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Abstract The metrics can be applied by software main-

tenance, testing and evolution teams for a variety of pur-

poses. Various research studies have designed metrics

models for analyzing the quality of software. However, it is

hard to assess the quality of software with a single metrics

value. A metrics value alone is meaningless without its

threshold values. In the current paper, study derives a

threshold metrics value against the bad smell using risk

analysis at five different levels. Three versions of Mozilla

Firefox were used as a dataset to validate the study. The

results show that some metrics have threshold values at

various risk levels that are of practical use in predicting

faulty classes. Finally one threshold value was selected

from the various risk levels (for bad smell) by determining

the largest area under receiver operating character curve for

faulty classes at corresponding risk levels.

Keywords Object oriented metrics � Encapsulation �

ROC curve � Threshold values � Risk level second

keyword � More

1 Introduction

With the growth of the software industry, software evolu-

tion has become an important concern of software

developers. Evolutions of software over many years often

lead to obscure systems. It is hard to predict where changes

have to be applied on the code and their effects on the

system. This will make the maintenance and evolution of

software more and more complex and expensive. In order

to have efficient evolution and maintenance of code the

structure and the design of a system have to be improved.

To do this, first it is required to identify the areas for

improvement in the code design and the problems faced

because of this poorly coded design, i.e. bug origination.

Manual identification of the problem of poor code design is

not consistent [12]. The support of a tool is required for

problem detection. Such a tool would accept input in the

form of source code and produce output consisting of

estimated flaws in the source code. Refactoring is one of

the solutions for improving the source code. Refactoring

changes the internal structure of the object oriented code

without affecting the overall behavior of the system.

Refactoring plays an important role in reengineering and

reverse engineering, which makes the code easier for

software developers to understand [22]. The process of

refactoring is applied in three different stages, namely

identification of the problematic area, selection of an

appropriate refactoring technique and application of the

refactoring technique [31]. Fowler and Beck [22] have

defined the 22 bad smells that describe design problems

and suggested a number of refactoring techniques that [22]

can help in improving the design structure of a code.

The agile community has used the principal of refac-

toring as a solution to bad code smells. Fowler [22],

however, did not suggest any criteria for making the

decision to refactor. Software metrics have often been used

to assess the quality of the software. Although a number of

studies have been done to find a relationship between

metrics and bad smell [8, 10, 11, 29, 30], these studies have

S. Singh (&)

Department of Computer Science Engineering, Baba Banda

Singh Bahadur Engineering College, Fatehgarh Sahib, India

e-mail: satwindercse@gmail.com

K. S. Kahlon

Department of Computer Science Engineering, Guru Nanak Dev

University, Amritsar, India

e-mail: karanvkahlon@yahoo.com

123

CSIT (November 2014) 2(3):191–205

DOI 10.1007/s40012-014-0057-1



not exploited the threshold values of the metrics. Threshold

value is necessary to generalize the view on different

software applications. Proper threshold value is an orien-

tation for the developer in the task of refactoring. With

threshold value, the developer and tester can scrutinize the

classes to find candidates for refactoring on the basis of

smelly classes. A class having metrics value greater than

the threshold gives a sign of poor design, it needs the

inspection to make a design better. In this work study has

derived the metrics threshold values for identification of

bad smells using a logistic regression model. The model

was first proposed by Bender [13] in the field of epide-

miology. This model can easily be reused to derive the

threshold values with a given estimated coefficient.

Moreover, it has previously been applied in the software

metrics field [14]. Study has applied this model on three

Firefox versions (1.5, 2.0 and 3.0) to identify the threshold

metrics value for identification of bad smells in classes.

The set of metrics selected for the study is DIT [2], NOC

[2], RFC [2], WMC [2], LCOM [2], Co [1], CBO [2], NOA

[37], NOOM [37], NOAM, PuF [23] and EncF [23]. The

bad smells considered in the study are Large Method, Long

Parameter List, Large Class, Temporary Fields, Shotgun

Surgery, Lazy Class, Data Class, Speculative Generality,

Middle Man, Feature Envy and Inappropriate Intimacy

[22]. The practically effective threshold metrics value for

the identification of smelly classes’ was selected on the

basis of high area under curve [receiver operating character

(ROC)]. It was believed that a module’s proneness to error

is somehow associated with bad design [9, 23, 50]. So,

clearly the threshold value of metrics associated with the

design principles (bad smells) can also be used to predict

faults that will arise in the future. The derived threshold

values are validated by identifying the faulty classes for

subsequent Firefox versions. Finally, study also compare

result with that of a previous study [16] that also selected

the fault during the development stage.

2 Literature review

Applying refactoring manually is very difficult. Numerous

tools have been developed by different communities

(commercial, academic and open source) to assess a bad

smell from a code, including Together [17], XRefactor

[18], jbuilder [19] (commercial), Eclipse [20] (open

source), Columbus [21] (academic). In all these cases

refactoring is applied with the interactive participation of

the user. The purpose of these tools is to identify the areas

of code on which refactoring should be applied.

Webster [24] gives the conceptual, coding and quality

assurance view of antipatterns (which are potential causes

of bad smells) in programming languages. Later on, Reil

[25] defined the heuristic to assess quality of the program-

ming language manually for object oriented design. Fowler

and Beck [22] have defined the 22 bad smells, which helps

in identifying the area to apply refactoring. Mantyla [12]

proposed the classification of these bad smells into six

groups. They all have proposed theoretical approaches to

defining bad smells. They also did not define the criteria to

identify them from the code. Other studies (manual and

automatic) have been done to identify them from the code.

A manual approach to identifying the design flaws that lead

to bad smells was proposed by the Travassos [28]. They use

the reading technique to identify the antipatterns; this will

not be worthwhile for large industrial projects. Ciupke [29]

proposed an approach to identify simple design problems

which that occur frequently and locate them with the que-

ries applied on a derived model from the source code.

However, he did not address the complex design problems

causing the bad smells code. Marinescu [30] has proposed a

‘‘detection strategy’’ for formulating metrics-based rules to

check the deviation from good design principles and heu-

ristics. In this case human intervention is required because

the detection process is uncertain. Therefore, a detection

process creates the uncertainty in the classes. Marinescu

[30] did not give any justification for the selection of met-

rics, threshold and combination of metrics defined in the

detection strategies. It is indispensable to know whether the

metrics chosen encapsulate the design problem or not.

Marinescu [31] also proposed an approach, which did not

cover the uncertainty issues, quality analysts’ interpreta-

tions and context of the programs. Furthermore, Marinescu

had did the case studies on small projects and not on

industrial projects. Rao and Ready [32] use the design

change propagation probability (DCPP) matrices to detect

the two antipatterns (shotgun survey and divergent change).

A DCPP matrix is a N � N matrix where N represents the

artifact or class. In the matrix, the value at column A, row B

represents the probability that a design change in artifact A

will require changes in B to preserve the overall function-

ality. Rao and Ready [32] do not use the threshold values in

the detection of the antipatterns, but compare candidates of

design defects (source code or class, they called it artifacts

in their study) under certain specified conditions. They

checked the specified conditions (listed in their study [32])

iteratively and correct the design defects with refactoring

techniques representing the bad smell (e.g. move method

for shotgun survey). Li et. al. [9] have inspected the rela-

tionship between faulty classes and a few bad smells. They

have checked the relationship with three versions of Eclipse

and concluded that broader studies are needed to validate

the results. Current study provides such extensive studies by

deriving threshold values for smelly classes (with 11 bad

smells) and validate values with the probability of occur-

rence of faulty classes.
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Many research studies have developed the metrics

model or used the metrics values to predict the quality of

the software both for design deviance [10, 23, 30, 38, 50]

and for error proneness [4, 23, 50]. Out of these studies few

studies have further focused on error proneness due to lack

of design [23, 38, 50]. But few other sole research studies

have been done to show the relationship between design

deviance and faulty classes [9, 12].

Rosenberg [16] has designed the threshold values for

some CK metrics with error data, collected in development

phase. Threshold values derived in their study can be used

for redesigning. Rosenberg [16] values were tested by

Shatnawi et. al. [14] and they determined that it is not find

it effective for predicting faulty classes as compared to

their own values. Shatnawi [14] derived the threshold

values for software metrics for predicting the faulty classes.

They were the first one to use the approach of quantitative

risk level in software metrics, which was used earlier by

Bender [13] in the field of epidemiology.

As a compromise between manual and automatic tech-

nique, Dhambri et al. [33] have proposed a visual technique

for identification of smelly classes. But this technique is

unable to decide when a smelly class is actually a smelly and

provides a futilely long list of candidates. Fully automatic

techniquewas also proposed byLanza et al. [33] but this does

not give the threshold values for the detection of smelly

classes, either, and it shows uncertainty in the detection of

smelly classes which really are smelly classes. None of the

above approaches, whether manual or automatic, validate

theirworkwith the bugswhich is designed for smelly classes.

In this paper first step is to design the threshold values for

determining smelly classes and then validate it with the bug

database. This shows that by improving the understand-

ability with refactoring of a code, the probability of bugs will

also be reduced. Very few studies have figured out more than

five to six bad smells. Current study, however, has taken into

account 11 bad smells and designed the threshold values of

metrics based on these bad smells.

3 Data collection

Metrics and a bad smell database of Mozilla Firefox were

collected using the Columbus Wrapper Framework tool

(academic command prompt version on special request)

[21]. It has earlier being used and authenticated by number

of research studies [23, 26, 40, 43, 44, 50] done by devel-

oper of Columbus tool. The selection of metrics was based

on criteria that it shall cover a maximum of properties of

object oriented methodology. Another criterion is that the

metrics should be measured or extracted by the Columbus

tool. The selected set of metrics is DIT [2], NOC [2], RFC

[2], WMC [2], LCOM [2], Co [1], CBO [2], NOA [37],

NOOM [37], NOAM, PuF [23] and EncF [23]. The metrics

are characterized as Information hiding (PuF), Encapsula-

tion(EncF), Class Complexity (WMC), Inheritance (DIT,

NOC), Class Size(NOA, NOOM, NOAM), Cohesion

(LCOM, Co) and Coupling (RFC, CBO). The criteria for

the selection of bad smells were the same as those for

metrics. The selected set of bad smell is Large Method,

Long Parameter List, Large Class, Temporary Fields,

Shotgun Surgery, Lazy Class, Data Class, Speculative

Generality, Middle Man, Feature Envy and Inappropriate

Intimacy [22]. The Columbus tool compiled the source code

and produced the metrics and bad smells for each class.

Separate files of metrics and bad smells were generated.

3.1 Bad smell extraction

Bad smell identification in a code will help to refactor the

code. Decision of refactoring the module is not simple. A

number of people have done work to make a decision on

refactoring [5–8] on the basis of metrics models. Research

results show that there is a relationship between structural

attributes (design metrics) and external quality metrics (bad

smell) [7, 11, 12, 23, 50]. Bad smell findings will help the

testing team to adjudge some faults which are likely to come

in the future due to these bad smells [9, 10]. It also helps the

manager to forecast the system for refactoring it and for long

term evolution of the projects. Table 1 shows the bad smell

count in the classes for three versions. Interested reader can

read about the brief description of the extraction of 11 bad

smells by Columbus tool from the products white paper [42].

For better statistical analysis, bad smells are divided into six

categories [12]. The distribution of the effective smelly

classes in first five categories is shown in Table 2.

Table 1 Bad smell-affected class count distribution in three versions

Bad smell/version Firefox Firefox Firefox

3.0 2.0 1.5

Large method 775 701 534

Long parameter list 267 263 186

Large class 366 345 282

Temporary fields 123 144 136

Shotgun surgery 45 41 39

Lazy class 163 148 135

Data class 18 17 13

Speculative generality 132 168 35

Middle man 13 12 9

Feature envy 994 958 699

Inappropriate 685 445 337

Intimacy – – –

No. of distinct affected classes 1,865 1,695 1,225

No. of classes in each version 4,971 4,524 3,546
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3.2 The bug data collection

A bug database was used to validate the threshold values

selected. The bug database of Firefox versions was col-

lected from the Bugzilla [39], as it was collected by Gy-

imothy et al. [40]. Bugzilla includes the bugs reported in the

lifetime of the Firefox project. Current study, however, only

included data collection of bugs that appear in the classes

extracted by the Columbus framework. Bugs that do not

belong to Cþþ source code classes were ignored. Each bug

was collected manually and details of thereof was obtained

from its patch file (attached to the bug description) to find

the affected classes. The patch file contains the information

about changes in the source code. This information includes

how many lines were deleted from a given line number in

the source code file and how many lines were inserted at a

given line number in the source code file. By manually

analyzing the patch file bug, the associated class was found.

For each version concerned, it was looked for a class whose

code in the source code overlapped with the code interval of

a bug patch file. If such a class was found then the bug count

was increased for that class. If one bug affected more than

one class then the bug count associated with each class was

incremented. The Bugzilla community divided the bugs into

the following seven categories:

• Blocker: The error blocked development and/or testing

work.

• Critical: The error caused crashes, loss of data, or

severe memory leak.

• Major: The error caused a major loss of function.

• Normal: The error was the run of the mill bug-a non-

major error.

• Minor: The error caused minor loss of function or other

problems that were fixed easily.

• Trivial: The error caused a cosmetic problem like

misspelled words or misaligned text.

• Enhancement: The request for enhancement.

To check the metrics threshold value for detecting faulty

classes, each class was marked as faulty if at least one fault

was found, and no fault, if no fault was found. To check the

metrics threshold values for each severity category, each

fault was categorized into one of the three aforementioned

severity categories: High, Medium and Low. If one class has

faults falling into more than one severity category then each

fault was listed separately for that class. Table 2 shows the

fault distribution of each category for three Firefox versions.

4 Research methodology

In this study the data of three versions (1.5, 2.0, and 3.0) of

Mozilla Firefox were taken for analysis. Twelve metrics

(DIT, NOC, CBO, RFC, WMC, NOA, NOOM, NOAM,

Co, LCOM, PuF and EncF) and 11 bad smells (Large

Method, Long Parameter List, Large Class, Temporary

Fields, Shotgun Surgery, Lazy Class, Data Class, Specu-

lative Generality, Middle Man, Feature Envy and Inap-

propriate Intimacy) databases of these three versions of

Mozilla Firefox were extracted. Then, bugs from these

three versions were collected from the Bugzilla database.

For analysis method, regression theory was used by Bender

[13] (in epidemiology) and Shatnawi [14] (in software

metrics) to find the threshold values. Work started with the

univariate binary logistic regresssion (UBR) analysis to

find the relationship between bad smells and metrics val-

ues. Logistic regression is well suited for testing relation-

ship between categorical variables and one or more

continuous categorical and continuous predictor variables.

Logistic regression was used in study because dependent

variable in the study is dichotomous. For these dependent

variables, scientists prefer logistic regression. Also, a

logistic function takes input from negative infinity to

positive infinity but gives the output in the range of 0–1.

Only the significantly associated metrics in UBR analysis

were considered for finding the threshold values. Signifi-

cant association between metrics and bad smell in UBR

was tested at a 95 % confidence level i.e. p value \0:05.

Study belief is that if the threshold values of metrics using

the bad smell is found successfully then the validation of

these threshold values is done by predicting the faulty

classes. Study validate threshold values first with the binary

Table 2 Categorised bad smell count distribution for three Firefox

versions

Bad smell

categories

Bad smell Firefox

Firefox

3.0

Firefox

2.0

Firefox

1.5

Bloater Large method 878 827 626

Long parameter

list

– – –

Large class – – –

Object-oriented

abuser

Temporary fields 113 144 136

Change

preventer

Shotgun surgery 45 41 39

Dispensable Lazy class 301 321 177

Data class – – –

Speculative

generality

– – –

Coupler Middle man 1,408 1,203 875

Feature envy – – –

Inappropriate

intimacy

– – –
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analysis and then with multinomial analysis. In binary

analysis, the modules is divided into two categories (faulty

and no faults) using the shortlisted metrics threshold values

from the above analysis. In case of multinomial analysis,

faulty classes are further divided into three categories

(high, medium and low error). In binary logistic regression,

input is x and output function is f(x). The variable x is a

measure of the total contribution of all the independent

variables used in the model and is known as the logistic.

The general Multivariate Logistic Regression model is as

follows [27] (univariate binary regression is a special case

of it where n ¼ 1):

pðY ¼ 1jX1;X2; :::XnÞ ¼
expðb0þb1x1þb2x2þ���þbnxnÞ

1þ expðb0þb1x1þb2x2þ���þbnxnÞ
ð1Þ

where, b0 is the intercept and bið1� i� nÞ are the regres-

sion coefficients; p is the probability of a class being

smelly; Y is the dependent variable (a binary variable);

Xið1� i� nÞ are the independent variables i.e. object-ori-

ented metrics.

In binary analysis derived threshold metrics value pre-

diction accuracy is checked for either a class be faulty or

no fault. In case of multinominal analysis, the accuracy of

categorical fault (high, medium and low) is checked for

prediction with the derived threshold values of each ver-

sion. The threshold value which has high fault prediction

accuracy is selected.

4.1 Threshold model

Logistic regression is used to select the metrics signifi-

cantly associated with bad smell. Then, from this regres-

sion, an analysis threshold model was developed based on

Bender’s method [13] as it was used by Shatnawi [14].

Bender’s proposed method for risk analysis is known as

value of an acceptable risk level (VARL). It is formally

defined as follows:

VARL ¼ p�1ðp0Þ ¼
1

b
log

p0

1� p0

� �

� a

� �

ð2Þ

where b is the metrics regression coefficient value; a is the

constant coefficient value; p0 is the probability of the class

being smelly at an acceptable risk level (R.L.).

VARL values of those metrics were measured which

were significant in univariate regression analysis.

4.2 Model accuracy

ROC is related to benefit analysis of decision making. It

was first developed by engineers in World War II to detect

the enemy object. It is also known as signal detection

theory [47]. ROC analysis since then is used in different

fields like medicine, biometrics, psychology and many

other including the machine learning and model accuracy.

First application of ROC in machine learning was tested by

Spacman [48]. Spacman validated the values of ROC curve

for comparing the different classification algorithms. ROC

curves are two-dimensional graphs that visually depict the

performance and performance trade-off of a classification

model [15]. ROC curves were originally designed as tools

in communication theory to visually determine optimal

operating points for signal discriminators [47]. A ROC

curve plots the relationship between sensitivity and speci-

ficity. Sensitivity and specificity as per the confusion

matrix are defined as follows:

Sensitivity ¼ true positive rateðTPRÞ ¼
TP

TPþ FN

Specificity ¼ true negative rateðTNRÞ ¼
TN

TN þ FP

The area under the curve for the ROC ranges between 0

and 1. The general rule to measure the classification per-

formance of ROC curve is as follows [27]:

1. AUC \ 0.5 means no discrimination classification;

2. 0.5 \ AUC \ 0.6 means poor classification;

3. 0.6 \ AUC \ 0.7 means good classification;

4. 0.7 \ AUC \ 0.8 means acceptable classification;

5. 0.8 \ AUC \ 0.9 means excellent classification;

6. AUC \ 0.9 means outstanding classification.

Area under curve (AUC) is the probability that classifier

ranks the randomly chosen positive instance higher than a

negative instance [45]. Machine learning community

mostly used the ROC AUC for the model comparison to

select the optimal model from suboptimal models [46]. To

measure the accuracy of metrics threshold value, the ROC

curve analysis was used. From the ROC graph, the area

under the curve (AUC) is used to check the performance of

threshold values. Threshold values are valid for error pre-

diction model if AUC values fall in the acceptable range.

AUC values that lie below this range are not acceptable and

the threshold values are not valid for smelly or faulty class

prediction. ROC curve analysis is used for the skewed and

unbalanced data. This was suitable for Mozilla Firefox data

which is skewed and unequally distributed at par with the

Eclipse data used by Shatnawi [4]. If the ROC area under

the curve (AUC) falls in the acceptable range, then first the

corresponding metrics value for each Firefox version will

be shortlisted as a threshold metrics value to predict the

smelly classes. Second, the shortlisted threshold values will

be used to predict the faulty classes and categorized faulty

classes again by the criteria of acceptable range for AUC.

Threshold values derived from the relationship between

bad smells and metrics are used for faulty class prediction

because earlier research studies [9, 10, 23, 50] have shown

that a relationship exists between bad smells and faulty
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classes. So, classes not properly checked for bad smells or

improper design may result in faulty classes (over time).

5 Hypothesis of study

There are two main aims of this study: first, to derive the

threshold metrics values for identification of smelly classes,

and second, to use statistically significant threshold metrics

derived from first context to identify the fault and its cate-

gory. The following are the Null Hypothesis of study:

1. There are no practical and effective threshold values

for the OO metrics that can predict smelly classes

during the design.

2. A practically significant threshold metrics value that

predicts the smelly classes will not predict the faulty

classes or separate the classes into two modules (faulty

and no-fault).

3. A practically significant threshold metrics value that

predicts the smelly classes will not predict the fault

categories (low, medium and high) and no fault.

6 Metrics UBR analysis

In the univariate binary logistic regression (UBR) analysis,

significant metrics for predicting smelly classes were selec-

ted. Analysis was done at a 95 % (p value \0:05) confidence

level. Metrics with a p value greater than 0.05 are not used for

the next step of threshold analysis. Table 3 shows the UBR

analysis of three versions of Mozilla Firefox.

It was noticed from the UBR analysis that all the

selected metrics are significant predictors of smelly classes

in all the three versions. Therefore, threshold values of all

these metrics can be calculated with VARL analysis.

7 Metrics threshold values analysis

Threshold metrics values of all the above selected met-

rics are calculated using (2). Table 4 shows the threshold

values at five risk levels (i.e. 0.05, 0.065, 0.075, 0.1, and

0.125). In some cases study did not get any useful

threshold values. Such values are not mentioned in

Table 4 and its corresponding AUC column is marked

with N/A. There was no threshold values for LCOM and

Co metrics at five supposed risk levels (R.L.) because

the threshold values deduced with VARL analysis are

less than the metrics minimum value or more than the

maximum. Table 5 shows many metrics having potential

threshold values with AUC more than 0.700. Table 5

also shows the AUC for binary fault categories of

selected metrics. There is a difference in the threshold

value in each version for each risk level. So, one

threshold metrics value was selected for each version

with the highest AUC and in the acceptable range

(AUC[ 0:700). Analysis did not find practical threshold

values for PuF, NOC, DIT, NOA (for 2.0 and 3.0 ver-

sions), NOOM, NOAM. In this case, the AUC for

metrics (PuF, NOC, DIT, NOA, NOOM and NOAM) lie

below the acceptable range (AUC\0:700). Shatnawi

et al. [14] also did not find practical threshold values for

the LCOM, NOC, DIT, NOA, NOOM and NOAM. They

did not look for the Co and PuF metrics threshold val-

ues. Therefore, threshold values for CBO, RFC, WMC,

NOA (for 1.5 versions) and EncF were practically useful,

valid and in the acceptable range (i.e. AUC[ 0:7).

Selected metrics with their threshold values for each

version are shown in Table 6. From the table it is

observed that CBO and RFC have approximately the

same metrics threshold for each version. There is a

difference in metrics value for EncF and WMC for each

version. Table 6 also shows that the AUC is higher with

Table 3 Univariate binary

regression analysis
Metrics Firefox 3.0 Firefox 2.0 Firefox 1.5

B p value B p value B p value

NOC -0.166 0.000 -0.268 0.000 -0.233 0.000

DIT 0.185 0.000 0.161 0.000 0.178 0.000

CBO 0.169 0.000 0.157 0.000 0.156 0.000

RFC 0.038 0.000 0.044 0.000 0.041 0.000

WMC 0.048 0.000 0.048 0.000 0.047 0.000

LCOM 0.001 0.000 0.002 0.000 0.001 0.000

Co 0.473 0.000 0.665 0.000 0.613 0.000

PuF -3.121 0.000 -3.486 0.000 -5.503 0.000

EncF 1.583 0.000 2.405 0.000 2.765 0.000

NOA 0.095 0.000 0.096 0.000 0.104 0.000

NOAM 0.042 0.000 0.051 0.000 0.004 0.000

NOOM 0.003 0.000 0.003 0.000 0.003 0.000
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threshold values devised by the study than with threshold

values designed by Shatnawi et. al. [14]. To get the

more practical and useful threshold values for each

selected metrics, these values were checked for their

predictions of faulty classes. Positive prediction of faulty

classes with these threshold values shows that a bad

smell will affect the long-term evolution or maintenance

of the software product. Threshold values derived from

this analysis will help the testing and development teams

to identify the classes for refactoring. Metrics threshold

values could bring the information such as when a class

has greater metrics value than the threshold it is a sign

of poor design and it needs an inspection to improve the

design. These values will further help to predict faulty

classes, as shown in previous studies [9, 23, 50]. Various

techniques [22] can be applied to improve the code

design after metrics reach the threshold values.

8 Effectiveness of metrics threshold values

Proposed threshold value in Table 6 is need to be checked

for the accuracy or effectiveness in predicting the faulty

classes. Metrics values were evaluated by predicting the

faulty classes in three releases of Firefox (1.5, 2.0 and 3.0).

Metrics were evaluated with two validation criteria: binary

categorization and multinomial categorization. First, the

threshold metrics value tested for whether a class was faulty

or not. The result of above shortlisted metrics for predicting

faulty categories (binary categorisation) was shown in

Table 7. Second, metrics values were used to predict the

fault category (high, medium, low impact or no fault). In the

second case, the shortlisted threshold value (in Table 6) was

checked for each fault category against the no fault cate-

gories. Shatnawi [3] also dropped the low impact categories

of faults before (combining the high and medium categories

Table 4 VARL metrics

threshold values of Mozilla

Firefox

Metrics Version Area under curve (for bad smell) Threshold values (for bad smell)

0.05 0.065 0.075 0.1 0.125 0.05 0.065 0.075 0.1 0.125

CBO 1.5 0.728 0.751 0.748 0.760 0.755 6 7 7 8 9

2.0 0.662 0.709 0.731 0.743 0.743 4 5 6 7 7

3.0 0.727 0.727 0.753 0.753 0.754 5 5 6 6 7

RFC 1.5 0.711 0.733 0.742 0.750 0.754 8 11 13 16 19

2.0 0.650 0.706 0.715 0.728 0.735 5 8 9 12 15

3.0 0.524 0.658 0.703 0.726 0.726 2 5 7 11 14

WMC 1.5 0.787 0.791 0.790 0.784 0.784 12 15 16 19 21

2.0 0.777 0.777 0.778 0.777 0.769 9 11 13 16 18

3.0 0.787 0.774 0.774 0.768 0.765 8 10 12 15 17

PuF 1.5 0.257 0.263 0.272 0.294 0.305 0.993 0.971 0.958 0.934 0.914

2.0 N/A N/A N/A 0.281 0.302 – – – 0.982 0.951

3.0 N/A N/A N/A 0.297 0.308 – – – 0.994 .959

EncF 1.5 N/A N/A N/A 0.722 0.700 – – – 0.030 .069

2.0 N/A N/A N/A N/A 0.700 – – – – .018

3.0 N/A N/A N/A N/A 0.700 – – – – .009

NOC 1.5 0.487 0.480 0.480 0.464 0.464 4 3 3 2 2

2.0 0.486 0.478 0.478 0.463 0.463 4 3 3 2 2

3.0 0.482 0.482 0.468 0.468 0.468 3 3 2 2 2

DIT 1.5 N/A N/A N/A 0.457 0.457 – – – 1 1

2.0 N/A N/A N/A N/A 0.466 – – – – –

3.0 N/A N/A N/A N/A 0.461 – – – – 1

NOA 1.5 N/A N/A N/A 0.741 0.700 – – – 3 4

2.0 N/A N/A N/A N/A 0.684 – – – – 3

3.0 N/A N/A N/A N/A 0.665 – – – – 2

NOAM 1.5 N/A N/A N/A N/A 0.677 – – – – 9

2.0 N/A N/A N/A 0.622 0.645 – – – 4 6

3.0 N/A N/A N/A 0.521 0.639 – – – 2 5

NOOM 1.5 N/A N/A N/A N/A 0.618 – – – – 15
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fault) deriving the threshold metrics values for detecting

faulty classes. According to Shatnawi [3], low impact cat-

egory faults were not able to predict the faulty classes. So, it

was expected that threshold values derived from bad smell

design would predict the high or medium impact error

categories. These categories included the errors due to

shortcomings during development. If these threshold values

predict the faulty classes or categorized faulty classes,

which will indicate that controlling bad smell might suc-

cessfully control errors or bugs. If AUC falls in the

acceptable range, then these categorized faults can be pre-

dicted using metrics threshold values designed for the

smelly classes. Table 8 shows the AUC for different fault

categories. Table 8 shows that the High and Medium cat-

egories have practical threshold values with AUC[ 0:700.

In some cases Low categories also have practical threshold

values. Only the new metric EncF does not show the

practical values with 3.0 versions. So exclude this value for

further analysis. Finding the practical threshold values for

the High and Medium categories indicates that if proposed

methodology is able to predict the bad smells, then it can

predict the bugs which are likely to come eventually. One

threshold value is need to be selected for each of the

selected metrics from Table 8. The metrics value were

selected as per its efficiency in detecting the corrective

faulty classes. This can be achieved by measuring the sen-

sitivity and specificity of each metrics value against the

faulty classes (Fig. 1).

There are two AUC categories, High and Medium, for

each metric. These two error categories were combined

into one and then recalculated the AUC for each of the

selected metrics of Table 8.

Table 9 shows the result of AUC after combining the

fault categories. It was noticed that after combining the

fault categories, EncF for version 2.0 and 3.0 still did not

have AUC in the acceptable range. But the sensitivity in

these two cases is nearly 100 %. Sensitivity in all other

cases is also 100 % or 1.0, indicating that these threshold

values measure the faulty classes accurately for this

Firefox data. So, analysis cannot select the threshold

metrics value only on the basis of sensitivity of the

selected metrics as Shatnawi et al. [3] did. Therefore,

metrics values are selected on the basis of higher AUC:

The higher the AUC, the more effective and practical is

the threshold value.

On the basis of higher AUC criteria, when the threshold

value of EncF derived from version 1.5 (i.e. 0.030) is

applied on the 2.0 and 3.0 it is seen that the AUC is in the

acceptable range. In other cases for CBO and RFC the

Table 5 VARL metrics

threshold values of Mozilla

Firefox

Metrics Version Area under curve (for bad smell) Area under curve (for faulty classes)

0.05 0.065 0.075 0.1 0.125 0.05 0.065 0.075 0.1 0.125

CBO 1.5 0.728 0.748 0.748 0.760 0.755 0.652 0.683 0.687 0.695 0.711

2.0 0.662 0.709 0.731 0.743 0.743 0.651 0.692 0.713 0.731 0.731

3.0 0.727 0.727 0.753 0.753 0.754 0.634 0.685 0.724 0.746 0.747

RFC 1.5 0.711 0.733 0.742 0.750 0.754 0.621 0.643 0.653 0.675 0.696

2.0 0.650 0.706 0.715 0.728 0.735 N/A 0.613 0.603 0.566 0.580

3.0 0.524 0.658 0.703 0.726 0.726 N/A N/A 0.653 0.710 0.743

WMC 1.5 0.787 0.791 0.790 0.784 0.784 0.671 0.677 0.682 0.673 0.683

2.0 0.777 0.777 0.778 0.777 0.769 0.640 0.632 0.588 0.589 0.595

3.0 0.787 0.774 0.774 0.768 0.765 0.721 0.736 0.735 0.731 0.742

EncF 1.5 N/A N/A N/A 0.722 0.700 N/A N/A N/A 0.620 0.646

2.0 N/A N/A N/A N/A 0.700 N/A N/A N/A N/A 0.677

3.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

NOA 1.5 N/A N/A N/A 0.741 0.700 N/A N/A N/A 0.674 0.672

Table 6 Selected threshold metrics value for highest AUC for bad

smell identification

Metrics Ver. Threshold

value

R.L.

ðp0Þ
AUC Threshold

from [14]

AUC

CBO 1.5 8 0.1 0.760 9 0.743

2.0 7 0.1 0.743 9 0.726

3.0 7 0.125 0.754 9 0.721

RFC 1.5 19 0.125 0.754 40 0.678

2.0 15 0.125 0.735 40 0.679

3.0 14 0.125 0.726 40 0.653

WMC 1.5 14 0.065 0.791 20 0.781

2.0 13 0.075 0.778 20 0.764

3.0 8 0.05 0.787 20 0.754

EncF 1.5 0.030 0.1 0.722 N/A N/A

2.0 0.018 0.125 0.700 N/A N/A

3.0 – – – N/A N/A

NOA 1.5 3 0.1 0.741 N/A N/A
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threshold values for each version is nearly the same. In the

case of WMC for version 1.5 and 2.0, the values derived is

nearly the same; the only difference came in the case of

Table 7 AUC for fault binary categorizations of classes

Metrics Version Threshold

value

Risk

level (p0)

Area under

curve

CBO 1.5 8 0.1 0.695

2.0 7 0.1 0.731

3.0 7 0.125 0.747

RFC 1.5 19 0.125 0.696

2.0 15 0.125 0.580

3.0 14 0.125 0.743

WMC 1.5 14 0.065 0.676

2.0 13 0.075 0.588

3.0 8 0.05 0.721

EncF 1.5 0.030 0.1 0.620

2.0 0.018 0.125 0.677

3.0 – – –

NOA 1.5 3 0.1 0.640

Table 8 AUC for fault categorization

Metrics Ver. Threshold

value

R.L. (p0) Area under curve

High Medium Low

CBO 1.5 8 0.1 0.743 0.739 0.635

2.0 7 0.1 0.777 0.777 0.685

3.0 7 0.1 0.787 0.787 0.744

RFC 1.5 19 0.125 0.759 0.725 0.655

2.0 15 0.125 0.777 0.777 0.564

3.0 14 0.125 0.806 0.806 0.754

WMC 1.5 14 0.065 0.796 0.795 0.629

2.0 13 0.075 0.772 0.772 0.567

3.0 8 0.05 0.744 0.744 0.718

EncF 1.5 0.030 0.125 0.706 0.706 0.716

2.0 0.018 0.125 0.700 0.636 0.681

NOA 1.5 3 0.1 0.722 0.717 0.597

Fig. 1 Confusion matrix

Table 9 AUC after combining high and medium categories fault

Metrics Ver. Threshold

value

R.L.

(p0)

Combined

AUC

Sensitivity

CBO 1.5 8 0.1 0.803 1.00

2.0 7 0.1 0.777 1.00

3.0 7 0.1 0.787 1.00

RCF 1.5 19 0.125 0.815 1.00

2.0 15 0.125 0.777 1.00

3.0 14 0.125 0.743 1.00

WMC 1.5 14 0.065 0.796 1.00

2.0 13 0.075 0.772 1.00

3.0 8 0.05 0.744 1.00

EncF 1.5 0.030 0.1 0.732 1.00

2.0 0.018 0.125 0.643 0.889

NOA 1.5 3 0.1 0.781 1.00

Table 10 Shortlisted threshold

values
Metrics Thresh values AUC

CBO 8 0.803

RFC 19 0.815

WMC 14 0.796

EncF 0.030 0.732

NOA 3 0.781

Table 11 Sensitivity measure for metrics threshold values

Metrics Threshold

value

Sensitivity Rosenberg

threshold

Senstivity

CBO 8 1.00 5 1.00

RFC 19 1.00 100 0.444

WMC 14 1.00 100 0.444

EncF 0.030 1.00 N/A N/A

NOA 3 0.889 N/A N/A

Table 12 Comparison of AUC with Rosenberg threshold values

Metrics Proposed threshold values Rosenberg threshold values

Threshold AUC AUC Threshold AUC AUC

value ver.

2.0

ver.

3.0

value ver.

2.0

ver.

3.0

CBO 8 0.799 0.767 5 0.720 0.717

RFC 19 0.814 0.831 100 0.695 0.802

WMC 14 0.779 0.789 100 0.674 0.712

EncF 0.030 0.693 0.700 N/A N/A N/A

NOA 0.724 0.793 0.731 N/A N/A N/A
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version 3.0. Table 10 shows the final threshold values on

the basis of area under ROC curve. Table 11 shows the

sensitivity measure comparison with the Rosenberg’s

threshold values (applied on version 1.5). In each case

sensitivity measures is more with proposed threshold val-

ues. Comparisons with other versions are shown in

Table 12 and corresponding ROC curves are shown in

Fig. 2.

9 Result and discussion

The threshold values derived in this study will help to

identify the smelly classes and, furthermore, to predict the

faulty classes. In addition, smelly classes can be improved

with various refactoring techniques [22]. So, metrics

threshold values in this study will help during maintenance

to identify the area or class needing refactoring (which

helps in better understanding [22]) and this will further

reduce the maintenance cost. The result shows the practical

threshold values only for CBO, RFC, WMC, EncF and

NOA metrics for predicting the smelly classes in the three

releases of Mozilla Firefox. On the other hand, study found

that the threshold metrics values derived to predict smelly

classes were not able to predict binary fault categorization

of classes (i.e. class is faulty or not). But, threshold metrics

values (CBO, RFC, WMC, EncF and NOA) present a more

granular view by predicting the two categories of the fault

i.e. high and medium impact. So, the first and third

hypotheses of the current study were rejected and the

second hypothesis was accepted. Study includes the dis-

cussion of results in comparison to previous studies done

by Rosenberg [16]. It was noticed that with the exception

of CBO, the values proposed by [16] are larger than those

propose in the study. it was assumed that the probability of

error occurrence is higher in the development phase than

the release phase. So, it was surprising to see the difference

with Rosenberg’s metrics threshold values because he had

collected the errors during the development phase. Current

study compared its results with Rosenberg’s by calculating

the AUC. The comparison was conducted by applying

proposed threshold values and threshold values of Rosen-

berg [16] over Firefox version 2.0, version 3.0 and Mozilla

SeaMonkey 1.0.1 in Table 12 and Fig. 2. The AUC values

with proposed threshold metrics are higher in each case

than with those from [16], study validate the effectiveness

of threshold value by identifying the faulty classes (after

combining high and medium impact bugs) of version 2.0

and 3.0 because all the threshold values are derived from

version 1.5. The results show the accuracy with

AUC[ 0:70 (acceptable range). The results were not

checked with Shatnawi’s [14] proposed values, which are

valid only for the Eclipse system. He himself checked the

validity of his metrics with other systems (i.e. Rhino and

Mozilla) and found that the threshold values were not valid

for these systems.

10 Threshold for other system

To generalise the proposed model, current study check the

threshold effect on two other systems. One system was

from within company (Mozila community i.e. SeaMonkey

1.0.1) and another was from cross company (Licq 1.3.8).1

Bug database of SeaMonkey was collected from the

Bugzilla community whereas for Licq bug database was

collected from the Github2 community. Both the system

were developed in the Cþ þ. SeaMonkey has 3,000þ

classes whereas Licq 1.3.8 is smaller system with 280

class. As it was seen from the results of various studies

[51–54] that within company prediction model results

outperform over the cross company results. Further, [9] and

[14] in their study also validate their model in cross com-

pany projects and did not find practical threshold values.

Model designed in their study were validated in cross

company projects by designing the new threshold metrics

for the projects. So, new metrics threshold values were

designed in the study for Licq with the VARL analysis as

in the case of Firefox. Significance of the traditional and

proposed metrics for Licq was checked in the current study

as predictor of smelly classes. Significance was checked

with the UBR logistic regression, as it was done with the

Firefox. VARL at five risk level was calculated for the

significant metrics for Licq. Results of shortlisted metrics

(CBO, RFC, WMC and EncF) on the basis of maximum

AUC for predicting smelly classes is shown in Table 13.

These selected values were checked for predicting smelly

and faulty classes. Further, the results were also compared

with the [16] designed threshold values (Table 14).

Threshold values were also tested for predicting wether

the class is faulty or not in SeaMonkey and Licq. Results for

the case study of SeaMonkey and Licq are tabulated in

Table 15. In case of SeaMonkey, AUC was calculated after

combining high and medium category faults. Due to non-

availability of severity level database for Licq, only binary

categorisation prediction accuracy was checked with AUC

values. Result shows that there was an improvement in

prediction accuracy with the proposed threshold values over

the Rosenberg values. Results for SeaMonkey and Licq are

similar to Firefox data as shown in Table 7. As in case of

three Firefox versions, prediction probability of binary cat-

egorisation of fault is not in the acceptable range with Licq

data. ROC graphs for the comparative study of threshold

1 http://www.licq.org.
2 https://github.com/licq-im/licq.
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Fig. 2 ROC curves of software

metrics for predicting faulty

classes (after combining high

and medium category faults) in

ver. 2.0 and ver. 3.0
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values over Mozila SeaMonkey 1.0.1 and Licq are shown in

Fig. 3.These results can be applied to similar types of object

oriented systems, which are available as open source and

contributed by many volunteer programmers.

10.1 Threats to validity

Study found a significant association between metrics and

bad smell and further with different categories of faulty

classes after the system were released. Some of the limi-

tations of research are as follows:

1. Error data of Mozilla Firefox and Mozilla SeaMonkey

was collected from the Bugzilla database only. Any

error which was not logged was not considered. Study

makes no claim about the errors that were not

discovered or fixed in the life of these systems.

2. Study does not generalize these results arbitrarily to

any type of error classifications. This classification was

subjective and it was dependent on how the developer

originally used it.

11 Conclusion

Threshold values derived for bad smells are verified with

prediction of faulty classes. Tables 8 and 9 emphasized that

predicted threshold values are practically significant for

detecting the faulty classes. Even when applied over the

subsequent and Mozilla SeaMonkey versions, these values

predicted the smelly classes and faulty classes significantly.

Whereas in case of Licq AUC for only smelly classes

prediction is in acceptable range. The results show that

refactoring of modules helps to identify the smelly area

during maintenance level besides improving the under-

standability [22, 49]. Further, by predicting the faulty

classes, refactoring may also reduce the faults after the

release of the system. On the basis of these results, the

present study will not suggest that refactoring always

control bugs after release. Results in this study have shown

the AUC in the range of 0.700 to 0.814, which is only the

acceptable range, not the excellent range. These results can

be used to predict the errors at the time when maintenance

is ongoing. We recommend further study for these

hypotheses with some other statistical techniques including

power law or machine learning models. To validate this

research, more experiments need to be done with different

Table 13 Selected metrics threshold values of Licq 1.3.8 after VARL

analysis

Metrics Threshold Risk AUC for

value factor smelly classes

CBO 7 0.125 0.702

RFC 4 0.125 0.570

WMC 7 0.125 0.707

EncF 0.208 0.125 0.544

Table 14 AUC of bad smell for

Mozilla SeaMonkey 1.0.1. and

Licq 1.3.8

Metrics Proposed threshold values Rosenberg threshold values

Threshold AUC for Threshold AUC for Threshold AUC for AUC for

Values SeaMonkey values Licq values SeaMonkey Licq

CBO 8 0.766 7 0.702 5 0.720 0.616

RFC 19 0.758 4 0.570 100 0.570 0.523

WMC 14 0.795 7 0.707 100 0.643 0.541

EncF 0.030 0.739 0.208 0.544 N/A N/A N/A

NOA 3 0.717 N/A N/A N/A N/A N/A

Table 15 AUC of faulty classes

for Mozilla SeaMonkey 1.0.1

and Licq 1.3.8

Metrics Proposed threshold values Rosenberg threshold values

Threshold AUC for Threshold AUC for Threshold AUC for AUC for

values SeaMonkey values Licq values SeaMonkey Licq

CBO 8 0.700 7 0.669 5 0.618 606

RFC 19 0.804 4 0.618 100 0.668 523

WMC 14 0.789 7 0.674 100 0.646 528

EncF 0.030 0.652 0.208 0.610 N/A N/A N/A

NOA 3 0.731 N/A N/A N/A N/A N/A
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Fig. 3 ROC curves of software

metrics for predicting faulty

classes in Mozila SeaMonkey

1.0.1 and Licq 1.3.8

CSIT (November 2014) 2(3):191–205 203

123



object-oriented programming languages. Moreover, this

study was carried out on an open source system and needs

to be done on professionally built applications.
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