
Object Partitioning using Local Convexity

Simon Christoph Stein, Markus Schoeler, Jeremie Papon and Florentin Wörgötter

Bernstein Center for Computational Neuroscience (BCCN)

III Physikalisches Institut - Biophysik, Georg-August University of Göttingen

{scstein,mschoeler,jpapon,worgott}@physik3.gwdg.de

Abstract

The problem of how to arrive at an appropriate 3D-

segmentation of a scene remains difficult. While current

state-of-the-art methods continue to gradually improve in

benchmark performance, they also grow more and more

complex, for example by incorporating chains of classifiers,

which require training on large manually annotated data-

sets. As an alternative to this, we present a new, efficient

learning- and model-free approach for the segmentation of

3D point clouds into object parts. The algorithm begins

by decomposing the scene into an adjacency-graph of sur-

face patches based on a voxel grid. Edges in the graph are

then classified as either convex or concave using a novel

combination of simple criteria which operate on the local

geometry of these patches. This way the graph is divided

into locally convex connected subgraphs, which – with high

accuracy – represent object parts. Additionally, we propose

a novel depth dependent voxel grid to deal with the decreas-

ing point-density at far distances in the point clouds. This

improves segmentation, allowing the use of fixed parame-

ters for vastly different scenes. The algorithm is straight-

forward to implement and requires no training data, while

nevertheless producing results that are comparable to state-

of-the-art methods which incorporate high-level concepts

involving classification, learning and model fitting.

1. Introduction and State-of-the-Art

Segmentation of scenes into objects remains one of the

most challenging topics of computer vision despite decades

of research. To address this, recent methods often use

hierarchies which create a rank order that build bottom-

up from small localized superpixels to large-scale regions

[19, 1, 3]. As an alternative, researchers have also pursued

strictly top-down approaches. These began with coarse seg-

mentations using multiscale sliding window detectors [26],

later progressing to finer grained segmentations and detec-

tions based on object parts [8, 6]. These two avenues of re-

search led naturally to methods which combine bottom-up

hierarchy building with top-down object- and part-detectors

[2, 22, 9]. While these approaches have yielded quite good

results even on complex, varied data sets, they have lost

much of the generality of learning-free approaches. In gen-

eral the most powerful methods to-date use trained clas-

sifiers for segmentation [22, 9]. This means they cannot

be applied to arbitrary unknown scenes without being re-

trained, requiring the acquisition of a new data-set tailored

to each test environment.

In this work we investigate model- and learning-free

bottom-up segmentation of 3D point clouds captured with

RGB-D cameras. In particular, we focus on the partitioning

of cluttered scenes into basic object parts without the need

for training data. As inspiration for a general rule for break-

ing scenes into elemental parts, we look to psychophysi-

cal studies, mostly performed on 2D images, which suggest

that the transition between convex and concave image parts

might be indicative of the separation between objects and/or

their parts [13, 25, 21, 15, 7, 4]. While this feature has been

used in machine vision to some degree [10, 17, 20, 24, 11]

success has remained limited and more recent studies were

forced to combine this feature with additional, often very

complex feature constellations to achieve good scene par-

titioning [20, 24, 11]. It, thus, appears that direct transfer

from 2D to 3D of the conventional, geometrically-defined

convex-concave transition criterion shown in Fig. 2 A is not

possible for achieving good 3D-segmentation. This puz-

zling observation can best be understood by ways of an ex-

ample.

Fig. 1 A, left shows two cases, one of which humans will

commonly consider as a single object (the left-most struc-

ture), while they report the jagged staircase on the right as

consisting of three parts. The simple convex-concave crite-

rion will usually fail in such situations because it can pro-

duce two substantial errors: On the one hand, it may bind

patches across surface singularities, one of which is de-

picted in Fig. 1 A (blue box). On the other hand it may sep-

arate objects along isolated concavities (Fig. 1 A, red bars).

There is a natural trade-off between both errors, making an

appropriate segmentation of both cases generally not possi-

1

ble. Thus, in this study we design a novel 3D-compatible

convex-concave separation criterion, which addresses these

two problems in a straight-forward way and combine it with

a depth dependent transform which helps to reduce the ef-

fect of noisy and sparse depth measurements from RGB-D

sensors. Together this leads to a remarkably accurate par-

titioning of real scenes, which can compete with far more

complex state-of-the-art methods as shown here by several

standard benchmarks. The algorithm is simple and easy to

implement and we demonstrate that the resulting segmen-

tations can be understood in human terms as ”objects” or

”object-parts”.

This paper is organized as follow: First, in Section 2 we

present our segmentation algorithm and visualize its indi-

vidual steps. In Section 3 we evaluate our method, bench-

mark it against other approaches and discuss the results. Fi-

nally, Section 4 will summarize our findings. The method

source code is freely distributed as part of the Point Cloud

Library (PCL)1.

2. Methods

Our principal goal is to deconstruct a scene into “name-

able” object parts without the need for training or classifi-

cation. As psycho-physical studies suggest that the lowest-

level decomposition of objects into parts is closely inter-

twined with 3D concave/convex relationships, we propose

an algorithm, an overview of which is given in Fig. 1, that

can reliably identify regions of local convexity in point

cloud data.

2.1. Building the Surface­Patch Adjacency Graph

To build a surface patch adjacency graph, we use Voxel

Cloud Connectivity Segmentation (VCCS) [18], a recent

method which over-segments 3D point cloud data into

patches, known as supervoxels (a 3D analog of superpixels).

VCCS uses a local region growing variant of k-means clus-

tering to generate individual supervoxels ~pi = (~xi, ~ni, Ni),
with centroid ~xi, normal vector ~ni, and edges to adjacent

supervoxels e ∈ Ni.

Supervoxels maintain adjacency relations in voxelized

3D space (specifically, 26-adjacency). The adjacency graph

of supervoxels (and the underlying voxels) is maintained

efficiently within the octree by searching for neighboring

leaves in the voxel grid, where Rvoxel specifies the octree

leaf resolution. This adjacency graph is used for both the

region growing to generate the supervoxels as well as deter-

mining adjacency of the resulting supervoxels themselves.

Supervoxels are grown from a set of seed points distributed

evenly in space on a grid with resolution Rseed. Expansion

from the seed points is governed by a distance measure cal-

culated in a feature space consisting of spatial extent, color,

1http://www.pointclouds.org

Figure 1. Flow diagram of the segmentation algorithm. A) RGB

images corresponding to the point clouds of the scene. The red

lines show two isolated concavities. The blue box shows an area

with a surface singularity. B) Supervoxel adjacency graph. C)

Model depicting the classified graph. Black lines denote convex

connections, red lines concave ones and turquois lines singular

connections (those, where two patches are connected only in a

single point). D) Segmentation result; object labels are shown by

different colors. E) Final result after noise filtering. The right

column illustrates the supervoxel patches and the convexity and

sanity criteria used for edge classification.

and normals. In this work, as we are interested only in geo-

metric features, we only use the spatial weight ws = 1 and

the normal direction weight wn = 4. Additionally, we have

extended the VCCS algorithm by modifying how the sur-

face normals are calculated. There are two changes: First,

rather than using a simple radius-search, we use the adja-

cency graph to decide which nearby points are included in

the normal calculation (specifically, we use the neighbors,

and the neighbors-neighbors). Secondly, we use the proba-

http://www.pointclouds.org

bilistic normal method of Boulch and Marlet [5]. The com-

bination of these two changes makes normals significantly

sharper, resulting in supervoxels which conform better to

sharp edges.

2.2. Locally Convex Connected Patches (LCCP)

Next we segment the supervoxel adjacency graph by

classifying whether the connection e = (~pi, ~pj) between

two supervoxels is convex (=valid) or concave (=invalid).

Extended Convexity Criterion (CC) Consider two ad-

jacent supervoxels with centroids at the positions ~x1, ~x2 and

normals ~n1, ~n2. Whether the connection between these is

convex or concave can be inferred from the relation of the

surface normals to the vector joining their centroids.

The angle of the normals to the vector ~d = ~x1 − ~x2

joining the centroids can be calculated using the identity for

the dot product ~a ·~b = |~a| · |~b| ·cos(α) with α = ∡(~a,~b). For

convex connections, α1 is smaller than α2 (see Fig. 2 A).

This can be expressed as:

α1 < α2 ⇒ cos(α1)− cos(α2) > 0 ⇔ ~n1 · d̂− ~n2 · d̂ > 0,

where d̂ = ~x1− ~x2

|| ~x1− ~x2||
. Similarly, for a concave connection

we get:

α1 > α2 ⇔ ~n1 · d̂− ~n2 · d̂ < 0.

Note that these operations are commutative, thus the choice

of which patch is ~x1, does not change the result. Also the

criterion is still valid if the ~xi are displaced, as long as they

stay within the surface.

To compensate for noise in the RGB-D data, a bias is

introduced to treat concave connections with very similar

normals, that is

β = ∡(~n1, ~n2) = |α1 − α2| = cos−1(~n1 · ~n2) < βThresh ,

as convex, since those usually represent flat surfaces. De-

pending on the value of the concavity tolerance threshold

βThresh, concave surfaces with low curvature are seen as con-

vex and thus merged in the segmentation. This behavior

may be desired to ignore small concavities. We set:

CCb(~pi, ~pj) :=

{

true (~n1 − ~n2) · d̂ > 0 ∨ (β < βThresh)
false otherwise.

(1)

where the variable CCb defines the basic convexity crite-

rion. However, local errors in the feature estimation caused

by noise in the data can propagate very easily, potentially

leading to errors in the resulting segmentation. This also

makes the recognition of small concavities harder, as sub-

tle features are more sensitive to noise. To improve on this

we – finally – also include neighborhood information in the

classification of edges: For a convex edge e = (~pi, ~pj), we

require that there exists a common neighbor ~pc of ~pi and ~pj
that has a convex connection to both.

Thus we define extended convexity CCe:

CCe(~pi, ~pj) = CCb(~pi, ~pj) ∧ CCb(~pi, ~pc)

∧CCb(~pj , ~pc)
(2)

With extended convexity, more evidence is necessary for

a connection to be labeled as convex. Our implementation

is based on the idea proposed by Moosmann [16]. In some

cases results are already satisfactory even without using

this type of neighborhood information. Thus, in the results

section we will always denote whether this is used or not.

Figure 2. A) Illustration of measures used in the basic convexity

criterion. B) Illustration of the sanity criterion for decreasing val-

ues of ϑ. Singular connections are characterized by small values

of ϑ.

Sanity criterion (SC): As pointed out in the Introduc-

tion when discussing the problem of surface-singularities,

in such cases, the classification of the connection of two

supervoxels into convex or concave does not make sense.

Hence, if the surface is discontinuous this is evidence for

a geometric boundary. This means that the correspond-

ing (originally potentially convex) connections should be

identified and invalidated. To do this, we use the vector ~d
which connects the centroids and the direction of intersec-

tion ~s = ~n1×~n2 of the planes approximating the supervoxel

surface. As illustrated in Fig. 2 B, singular configurations

can be identified by looking at the angle ϑ between ~d and

Merge
Error

Adjacency Failure

Adjacency Failure

Small Voxels Large Voxels DDVG

Figure 3. Two example point clouds (A,B, left) showing the need for the Depth Dependent Voxel Grid. For better visibility outlines have

been drawn around the boxes in A. Using Small Voxels objects close to the camera can be segmented, but adjacency breaks down as the

depth increases and the point density decreases. Using Large Voxels corrects the adjacency graph in the background, but leads to objects

being merged in the foreground due to the coarse resolution. Using DDVG, the scale of the voxels gradually increases with distance from

the camera – adapting to the increased noise level and lower point density – consequently adjacency is maintained and the segmentation

of scenes with large depth variance is possible using fixed parameters. Note, the flat rug on the table in B does not differ enough from the

table’s surface and cannot be segmented by any purely depth dependent method.

~s. For two supervoxels sharing one side of their boundary,

the two directions are orthogonal (ϑ = 90◦). If the direc-

tions are parallel (ϑ = 0◦), the patches are only connected

in a single point and the situation is singular. Because the

orientation of ~s is arbitrary, we define ϑ to be the minimum

angle between the two directions, that is:

ϑ(~p1, ~p2) = min(∡(~d,~s),∡(~d,−~s))

= min(∡(~d,~s), 180◦ − ∡(~d,~s)) (3)

Singular configurations occur for small values of ϑ and can

thus be handled by introducing the threshold ϑThresh. For

ϑ < ϑThresh the connection must be invalidated. Similar to

the convexity criterion, this condition has to be relaxed for

supervoxels with very similar normals, to compensate for

sensor noise. This is done by setting ϑThresh(∡(~n1, ~n2)) to

a sigmoid function (a softened step function) of the angle

between normals:

ϑThresh(β) = ϑmax
Thresh · (1 + exp [−a · (β − βoff)])

−1
,
(4)

where β = ∡(~n1, ~n2) is the angle between normals. We use

the experimentally derived values ϑmax
Thresh = 60◦, βoff = 25◦

and a = 0.25.

The sanity criterion SC is then defined as

SC(~pi, ~pj) :=

{

true ϑ(~pi, ~pj) > ϑThresh(β(~n1, ~n2))
false otherwise

(5)

We shall denote convex edges, that is, those which sat-

isfy both 1 and 5, as satisfying

conv(~pi, ~pj) = CCb,e(~pi, ~pj) ∧ SC(~pi, ~pj) . (6)

Region Growing: The second problem discussed in the

Introduction, the danger of splitting objects along isolated

concavities, can be addressed in the next step. For this we

need to find all clusters of supervoxels, which belong to

the same subgraph of valid convex connected edges. This

is accomplished using a region growing process: First,

an arbitrary seed supervoxel is chosen and labeled. This

label is then propagated over the graph with a depth search

that is only allowed to grow over convex edges. Once

no new supervoxel can be assigned to the segment, we

choose a new seed supervoxel that has not been labeled and

propagate the new label as before, repeating the process

until all supervoxels have been labeled. Note that all

our criteria are commutative, so the output of the region

growing does not depend on the choice of the seeds.

Noise Filtering: Noisy surface normals (predominantly

present at boundaries) can lead the convexity classification

to fail and wrongfully split connected surfaces. Because

these noisy patches are usually small, they can be filtered

out in a post-processing step. For every segment of the seg-

mentation, we check if it contains at least nfilter supervox-

els. If a segment’s size is smaller or equal to the filter size,

we merge it with the neighboring segment with the greatest

size. The filtering continues until no segments (that have

neighbors) smaller than nfilter are present in the image. We

use nfilter = 3 for all results presented in this work.

2.3. Depth Dependent Voxel Grid (DDVG)

So far we have described the main algorithm for segmen-

tation. Next we will introduce a generally applicable depth

transform, which improves this specific analysis but can be

used for all types of image analyses using algorithms with

a fixed scale of observation on RGB-D data from a single

RGB-D camera. In our case, we address shortcomings of

the voxel grid VCCS is based on.

It is evident that observations from a single RGB-D cam-

era have a significant drawback - the point density, and thus

available detail of the scene geometry, falls rapidly with in-

creasing distance from the camera. In addition, the levels

of both quantization and noise grow quadratically [23, 12],

leading to a further degradation in the quality of geomet-

ric features. This change in point density with depth cre-

ates a tradeoff between capturing small-scale detail in the

foreground (using small voxels) and avoiding noise in the

background (using large voxels). This is a general problem

which occurs in all algorithms working with a fixed scale

(for example a radius search) on point clouds created from

a single view.

We propose to compensate for the loss of point density

and quantization with increasing depth z by transforming

the points into a skewed space using the transformation T :
(x, y, z) → (x′, y′, z′) with

x′ = x/z, y′ = y/z, z′ = log(z) (7)

The division of the x and y coordinates by z reverses the

perspective transformation, equalizing the point density in

the x-y-plane. Transforming the z coordinate helps to deal

with the effects of depth quantization by compressing points

as depth increases. It is easy to show that the transformation

has the following property:

∂x′

∂x
=

∂y′

∂y
=

∂z′

∂z
=

1

z
(8)

Because the derivatives are equal, the local coordinate

frame is stretched equally along all axes by the transforma-

tions. The important thing about this property is, that small

cubic voxels are still cubic after the transformation. This

leaves the geometry of space basically untouched in the

foreground (if the voxel size is chosen sufficiently small),

while voxels in the background are skewed and grow, to

compensate for reduced amount of detail available in the

data.

Rather than transforming the clouds back and forth, we

instead transform the bins of the octree itself, creating an

octree where bin volume (and thus, voxel size) effectively

increases with distance from the camera viewpoint. Doing

this directly within the octree allows us to determine adja-

cency as before (neighboring bins), even though distance

between neighboring voxels increases with distance from

the camera. Fig. 3 illustrates this advantageous effect of

this transformation on the segmentation.

3. Evaluation

In the following sections we present qualitative results on

some sample images which demonstrate how we segment

into natural (nameable) parts. In addition to these qual-

itative results, we also provide quantitative results which

compare to state-of-the-art methods on the NYU Indoor

Dataset[22] and Object Segmentation Database[20]. We

compare segments against ground truth using three standard

measures: Weighted Overlap (WOv), which is a summary

measure proposed by Silberman et al. [22], as well as false

negative (fn) and false positive (fp) scores from [24] and

over- (Fos) and under-segmentation (Fus) from [20].

3.1. Object Segmentation Database (OSD)

The Object Segmentation Database (OSD-v0.2) was

proposed by Richtsfeld et al.[20] in 2012. It consists of 111

cluttered scenes of objects on a table, taken with close prox-

imity to the pictured objects. The scenes contain multiple

objects, which have mostly box-like or cylindrical shape,

with partial and full occlusions and heavy clutter in 2D as

well as 3D. Importantly, most objects in the data set are

simple, that is, consist of only a single part. This makes the

ground-truth data relatively non-ambiguous.

Figure 4. Example results for the OSD dataset. Points beyond

a distance of 2m were cropped for visualization. Parameters:

Rvoxel = 0.005, Rseed = 0.02, βThresh = 10
◦.

The qualitative examples (Fig. 4) show that our algo-

rithm performs very well in the segmentation of these clut-

tered scenes. The object separation can be intuitively un-

derstood: all objects present in the scenes are separated by

concave boundaries, i.e. a line connecting neighboring sur-

faces of two different objects always travels through “air”.

This is also true for the boundary between an object and

the supporting surface. As a consequence, objects that have

Method
Learned WOv fp fn Fos Fus

Features Mean Mean SD Mean SD Mean Mean

LCCP NO LEARNING 88.7% 4.8% 2.6% 8.3% 8.7% 7.4% 4.7%

Richtsfeld et al. [20] RGB-D + Texture + Geometry - - - - - 4.5% 7.9%

Ückermann et al. [24] NO LEARNING - 1.9% 3.3% 7.8% 7.3% - -
Table 1. Comparison of different segmentation methods on the OSD dataset using weighted overlap WOv (the higher, the better), false

positives fp, false negatives fn, as well as over- and under-segmentation Fos and Fus (the lower, the better). LCCP results were produced

with voxel resolution Rvoxel = 0.005, seed resolution Rseed = 0.02 and concavity tolerance angle βTresh = 10
◦.

a convex shape are correctly captured as one segment and

separated from the other objects. Hollow objects (bowls,

cups etc.) can be observed to show multiple segments in-

side, because the orientation of surface normals changes

strongly on these concave surfaces. Despite most objects

being simple, some objects have meaningful parts, such as

handles or bottle caps, which are segmented by our algo-

rithm.

The quantitative results (Table 1) demonstrate that our

approach is able to compete with state-of-the-art methods

in the task of segmenting cluttered scenes with ’single-part’

objects. Compared to the learning-based method from [20]

we achieve better object separation (Fus), but higher over-

segmentation error (Fos). The latter is because we some-

times detect object parts (e.g. handles) and we do not utilize

model fitting, which helps against noise. Comparing to the

learning-free method of Ückermann et al. [24] we obtain re-

sults within a standard deviation. Note that our actual goal

is to partition complex objects into parts, which is dissimilar

from the other two methods.

3.2. NYU Indoor Dataset (NYU)

The NYU Indoor Dataset (NYUv2) from Silberman et

al.[22] is a large and complex dataset, consisting of 1449

scenes with realistic cluttered conditions. The images are

divided into a training and testing set of 795 and 654 im-

ages, respectively. In order to compare against other meth-

ods we only evaluated on the testing images, even though

our method does not require a training set. The distance

of objects from the camera is generally quite large in the

dataset (considering the operational range of the Kinect

camera), resulting in large depth quantization artifacts and

few data for many objects. Furthermore, depth is often

missing for significant portions of an image, due to various

limitations of the Kinect sensor (e.g. reflective, transpar-

ent surfaces). To correct for this, the creators provide depth

images enhanced by a hole filling algorithm (smoothdepth),

which tries to estimate depth for missing areas based on the

scheme from Levin et al.[14].

Example scenes in Fig. 5 show that the general object

separation is still very good, which is expected from the re-

sults presented in the previous section. In contrast to the

simple objects from the OSD dataset, however, in the NYU

dataset the objects of interest are complex objects from var-

ious aspects of everyday life. As a consequence, these are

mostly composed of multiple parts and thus our algorithm

reveals interesting partitions. To give a few examples: In

scene (A) the cupboard is partitioned into the top plate and

its various drawers and the toilet is segmented into the flush-

ing tank, the seat and the base. Scene (B) presents how a hu-

man is partitioned into hand, arm-bed, upper/lower part of

the body and legs. For the sofas in scene (D) we get the two

arm-rests, the back-rest and the seating. Note that in these

cases the segments represent “nameable regions”, which is

also the case for many other segments (we discuss this fur-

ther in Section 3.3). It is evident that the ground truth data

will then disagree with our labeling, which results in un-

justified errors. For example, in scene (A) the ground truth

considers the sink to be an important part, while the drawers

are not labeled individually. Despite this disagreement, we

do not consider either of the labelings wrong in general, but

see them as different views on the data which are in many

cases equally justifiable.

Because we designed our algorithm to detect object parts

defined only by geometry, very thin objects like the posters

on the background wall in scene (C) are not recognizable.

Also the challenging data quality sometimes leads the part

partitioning to fail, as seen for the human in scene (E). To

show how well the general idea of part partitioning using

concave boundaries works, we present results for a complex

object with high data quality in the next section.

The quantitative results (Table 2)2 show that our algo-

rithm is able to produce good results on the challenging

dataset. Despite being much simpler and without requir-

ing learning on human annotated ground-truth, we compete

with the approach from [22] when only depth information is

used. Additionally, we still achieve 93% of their score when

comparing against the more complex feature spaces used

in conjunction with learning-based algorithms. We should

emphasize that our competitors do not aim for object parts

but rather for “whole object” detections, specifically, those

whole objects learned from this particular annotated ground

truth. Conversely, our method establishes a general rule for

object-ness that does not depend on this particular dataset,

nor on the whims of a particular human annotator.

2Updated results for [22] are available at http://cs.nyu.edu/

˜silberman/datasets/nyu_depth_v2.html.

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

Figure 5. Example results for scenes from the NYU dataset using unsmoothed depth. Black areas indicate missing depth. Top row: rgb

images. Mid. row: segmentation result. Bottom row: ground truth. Parameters A-C: Rvoxel = 0.0075, Rseed = 0.03 and βThresh = 8
◦.

Parameters D-E: Rvoxel = 0.01, Rseed = 0.04 and βThresh = 10
◦ (identical to quantitative results, see Tab. 2).

Method Learned Features Depth Data WOv

LCCP
NO LEARNING depth 53.6%

NO LEARNING smoothdepth 53.8%

LCCP + ext. convexity NO LEARNING smoothdepth 57.6%

Silberman et al.[22]

RGB - 50.3%

Depth both 53.7%

RGB-D both 60.1%

RGB-D + Support + Structure classes both 61.1%

Gupta et al.[9]
gPb-ucm Gradients (from [3]) - 55.0%

gPb-ucm + Depth + Concavity Gradients both 62.0%
Table 2. Comparison of different segmentation methods on the NYU dataset using weighted overlap WOv. LCCP results were produced

with voxel size Rvoxel = 0.01, seed size Rseed = 0.04 and concavity tolerance angle βTresh = 10
◦.

The average runtime was 470 ms per scene using an In-

tel Core i7 3.2 GHz processor with 95% spent computing

the supervoxels. Note that supervoxels can be parallelized

using GPUs, which should lead to a 10-fold speed-up.

3.3. Partitioning of Higher Quality Data

Since the NYU dataset and the OSD set do not pro-

vide close-ups on complex objects, we present a qualita-

tive example in Fig. 6 which shows results on higher qual-

ity data. It is easy to see that our algorithm segments the

image into meaningful parts, although we have not learned

what constitutes a part. In particular, it is apparent that our

algorithm partitions the object into parts which are easily

“human-nameable”. We should emphasize that the parti-

tions in Fig. 5 A-C and in Fig. 6 were created using the

proposed depth dependent voxel grid with the same, fixed

parameters. This shows the applicability of our algorithm

to disparate content without parameter tuning.

4. Conclusion

In this work we presented and evaluated a novel model-

and learning-free bottom-up segmentation algorithm oper-

ating on 3D point clouds. Although our algorithm aims to

partition parts in contrast to objects, we achieved state-of-

the-art results on two well-known benchmarks, the Object

Segmentation Database and the NYU Indoor Dataset. The

latter being especially interesting for two reasons: First, all

published results require learning (necessitating annotated

ground-truth) as well as color information. Our approach,

on the contrary, is the first published algorithm which re-

quires neither. Secondly, ground-truth arbitrarily partitions

the scene into “full” objects, thus segmenting objects into

their parts will decrease overall scores. In spite of all this,

we obtain results which are comparable to the state-of-the-

art. Finally, we should emphasize that being a learning-

free method has many advantages, the most important of

Figure 6. One example scene showing a teddy-bear and it’s parti-

tioning. Segments correspond to meaningful and nameable body

parts.

which is that there is no need to create new training data

and accompanying annotated ground truth images. Not only

does this mean that the method is directly applicable as the

first step in an automated bootstrapping process, it also en-

ables use on arbitrary unknown scenes (made possible by

our depth dependent grid) or scenes acquired by new de-

vices (e.g. Kinect 2.0, or laser scanners).

Acknowledgments

The research leading to these results has received fund-

ing from the European Community’s Seventh Framework

Programme FP7/2007-2013 (Specific Programme Coopera-

tion, Theme 3, Information and Communication Technolo-

gies) under grant agreement no. 600578, ACAT.

References

[1] N. Ahuja and S. Todorovic. Connected segmentation tree; a

joint representation of region layout and hierarchy. In CVPR,

pages 1–8, 2008. 1

[2] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and

J. Malik. Semantic segmentation using regions and parts. In

CVPR, pages 3378–3385, 2012. 1

[3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE Trans.

PAMI, 33(5):898–916, 2011. 1, 7

[4] M. Bertamini and J. Wagemans. Processing convexity and

concavity along a 2-D contour: figure-ground, structural

shape, and attention. Psychonomic Bulletin & Review,

20(2):191–207, 2013. 1

[5] A. Boulch and R. Marlet. Fast and robust normal estimation

for point clouds with sharp features. Computer Graphics

Forum, 31(5):1765–1774, 2012. 3

[6] L. Bourdev and J. Malik. Poselets: Body part detectors

trained using 3D human pose annotations. In ICCV, pages

1365–1372, 2009. 1

[7] A. D. Cate and M. Behrmann. Perceiving parts and shapes

from concave surfaces. Attention, Perception, & Psy-

chophysics, 72(1):153–167, 2010. 1

[8] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. IEEE Trans. PAMI, 32(9):1627–1645, 2010.

1

[9] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization

and recognition of indoor scenes from RGB-D images. In

CVPR, pages 564–571, 2013. 1, 7

[10] R. Hoffman and A. K. Jain. Segmentation and classification

of range images. IEEE Trans. PAMI, 9(5):608–620, 1987. 1

[11] A. Karpathy, S. Miller, and L. Fei-Fei. Object discovery in

3D scenes via shape analysis. In ICRA, pages 2088–2095,

2013. 1

[12] K. Khoshelham and S. O. Elberink. Accuracy and resolution

of kinect depth data for indoor mapping applications. Sen-

sors, 12(2):1437–1454, 2012. 5

[13] J. J. Koenderink. What does the occluding contour tell us

about solid shape? Perception, 13:321–330, 1984. 1

[14] A. Levin, D. Lischinski, and Y. Weiss. Colorization using

optimization. ACM Trans. Graph., 23(3):689–694, 2004. 6

[15] T. Matsuno and M. Tomonaga. An advantage for concavi-

ties in shape perception by chimpanzees (pan troglodytes).

Behavioural Processes, 75(3):253–258, 2007. 1

[16] F. Moosmann. Interlacing Self-Localization, Moving Object

Tracking and Mapping for 3D Range Sensors. PhD thesis,

Karlsruher Institut für Technologie (KIT), 2013. 3

[17] F. Moosmann, O. Pink, and C. Stiller. Segmentation of 3D

lidar data in non-flat urban environments using a local con-

vexity criterion. In Intelligent Vehicles Symposium, pages

215–220, 2009. 1

[18] J. Papon, A. Abramov, M. Schoeler, and F. Wörgötter. Voxel

cloud connectivity segmentation - supervoxels for point

clouds. In CVPR, pages 2027–2034, 2013. 2

[19] X. Ren and J. Malik. Learning a classification model for

segmentation. In ICCV, pages 10–17 vol.1, 2003. 1

[20] A. Richtsfeld, T. Morwald, J. Prankl, M. Zillich, and

M. Vincze. Segmentation of unknown objects in indoor en-

vironments. In IROS, pages 4791–4796, 2012. 1, 5, 6

[21] P. L. Rosin. Shape partitioning by convexity. IEEE Trans.

SMC, Part A: Systems and Humans, 30:202–210, 2000. 1

[22] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from RGBD images. In

ECCV, pages 746–760, 2012. 1, 5, 6, 7

[23] J. Smisek, M. Jancosek, and T. Pajdla. 3D with kinect. In

ICCV Workshops, pages 1154–1160, 2011. 5

[24] A. Ückermann, R. Haschke, and H. Ritter. Real-time 3D

segmentation of cluttered scenes for robot grasping. In Hu-

manoids, 2012. 1, 5, 6

[25] L. M. Vaina and S. D. Zlateva. The largest convex patches:

A boundary-based method for obtaining object parts. Biol.

Cybern., 62(3):225–236, 1990. 1

[26] P. Viola and M. Jones. Robust real-time face detection. IJCV,

57(2):137–154, 2004. 1

