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ABSTRACT 
The importance of abstract object types (AOTs) in 
the field of conceptual modeling and database design 
is discussed. A formal approach to the specification 
of societies of interacting objects is proposed. The 
structure and behavior of each object is defined 
using a primitive language that also provides the 
means for specifying the interactions between 
objects through event sharing. The algebraic 
semantics of this language is outlined. As a by- 
product, the Kripke interpretation structure for the 
envisaged logic of object behavior is established. The 
specifications are organized in two layers: (a) the 
universe of objects, their attributes and data; (b) 
the space of the global trajectories and traces of the 
society of objects. Constraints of several kinds can 
be imposed at both layers. The main issue in the 
construction of the universe is the naming of all 
possible objects. With respect to (b), the emphasis is 
on the definition of the joint behavior of the objects 
in terms of the allowed sequences of events that may 
happen in their lives. 

1 - INTRODUCTION 

In the area of database specification there has been a 
constant interest in the abstract data type concepts 
and tools. Those concepts and tools provide the 
necessary means for abstraction and modularization. 
Moreover, they have been used for defining formally 
the conceptual modeling and knowledge 
representation approaches [SeSe85b,SeSe86]. 
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However, as such they are not useful when dealing 
with objects as opposed to data. Herein, we 
assume that an objecf is a time evolvhg e&y 
(compare this to inert data). Actually, databases 
should be called &jecf&ses, since they are 
composed of time evolving units. Data types are 
useful for describing the attribute domains, but 
object types are more important since they are 
needed to describe the entities themselves, including 
their behavior. The interest in objects is growing 
[DD86], in part due to recent concerns with: the 
behavioral descriptions of the universe of discourse 
(UoD), in the area of conceptual modeling 
[SeSe85a,FiSe86,Che86]; the dynamic aspects of 
databases [MBW80,CCF82,LEG85,Lip86]; and the 
manipulation of rather complex entities in 
engineering databases [SRG83,BaBu84,DaSm86]. 
Indeed, a complete description of the UoD should 
include the definition of both the static structure and 
the dynamic properties of the relevant entities. On 
the other hand, the full definition of the database 
units (records and transactions) should also cover 
these two aspects. 

The main goal of this paper is the development of the 
basic concepts and tools for the specification of 
abstract object types (AOTs), as a more 
adequate alternative to the traditional abstract data 
type (ADT) techniques for conceptual modeling and 
full database specification. The AOT approach offers 
several advantages over the ADT solution. Besides 
allowing the view of the UoD as a society of 
interacting agents (objects), it also provides the 
means for the unified treatment of records and 
transactions. 

A very primitive language for AOT specification is 
proposed. Its usefulness in the conceptual modeling of 
entities and their interaction is illustrated. 
Moreover, an outline is given of its algebraic 
semantics. The AOT approach to database 
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specification starts with a complete UoD description 
(i.e. a full description of the society of interacting 
objects). This description is made in two successive 
steps for each object class: first its structure is 
defined; then, its behavior is established. Although 
no effort has been made so far towards providing 
facilities for modular descriptions, the primitive 
language as it stands now allows local definitions of 
each object class that are rather independent of each 
other. The extensive work in Artificial lnteligence 
and Software Engineering (for a survey see 
[StBo64]) on the object definition problem was duly 
taken into account. However, our approach brings in 
several novelties that have been missing in the 
previous proposals. For instance, the problem of 
object naming was solved following 
[EDG86,Ehr86], and really abstract descriptions 
were achieved by adapting the algebraic tools 
already introduced for ADTs. Moreover, the 
interaction mechanism between objects was chosen 
to be as simple as possible (event sharing), along 
the lines recently advocated in the area of 
concurrent programming methodology. 

We should stress that the presentation of the 
approach, the primitive working language and its 
algebraic semantics leaves no room for discussing 
other very interesting developments. Namely, the 
methodologial details are left out. Moreover, no 
attempt is made to discuss: the modular 
(parameterized) specification of objects and their 
societies; the problem of incomplete information 
about the objects and their situations; the 
aggregation of objects into complex objects; and 
their classification within inheritance networks. 
Finally, the resulting logic of societies, objects and 
events is only sketchily examined. 

The paper is organized as follows. Section 2 contains 
a rather informal introduction to the proposed tools 
for AOT specification within the context of a very 
simple UoD example. Section 3 presents the algebraic 
semantics of the structural descriptions of the 
objects (naming mechanisms, state attributes and 
constraints). Section 4 is dedicated to the rest of the 
algebraic semantics (dealing with events, 
trajectories, traces and interactions). The complete 
example discussed in Section 2 is included in the 
Appendix. 

2 -MOTIVATION 

According to the objectoriented approach, in order 
to capture knowledge about the real world entities 
and their behavior, one should start by perceiving 

the relevant types of objects in the universe of 
discourse (UoD). For each object type it is then 
necessary to understand both its static and dynamic 
aspects. That is to say, one should describe the 
object’s attributes and also the events that may 
occur during its life. As an illustration, consider a 
very simplified trader’s war/d . In this UoD it seems 
worthwhile to consider at least the following types 
of objects: CLIENT. STOCK and ORDER. Note that 
two rather different kinds of object types were 
considered: persistent, like CLIENT, and 
transient, like ORDER. When it comes to the 
implementation, it is usual to implement a persistent 
object over a record in the database (plus associated 
procedures). On the other hand, transient objects 
tend to be implemented as transactions. At this 
perception stage, the classification is irrelevant 
since both persistent and transient object types are 
to be described using the same abstractions. 
However, it is important to notice that both kinds 
should be included in the UoD and that the description 
of transient entities as events does not seem to be 
acceptable. 

When describing a society of interacting objects, it 
is essential to find the basic object identification 
mechanisms, that is to say, for each type of objects, 
the means for naming the different occurrences of 
the type. For instance, let us assume that in the 
trader3 world the occurrences of CLlENT are 
identified using a key mechanism that maps names 
(strings) into clients. One might also safely assume 
that, similarly, there is a key mechanism that maps 
stock identifiers into stocks. Naturally, a more 
realistic description should include the object type 
STOCK as a relationship between the object types 
PRODUCT and DEPOT. Herein, for the sake of 
simplicity, it is assumed that only stocks are of 
interest. Note that in the simplified trader’s n&i 
both CLIENT and STOCK have their occurrences 
named independently of the other objects in the 
society. On the contrary, orders are identified for 
each client by number. That is to say, when 
identifying an order one has first to identify the 
client that issued it. Hence, the identfficat’on of 
orders does depend on the identification of other 
objects in the society. 

Following [SeSe66a], the object types CLIENT and 
STOCK are said to be independent and the object 
type ORDER is said to be a characteristic (of 
CLIENT). Characteristic object types are said to be 
dependent. Other dependent object types are also 
useful (such as relationships, particulariiations, 
generalizations and aggregations), but they are not 
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used in the simplified trader’s world. A detailed 
description of the object types in the trader’s world 
is presented in the Appendix. A preliminary 
version of the OBLOG (OBject LOGic) language is 
used. In OBLOG, the UoD description is divided 
into the following parts: the structure 
specification STRUCT (including the data types 
plus the key mechanisms and the state attributes of 
all object types) and the behavior specification 
BEHAV (including the events and traces of all object 
types). 

Returning to the example, the key mechanism of the 
object type CL/E/VT includes the following key map 
c/i: string + CLIENT, as well as the key attribute 
name: CLIENT + string. The key population 
constraints name(cli(S))=S for every S in string 
such that c/i(S) is in CLIENT and cli(name(C))=C for 
every C in CLlENT just state the obvious relations 
between the key attribute name and the key map c/i. 
Such relations are typical of every independent 
object type. On the other hand, the other key 
constraint (a key individual constraint) 
upper(first(name))=true is spedfii of this object 
type: it states that the first character of every 
client’s name must be an upper case letter. Note 
that, for the sake of simplicity, the argument of the 
attribute is omitted in individual formulae. 

Key maps and attributes do not vary in time. That is 
to say, they are independent of the object’s 
situation. State-dependent attributes are introduced 
in the state part of the object type definition. The 
object type CLlENT has only one state attribute 
count: CLIENT + integer. This attribute maps each 
client situation into an integer (intended to 
represent the number of orders already issued by 
that client at that point of its life). A situation is a 
snapshot of the objects and their attribute values. 
When specifying an object type like CLIENT, it is 
sometimes necessary to impose restriiions on the 
values of its attributes. For instance, the constraint 
(zertzcount)=true states that the (integer-valued) 
attribute count is never below zero. This is an 
example of a local state constraint. In contrast, 
global state constraints (to be illustrated later 
on) are similar but they depend on the situation of 
other objects. The focal state constraint 
(G(h%count)-tme) H (count=N) states that the value 
of count never decreases. Note the use of the 
temporal operator always In the future G in the 
latter formula, for expressing that if at some 
situation count is N, then it will remain greater than 
or equal to N in every subsequent situation. 

ft is worthwhile to mention here the difference 
between situations and states, as proposed in 
[Ehr86]. Situations are snapshots of the existing 
objects and their attribute values. In constrast; 
states are theOri8s representing some knowledge 
about situations. ff that knowledge is partial or 
disjunctive there will be many situations satisfying 
that state. Monomorphic states (having only one 
situation as model) appear in special cases, like 
definitive databases with the Closed world 
assumption. In the monomorphic cases, the 
admissibility of states and state transitions can be 
derived from the temporal specifications; techniques 
are also known for enforcing state constraints (see 
[ELG84,LEG85]). 

The third step in the description of an object is the 
definition of its behavior, in terms of the events 
that may happen in its life. In the object type CLIENT, 
one might consider at least two kinds of events: 
births and (order) issues. Such events are generated 
using birth: -+ E(C) wfth C in CLIENT and ksue: 
integer STOCK integer + E(C) with C in CLIENT. 
These are formally introduced as CLIENT-indexed 
families of functions. For each dient C, birth denotes 
the birth event of C and the function issue maps each 
triple *order-number, stock, requested-quantity> 
into the corresponding issue event. E(C) denotes the 
set of possible events of client C. 

The life trajectories of each client are non-empty 
sequences of these events satisfying some general 
restriiions: every trajectory begins with a 
creation event; after a destruction event no 
more events are allowed; and modification events 
are allowed after the creation event until the 
eventual destruction event. Note that, in principle, ft 
is useful to allow Incomplete trajectories, that 
is to say, trajectories not finishing wfth a 
destruction event. Otherwise, a rather strong 
liveness requirement is imposed, as discussed in the 
end of this section. 

For each particular trajectory, the set of possible 
traces (determining intermediate situations) is 
composed of all non-empty initial parts of the 
trajectory. In many cases, the observed behavior of 
the object indicates that some of the theoretically 
possible trajectories are not allowed. For instance, 
in the definition of the behavior of clients, the set of 
trajectories is restricted by the following domain 
assertion [T>>issue(N, K, R)] only if (count at 
T)lpre(N) stating that the issue event for (N,K,R) is 
allowed only if the order-number N is the value of 
cuunt, just before that event, plus one. ft is 
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important to notice that we are using trace 
formulae. In such formulae, an explicit trace 
argument is given for every state attribute using the 
connective at. 

The dependence of the state attributes on the local 
trace of the object is defined with valuation and 
equivalence equations. As an illustration of the 
former consider (wunr at <birth>)=zem and (wunt 
at ~>>issue(N,rCR)l)=s~(wunt at T) stating that 
wunt is zero after the birth event and its value 
increases by one every time an issue is made, 
respectively. Valuation equations define the values of 
state attributes as functions of the traces. 
Equivalence equations (illustrated below) define 
equivalences between traces for the sole purpose of 
attribute evaluation. 

When expressing either domain restrictions or 
valuation and equivalence equations, it is necessary 
to refer to traces. A very simple notation was 
adopted for dealing with fraces: cal,...,an> denotes 
the trace composed of the events al,...,an; and 
[->a] denotes the trace obtained by suffixing event 
a to trace x. 

The final part of an object type description is 
composed of the so called Interaction equations 
that equate events of different objects (of the same 
or of different types). In order to illustrate the use 
of those equations, as well as of some other features 
not present in the CLlENT specification, it is 
worthwhile to examine in detail the definition of the 
other object types in the trader’s wor?kl: ORDER and 
STOCK. Skipping the key mechanism, it should be 
clear ‘that the state-dependent attributes stk and 
req of ORDER indicate respectively the target stock 
and the requested quantity. Their local state 
constraints are easily interpreted. lt remains to 
discuss the global state constraints, such as 
there-is di As global constraints, they are not 
imposed on the local situations of each order but 
instead on the global situations of the trader’s 
so&y. Those global sltuatlons may be obtained 
by “gluing together” individual local situations. Only 
global situations satisfying every global constraint 
are considered. For instance, the former global 
constraint states that every existing order points 
(through c/i) to an existing client. 

The interaction equation in the ORDER 
specification C.issue(N, K, R)I ord(C, N).creation(K, R) 
states that every issue event by some client 
is an order creation (and vice versa). Recall 
that ord maps each pair (client,number) into 

the corresponding occurrence of ORDER. This means 
that those events are shared by the two objects. 
This sharing of events (with the same vocabulary 
or not) is the only interaction mechanism allowed in 
the proposed framework. Informally, the interaction 
equations guide the construction of the global 
trajectories, by “gluing together” the local chains 
at the shared events. Each global trajectory is an 
interleaving of the local trajectories, respecting 
every interaction equation. Each global state is 
determined by the global trace of those events that 
have already occurred in every object life. 

The local behavior of each order is very simple: 
after its creation, it may be either satisfied or 
rejected. Note that according to this local description 
of the order behavior it is not possible to state if the 
order is to be satisfied or rejected. That can only be 
established when describing the behavior of the 
object type STOCK. Indeed, every rejection and 
every satisfaction is shared by two objects: an 
order and a stock, as indicated in the interaction 
axioms of the object type STOCK The domain 
assertion [T.> failure(0, R)] only H f&oh at 
T)cR)=true states that the rejection of the order 
(the failure of the target stodc) takes place only if 
the requested quantity is greater than the quantity 
on hand just before the event. The satisfaction 
(delivery) takes place in the other case. One of the 
events may happen, but not both. This is an 
interesting safety property of orders within the 
context of the proposed trader’s world. 

Sometimes, it is necessary to express (as a 
requirement axiom or as a provable theorem) 
another kind of assertion: a liveness property. 
Liveness properties express that some desired 
events must occur. As an illustration consider the 
following requirement: every order will sooner or 
later be processed. That is to say, no order that has 
been created will remain for ever waiting to be 
rejected or satisfied. This particular requirement is 
not a property of the described trader’s n&l 
Indeed, it is reasonably easy to verify that there are 
global lattices of events that satisfy the entire 
specification and where orders exist with incomplete 
trajectories. A suitable revision of the specification 
ensuring that liveness property could be made as 
follows, at the level of the ORDER domaln: 

ccreatbn(K, R)> only if 
(Fafter(satisfackm(K, R))) at <creation(K, R)> 
or (Fafter(rejection(~ R))) at ccreation(K, R)> 

Herein, F is the sometime in the future temporal 
operator and after is a (local) trace predicate 
allowina the identification of the lasteyant, 
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Finally, it remains to comment the equivalence 
equations for traces, such as those included in the 
description of STOCK. For instance, the equivalence 
equation [T>,failure(O,R)]=T states that, for the 
sole purpose of state attribute evaluation, the 
lefthand trace is equivalent to the righthand one. 
Indeed. a failure does not change the value of qoh. 

3 -STRUCTURE SPEClflCATlON 

The purpose of the structure specification is to 
define the ObjedS with their attributes and 
relationships, as well as to characterize which 
collections of objects may exist and how they are 
allowed to change. This specification is organized 
into three successive steps: STRUCT=DT+KY+ST, 
where DT is the specification of the underlying data 
types that will be used as attribute values; KY 
specifies the keys, i.e. KY defines an identification 
mechanism for the occurrences of each object sort; 
and ST provides the state information on each object 
sort, i.e. attributes and constraints. 

Data type speclflcatbns have been studied 
extensively in the last decade. Without going into 
details, we assume a monomorphic data type DATA 
to be given as the semantics of the specification DT 
(e.g. the initial DT-algebra). As expected, DATA is a 
generated and typical interpretation of the 
specification DT. It consists of a carrier set of data 
elements (values) for each data sort and an 
appropriate data operation for each operation 
symbol. Note that DATA satisfies the specification 
DT. Hence, we wriie DATA j= DT. 

Key speclflcations as extensions of data type 
specifiitions have been introduced in 
[Ehr86,EDG86] using a final algebra semantics. 
Herein, we employ a variant of that approach using 
key maps (a notion introduced in [SeSe85a]) for 
which an initial algebra semantics can be given. 
Accordingly, a key extension of DT, KY-(QY,CK~) 
consists of a key signature I+qy-(S~y,Rm) and a set 
of key constraints CK~=PCK~VICK~, where the 

former is the set of population key constraints 
and the latter is the set of Individual key 
constraints. The key signature contains the set 
SKy of all object sorts, also denoted SOB, plus an 
SOB-indexed family of key mechanisms. Each key 
mechanism Roy is a triple <sl . ..s.,kmap, 
katth, where Sl...Sn E (SD-p&OB)’ is the list of 

the n key argument sorts, kmap: sl...Sn+S is the 
key map. and kattr = dtal,...,kan> is the list of the 
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n key attributes, such that kaj: s+sj for 1 sjjln. 

The semantics U of DTt@Ky,PCKy) is the free 
extension of DATA with respect to (T)<YIPCK~) 
forgetting the key maps. By this free construction, U 
satisfies the population key constraints. Intuitively, 
U contains for each object sort all “possible” objects 
.of that sort (in an abstract sense) that can be 
identified using the specified key mechanisms. 

For formulating the individual key constraints we use 
the key language KL: the first-order predicate 
language over the signature of DTtKY. For notational 
and methodological convenience, in OBLOG 
specifications, we employ a “local dialect’ KL(s) 
when specifying the object type s. Formulae of the 
form (Vy:s) cp(y) are abbreviated to 9, omitting all 
occurrences of the object variable y of sort s. For 
instance, in the specification of ORDER, the formula 
(zervsnumb)=true is the local abbreviation of a 
formula of KL: (Vy:ORDER) ((zensnumb&))-true). 
The semantics of DT+KY in the presence of such 
individual key constraints is somewhat involved. The 
starting point is the algebra U built as above ignoring 
those individual key constraints. Then, the envisaged 
semantics UNIVERSE of DTtKY (taking into account 
the individual key constraints) should be the largest 
subalgebra of U satisfying the individual key 
constraints. In [Ehr86,EDG86] it is proved that a 
unique largest subalgebra exists provided that all 
individual key constraints are positive formulae. We 
shall assume that in the sequel. Note that UNIVERSE 
I= (DTtKY), in the sense that it satisfies the key. 
constraints and its ZDT-reduct satisfies the DT 
axioms. 

Finally, the state specification ST=FST~CST) 
completes the structure specification by providing 
the object attributes and their constraints. The state 
signature XST=(0,OST) adds no new sorts. It 
introduces the state attributes of each object 
sort, as folbws: OST I (GST(s): SESOB) where 

nST(S) = {i$T(S)(S’): S’QsD@OB). As Usual, W 

write b: s + s’ instead of b E OS-r(s)(s’). Note that 

state attributes can be data or object-valued. Recall 
also that we assumed that an existence boolean 
attribute is available for every object sort 5: 
there-is, : s + bool. The index is omitted if it is 
clear from the context. The state constraints are 
formulated using the structure language SL: a 
temporal extension of the first order predicate 
language over the structure signature. The only 
temporal operators we use in this paper are the 
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Yemporal quantifiers” always in the future G 
and sometime in the future F. As for the key 
language KL, we also use a “local dialect” SL(s) for 
each object sort s whenever convenient. Indeed, in 
the specification of s, we wriie cp as an abbreviation 
of (Vy:s) ((there-les(y)=true) Implies q(y)). The 
set of state constraints is given as follows: 
CST=LCS+SCST, where the former is the set of 
local state constraints (of every object sort) 
and the latter is the set of global state 
constraints (also of every object sort). 

Now, at last, the semantics of the structure 
specification STRUCT can be given as any “temporal 
interpretation” satisfying the state constraints. 
Before defining what we mean by a temporal 
interpretation, the concept of situatbn should be 
formalized as follows: a situation o for STRUCT is a 
XSTRUCT-algebra (without the key maps) whose 
(zDT+ZKy)-reduct iS UNIVERSE. Then, a temporal 
interpretation for STRUCT=DT+KY+ST is a triple 
Tl=<UNIVERSE,S,T>, where the first component is 
the UNIVERSE of data and objects satisfying DT+Ky, 
S is a dass of situations for STRUCT; and T is a 
reflexive and transitive binary relation on S. The 
latter corresponds to the transition or reachability 
relationship between situations: aTo’ iff the situation 
d is reachable starting from situation o, i.e. iff the 
transition from o to 6’ is possible. 

Given a temporal interpretation TI=<UNIVERSE,S,T>, 
a situation o in S and a variable assignment A, every 
term of SL can be evaluated as usual: data operations 
and values are interpreted according to DATA; key 
attributes and objects are interpreted according to 
UNIVERSE; state attributes are interpreted according 
to the situation Q. Hence, every atomic formula can 
easily be evaluated, since we have only the equality 
predicate (for each Sort): VTl,o,A(t&) = if 

(VTi,o,~(t) = VTl,o,A(t’)) then 1 else 0. Finatty, non- 
atomic formulae are evaluated as expected. For 
example: vTl,o,A(F@ = ii (vn,d,A(q)=l for every 
o’ such that oTo’) then 1 else 0. Note the role of the 
transition relation T in the interpretation of 
temporal formulae, following the Kripke approach. lt 
is beyond the scope of this paper to discuss the 
properties of that relationship in the context of 
database specification. A temporal interpretation 
Tl=<UNIVERSE,S,T> is said to satisfy a structure 
specification STRUCT, TI (P STRUCT, iff every state 
constraint has the value 1 in TI for every situation s 
in S and every variable assignment. We shall take as 
the semantics KRIPKE of a structure specification 

STRUCT the class of temporal interpretations for 
STRUCT that satisfy its state constraints. 

4 - BEHAVIOR SPECIFICATION\ 

The purpose of the behavior specification is to define 
the life trajectories of the objects in the society, in 
terms of their events, as well as their interactions. 
This specification is organized into four successive 
steps: BEHAV=EV+TJ+TA+TD, where EV is the 
specification of the events, including the 
interactions, TJ establishes the set of all possible 
(global) trajectories and their traces, TA provides 
the trace attributes and their equations, and, finally, 
TD specifies the domain of the acceptable 
trajectories and theirtraces. 

The event speclficatlon EV=(ZEV,EEV) consists of 
an event signature ZEV=(SEV,REV) and a set of 
Interaction axioms. An event signature consists 
of a single set SEV with the sort e of events, an SCB- 
indexed family of event generator tools and a 
collection of event predicates. Each REV(s) is a triple 
dreation(s),modifiiat*ion(s),destruction(s)>, where, 
for instance, creation(s) = {creation(s)(w): 
we (SDTVSOBY). Each set creation(s)(w) contains 
the creation-event generator symbols for object 
sort s (the sort of the life or primary parameter) 
with list w of secondary parameter sorts. As 
expected, we wriie g: s w + 8 when 

gecreation(s)(w). The event predicates cre, mod 
and des are used to identify the category of each 
event. When writing the interaction axioms we use 
the event language EL: the equational language 
over the signature of DT+KY+EV, prefixing the life 
parameter. As an example, recall the equation: 
C.issue(N,K,R)=ord(C,N).creatbn(K,R). 

The semantics EVENT of the specification DT+KY+EV 
is the free extension of UNIVERSE with respect to the 
event specification EV. Thus, EVENT is a 

(qlT+%Y+%v)-abebra (without the key maps) 
satisfying the EEV equations and containing UNIVERSE 
as (wT+ZKy)-redud. Thus, EVENT I= (DT+KY+EV). 
The algebra EVENT contains, in addition to the 
components of UNIVERSE, the carrier set E for the 
event sort 8, as well as the appropriate 
interpretation of each event generator and predicate. 

The trajectory extension TJ=(~TJCTJ) is 

composed of the trajectory signature =TJ’ 
(STJ+J) and the set of universal trajectory 
conditions: the trajectory equations and the 
trajectory constraints. The trajectory 
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signature includes one sort: the sort e+ of sequences 
of events or trajectories and the sort r of 
traces. A also includes the following operation 
symbols: the trajectory constructors e-s 8 + e+ 

and L>>J: e+ e -$ et, as well as the trace 
constructor tr: e+ lnt + r and some auxilliaty 
operators, such as ev: r lnt --s e and lp: e+ lnt + 
6. Note that ev(R,N) denotes the N-th event in 
trace R; and Ip(S,N) denotes the sequence of the N 
first events of S. The trajectory equations wriien 
in the equational language over the signature of 
DT+KY+EV+TJ impose the expected relationships 
between trajectories, traces and events. For 
instance: ev(tr(eX>,one),one)=X. On the other 
hand, the trajectory constraints (easily formalized 
in the suitable first order language over the 
signature DT+KY+EV+TJ) impose the restrictions 
described in section 2. For instance, they include the 
requirement that every trajectory must start with a 
creation event. 

The semantics TRAJECTORY of the specification 
DT+KY+EV+TJ is the largest subalgebra, satisfying 
the trajectory constraints above, of the free 
extension of EVENT (forgetting the trajectory 
constructors) with respect to the indicated 
trajectory extension without those constraints. It 
contains, inter alia, the carrier set Et of sort et 
(the set of all trajectories). Fixing a trajectory 7, 
that is to say, fixing an element T of Et, 
TRAJECTORY@) is the largest subalgebra of 
TRAJECTORY such that the carrier set of e+ is the 
set (7). Hence, its carrier set R(T) for r contains all 
initial parts of ‘E. 

The trace attributes specification 
TW~TAETA) consists of the signature 
XTA=(O,QTA) and a collection of trace equations: 
the trace equivalence equations and the 
valuation equations. The trace attributes 
signature adds no new Sorts. lt introduces a 
collection of trace attribute symbols, including: 
{~A(rss’k S’E (SDJ-USOB)}, where each S)~A(~,S') 

is the set of attribute symbols mapping traces into 
elements of sort s’. We assume that each *A@$) 

contains every state attribute symbol (see section 
3) returning values of sort s’. Hende, we use the 
same symbol for a state attribute and the 
corresponding trace attribute, since there is no 
possibility of confusion. As an illustration, recall the 
state attribute qoh: STOCK + integer. The same 
symbol is used in the behavior specification denoting 
a trace attribute that maps traces into integers. 

Moreover, after is introduced at this point as an 
event-dependent boolean trace attribute with no 
counterpart in the collection of state attributes 
after: e r --) bool. When writing trace equations we 
use the trace language TL: the equational language 
over the signature DT+KY+TJ+TA. suffixing the 
trace argument of the attributes through the 
connective at. For instance, recall the following 
equations in the STOCK specifkation: 
[T>>failure(O,R)]=T and (qoh at copen+zerv. The 
former is a trace equivalence equation that simply 
equates traces (only for the purpose of attribute 
evaluation). The other is a valuation equation that 
states the value of the attribute at the indicated 
trace. Actually, the former equation is an 
abbreviation of the schema stating for each attribute 
att of arbitrary object K of sort STOCK: (ati at 
r.>K.failure(O, R)J)=(aii at r). Besides the 
specified trace equations, we assume some lmpllclt 
trace equatlons that indicate the value of the 
boolean existence and event-dependent attributes, 
and that impose the necessary frame conditions. 
As an example of the former, consider the following 
valuation equation: (there-k? Kat <K.open>) = true. 

Fixing a trajectory r in TRAJECTORY, the semantics 

AlTRIBUTE of specification DT+KY+EV+TJ+TA is 
the class of extensions of TRAJECTORY@) with 
respect to the indicated trace attributes 
specification (including the implicit equations). Note 
that each element 8 of ATTRIBUTE(z) contains 
TRAJECTORY(z) as (ZDT+ZKY+~EV+CTJ)-‘edU~. 

Consequently, it also contains EVENT as 
(QT+ZKY+ZEV)-reduct. In this sense, we can say 

that any such algebra satisfies the specification 
DT+KY+EV+TJ+TA. Thus, we write: AlTRIBUTE I= 
(DT+KY+EV+TJ+TA). 

Finally, it remains to define precisely the semantics 
of the fourth part of the behavior specification: TD 
defines the set of acceptable trajectories restricting 
at the same time the possible values of the trace 
attributes. The trace domain extension 
TD=(@,CTD) introduces no further sorts or 

operations. lt consists of a collection of domain 
constraints of the general form: T only if cp(T), 
where cp(T) is a formula of TL (the trace language 
introduced above) and T is a term of sort et. Fixing 
a particular trajectory ‘T in TRAJECTORY, such a 
constraint is to be interpreted as stating (3v:lnt) 
lp(-z,v)=T implies q(T). Wlhin each algebra 8 of 
ATTRIBUTE@), this assertion is either true or false. 
We select each algebra 8 of ATTRIBUTE@) only if it 
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satisfies all domain constraints. When that is the 
case, we write 8 j= TD and, thus, by introducing the 
set of such algebras DOMAIN@) I {BEATTRIBUTE( 

C+TD}, we can write: DOMAIN@) j= (DT+KY+ 
EV+TJ+TA+TD). Note that it is possible that for 
some ‘F the class DOMAIN@) is empty. Every such 
trajectory is said to be forbidden (by the domain 
constraints). 

Naturally, the behavior semantics as defined above 
was not required to satisfy the full structure 
specification, since the state constraints could not be 
taken into account. We say that the behavior 
spscifkatlon complkis with the structure 
spscification when the state constraints are 
satisfied by every model of the behavior 
specification in the following sense: 
(WE TRAJECTORY) (V8e DOMAIN(T)) Tl8j=CST. The 
(linear) temporal interpretation Tl8 corresponding to 
each algebra 8 in DOMAIN(z) is defined as follows: 
Tl6=<UNIVERSE,S8,T8>, where UNIVERSE is the 

@DT+Qy)-redllct Of TRAJECTORY, + 
{r(e(p):peR(~)} and p&) T6 p8(p’) iff p is initial 
part of p’. ft remains to define the mapping f.16 from 
R(z) into the class of all STRUCT-situations. From 
the algebra 8 it is easy to build for each trace (initial 
part of T) the corresponding situation. Indeed, it is 
the QTRUCT-algebra that maps each state attribute 
symbol to the value of the corresponding trace 
attribute symbol at that trace as given by 8. 

The riiorous algebraic semantics of an effective 
language for the specification of abstract object 
types (AOTs) was outlined. This semantics provides 
the Kripke interpretation structure for the envisaged 
logic of object behavior. Some of the requirements 
for this logic were discussed, namely concerning the 
proof of liveness and safety properties of the object 
societies. Such a language was shown to be useful 
when describing the universe of discourse as a 
society of interacting objects. This approach to 
conceptual modeling provides the means for the 
complete description of the relevant entities, 
including their individual and interaction behavior. 
This description is the starting point for the design 
of both the database schema and the associated 
transactions. Indeed, both records and transactions 
can and should be seen as objects, although the 
former tend to be more persistent than the latter. 
Hence, it is possible to design the database and the 
associated applications as a society of objects of 

varying persistency. This view also opens up the 
possibility of extending the current architectures of 
database management systems (DBMS) towards real 
object society management systems (OSMS). 

Some interesting developments were not reported 
herein due to space limitations. Namely, the 
methodological guidelines for database design 
according to the proposed approach (already under 
experimentation) and the detailed development of the 
algebraic semantics concerning the key mechanisms 
and the object universe construction. On the other 
hand, further work is necessary concerning the 
refinement of the behavior semantics in order to deal 
with infinite trajectories and also to establish the 
desired temporal structure (either linear or 
branching). Afterwards, it will be possible to put 
together the logical calculus for proving properties 
of the object societies. Other important lines of 
research are related to the problems of dealing with 
incomplete information about the objects and of 
supervising and enforcing database state constraints. 
Finally, we are also looking at further developments 
of the language in order to allow parameterized 
specifications, as well as inheritance and 
aggregation. 

Although the proposed formalism for AOT 
specification seems rather complex compared to the 
traditional formalisms for ADT (abstract data type) 
specification, we believe that it will be rather 
difficult to simplify it further. Indeed, objects are 
temporal entities rather more complex than simple 
values. We expect that future DBMS should 
incorporate basic facilities for object society 
management along the lines of our proposal where 
the chosen interaction mechanism is as simple as 
possible (event sharing by the interacting objects). 
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7- APPENMX: trader’s world 

object type CLIENT 
key 

map cli(string) 
attributes 

name : string 
constraints 

population 
name(cli(S))& ; 
cli(name(C))=C 

individual 
upper(first(name))=true 

state 
attributes 

count : integer 
constraints 

ioc?ii 
(zeroScount)=true ; 
(G(N%ount)=true) if (count=N) 

behavior 
events 

creation 
birth 

modification 
issue(integer,STOCK,integer) 

traces 
domain 

[T&ssue(N,K,R)] only if 
(count at T)=pre(N) 

equations 
valuation 

(count at <birth>)=zero; 
(count at jT>>issue(N,K,R)])= 

suc(count at T) 
end 

object type ORDER 
key 

map ord(CLIENT,integer) 
attributes 

numb : integer ; 
cli : CLIENT 

constraints 
population 

cli(ord(C,N))=C ; 
numb(ord(C,N))=N ; 
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ord(cli(O),numb(O))=O 
individual 

(zerMnumb)=true 
state 

attributes 
stk : STOCK ; 
req : integer 

constraints 
lOCal 

(zeroxreq)=true ; 
(G(stk=K)) if (stk=K) 

global 
thsreis cli 
thereis stk 

behavior 
events 

creation 
creation(STOCK,integer) 

destruction 
satisfaction(STOCK,integer) ; 
rejection(STOC&integer) 

traces 
domain 

[T*>satisfaction(K,R)] only if 
(stk at T)=K and (req at T)=R ; 

~>>rejection(K,R)] only if 
(stk at T)=K and (req at T)=R 

equations 
valuation 

(stkat <creation(K,R)+K ; 
(req at <creation(K,R)+R 

interaction equations 
C.issue(N,K,R)=ord(C,N).creation(K,R) 

end 

object type STOCK 
key 

map stk(string,string) 
attributes 

prdid : string ; 
depid : string 

constraints 
population 

prdid(stk(Sl,SZ))=Sl ; 
depid(stk(S1 ,S2))=S2 ; 
stk@rdid(K),depid(K))=K 

state 
attributes 

qoh : integer 
constraints 

lOCal 

(zewqoh)frue 
behavior 

events 
creation 

open 
destruction 

close 
modification 

delivery(ORDER,integer) ; 
failure(ORDER,integer) ; 
update(integer) 

traces 
domain 

[T>>update(R)] only if 
(minus(R)l(qoh at T))=true ; 

[Tx=delivery(O,R)] only if - 
(R$qoh at T))=true ; 

(T>>failure(O,R)I only if 
((qoh at T)<R)=true 
equations 

equivalence 
~77delivery(O,R)]=~=update(-R)]; 
jT>>failure(O,R)]=T; 
[T>>update(Rl)>>update(R2)]= 

vaiuati=wd~e(R1 +Wl 

(qoh at <open+=zero ; 
(qoh at <open,update(R)+R 

interaction equations 
O.satisfaction(K,R)==K.delivery(O,R) ; 
O.rejection(K,R)=K.failure(O,R) 

end 
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