define a language. An obvious consequence of multiple
syntaxes of SO programming languages in SORCER is that a concrete syntax
cannot be the form of the language design. This makes the need for a unifying
representation apparent. Consequently, the abstract (conceptual) form for a SO
programming has been developed in SORCER with multiple concrete models of
the same metamodel (abstract model).

The SORCER metamodeling architecture is based on the notion of the meta-
model called the DMC-triplet: Domain/Management/Carrier. For example, a com-
puting platform is the DMC-triplet of a mogramming language (domain), an
operating system (management), and a processor (carrier). A language is the DMC-
triplet of language expressions (domain), a grammar or metamodel (management),
and a language alphabet (carrier). Therefore, a platform is a composition of a
domain-specific language (DSL), management with relevant constraints applied to
the domain, and the carrier that allows for actualization of both the domain and its
management.

The SORCER abstract metamodel is a kind of UML class diagram depicted in
Fig. 3, where each “class” is an instance of the DMC-triplet (meta-metamodel). This
metamodeling architecture distinguishes three computing platforms (command,
object, and service platforms) and three new programming platforms (var-modeling,
var-programming, and exertion programming platforms).

An exertion is a service command that specifies how a collaboration is realized
by a federation of service providers playing specific roles used in a specific
way [17]. The collaboration specifies a view of cooperating providers identified
by service types (interfaces)—a projection of service federation. It describes the
associations between service types that play the required roles in collaboration,
as well as the quality of service (QoS) attributes that describe quality of the
participating providers. Several exertions may describe different projections of the
same federation since different operations can be used in the same set of federated
interfaces. Exertions specify for collaborations explicitly: data (data context),
operations with related QoS (signatures), and control strategy actualized by the SOS
shell. The exertion participants in the federation collaborate transparently according
to the exertion’s control strategy managed by the SOS based on the Triple Command
Pattern described in [19]. The functional SORCER architecture is depicted in Fig. 4
as the DMC triplet as well.

The exertion’s collaboration defines a service interaction. The service interaction
describes how invocations of operations are managed between service providers to
perform a collaborative computation. The interaction is defined by exertion’s control



12 M. Sobolewski

Fig. 3 The SORCER metamodeling architecture: evaluation, modeling, metaprogramming, meta-
computation, programming, and computation. Each platform is shown as the DMC triplet (domain,
management, carrier). The service platform manages the service providers (service cloud) that are
autonomically provisioned by service nodes on virtualized object/command platforms

strategy and control flow exertions [17]. From the computing platform point of view,
exertions are service commands at the programming level D in Fig. 4, interactions
at the SOS level M, and service federations are groups of domain-specific (DS)
providers at the processor level C4. The SOS manages federations dynamically on
its virtual metaprocessor (cloud processor)—the layers C0–C5 in Fig. 4.

SOOA [20] consists of four major types of network objects: requestors, registries,
and service objects with their proxies for remote communication. The provider is
responsible for deploying the service object on the network, publishing its proxy
object to one or more registries, and allowing requestors to access its proxy.
Providers advertise their availability on the network; registries intercept these
announcements and cache proxy objects to the provider services. The requestor
looks up proxies by sending queries to registries and making selections from the
available service types. Queries generally contain search criteria related to the type
and quality of service (QoS). Registries facilitate searching by storing proxy objects
of services and making them available to requestors. Providers use discovery/join
protocols to publish services on the network; requestors use discovery/join protocols
to obtain service proxies on the network. Each provider implements multiple
interfaces (services) and a single service node hosts multiple providers. A service-
node container is actualized on the virtual object platform (e.g., Java Platform).
Two containers called Tasker and Rio cybernodes [13] are used predominantly to



Object-Oriented Service Clouds for Transdisciplinary Computing 13

Fig. 4 The SORCER layered architecture, where C0–C5 (carrier)—the metaprocessor with its
service cloud at C4 and C3, platform cloud at C2 and C1, M (management)—SORCER operating
system, D (domain)—service requestors; where PV and OV stands for provider and object
virtualization respectively with the prefix S for service, O for object, and C for command

host service providers. Thus, both service providers/nodes/command platforms can
be provisioned by the SOS—service virtualization indicated by SPV/SNV at C4/C3
and platform virtualization indicated by OPV/CPV at C2/C1 in Fig. 4. The SOS
uses Jini discovery/join protocols to implement its federated SOOA with its SOS
shell.

In SORCER, a service bean is a plain Java object (POJO) that implements
domain-specific interfaces. A service provider exposes on the network interfaces
of embedded service beans that implement own domain-specific interfaces, if any.
The provider creates and registers its proxy object with service registries. Registered
providers then execute operations in its published interfaces that are requested by
service requestors and invoked by the SOS on proxy objects.

A task exertion is an elementary service command executed by a single service
provider or a small-scale federation managed by the provider executing the task.
A compound service command called a job exertion is defined hierarchically in
terms of tasks and other jobs, including control flow exertions. A job exertion is a
kind of distributed metaprogram executed by a large-scale federation. The executing
exertion, interpreted by the SORCER shell, is a SO program that is dynamically
bound to all required and currently available service providers on the network. This
collection of service providers identified at runtime is called an exertion federation.



14 M. Sobolewski

The overlay network of all service providers is called the service metaprocessor
or the service cloud. The metainstruction set of the metaprocessor consists of all
operations offered by all service providers in the cloud. Thus, a SO program is
composed of metainstructions with its own SO control strategy and data context
representing the metaprogram data. Service signatures used in metaprograms, at
the D level in Fig. 4, are bound by the SOS to methods of virtual providers at
the C4 level that are hosted by service nodes at the C3 level. In turn, the required
service nodes are deployed on virtual object and command platforms at C2 and C1
correspondingly.

Each signature is defined by an interface type, operation in that interface,
and a set of optional QoS attributes. Four types of signatures are distinguished:
PROCESS, PREPROCESS, POSTPROCESS, and APPEND. A PROCESS
signature—of which there is only one allowed per exertion—defines the dynamic
late binding to a provider that implements the signature’s interface. The service
context describes the data on which tasks and jobs work. An APPEND signature
defines the context received from the provider specified by the signature. The
received context is then appended at runtime to the service context later processed
by PREPROCESS, PROCESS, and POSTPROCESS operations of the exertion.
Appending a service context allows a requestor to use actual network data produced
at runtime not available to the requestor when it initiates execution of its exertion.
The SOS allows for an exertion to create and manage dynamic federation and
transparently coordinate the execution of all component exertions within the
federation. Please note that these metacomputing concepts are defined differently in
traditional grid computing where a job is just an executing process for a submitted
executable code with no federation being formed for the executable.

4 Exertion-Oriented Programming Model

In language engineering—the art of creating languages—a metamodel is a model
to specify a language. An exertion is a metamodel to model connectionist pro-
cess expression that models behavioral phenomena as the emergent processes of
interconnected networks of service providers. The central exertion principle is that
a process can be described by the interconnected federation of simple and often
uniform and efficient service providers that compete with one another to be exerted
for a provided service in the dynamically created federation.

Exertion-oriented programming (EOP) is a SO programming paradigm using
service providers and service commands. A service command—exertion—is in-
terpreted by the SORCER Operating System (SOS) and represented by the data
structure that consist of a data context, multiple service signatures, and a control
context together with their interactions—to design distributed applications as ser-
vice collaborations. In EOP a service signature determines a service invocation on
a provider. The signature usually includes the service type, operation of the service
type, and expected quality of service (QoS). While exertion’s signatures identify



Object-Oriented Service Clouds for Transdisciplinary Computing 15

(match) the required collaborating providers (federation), the control context defines
for the SOS how and when the signature operations are applied to the data context.
Please note that the service type is the classifier of service providers with respect to
its behavior (interface), but the signature is the classifier of service providers with
respect to the invocation (operation in the interface) and service deployment defined
by its QoS.

An exertion is an expression of a distributed process that specifies for the SOS
how a service collaboration is actualized by a collection of providers playing
specific roles used in a specific way [18]. The collaboration specifies a collection
of cooperating providers—the exertion federation—identified by the exertion’s
signatures. Exertions encapsulate explicitly data, operations, and control strategy
for the collaboration. The signatures are dynamically bound to corresponding
service providers—members of the exerted collaboration.

The exerted members in the federation collaborate transparently according to
their control strategy managed by the SOS. The SOS invocation model is based on
the Triple Command Pattern [19] that defines the FMI.

A task exertion (or simply a task) is an elementary service command executed
by a single service provider or its small-scale federation. The task federation
is managed by the receiving provider for the same service context used by all
providers in the federation. A job exertion is a composite service command defined
hierarchically in terms of tasks and other jobs, including control flow exertions [17].
A job exertion is a kind of command script, that is similar conceptually to UNIX
script, but with service commands, to execute a large-scale federation. The job
federation is managed by one of two SOS rendezvous providers, (Jobber or Spacer)
but the task federation by the receiving provider. Either a task or job is a SO program
that is dynamically bound by the SOS to all required and currently available or
provisioned on-demand service providers.

The exertion’s data called data context describes the data that tasks and jobs
work on. A data context, or simply a context, is a data structure that describes
service provider ontology along with related data [19]. Conceptually a data context
is similar in structure to a files system, where paths refer to objects instead to
files. A provider’s ontology (object paths) is controlled by the provider vocabulary
that describes data structures in a provider’s namespace within a specified service
domain of interest. A requestor submitting an exertion to a provider has to comply
with that ontology as it specifies how the context data is interpreted and used by the
provider.

The exertion collaboration defines its interaction. The exertion interaction
specifies how context data flows between invocations of signature operations that
are sent between service providers in a collaboration to perform a specific behavior.
The interaction is defined by control contexts of all component exertions. From
the computing platform point of view, exertions are entities considered at the
programming level, interactions at the operating system level, and federations at the
processor level. Thus, exertions are programs that define distributed collaborations
on the service processor The SOS manages collaborations as interactions on its
virtual service processor—the dynamically formed service federations.



16 M. Sobolewski

The primary difference between exertion and federation is management and
implementation. The exertion and the federation distinctions are based on the analo-
gies between the company management and employees: the top-level exertion refers
to the central control (the Chairman of company) of the behavior of a management
system (the Chairman’s staff vs. component exertions), while federation refers to an
implementation system (the company employees vs. the service providers) which
operates according to management rules (FMI), but without centralized control.

In SORCER the provider is responsible for deploying the service on the network,
publishing its proxy to one or more registries, and allowing requestors to access its
proxy. Providers advertise their availability on the network; registries intercept these
announcements and cache proxy objects to the provider services. The SOS looks up
proxies by sending queries to registries and making selections from the available
service types. Queries generally contain search criteria related to the type and
quality of service. Registries facilitate searching by storing proxy objects of services
and making them available to requestors. Providers use discovery/join protocols to
publish services on the network; the SOS uses discovery/join protocols to obtain
service proxies on the network. While the exertion defines the orchestration of its
service federation, the SOS implements the service choreography in the federation
defined by its FMI.

Three forms of EOP have been developed: Exertion-oriented Java API,
interactive graphical, and textual programming. Exertion-oriented Java API is
presented in [17]. Graphical interactive exertion-oriented programming is presented
in [16]. Details regarding textual EOP and two examples of simple EO programs
can be found in [21, 22].

5 Var-Oriented Programming and Var-Oriented Modeling

In every computing process variables represent data elements and the number of
variables increases with the increased complexity of problems being solved. The
value of a computing variable is not necessarily part of an equation or formula as
in mathematics. In computing, a variable may be employed in a repetitive process:
assigned a value in one place, then used elsewhere, then reassigned a new value
and used again in the same way. Handling large sets of interconnected variables for
transdisciplinary computing requires adequate programming methodologies.

Var-oriented programming (VOP) is a programming paradigm using service
variables called “vars”—data structures defined by the triplet <value, evaluator,
filter> together with a var composition of evaluator’s dependent variables—to
design var-oriented multifidelity compositions. It is based on dataflow principles
that changing the value of a var should automatically force recalculation of the
values of vars, which depend on its value. VOP promotes values defined by
evaluators/filters to become the main concept behind any processing.



Object-Oriented Service Clouds for Transdisciplinary Computing 17

Var-oriented modeling (VOM) is a modeling paradigm using vars in a specific
way to define heterogeneous multidisciplinary var-oriented models, in particular
large-scale multidisciplinary analysis models including response, parametric, and
optimization component models. The programming style of VOM is declarative;
models describe the desired results of the program, without explicitly listing
command or steps that need to be carried out to achieve the results. VOM focuses on
how vars connect, unlike imperative programming, which focuses on how evaluators
calculate. VOM represents models as a series of interdependent var connections,
with the evaluators/filters between the connections being of secondary importance.

The SORCER metamodeling architecture [22] is the unifying representation for
three concrete programming syntaxes: the SORCER Java API described in [17],
the functional composition form [21, 22], and the graphical form described in [16].
The functional composition notation has been used for var-oriented language (VOL)
and var-oriented modeling language (VML) that are usually complemented with the
Java object-oriented syntax.

The fundamental principle of functional programming is that a computation can
be realized by composing functions. Functional programming languages consider
functions to be data, avoid states and mutable values in the evaluation process in
contrast to the imperative programming style, which emphasizes changes in state
values. Thus, one can write a function that takes other functions as parameters,
returning yet another function. Experience suggests that functional programs are
more robust and easier to test than imperative ones.

Not all operations are mathematical functions. In nonfunctional programming
languages, “functions” are subroutines that return values while in a mathematical
sense a function is a unique mapping from input values to output values. In SOR-
CER the special type of variable called var allows one to use functions, subroutines,
or coroutines in the same way. A value of var can be associated with mathematical
function, subroutine, coroutine, object, or any local or distributed data. The concept
of var links the three languages VOL, VML, and Exertion-Oriented Language
(EOL) into a uniform SO programming model that combines federating services
(EOP) with other type of process execution.

The semantics of a variable depends on the process expression formalism:

1. A variable in mathematics is a symbol that represents a quantity in a mathe-
matical expression.

2. A variable in programming is a symbolic name associated with a value.
3. A variable in object-oriented programming is a set of object’s attributes accessi-

ble via operations called getters.
4. A var in SO programming is a triplet <value, evaluator, filter>, where:

(a) A value is a valid quantity in an expression; a value is invalid when the
current evaluator or filter is changed, evaluator’s arguments change, or the
value is undefined;

(b) An evaluator is a service with the argument vars that define the variable
dependency composition; and

(c) A filter is a getter operation.



18 M. Sobolewski

Fig. 5 The var structure: value/evaluator/filter. Vars are indicated in blue color. The basic var y1,
z D y1.x1; x2; x3/, depends on its argument vars and derivative vars

Var-oriented programming is the programming paradigm that treats any
computation as the VFE triplet: value, filter (pipeline of filters), and evaluator
(see Fig. 5). Evaluators and filters can be executed locally or remotely on command,
object, or service platform (see dependencies a, b, and c in Fig. 3). An evaluator may
use a differentiator to calculate the rates at which the var quantities change. Multiple
associations of evaluator-filter can be used with the same var (multifidelity). The
VFE paradigm emphasizes the usage of multiple pairs of evaluator-filter (called var
evaluations) to define the value of var. The semantics of the value, whether the var
represents a mathematical function, subroutine, coroutine, or just data, depends on
the evaluator and filter currently used by the var.

A service in VOL is the work performed by a variable’s evaluator-filter pair.
Multiple evaluators for a dependent var, that depend on their argument vars,
define:

1. A var composition via the var arguments of its evaluator
2. Multiple processing services (mutifidelity)
3. Multiple differentiation services (mutifidelity)
4. Evaluators can execute commands (executable codes), object-oriented services

(method invocations), and exertions (exerting service federations).

Thus, in the same process various forms of services (intra and interprocess) can be
mixed within the same process expression in VOL. Also, the fidelity of var values
can change as it depends on a currently used evaluator. Please note that vars used
in data contexts of exertions extend EOP for the flexible service semantics defined
by VOP.



Object-Oriented Service Clouds for Transdisciplinary Computing 19

The variable evaluation strategy is defined as follows: the var value is returned
if is valid, otherwise the current evaluator determines the variable’s raw value
(not processed or subjected to analysis), and the current pipeline of filters returns
the output value from the evaluator result and makes that value valid. Evaluator’s
raw value may depend on other var arguments and those arguments in turn can
depend on other argument vars and so on. This var dependency chaining is called
the var composition and provides the integration framework for all possible kinds
of computations represented by various types of evaluators including exertions via
exertion evaluators.

In general, it is perceived that the languages used for either modeling or
programming are different. However, both are complementary views of process
expression and after transformation and/or compilation both need to be executable.
An initial model, for example an initial design of aircraft engine, can be imprecise,
not executable, at high level with informal semantics. However its detailed model
(detailed design) has to be precise, executable, low level, with execution semantics.
Differences between modeling and programming that traditionally seemed very
important are becoming less and less distinctive. For example models created with
Executable UML [8] are precise and executable.

Data contexts (objects implementing SORCER’s Context interface) with special-
ized aggregations of vars are called var-models. Three types of analysis models:
response, parametric, and optimization have been studied already [21]. These
models are expressed in VML using functional composition and/or Java API for
var-oriented modeling.

The modularity of the VFE framework, reuse of evaluators and filters, including
exertion evaluators, in defining var-models is the key feature of var-oriented
modeling (VOM). The same evaluator with different filters can be associated with
many vars in the same var-model. VOM integrates var-oriented modeling with other
types of computing via various types of evaluators. In particular, evaluators in var-
models can be associated with commands (executables), messages (objects), and
services (exertions) as shown in Fig. 3 by dependencies a, b, and c.

Var-models support multidisciplinary and multifidelity traits of transdisciplinary
computing. Var compositions across multiple models define multidisciplinary prob-
lems; multiple evaluators per var and multiple differentiators per evaluator define
their multifidelity. They are called amorphous models. For the same var-model an
alternative set of evaluators/filters (another fidelity) can be selected at runtime to
evaluate a new particular process (“shape”) of the model and quickly update the
related computations in the right evolving or new direction.

Let’s consider the Rosen–Suzuki optimization problem to illustrate the basic
VML, VOL, and EOL concepts, where:

1. design vars: x1, x2, x3, x4
2. response vars: f , g1, g2, g3,

and

3. f D x12 � 5:0 � x1 C x22 � 5:0 � x2 C 2:0 � x32 � 21:0 � x3 C x42 C 7:0 �
x4 C 50:0



20 M. Sobolewski

4. g1 D x12 C x1 C x22 � x2 C x32 C x3 C x42 � x4 � 8.0
5. g2 D x12 � x1 C 2.0 � x22 C x32 C 2.0 � x42 � x4 � 10.0
6. g3 D 2.0 � x12 C 2.0 � x1 C x22 � x2 C x32 � x4 � 5.0

The goal is then to minimize f subject to

g1 <D 0; g2 <D 0; and g3 <D 0:

In VML this case is expressed by the following mogram:

int designVarCount=4;
int responseVarCount=4;
OptimizationModel model=optimizationModel(

"Rosen-Suzuki Model"
designVars(vars(loop(designVarCount),

"x", 20.0, -100.0, 100.0)),
responseVars("f"),
responseVars(loop(responseVarCount-1), "g"),
objectiveVars(var("fo", "f", Target.min)),
constraintVars(

var("g1c", "g1", Relation.lte, 0.0),
var("g2c", "g2", Relation.lte, 0.0),
var("g3c", "g3", Relation.lte, 0.0)));

configureAnalysisModel(model);

Response vars f , g1, g2, g3 are configured by the function configureAnalysis-
Model defined in VOL, for example var f is configured as follows:

var(model, "f",
evaluator("fe1",
"x1ˆ2-5.0*x1+x2ˆ2-5.0*x2+2.0

*x3ˆ2-21.0*x3+x4ˆ2+7.0*x4+50.0"),
args("x1", "x2", "x3", "x4"));

The model above can be provisioned directly in SORCER as a service provider
and used by the space exploration provider of the Exploration type that also uses the
CONMIN optimization [2] service provider of the Optimization type.

The requestor creates the exertion opti as follows:

// Create an optimization data context

Context exploreContext=exploreContext(
"Rosen-Suzuki context",
varsInfo(

varInfo("x1", 1.0),
varInfo("x2", 1.0),
varInfo("x3", 1.0),
varInfo("x4", 1.0)),

strategy(new ConminStrategy(
new File(System.getProperty(



Object-Oriented Service Clouds for Transdisciplinary Computing 21

"conmin.strategy.file")))),
dispatcher(

sig(null, RosenSuzukiDispatcher.class,
Process.INTRA)),

model(sig("register",
OptimizationModeling.class,

"Rosen-Suzuki Model")),
optimizer(sig("register",

Optimization.class,
"Rosen-Suzuki Optimizer")));

// Create a task exertion
Task opti=task("opti",
sig("explore", Exploration.class,

"Rosen-Suzuki Explorer"),
exploreContext);

then executes the opti exertion:

// Execute the exertion and log results

loger.info("results: " + context(exert(opti));
with the exertion’s output data context logged as follows:

[java] Objective Function fo = 6.002607805900986
[java] Design Variable Values
[java] x1 = 2.5802964087086235E-4

x2 = 0.9995594642481355
x3 = 2.000313835134211
x4 = -0.9986692050113675

[java] Constraint Values
[java] g1c = -0.002603585246998996

g2c = -1.0074147118087602
g3c = 4.948009193483927E-7

[java] ITERATIONS
[java] Number of Objective Evaluations = 88
[java] Number of Constraint Evaluations = 88
[java] Number of Objective

Gradient Evaluations = 29
[java] Number of Constraint Gradient

Evaluations = 29

The exploreContext defines initialization of design vars (varsInfo), the
optimization strategy, and the exploration dispatcher with two required services—
two signatures for: optimizer and model. The context then is used to define
the exertion task opti with the signature for exploration service named Rosen–
Suzuki Explorer of the Exploration type. For simplicity, signatures above



22 M. Sobolewski

do not specify QoS for the specified providers. To illustrate the provider QoS
concept [14], for example, the optimizer’s signature can be expressed as follows:

sig("register", Optimization.class, qosCtx))

wherethe qosCtx context may be defined as follows:

QosContext qosCtx=qos(
serviceProvider(

entry("Name", "Rosen-Suzuki Optimizer"),
libs(entry("Name", "Conmin"),

entry("Class", NativeLibrarySupport.class),
entry("FileName", "conmin.so"))),

objectPlatform(
entry("Name", "Java"),
entry("Class", J2SESupport.class),
entry("Version", "1.5.*")),

commandPlatform(
processor(entry("Available", "2"),

entry("Architecture", "x86")),
memory(entry("Capacity", "4G"),

entry("Available", "2G")),
disk(entry("Capacity", "20G"),

entry("Available", "4G"))),
sla(

entry("cost", 200),
entry("time", 5000),
entry("CPU", range(0.0, 0.9)),
entry("Memory", range(0.2, 0.5)),
entry("ProcAvail_CPU_Util", range(1.5, 2.0),
metric("ProcAvail_CPU_Util",

impl("result=Double.parseDouble(proc_avail*
cpu_util",

args(var("proc_avail", processor(
entry("Available", ""))),

var("cpu_util", sla(
entry("CPU", null)))))),

authorization(
entry("estimatedDuration", 30000),
entry("priority", range(5,10)),

execDate("2012-01-10 00:00:00", "2012-01-11
12:00:00"),

project(
entry("name", "RS"),
entry("manager","Smith"),
entry("description", "RS optimization")),

organization(
entry("name", "TTU"),



Object-Oriented Service Clouds for Transdisciplinary Computing 23

entry("department", "CS"),
entry("description", "SORCER Testbed"))));

The qosCtx context specifies for the optimizer the required QoS: for
the provider by operator serviceProvider, for the object platform
by operator objectPlatform, for the command platform by operator
commandPlatform, for the expected SLA by operator sla and authorization by
authorization for the service requestor.

6 SORCER Operating System and Service Clouds

The SOS allows execution of a SO program and by itself is the SO system. The
overlay network of the service providers defining the functionality of the SOS is
called the sos-cloud (M layer in Fig. 4) and the overlay network of domain specific
(application) providers is called the app-cloud—metaprocessor (C4 layer in Fig. 4).
Both the sos-cloud and app-cloud constitute the service cloud. The metainstruction
set of the SORCER metaprocessor consists of all operations offered by all service
providers in the app-cloud. An exertion is composed of metainstructions with
its own control strategy per service composition and data context representing
the shared data for the underlying federation. Service signatures (instances of
Signature type) returned by sig operators specify operations of collaboration
participants in the app-cloud. Each signature is defined primarily by an interface
type, operation in that interface, and by a QoS context. When services of a processor
are provisioned (see Fig. 6) we call this type of processor a service cloud.

Fig. 6 SERVME resource management architecture



24 M. Sobolewski

As explained in Sect. 2, four types of signatures are distinguished. A PROCESS
signature—of which there is only one allowed per exertion—defines the dynamic
late binding to a provider that implements the signature’s interface. The data context
describes the data that tasks and jobs operate on and create. The SOS allows
for an exertion to create and manage a service collaboration and transparently
coordinate the execution of all exertion’s nested signatures within the assembled
federation. These exertion-based computing concepts are defined differently in
traditional grid/cloud computing where a job is just an executing process for a
submitted executable code—the executable becomes the single service itself that
can be parallelized on multiple processors, if needed. Here, a job is the federation of
collaborating executable codes (command providers) and related other providers
that is formed by the SOS for a single exertion as specified by its all nested
signatures.

An exertion object of the Exertion type is returned by either task or job
operators of EOL. Then, the exertion can be actualized by using the exertion
command-line interpreter (exertion shell), or programmatically by invoking the
exert operation on the shell as follows:

ExertionShell#exert(Exertion,Transaction): Exertion

where a parameter of the Transaction type is required when a transactional
semantics is needed for required participating service providers within the col-
laboration defined by the exertion. Thus, EO programming allows us to execute
an exertion and invoke exertion’s signatures on collaborating service providers
indirectly, but where does the S2S communication come into play? How do
these services communicate with one another if they are all different? Top-level
communication between services, or the sending of service requests, is done through
the use of the generic Servicer interface and the operation service that
SORCER providers are required to implement:

Servicer#service(Exertion, Transaction): Exertion.

This top-level service operation takes an exertion object as an argument and gives
back an exertion object as the return value.

So why are exertion objects used rather than directly calling on a provider’s
method and passing data contexts? There are two basic answers to this. First,
passing exertion objects helps to aid with the network-centric messaging.
A service requestor can send an exertion object implicitly out onto the network—
SorcerShell#exert(Exertion, Transaction)—and any service
provider can pick it up. The receiving provider can then look at the signature’s
interface and operation requested within the exertion object, and if it doesn’t
implement the desired interface and provide the desired method, it can continue
forwarding it to another service provider who can service it. Second, passing
exertion objects helps with fault detection and recovery. Each exertion object has
its own completion state associated with it to specify if it has yet to run, has
already completed, or has failed. Since full exertion objects are both passed and
returned, the user can view the failed exertion to see what method was being
called as well as what was used in the data context input that may have caused



Object-Oriented Service Clouds for Transdisciplinary Computing 25

the problem. Since exertion objects provide all the information needed to execute
the exertion including its control strategy, the user would be able to pause a job
between component exertions, analyze it and make needed updates. To figure out
where to resume an exertion, the executing provider would simply have to look at
the exertion’s completion states and resume the first one that wasn’t completed yet.
In other words, EO programming allows the user, not programmer to update the
metaprogram on-the-fly, what practically translates into creating new interactive
collaborative applications at runtime.

Applying the inversion principle, the SOS executes the exertion’s collaboration
with dynamically found, if present, or provisioned on-demand service providers.
The exertion caller has no direct dependency to service provider since the exertion
uses only service types they implement.

Despite the fact that any Servicer can accept any exertion, SOS services have
well defined roles in the S2S platform [21] (see Fig. 4):

a) Taskers–accept exertion tasks; they are used to create application services by
dependency injection (service assembly from service beans) or by inheritance
(subclassing ServiceTasker and implementing required service interfaces);

b) Jobbers–manage service collaboration for PUSH service access;
c) Spacers–manage service collaboration for PULL service access using space-

based computing;
d) Contexters–provide data contexts for APPEND signatures;
e) FileStorers–provide access to federated file system providers;
f) Catalogers–service provider registries, provide management for QoS-based

federations;
g) SlaMonitors–provide monitoring of SLAs;
h) Provisioners–manage on-demand provisioning;
i) Persisters–persist data contexts, tasks, and jobs to be reused for interactive EO

programming;
j) Relayers–gateway providers; transform exertions to native representation, for

example integration with Web services and JXTA;
k) Authenticators, Authorizers, Policers, KeyStorers—provide support for service

security;
l) Auditors, Reporters, Loggers—support for accountability, reporting, and log-

ging;
m) Griders, Callers, Methoders—support for a conventional compute grid (allocat-

ing executables codes on the network);
n) Notifiers—use third party services for collecting provider notifications for time

consuming programs and disconnected requestors.

Both sos-providers and app-providers do not have mutual associations prior to the
execution of an exertion; they come together dynamically (federate) for all nested
tasks and jobs in the exertion.

DS providers (see at C4 in Fig. 4) within the app-cloud—taskers—execute task
exertions. Rendezvous peers (jobbers, spacers, and catalogers) manage service
collaborations. Providers of the Tasker, Jobber, Spacer, and Cataloger
type are basic SOS exertion management providers. In the view of the P2P



26 M. Sobolewski

architecture [18] defined by the Servicer interface, a job can be sent to any
servicer. A peer that is not a Jobber or Spacer type is responsible for forwarding
the job to one of the available rendezvous peers in the SORCER environment and
returning results to the requestor. Thus implicitly, any peer can handle any exertion
type. Once the exertion execution is complete, the federation dissolves and the
providers in the federation disperse to seek other exertions to join.

7 Cloud Provisioning

The SOS manages service collaborations with dynamically found, if present,
or provisioned on-demand service providers. The exertion caller has no direct
dependency to service providers since the exertion uses only interface types they
implement. The SOS shell offers requestors the ability to dynamically invoke SOS
services in the sos-cloud and then required collaborating providers in the app-
cloud selected by SOS provisioning. User defined QoS attributes or QoS context
in signatures are optional. However, if used, the required command platform (V1
in Fig. 3), object platform (V2 in Fig. 3), and provider (V3 in Fig. 3), can be
provisioned if no service provider is available in the app-cloud.

Without an efficient resource management the assignment of providers to the
requestor’s signatures cannot be optimized and cannot offer high reliability without
relevant SLA guarantees. A SLA-based SERViceable Metacomputing Environment
(SERVME) [14] is capable of matching providers based on QoS requirements
and performing autonomic provisioning and deprovisioning of providers according
to dynamic requestor needs. In SERVME an exertion signature includes a QoS
context with SLA requirements as illustrated in Sect. 4. SERVME is a generic
resource management framework in terms of common QoS/SLA data structures and
extensible communication interfaces which hide all implementation details.

Along with the QoS/SLA object model SERVME defines basic components and
communication interfaces as depicted in the UML component diagram illustrated
in Fig. 6. We distinguish two forms of autonomic provisioning: monitored and on-
demand. In monitored provisioning the Rio Provisioner [13] deploys a requested
collection of providers, then monitors them for presence and makes sure that the
required number of providers is always on the network as defined by the collection’s
deployment descriptor. On-demand provisioning refers to a type of provisioning
(On-demand Provisioner) where the actual provider is presented to the requestor,
once an SLA subscription to the requested service is successfully processed. In both
cases, if services become unavailable, or fail to meet processing requirements, the
recovery of those service providers to available compute resources is enabled by the
Rio provisioning mechanisms.

The basic SERVME components are defined as follows:

• QosProviderAccessor is a component used by the service requestor that is
responsible for processing the exertion request containing QosContext in its



Object-Oriented Service Clouds for Transdisciplinary Computing 27

signature. If the exertion type is Task then QosCatalog is used, otherwise a
relevant rendezvous peer: Jobber, Spacer is used.

• QosCatalog is an independent service that acts as a QoS-based Lookup
Service. The QosCatalog uses the functional requirements as well as related
non-functional QoS requirements to find a service provider from currently
available in the network. If a matching provider does not exist, theQosCatalog
may provision the needed one.

• SlaDispatcher is a component built into each service provider. It performs
two roles. On one hand, it is responsible for retrieving the actual QoS parameter
values from the operating system in which it is running, and on the other hand, it
exposes the interface used by QosCatalog to negotiate, sign and manage the
SLA with its provider.

• SlaPrioritizer is a component that allows controlling the prioritization
of the execution of exertions according to the organizational requirements of
SlaContext.

• QosMonitor UI provides an embedded GUI that allows the monitoring of
provider’s QoS parameters at runtime.

• SlaMonitor is an independent service that acts as a registry for negotiated
SLA contracts and exposes the GUI for administrators to allow them to monitor,
update or cancel active SLAs.

• OnDemandProvisioner enables on-demand provisioning of services in
cooperation with the Rio Provisioner [13]. The QosCatalog uses it when no
matching service provider can be found that meets requestor’s QoS requirements.

Two forms of provisioning are considered: monitored and on-demand. In monitored
provisioning the provisioner deploys a requested collection of providers, then
monitors them for presence and in the case of any failure in the deployed collection,
the provisioner makes sure that the collection is always on the network as defined
by the collection’s deployment descriptor. On-demand provisioning refers to a type
of provisioning when the actual provider is presented to the requestor, once a
subscription to the requested service is successfully processed. In both cases, if
services become unavailable, or fail to meet processing requirements, the recovery
of those service providers to available compute resources is enabled by Rio
provisioning mechanisms.

As described in Sect. 4, the service requestor submits the exertion with QoS
contexts into the network by invoking evaluate(Exertion) in EOL. If the
exertion is of Task type, then QosProviderAccessor via QosCalatog finds
in runtime a matching service provider with a corresponding SLA.

If the SLA can be directly provided then the contracting provider approached by
the QosCalatog returns it in the form of a SlaContext, otherwise a negotiation
can take place for the agreeable SlaContext between the requestor and provider.
The provider’s SlaDispatcher drives this negotiation in cooperation with
SlaPrioritizer and the exertion’s requestor.



28 M. Sobolewski

If the task contains multiple signatures then the provider is responsible for
contracting SLAs for all other signatures of the task before the SLA for its
PROCESS signature is guaranteed.

However, if the submitted exertion is of Job type, then QosProvider-
Accessor via QosCalatog finds at runtime a matching rendezvous provider
with a guaranteed SLA. Before the guaranteed SLA is returned, the rendezvous
provider recursively acquires SLAs for all component exertions as described above
depending on the type (Task or Job) of component exertion.

8 Conclusions

Cloud computing it is not just computing on a collection of virtualized platforms.
A SO system is not just a collection of distributed objects—it is the unreliable
network of service providers that may come and go on virtualized platforms.
SORCER introduces the new metacomputing abstractions for evaluation, modeling,
metaprogramming, metacomputation, programming, and computation (Fig. 3). EO
programming introduces the new abstractions of service providers and exertions for
metaprogramming instead of objects and messages in object-oriented programming.
Exertions encapsulate service data, signatures with QoS, and a control strategy
interpreted by the SOS shell. The exertions are service commands that define reliable
network collaborations in unreliable networks.

Applying the inversion principle, the SOS looks up service providers by imple-
mented interface types with optional QoS attributes. The SOS utilizes Jini-based
service management that provides for dynamic services, mobile code shared over
the network, and network security. Federations are aggregated from independent
service-providers in the service cloud that do not require heavyweight containers
like application servers. The SOS defines the coherent framework between three
SORCER architectural layers: programming, management, and cloud processor.

The SORCER platform uses a dynamic service discovery mechanism allowing
new services to enter the network and disabled services to leave the network grace-
fully (expiration of leases for service proxies) without need for reconfiguration. This
allows the exertion federation to be distributed without sacrificing the robustness
of the SO process. This architecture also improves the utilization of the network
resources by distributing the execution load over multiple nodes of the network.
The exertion’s federation shows resilience to service failures on the network as it
can search for alternate services and maintain continuity of operations even during
periods when there is no service available.

The presented approach to the autonomic provisioning framework with QoS in
exertions and the negotiation for the acceptable SLA addresses the challenges of
spontaneous federations and allows for better resource allocation. Also, SERVME
provides for better hardware utilization due to Rio monitored provisioning and
SORCER on-demand provisioning. The presented on-demand provisioning reduces
the number of compute resources to those presently required for collaborations



Object-Oriented Service Clouds for Transdisciplinary Computing 29

Table 1 UNIX OS vs. SORCER OS. Pipes in UNIX are between pro-
cesses, in SORCER they are between data contexts; instead of UNIX
pipeline SORCER defines a workflow by composition of exertions; the
UNIX shell is local but the SOS shell is a network shell

Features UNIX SOS

Data File/file system Object/data context
Data flow Pipes Data context pipes
Interpreter e.g., C Shell SOS shell
Programming language Shell scripting—

procedural
1. VOL, VML, and

EOL scripting—
declarative

2. Interactive visual
programming

3. Java API
System (SW) language C Java/Jini/Rio

defined by corresponding exertions. Once a service is provisioned, the SOS
provisioners ensure that services are maintained to the expected QoS. Provisioning
thus refers to bootstrapping of the service provider, and monitoring of the ongoing
service responsibility. In the case of any provider’s failure the service provider
is re-provisioned in the network with the same required QoS. When diverse
and specialized hardware is used, SERVME provides a means to manage the
prioritization of tasks according to the organization’s strategy that defines “who is
computing what and where”.

As we move from the problems of the information era to more complex problems
of the molecular era, it is becoming evident that new programming languages
for transdisciplinary computing are required. These languages should reflect the
complexity of metacomputing problems we are facing in SO computing, for
example, concurrent engineering processes of the collaborative design by hundreds
of people working together and using thousands of programs written already in
software languages (languages for computers) that are dislocated around the globe.
The transdisciplinary design of an aircraft engine or even a whole air vehicle
requires large-scale high performance metacomputing systems handling anywhere-
anytime executable codes represented by software languages.

DSLs are for humans, intended to express specific complex problems and
related solutions. Three programming languages for transdisciplinary computing
are described in this paper: VOL, VML, and EOL. The SOS shell interprets these
languages. The essential differences between the UNIX operating system, and the
SOS are illustrated in Table 1.

As complexity of problems being solved increases continuously, we have to
recognize the fact that in transdisciplinary computing the only constant is change.
The concept of the evaluator–filter pair in the VFE framework provides the uni-
form service-orientation for all computing and metacomputing needs with various
applications, tools, utilities, and exertions as cloud services.



30 M. Sobolewski

The SORCER operating system supports the two-way convergence of three
programming models for transdisciplinary computing. On one hand, EOP is uni-
formly converged with VOP and VOM to express an explicit network-centric SO
computation process in terms of other implicit (inter/intra) process expressions
(the network is the computer). On the other hand, VOM and VOP are uniformly
converged with EOP to express an explicit declarative transdisciplinary process
in terms of other implicit (intra/inter) process expressions including exertions (the
computer is the network).

SORCER defines clearly its separate metacomputing architectural layers: meta-
mogramming, management, and cloud processor layers integrated via the SOS.
That introduces simplicity to SORCER mogramming with flexible enterprise inter-
operability achieved via three neutralities (protocol, implementation, and location
[19]) and architectural means, not by neutral data exchange formats, e.g., XML.
Neutral data exchange formats when overused introduce unintended complexity and
degraded performance.

The SO cloud computing philosophy described in this paper implies that separat-
ing explicitly programming from metaprogramming with corresponding platforms
and metaplatforms gives us the understanding of what is and is not important
for building large-scale adaptive and dynamic enterprise systems. Otherwise,
reducing programming to the level of middleware programming only and within
the command/object platform, introduces intolerable complexity for building such
distributed systems.

SORCER with its hierarchical mogramming model has been successfully de-
ployed and tested in multiple concurrent engineering and large-scale distributed
applications [6, 9, 10, 25].

Acknowledgements This work was partially supported by Air Force Research Lab, Air Vehicles
Directorate, Multidisciplinary Science and Technology Center, the contract number F33615-03-D-
3307, Algorithms for Fe-derated High Fidelity Engineering Design Optimization. I would like
to express my gratitude to all those who helped me in my SORCER research at AFRL, GE
Global Research Center, and my students at the SORCER Lab, TTU. Especially I would like to
express my gratitude to Dr. Ray Kolonay, my technical advisor at AFRL/RBSD for his support,
encouragement, and advice.

References

1. Apache River, Available at: http://river.apache.org/. Accessed 5 September 2011
2. CONMIN User’s Manual, Available at: http://www.eng.buffalo.edu/Research/MODEL/mdo.

test.orig/CONMIN/manual.html. Accessed 5 September 2011
3. Edwards, W.K. 2000 Core Jini, 2nd ed., Prentice Hall Ptr, ISBN-13: 978-0130144690
4. Fant, K. M., 1993, A Critical Review of the Notion of Algorithm in Computer Science,

Proceedings of the 21st Annual Computer Science Conference, February 1993, pp. 1–6
5. Foster I.; Kesselman C. and Tuecke S., 2001. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations, International J. Supercomputer Applications, 15(3)

http://river.apache.org/.
http://www.eng.buffalo.edu/Research/MODEL/mdo.test.orig/CONMIN/manual.html.
http://www.eng.buffalo.edu/Research/MODEL/mdo.test.orig/CONMIN/manual.html.


Object-Oriented Service Clouds for Transdisciplinary Computing 31

6. Goel, S.; Talya, S. S. and Sobolewski, M., 2008. Mapping Engineering Design Processes onto a
Service-Grid: Turbine Design Optimization, International Journal of Concurrent Engineering:
Research & Applications, Concurrent Engineering, Vol.16, pp 139–147

7. Jini Network Technology Specifications v2.1. Available at: http://www.jiniworld.com/doc/
spec-index.html. Accessed 5 September 2011

8. Kleppe A., 2009. Software Language Engineering, Pearson Education, ISBN: 978–0–321–
55345–4

9. Kolonay, R. M., Thompson, E. D., Camberos, J. A. and Eastep, F., 2007. Active Control
of Transpiration Boundary Conditions for Drag Minimization with an Euler CFD Solver,
AIAA-2007–1891, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, Honolulu, Hawaii

10. Kolonay, R. M. and Sobolewski M., 2011. Service ORiented Computing EnviRonment (SOR-
CER) for Large Scale, Distributed, Dynamic Fidelity Aeroelastic Analysis & Optimization,
International Forum on Aeroelasticity and Structural Dynamics,IFASD2011, 26–30 June,
Paris, France

11. Linthicum, D. S., 2009. Cloud Computing and SOA Convergence in Your Enterprise: A Step-
by-Step Guide, Addison-Wesley Professional, ISBN-10 0136009220

12. Metacomputing: Past to Present, February 30, 2011. Available at: http://archive.ncsa.uiuc.edu/
Cyberia/MetaComp/MetaHistory.html. Accessed 5 September 2011

13. Rio Project. Available at: http://www.rio-project.org/. Accessed 5 September 2011
14. Rubach, P. and Sobolewski, M., 2009. Autonomic SLA Management in Federated Computing

Environments. International Conference on Parallel Processing Workshops, Vienna, Austria:
2009, pp. 314–321

15. Sobolewski, M., 2002. Federated P2P Services in CE Environments, Advances in Concurrent
Engineering, A.A. Balkema Publishers, Taylor and Francis, 2002, ISBN 90 5809502 9, pp.
13–22

16. Sobolewski, M. and Kolonay, R., 2006 Federated Grid Computing with InteractiveService-
oriented Programming, International Journal of Concurrent Engineering: Research & Appli-
cations, Vol. 14, No 1., pp. 55–66

17. Sobolewski, M., 2008. Exertion Oriented Programming, IADIS, vol. 3 no. 1, pp. 86–109,
ISBN: ISSN: 1646–3692

18. Sobolewski, M., 2008. Federated Collaborations with Exertions, 17h IEEE International
Workshop on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE),
pp.127–132

19. Sobolewski, M., 2009. Metacomputing with Federated Method Invocation, Advances in
Computer Science and IT, edited by M. Akbar Hussain, In-Tech, intechweb.org, ISBN
978–953–7619–51–0,s. 337–363. Accessed 5 September 2011. Available at: http://sciyo.com/
articles/show/title/metacomputing-with-federated-method-invocation

20. Sobolewski, M., 2010. Object-Oriented Metacomputing with Exertions, Handbook On Busi-
ness Information Systems, A. Gunasekaran, M. Sandhu (Eds.), World Scientific Publishing Co.
Pte. Ltd, ISBN: 978–981–283–605–2

21. Sobolewski, M., 2010. Exerted Enterprise Computing: From Protocol-Oriented Networking to
Exertion-Oriented Networking, R. Meersman et al. (Eds.): OTM 2010 Workshops, LNCS 6428,
2010, Springer-Verlag Berlin Heidelberg 2010, pp. 182–201

22. Sobolewski, M., 2011. Provisioning Object-Oriented Service Clouds for Exertion-Oriented
Programming, Proceedings of CLOSER 2011 - International Conference on Cloud Computing
and Services Science, pp. IS-11–IS-25

23. Sobolewski, M., 1996. Multi-Agent Knowledge-Based Environment for Concurrent Engineer-
ing Applications. Concurrent Engineering: Research and Applications(CERA), Technomic.
Available at: http://cer.sagepub.com/cgi/content/abstract/4/1/89

24. SORCERsoft. Available at: http://sorcersoft.org. Accessed 5 September 2011
25. Xu, W., Cha, J., Sobolewski, M., 2008. A Service-Oriented Collaborative Design Platform for

Concurrent Engineering, Advanced Materials Research, Vols. 44–46 (2008) pp. 717–724

http://www.jiniworld.com/doc/spec-index.html.
http://www.jiniworld.com/doc/spec-index.html.
http://archive.ncsa.uiuc.edu/Cyberia/MetaComp/MetaHistory.html
http://archive.ncsa.uiuc.edu/Cyberia/MetaComp/MetaHistory.html
http://www.rio-project.org/.
http://sciyo.com/articles/show/title/metacomputing-with-federated-method-invocation
http://sciyo.com/articles/show/title/metacomputing-with-federated-method-invocation
http://cer.sagepub.com/cgi/content/abstract/4/1/89
http://sorcersoft.org.

	Object-Oriented Service Clouds for Transdisciplinary Computing
	1 Introduction
	2 Process Expressions and Metacomputing
	3 Service-Object Oriented Platform: SORCER
	4 Exertion-Oriented Programming Model
	5 Var-Oriented Programming and Var-Oriented Modeling
	6 SORCER Operating System and Service Clouds
	7 Cloud Provisioning
	8 Conclusions
	References


