
OBJECT-ORIENTED SPEClFlCATlON OF DATABASES:

AN ALGEBRAlC APPROACH

Amflcar Sernadas Cristina Sernadas
Department of Mathematics, IST, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal

Hans-Dieter Ehriih
lnstitut fur Informatik, TUB, PF 3329, D-3300 Braunschweig, FRG

ABSTRACT
The importance of abstract object types (AOTs) in
the field of conceptual modeling and database design
is discussed. A formal approach to the specification
of societies of interacting objects is proposed. The
structure and behavior of each object is defined
using a primitive language that also provides the
means for specifying the interactions between
objects through event sharing. The algebraic
semantics of this language is outlined. As a by-
product, the Kripke interpretation structure for the
envisaged logic of object behavior is established. The
specifications are organized in two layers: (a) the
universe of objects, their attributes and data; (b)
the space of the global trajectories and traces of the
society of objects. Constraints of several kinds can
be imposed at both layers. The main issue in the
construction of the universe is the naming of all
possible objects. With respect to (b), the emphasis is
on the definition of the joint behavior of the objects
in terms of the allowed sequences of events that may
happen in their lives.

1 - INTRODUCTION

In the area of database specification there has been a
constant interest in the abstract data type concepts
and tools. Those concepts and tools provide the
necessary means for abstraction and modularization.
Moreover, they have been used for defining formally
the conceptual modeling and knowledge
representation approaches [SeSe85b,SeSe86].

Permission to copy without fee all or part of this
material is granted provided that the copies am not made

or distributed for direct commercial advantage, the
VLDB copyright notice and the tide of the publication
and its date appear. and w&cc is given that copying is

by permission of the Very Large Data Base Endowment.
To copy otkrwisc. or to republish, requires a fee and/or

special permission from the Endowmfht.

However, as such they are not useful when dealing
with objects as opposed to data. Herein, we
assume that an objecf is a time evolvhg e&y
(compare this to inert data). Actually, databases
should be called &jecf&ses, since they are
composed of time evolving units. Data types are
useful for describing the attribute domains, but
object types are more important since they are
needed to describe the entities themselves, including
their behavior. The interest in objects is growing
[DD86], in part due to recent concerns with: the
behavioral descriptions of the universe of discourse
(UoD), in the area of conceptual modeling
[SeSe85a,FiSe86,Che86]; the dynamic aspects of
databases [MBW80,CCF82,LEG85,Lip86]; and the
manipulation of rather complex entities in
engineering databases [SRG83,BaBu84,DaSm86].
Indeed, a complete description of the UoD should
include the definition of both the static structure and
the dynamic properties of the relevant entities. On
the other hand, the full definition of the database
units (records and transactions) should also cover
these two aspects.

The main goal of this paper is the development of the
basic concepts and tools for the specification of
abstract object types (AOTs), as a more
adequate alternative to the traditional abstract data
type (ADT) techniques for conceptual modeling and
full database specification. The AOT approach offers
several advantages over the ADT solution. Besides
allowing the view of the UoD as a society of
interacting agents (objects), it also provides the
means for the unified treatment of records and
transactions.

A very primitive language for AOT specification is
proposed. Its usefulness in the conceptual modeling of
entities and their interaction is illustrated.
Moreover, an outline is given of its algebraic
semantics. The AOT approach to database

FWxedings of the 13th VLDB Conference, Brighton 1987 107

specification starts with a complete UoD description
(i.e. a full description of the society of interacting
objects). This description is made in two successive
steps for each object class: first its structure is
defined; then, its behavior is established. Although
no effort has been made so far towards providing
facilities for modular descriptions, the primitive
language as it stands now allows local definitions of
each object class that are rather independent of each
other. The extensive work in Artificial lnteligence
and Software Engineering (for a survey see
[StBo64]) on the object definition problem was duly
taken into account. However, our approach brings in
several novelties that have been missing in the
previous proposals. For instance, the problem of
object naming was solved following
[EDG86,Ehr86], and really abstract descriptions
were achieved by adapting the algebraic tools
already introduced for ADTs. Moreover, the
interaction mechanism between objects was chosen
to be as simple as possible (event sharing), along
the lines recently advocated in the area of
concurrent programming methodology.

We should stress that the presentation of the
approach, the primitive working language and its
algebraic semantics leaves no room for discussing
other very interesting developments. Namely, the
methodologial details are left out. Moreover, no
attempt is made to discuss: the modular
(parameterized) specification of objects and their
societies; the problem of incomplete information
about the objects and their situations; the
aggregation of objects into complex objects; and
their classification within inheritance networks.
Finally, the resulting logic of societies, objects and
events is only sketchily examined.

The paper is organized as follows. Section 2 contains
a rather informal introduction to the proposed tools
for AOT specification within the context of a very
simple UoD example. Section 3 presents the algebraic
semantics of the structural descriptions of the
objects (naming mechanisms, state attributes and
constraints). Section 4 is dedicated to the rest of the
algebraic semantics (dealing with events,
trajectories, traces and interactions). The complete
example discussed in Section 2 is included in the
Appendix.

2 -MOTIVATION

According to the objectoriented approach, in order
to capture knowledge about the real world entities
and their behavior, one should start by perceiving

the relevant types of objects in the universe of
discourse (UoD). For each object type it is then
necessary to understand both its static and dynamic
aspects. That is to say, one should describe the
object’s attributes and also the events that may
occur during its life. As an illustration, consider a
very simplified trader’s war/d . In this UoD it seems
worthwhile to consider at least the following types
of objects: CLIENT. STOCK and ORDER. Note that
two rather different kinds of object types were
considered: persistent, like CLIENT, and
transient, like ORDER. When it comes to the
implementation, it is usual to implement a persistent
object over a record in the database (plus associated
procedures). On the other hand, transient objects
tend to be implemented as transactions. At this
perception stage, the classification is irrelevant
since both persistent and transient object types are
to be described using the same abstractions.
However, it is important to notice that both kinds
should be included in the UoD and that the description
of transient entities as events does not seem to be
acceptable.

When describing a society of interacting objects, it
is essential to find the basic object identification
mechanisms, that is to say, for each type of objects,
the means for naming the different occurrences of
the type. For instance, let us assume that in the
trader3 world the occurrences of CLlENT are
identified using a key mechanism that maps names
(strings) into clients. One might also safely assume
that, similarly, there is a key mechanism that maps
stock identifiers into stocks. Naturally, a more
realistic description should include the object type
STOCK as a relationship between the object types
PRODUCT and DEPOT. Herein, for the sake of
simplicity, it is assumed that only stocks are of
interest. Note that in the simplified trader’s n&i
both CLIENT and STOCK have their occurrences
named independently of the other objects in the
society. On the contrary, orders are identified for
each client by number. That is to say, when
identifying an order one has first to identify the
client that issued it. Hence, the identfficat’on of
orders does depend on the identification of other
objects in the society.

Following [SeSe66a], the object types CLIENT and
STOCK are said to be independent and the object
type ORDER is said to be a characteristic (of
CLIENT). Characteristic object types are said to be
dependent. Other dependent object types are also
useful (such as relationships, particulariiations,
generalizations and aggregations), but they are not

108 proceedings of the 13th VLDB Conference, Brighton 1987

-_.. -

used in the simplified trader’s world. A detailed
description of the object types in the trader’s world
is presented in the Appendix. A preliminary
version of the OBLOG (OBject LOGic) language is
used. In OBLOG, the UoD description is divided
into the following parts: the structure
specification STRUCT (including the data types
plus the key mechanisms and the state attributes of
all object types) and the behavior specification
BEHAV (including the events and traces of all object
types).

Returning to the example, the key mechanism of the
object type CL/E/VT includes the following key map
c/i: string + CLIENT, as well as the key attribute
name: CLIENT + string. The key population
constraints name(cli(S))=S for every S in string
such that c/i(S) is in CLIENT and cli(name(C))=C for
every C in CLlENT just state the obvious relations
between the key attribute name and the key map c/i.
Such relations are typical of every independent
object type. On the other hand, the other key
constraint (a key individual constraint)
upper(first(name))=true is spedfii of this object
type: it states that the first character of every
client’s name must be an upper case letter. Note
that, for the sake of simplicity, the argument of the
attribute is omitted in individual formulae.

Key maps and attributes do not vary in time. That is
to say, they are independent of the object’s
situation. State-dependent attributes are introduced
in the state part of the object type definition. The
object type CLlENT has only one state attribute
count: CLIENT + integer. This attribute maps each
client situation into an integer (intended to
represent the number of orders already issued by
that client at that point of its life). A situation is a
snapshot of the objects and their attribute values.
When specifying an object type like CLIENT, it is
sometimes necessary to impose restriiions on the
values of its attributes. For instance, the constraint
(zertzcount)=true states that the (integer-valued)
attribute count is never below zero. This is an
example of a local state constraint. In contrast,
global state constraints (to be illustrated later
on) are similar but they depend on the situation of
other objects. The focal state constraint
(G(h%count)-tme) H (count=N) states that the value
of count never decreases. Note the use of the
temporal operator always In the future G in the
latter formula, for expressing that if at some
situation count is N, then it will remain greater than
or equal to N in every subsequent situation.

ft is worthwhile to mention here the difference
between situations and states, as proposed in
[Ehr86]. Situations are snapshots of the existing
objects and their attribute values. In constrast;
states are theOri8s representing some knowledge
about situations. ff that knowledge is partial or
disjunctive there will be many situations satisfying
that state. Monomorphic states (having only one
situation as model) appear in special cases, like
definitive databases with the Closed world
assumption. In the monomorphic cases, the
admissibility of states and state transitions can be
derived from the temporal specifications; techniques
are also known for enforcing state constraints (see
[ELG84,LEG85]).

The third step in the description of an object is the
definition of its behavior, in terms of the events
that may happen in its life. In the object type CLIENT,
one might consider at least two kinds of events:
births and (order) issues. Such events are generated
using birth: -+ E(C) wfth C in CLIENT and ksue:
integer STOCK integer + E(C) with C in CLIENT.
These are formally introduced as CLIENT-indexed
families of functions. For each dient C, birth denotes
the birth event of C and the function issue maps each
triple *order-number, stock, requested-quantity>
into the corresponding issue event. E(C) denotes the
set of possible events of client C.

The life trajectories of each client are non-empty
sequences of these events satisfying some general
restriiions: every trajectory begins with a
creation event; after a destruction event no
more events are allowed; and modification events
are allowed after the creation event until the
eventual destruction event. Note that, in principle, ft
is useful to allow Incomplete trajectories, that
is to say, trajectories not finishing wfth a
destruction event. Otherwise, a rather strong
liveness requirement is imposed, as discussed in the
end of this section.

For each particular trajectory, the set of possible
traces (determining intermediate situations) is
composed of all non-empty initial parts of the
trajectory. In many cases, the observed behavior of
the object indicates that some of the theoretically
possible trajectories are not allowed. For instance,
in the definition of the behavior of clients, the set of
trajectories is restricted by the following domain
assertion [T>>issue(N, K, R)] only if (count at
T)lpre(N) stating that the issue event for (N,K,R) is
allowed only if the order-number N is the value of
cuunt, just before that event, plus one. ft is

Proceedings of the 13th VLDB Conference, Brighton 1987 109

important to notice that we are using trace
formulae. In such formulae, an explicit trace
argument is given for every state attribute using the
connective at.

The dependence of the state attributes on the local
trace of the object is defined with valuation and
equivalence equations. As an illustration of the
former consider (wunr at <birth>)=zem and (wunt
at ~>>issue(N,rCR)l)=s~(wunt at T) stating that
wunt is zero after the birth event and its value
increases by one every time an issue is made,
respectively. Valuation equations define the values of
state attributes as functions of the traces.
Equivalence equations (illustrated below) define
equivalences between traces for the sole purpose of
attribute evaluation.

When expressing either domain restrictions or
valuation and equivalence equations, it is necessary
to refer to traces. A very simple notation was
adopted for dealing with fraces: cal,...,an> denotes
the trace composed of the events al,...,an; and
[->a] denotes the trace obtained by suffixing event
a to trace x.

The final part of an object type description is
composed of the so called Interaction equations
that equate events of different objects (of the same
or of different types). In order to illustrate the use
of those equations, as well as of some other features
not present in the CLlENT specification, it is
worthwhile to examine in detail the definition of the
other object types in the trader’s wor?kl: ORDER and
STOCK. Skipping the key mechanism, it should be
clear ‘that the state-dependent attributes stk and
req of ORDER indicate respectively the target stock
and the requested quantity. Their local state
constraints are easily interpreted. lt remains to
discuss the global state constraints, such as
there-is di As global constraints, they are not
imposed on the local situations of each order but
instead on the global situations of the trader’s
so&y. Those global sltuatlons may be obtained
by “gluing together” individual local situations. Only
global situations satisfying every global constraint
are considered. For instance, the former global
constraint states that every existing order points
(through c/i) to an existing client.

The interaction equation in the ORDER
specification C.issue(N, K, R)I ord(C, N).creation(K, R)
states that every issue event by some client
is an order creation (and vice versa). Recall
that ord maps each pair (client,number) into

the corresponding occurrence of ORDER. This means
that those events are shared by the two objects.
This sharing of events (with the same vocabulary
or not) is the only interaction mechanism allowed in
the proposed framework. Informally, the interaction
equations guide the construction of the global
trajectories, by “gluing together” the local chains
at the shared events. Each global trajectory is an
interleaving of the local trajectories, respecting
every interaction equation. Each global state is
determined by the global trace of those events that
have already occurred in every object life.

The local behavior of each order is very simple:
after its creation, it may be either satisfied or
rejected. Note that according to this local description
of the order behavior it is not possible to state if the
order is to be satisfied or rejected. That can only be
established when describing the behavior of the
object type STOCK. Indeed, every rejection and
every satisfaction is shared by two objects: an
order and a stock, as indicated in the interaction
axioms of the object type STOCK The domain
assertion [T.> failure(0, R)] only H f&oh at
T)cR)=true states that the rejection of the order
(the failure of the target stodc) takes place only if
the requested quantity is greater than the quantity
on hand just before the event. The satisfaction
(delivery) takes place in the other case. One of the
events may happen, but not both. This is an
interesting safety property of orders within the
context of the proposed trader’s world.

Sometimes, it is necessary to express (as a
requirement axiom or as a provable theorem)
another kind of assertion: a liveness property.
Liveness properties express that some desired
events must occur. As an illustration consider the
following requirement: every order will sooner or
later be processed. That is to say, no order that has
been created will remain for ever waiting to be
rejected or satisfied. This particular requirement is
not a property of the described trader’s n&l
Indeed, it is reasonably easy to verify that there are
global lattices of events that satisfy the entire
specification and where orders exist with incomplete
trajectories. A suitable revision of the specification
ensuring that liveness property could be made as
follows, at the level of the ORDER domaln:

ccreatbn(K, R)> only if
(Fafter(satisfackm(K, R))) at <creation(K, R)>
or (Fafter(rejection(~ R))) at ccreation(K, R)>

Herein, F is the sometime in the future temporal
operator and after is a (local) trace predicate
allowina the identification of the lasteyant,

110 Proceedings of the 13th VLDB Conference, Brighton 1987

Finally, it remains to comment the equivalence
equations for traces, such as those included in the
description of STOCK. For instance, the equivalence
equation [T>,failure(O,R)]=T states that, for the
sole purpose of state attribute evaluation, the
lefthand trace is equivalent to the righthand one.
Indeed. a failure does not change the value of qoh.

3 -STRUCTURE SPEClflCATlON

The purpose of the structure specification is to
define the ObjedS with their attributes and
relationships, as well as to characterize which
collections of objects may exist and how they are
allowed to change. This specification is organized
into three successive steps: STRUCT=DT+KY+ST,
where DT is the specification of the underlying data
types that will be used as attribute values; KY
specifies the keys, i.e. KY defines an identification
mechanism for the occurrences of each object sort;
and ST provides the state information on each object
sort, i.e. attributes and constraints.

Data type speclflcatbns have been studied
extensively in the last decade. Without going into
details, we assume a monomorphic data type DATA
to be given as the semantics of the specification DT
(e.g. the initial DT-algebra). As expected, DATA is a
generated and typical interpretation of the
specification DT. It consists of a carrier set of data
elements (values) for each data sort and an
appropriate data operation for each operation
symbol. Note that DATA satisfies the specification
DT. Hence, we wriie DATA j= DT.

Key speclflcations as extensions of data type
specifiitions have been introduced in
[Ehr86,EDG86] using a final algebra semantics.
Herein, we employ a variant of that approach using
key maps (a notion introduced in [SeSe85a]) for
which an initial algebra semantics can be given.
Accordingly, a key extension of DT, KY-(QY,CK~)
consists of a key signature I+qy-(S~y,Rm) and a set
of key constraints CK~=PCK~VICK~, where the

former is the set of population key constraints
and the latter is the set of Individual key
constraints. The key signature contains the set
SKy of all object sorts, also denoted SOB, plus an
SOB-indexed family of key mechanisms. Each key
mechanism Roy is a triple <sl . ..s.,kmap,
katth, where Sl...Sn E (SD-p&OB)’ is the list of

the n key argument sorts, kmap: sl...Sn+S is the
key map. and kattr = dtal,...,kan> is the list of the

Pmeedings of the 13th VLDB Conference, Brighton 1987

n key attributes, such that kaj: s+sj for 1 sjjln.

The semantics U of DTt@Ky,PCKy) is the free
extension of DATA with respect to (T)<YIPCK~)
forgetting the key maps. By this free construction, U
satisfies the population key constraints. Intuitively,
U contains for each object sort all “possible” objects
.of that sort (in an abstract sense) that can be
identified using the specified key mechanisms.

For formulating the individual key constraints we use
the key language KL: the first-order predicate
language over the signature of DTtKY. For notational
and methodological convenience, in OBLOG
specifications, we employ a “local dialect’ KL(s)
when specifying the object type s. Formulae of the
form (Vy:s) cp(y) are abbreviated to 9, omitting all
occurrences of the object variable y of sort s. For
instance, in the specification of ORDER, the formula
(zervsnumb)=true is the local abbreviation of a
formula of KL: (Vy:ORDER) ((zensnumb&))-true).
The semantics of DT+KY in the presence of such
individual key constraints is somewhat involved. The
starting point is the algebra U built as above ignoring
those individual key constraints. Then, the envisaged
semantics UNIVERSE of DTtKY (taking into account
the individual key constraints) should be the largest
subalgebra of U satisfying the individual key
constraints. In [Ehr86,EDG86] it is proved that a
unique largest subalgebra exists provided that all
individual key constraints are positive formulae. We
shall assume that in the sequel. Note that UNIVERSE
I= (DTtKY), in the sense that it satisfies the key.
constraints and its ZDT-reduct satisfies the DT
axioms.

Finally, the state specification ST=FST~CST)
completes the structure specification by providing
the object attributes and their constraints. The state
signature XST=(0,OST) adds no new sorts. It
introduces the state attributes of each object
sort, as folbws: OST I (GST(s): SESOB) where

nST(S) = {i$T(S)(S’): S’QsD@OB). As Usual, W

write b: s + s’ instead of b E OS-r(s)(s’). Note that

state attributes can be data or object-valued. Recall
also that we assumed that an existence boolean
attribute is available for every object sort 5:
there-is, : s + bool. The index is omitted if it is
clear from the context. The state constraints are
formulated using the structure language SL: a
temporal extension of the first order predicate
language over the structure signature. The only
temporal operators we use in this paper are the

111

Yemporal quantifiers” always in the future G
and sometime in the future F. As for the key
language KL, we also use a “local dialect” SL(s) for
each object sort s whenever convenient. Indeed, in
the specification of s, we wriie cp as an abbreviation
of (Vy:s) ((there-les(y)=true) Implies q(y)). The
set of state constraints is given as follows:
CST=LCS+SCST, where the former is the set of
local state constraints (of every object sort)
and the latter is the set of global state
constraints (also of every object sort).

Now, at last, the semantics of the structure
specification STRUCT can be given as any “temporal
interpretation” satisfying the state constraints.
Before defining what we mean by a temporal
interpretation, the concept of situatbn should be
formalized as follows: a situation o for STRUCT is a
XSTRUCT-algebra (without the key maps) whose
(zDT+ZKy)-reduct iS UNIVERSE. Then, a temporal
interpretation for STRUCT=DT+KY+ST is a triple
Tl=<UNIVERSE,S,T>, where the first component is
the UNIVERSE of data and objects satisfying DT+Ky,
S is a dass of situations for STRUCT; and T is a
reflexive and transitive binary relation on S. The
latter corresponds to the transition or reachability
relationship between situations: aTo’ iff the situation
d is reachable starting from situation o, i.e. iff the
transition from o to 6’ is possible.

Given a temporal interpretation TI=<UNIVERSE,S,T>,
a situation o in S and a variable assignment A, every
term of SL can be evaluated as usual: data operations
and values are interpreted according to DATA; key
attributes and objects are interpreted according to
UNIVERSE; state attributes are interpreted according
to the situation Q. Hence, every atomic formula can
easily be evaluated, since we have only the equality
predicate (for each Sort): VTl,o,A(t&) = if

(VTi,o,~(t) = VTl,o,A(t’)) then 1 else 0. Finatty, non-
atomic formulae are evaluated as expected. For
example: vTl,o,A(F@ = ii (vn,d,A(q)=l for every
o’ such that oTo’) then 1 else 0. Note the role of the
transition relation T in the interpretation of
temporal formulae, following the Kripke approach. lt
is beyond the scope of this paper to discuss the
properties of that relationship in the context of
database specification. A temporal interpretation
Tl=<UNIVERSE,S,T> is said to satisfy a structure
specification STRUCT, TI (P STRUCT, iff every state
constraint has the value 1 in TI for every situation s
in S and every variable assignment. We shall take as
the semantics KRIPKE of a structure specification

STRUCT the class of temporal interpretations for
STRUCT that satisfy its state constraints.

4 - BEHAVIOR SPECIFICATION\

The purpose of the behavior specification is to define
the life trajectories of the objects in the society, in
terms of their events, as well as their interactions.
This specification is organized into four successive
steps: BEHAV=EV+TJ+TA+TD, where EV is the
specification of the events, including the
interactions, TJ establishes the set of all possible
(global) trajectories and their traces, TA provides
the trace attributes and their equations, and, finally,
TD specifies the domain of the acceptable
trajectories and theirtraces.

The event speclficatlon EV=(ZEV,EEV) consists of
an event signature ZEV=(SEV,REV) and a set of
Interaction axioms. An event signature consists
of a single set SEV with the sort e of events, an SCB-
indexed family of event generator tools and a
collection of event predicates. Each REV(s) is a triple
dreation(s),modifiiat*ion(s),destruction(s)>, where,
for instance, creation(s) = {creation(s)(w):
we (SDTVSOBY). Each set creation(s)(w) contains
the creation-event generator symbols for object
sort s (the sort of the life or primary parameter)
with list w of secondary parameter sorts. As
expected, we wriie g: s w + 8 when

gecreation(s)(w). The event predicates cre, mod
and des are used to identify the category of each
event. When writing the interaction axioms we use
the event language EL: the equational language
over the signature of DT+KY+EV, prefixing the life
parameter. As an example, recall the equation:
C.issue(N,K,R)=ord(C,N).creatbn(K,R).

The semantics EVENT of the specification DT+KY+EV
is the free extension of UNIVERSE with respect to the
event specification EV. Thus, EVENT is a

(qlT+%Y+%v)-abebra (without the key maps)
satisfying the EEV equations and containing UNIVERSE
as (wT+ZKy)-redud. Thus, EVENT I= (DT+KY+EV).
The algebra EVENT contains, in addition to the
components of UNIVERSE, the carrier set E for the
event sort 8, as well as the appropriate
interpretation of each event generator and predicate.

The trajectory extension TJ=(~TJCTJ) is

composed of the trajectory signature =TJ’
(STJ+J) and the set of universal trajectory
conditions: the trajectory equations and the
trajectory constraints. The trajectory

Proceedings of the 13th VLDB Conference, Brighton 1987 112

signature includes one sort: the sort e+ of sequences
of events or trajectories and the sort r of
traces. A also includes the following operation
symbols: the trajectory constructors e-s 8 + e+

and L>>J: e+ e -$ et, as well as the trace
constructor tr: e+ lnt + r and some auxilliaty
operators, such as ev: r lnt --s e and lp: e+ lnt +
6. Note that ev(R,N) denotes the N-th event in
trace R; and Ip(S,N) denotes the sequence of the N
first events of S. The trajectory equations wriien
in the equational language over the signature of
DT+KY+EV+TJ impose the expected relationships
between trajectories, traces and events. For
instance: ev(tr(eX>,one),one)=X. On the other
hand, the trajectory constraints (easily formalized
in the suitable first order language over the
signature DT+KY+EV+TJ) impose the restrictions
described in section 2. For instance, they include the
requirement that every trajectory must start with a
creation event.

The semantics TRAJECTORY of the specification
DT+KY+EV+TJ is the largest subalgebra, satisfying
the trajectory constraints above, of the free
extension of EVENT (forgetting the trajectory
constructors) with respect to the indicated
trajectory extension without those constraints. It
contains, inter alia, the carrier set Et of sort et
(the set of all trajectories). Fixing a trajectory 7,
that is to say, fixing an element T of Et,
TRAJECTORY@) is the largest subalgebra of
TRAJECTORY such that the carrier set of e+ is the
set (7). Hence, its carrier set R(T) for r contains all
initial parts of ‘E.

The trace attributes specification
TW~TAETA) consists of the signature
XTA=(O,QTA) and a collection of trace equations:
the trace equivalence equations and the
valuation equations. The trace attributes
signature adds no new Sorts. lt introduces a
collection of trace attribute symbols, including:
{~A(rss’k S’E (SDJ-USOB)}, where each S)~A(~,S')

is the set of attribute symbols mapping traces into
elements of sort s’. We assume that each *A@$)

contains every state attribute symbol (see section
3) returning values of sort s’. Hende, we use the
same symbol for a state attribute and the
corresponding trace attribute, since there is no
possibility of confusion. As an illustration, recall the
state attribute qoh: STOCK + integer. The same
symbol is used in the behavior specification denoting
a trace attribute that maps traces into integers.

Moreover, after is introduced at this point as an
event-dependent boolean trace attribute with no
counterpart in the collection of state attributes
after: e r --) bool. When writing trace equations we
use the trace language TL: the equational language
over the signature DT+KY+TJ+TA. suffixing the
trace argument of the attributes through the
connective at. For instance, recall the following
equations in the STOCK specifkation:
[T>>failure(O,R)]=T and (qoh at copen+zerv. The
former is a trace equivalence equation that simply
equates traces (only for the purpose of attribute
evaluation). The other is a valuation equation that
states the value of the attribute at the indicated
trace. Actually, the former equation is an
abbreviation of the schema stating for each attribute
att of arbitrary object K of sort STOCK: (ati at
r.>K.failure(O, R)J)=(aii at r). Besides the
specified trace equations, we assume some lmpllclt
trace equatlons that indicate the value of the
boolean existence and event-dependent attributes,
and that impose the necessary frame conditions.
As an example of the former, consider the following
valuation equation: (there-k? Kat <K.open>) = true.

Fixing a trajectory r in TRAJECTORY, the semantics

AlTRIBUTE of specification DT+KY+EV+TJ+TA is
the class of extensions of TRAJECTORY@) with
respect to the indicated trace attributes
specification (including the implicit equations). Note
that each element 8 of ATTRIBUTE(z) contains
TRAJECTORY(z) as (ZDT+ZKY+~EV+CTJ)-‘edU~.

Consequently, it also contains EVENT as
(QT+ZKY+ZEV)-reduct. In this sense, we can say

that any such algebra satisfies the specification
DT+KY+EV+TJ+TA. Thus, we write: AlTRIBUTE I=
(DT+KY+EV+TJ+TA).

Finally, it remains to define precisely the semantics
of the fourth part of the behavior specification: TD
defines the set of acceptable trajectories restricting
at the same time the possible values of the trace
attributes. The trace domain extension
TD=(@,CTD) introduces no further sorts or

operations. lt consists of a collection of domain
constraints of the general form: T only if cp(T),
where cp(T) is a formula of TL (the trace language
introduced above) and T is a term of sort et. Fixing
a particular trajectory ‘T in TRAJECTORY, such a
constraint is to be interpreted as stating (3v:lnt)
lp(-z,v)=T implies q(T). Wlhin each algebra 8 of
ATTRIBUTE@), this assertion is either true or false.
We select each algebra 8 of ATTRIBUTE@) only if it

F’keedings of the 13th VLDB Conference, Brighton 1987 113

satisfies all domain constraints. When that is the
case, we write 8 j= TD and, thus, by introducing the
set of such algebras DOMAIN@) I {BEATTRIBUTE(

C+TD}, we can write: DOMAIN@) j= (DT+KY+
EV+TJ+TA+TD). Note that it is possible that for
some ‘F the class DOMAIN@) is empty. Every such
trajectory is said to be forbidden (by the domain
constraints).

Naturally, the behavior semantics as defined above
was not required to satisfy the full structure
specification, since the state constraints could not be
taken into account. We say that the behavior
spscifkatlon complkis with the structure
spscification when the state constraints are
satisfied by every model of the behavior
specification in the following sense:
(WE TRAJECTORY) (V8e DOMAIN(T)) Tl8j=CST. The
(linear) temporal interpretation Tl8 corresponding to
each algebra 8 in DOMAIN(z) is defined as follows:
Tl6=<UNIVERSE,S8,T8>, where UNIVERSE is the

@DT+Qy)-redllct Of TRAJECTORY, +
{r(e(p):peR(~)} and p&) T6 p8(p’) iff p is initial
part of p’. ft remains to define the mapping f.16 from
R(z) into the class of all STRUCT-situations. From
the algebra 8 it is easy to build for each trace (initial
part of T) the corresponding situation. Indeed, it is
the QTRUCT-algebra that maps each state attribute
symbol to the value of the corresponding trace
attribute symbol at that trace as given by 8.

The riiorous algebraic semantics of an effective
language for the specification of abstract object
types (AOTs) was outlined. This semantics provides
the Kripke interpretation structure for the envisaged
logic of object behavior. Some of the requirements
for this logic were discussed, namely concerning the
proof of liveness and safety properties of the object
societies. Such a language was shown to be useful
when describing the universe of discourse as a
society of interacting objects. This approach to
conceptual modeling provides the means for the
complete description of the relevant entities,
including their individual and interaction behavior.
This description is the starting point for the design
of both the database schema and the associated
transactions. Indeed, both records and transactions
can and should be seen as objects, although the
former tend to be more persistent than the latter.
Hence, it is possible to design the database and the
associated applications as a society of objects of

varying persistency. This view also opens up the
possibility of extending the current architectures of
database management systems (DBMS) towards real
object society management systems (OSMS).

Some interesting developments were not reported
herein due to space limitations. Namely, the
methodological guidelines for database design
according to the proposed approach (already under
experimentation) and the detailed development of the
algebraic semantics concerning the key mechanisms
and the object universe construction. On the other
hand, further work is necessary concerning the
refinement of the behavior semantics in order to deal
with infinite trajectories and also to establish the
desired temporal structure (either linear or
branching). Afterwards, it will be possible to put
together the logical calculus for proving properties
of the object societies. Other important lines of
research are related to the problems of dealing with
incomplete information about the objects and of
supervising and enforcing database state constraints.
Finally, we are also looking at further developments
of the language in order to allow parameterized
specifications, as well as inheritance and
aggregation.

Although the proposed formalism for AOT
specification seems rather complex compared to the
traditional formalisms for ADT (abstract data type)
specification, we believe that it will be rather
difficult to simplify it further. Indeed, objects are
temporal entities rather more complex than simple
values. We expect that future DBMS should
incorporate basic facilities for object society
management along the lines of our proposal where
the chosen interaction mechanism is as simple as
possible (event sharing by the interacting objects).

6 - REFERENCES

[BaBu84] Batori, D. and Buchmann, A., “Molecular
Objects, Abstract Data Types and Data Models -

A Framework”, Proc. VLDB Singapore,
1984.

[CCF82] Castilho, J., Casanova, M. and Furtado, A.,
“A Temporal Framework for Database
Specification”, ROC. VLDB Mdco w,
1982.

[Che86] Chen, P., “The Time Dimension in the Entity-
Relationship Model”, Proc. IFIP World
Congress 66, North Holland, 1986.

[DaSm86] Dayal. U. and Smith, J., “Probe: A
Knowledge-Oriented Database Management
System”, On Knowledge Bass Management

114 mings of the 13th VLDB Conference, Brighton 1987

Systems, Brodie, M. and Mybpoulos, J. (eds),
Springer-Verlag, 1988.

[DD86] Dayal, U. and Dittrich, K. (eds), Proc. int.
Workshop on Object-Oriented Database
Systems, IEEE-C& 1986.

[EDG86] Ehrich, H.-D., Drosten, K. and Gogolla, M.,
“Towards an Algebraic Semantics for Database
Specification”, Knowledge and Data (DS-2)
Meersman, R. and Sernadas, A. (eds), Proc. IFIP
WG 2.6 Working Conference, Albufeira, 1986,
North-Holland (to appear).

[Ehr86] Ehrich, H.-D., “Key Extensions of Abstract
Data Types, Final Algebras and Database
Semantics”, Pitt, D. et al (eds), Proc.
Workshop on C~egW Theory and
Computer Programming, Springer-Verlag,
1986.

[ELG84] Ehrich, H.-D., Lipeck, U. and Gogolla, M.,
“Specification, Semantics and Enforcement of
Dynamic Database Constraints”, Proc. VLDB
Singapore, 1984.

[FiSe86] Fiideiro, J. and Sernadas, A., “The infobg
Linear Tense Propositional Logic of Events and
Transactions”, information Systems, 11[11,
1986.

[LEG851 Lipeck, U., Ehrich, H.-D. and Gogolla, M.,
“Specifying Admissibility of Dynamic Database
Behaviour Using Temporal Logic”, Sernadas, A.,
Bubenko, J. and Olive, A., information
Systems: Theoretical and Formal
Aspects, North Holland, 1985.

[Lip861 Lipeck, U., “Stepwise Specification of
Dynamic Database Behaviour”, ACM SIGMOD
int. Conf. on Management of Data, 1986.

[MBWSO] Mylopoubs, J., Bernstein, P. and Wong,
H., “A Language Faclity for Designing interactive
Database-Intensive Systems”, ACM TODS,
5[2],1980.

[SeSe85a] Sernadas, A. and Sernadas, C.,
“Capturing Knowledge about the Organisation
Dynamics”, Methlie, L. and Sprague, R. (eds),
Knowledge Representation for Decision
Support Systems, North-Holland, 1985.

[SeSe85b] Sernadas, A. and Sernadas, C.,
“Abstraction and Inference Mechanisms for
Knowledge Representation”, Schmidt, J. and
Thanos, C. (eds), Foundations of Knowledge
Representation, Proc. Workshop, Xania,
1985, Springer-Verlag (to appear).

[SeSe86] Sernadas, C. and Sernadas, A.,
“Conceptual Modeling Abstractions as
Parameterized Theories in Institutions”,
Meersman, R. and Steel, T. (eds), Database
Semantics(DSl), North-Holland, 1986.

[StBo84] Stefik, M. and Bobrow, D., “Object-

Oriented Programming: Themes and Variations”,
The Al Magazine, 1984.

[SRG83] Stonebraker, J., Rubensteinn, B. and
Guttman, A., “Application of Abstract Data
Types and Abstract indices to CAD Databases”,
ACM SIGMOD Database Week: Eng Design
Applications, 1983.

7- APPENMX: trader’s world

object type CLIENT
key

map cli(string)
attributes

name : string
constraints

population
name(cli(S))& ;
cli(name(C))=C

individual
upper(first(name))=true

state
attributes

count : integer
constraints

ioc?ii
(zeroScount)=true ;
(G(N%ount)=true) if (count=N)

behavior
events

creation
birth

modification
issue(integer,STOCK,integer)

traces
domain

[T&ssue(N,K,R)] only if
(count at T)=pre(N)

equations
valuation

(count at <birth>)=zero;
(count at jT>>issue(N,K,R)])=

suc(count at T)
end

object type ORDER
key

map ord(CLIENT,integer)
attributes

numb : integer ;
cli : CLIENT

constraints
population

cli(ord(C,N))=C ;
numb(ord(C,N))=N ;

Proceedings of the 13th VLDB Conference, Brighton 1987 115

ord(cli(O),numb(O))=O
individual

(zerMnumb)=true
state

attributes
stk : STOCK ;
req : integer

constraints
lOCal

(zeroxreq)=true ;
(G(stk=K)) if (stk=K)

global
thsreis cli
thereis stk

behavior
events

creation
creation(STOCK,integer)

destruction
satisfaction(STOCK,integer) ;
rejection(STOC&integer)

traces
domain

[T*>satisfaction(K,R)] only if
(stk at T)=K and (req at T)=R ;

~>>rejection(K,R)] only if
(stk at T)=K and (req at T)=R

equations
valuation

(stkat <creation(K,R)+K ;
(req at <creation(K,R)+R

interaction equations
C.issue(N,K,R)=ord(C,N).creation(K,R)

end

object type STOCK
key

map stk(string,string)
attributes

prdid : string ;
depid : string

constraints
population

prdid(stk(Sl,SZ))=Sl ;
depid(stk(S1 ,S2))=S2 ;
stk@rdid(K),depid(K))=K

state
attributes

qoh : integer
constraints

lOCal

(zewqoh)frue
behavior

events
creation

open
destruction

close
modification

delivery(ORDER,integer) ;
failure(ORDER,integer) ;
update(integer)

traces
domain

[T>>update(R)] only if
(minus(R)l(qoh at T))=true ;

[Tx=delivery(O,R)] only if -
(R$qoh at T))=true ;

(T>>failure(O,R)I only if
((qoh at T)<R)=true
equations

equivalence
~77delivery(O,R)]=~=update(-R)];
jT>>failure(O,R)]=T;
[T>>update(Rl)>>update(R2)]=

vaiuati=wd~e(R1 +Wl

(qoh at <open+=zero ;
(qoh at <open,update(R)+R

interaction equations
O.satisfaction(K,R)==K.delivery(O,R) ;
O.rejection(K,R)=K.failure(O,R)

end

116 Proceedings of the 13th VLDB Conference, Brighton 1987

