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Abstract. Recently, DeMenthon and Davis (1992, 1995) proposed a method for determining the pose of a :
D object with respect to a camera from 3-D to 2-D point correspondences. The method consists of iterative
improving the pose computed with a weak perspective camera model to converge, at the limit, to a pose estimat
computed with a perspective camera model. In this paper we give an algebraic derivation of DeMenthon a
Davis’ method and we show that it belongs to a larger class of methods where the perspective camera mode
approximated either at zero order (weak perspective) or first order (paraperspective). We describe in detalil
iterative paraperspective pose computation method for both non coplanar and coplanar object points. We anal
the convergence of these methods and we conclude that the iterative paraperspective method (proposed in this p:
has better convergence properties than the iterative weak perspective method. We introduce a simple way of tal
into account the orthogonality constraint associated with the rotation matrix. We analyse the sensitivity to came
calibration errors and we define the optimal experimental setup with respect to imprecise camera calibration. \
compare the results obtained with this method and with a non-linear optimization method.

Keywords: perspectiven-point problem, object pose, weak perspective, paraperspective, camera calibratior
extrinsic camera parameters

1. Introduction linear techniques, associated with the weak perspec-
tive camera model, with non-linear techniques, asso-
Recently, DeMenthon and Davis (1992, 1995) pro- ciated with a perspective camera model. Indeed, on
posed a method for determining the pose of a 3-D ob- one side, linear resolution methods can be used but the
ject with respect to a camera from 3-D to 2-D point solution thus obtained is just an approximation and,
correspondences. The method consists of iteratively on the other side, non linear resolution methods lead
improving the pose computed with a weak perspective to a very accurate solution but proper initialization is
camera model to converge, at the limit, to a pose esti- required.
mation computed with a perspective camera model. To  One possibility could be to use a robust numerical
our knowledge, the method proposed by DeMenthon method to perform the non linear minimization that
and Davis is among one of the first attempts to link is initialized with the solution obtained by a linear
method. However, there are several drawbacks. First,
such an approach does not take into account the simple
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before the non-linear minimization process converges between the results obtained with this method and the

to a stable solution. For example, as it will be described
below, a non-linear method requires 10 times more it-

erations than the method of DeMenthon and Davis and

than the method described in this paper.

The perspective projection is modelled by a projec-
tive transformation mapping the 3-D projective space
to the 2-D projective plane. Weak perspective is just
an affine approximation of full perspective. More pre-
cisely, it may well be viewed as a zero-order approxi-
mation: /(1 + ¢) ~ 1. Paraperspective (Aloimonos,
1990) is a first order approximation of full perspec-
tive: 1/(1+¢) ~ 1 —¢. The method proposed by

results obtained with a non-linear minimization method
(Pong et al., 1993, 1995).

1.1. Background

The problem of object pose from 2-D to 3-D correspon-

dences has received a lot of attention both in the pho-
togrammetry and computer vision literatures. Haralick

et al. (1989) cites a German dissertation from 1958
that surveys nearly 80 different solutions from the pho-

togrammetry literature. Various approaches to the ob-

DeMenthon and Davis starts with computing the pose ject pose (or external camera parameters) problem fall
of an object using weak perspective and after a few into 2 distinct categories: closed-form solutions and
iterations converges towards a pose estimated undermumerical solutions.
perspective. The method is very elegant, very fast, Closed-form solutions may be applied only to a
and quite accurate. It is however limited to situations limited number of correspondences (Dhome et al.,
where the weak perspective approximation is valid. If 1989; Fischler and Bolles, 1981; Horaud et al., 1989).
the object is close to the camera and/or at some dis- Whenever the number of correspondences is larger
tance away from the optical axis then the pose algo- than 4 then closed-form solutions are not efficient any
rithm of DeMenthon and Davis either converges very more and iterative numerical solutions are necessary
slowly (100 iterations rather than 5 to 10) or it doesn’t (Haralick etal., 1989; Lowe, 1991; Yuan, 1989). These
converge at all. approaches are, in general, very robust but they con-
In this paper we show how the initial method pro- verge towards the correct solution on the premise that
posed in DeMenthon and Davis (1994, 1995) may be a good initial estimate of the true solution is provided.
extended to paraperspective. More precisely, we de- Phong et al. (1995) describe a method that uses trust-
scribe a method for computing object pose with a para- region optimisation and that is less sensitive to initial-
perspective model and we establish the link between isation than other minimization methods. However,
paraperspective pose and perspective pose. We shovthe method of Phong et al. performs well for a rela-
that the case of a coplanar set of object points is some-tively large number of correspondences. Whenever the
how more complex than the case of a hon coplanar setnumber of correspondences is between 3 and 10, then
of object points and we describe a method which can the trust-region minimization method either requires a
deal with both cases. We show both theoretically and large number of iterations or doesn’t converge towards
experimentally that our method has better convergencethe correct solution. From a practical point of view,
properties than the method proposed by DeMenthon it is important to have available an object pose algo-
and Davis. Moreover we introduce a simple computa- rithm which doesn’t necessarily require a large number
tional way of taking into account the orthogonality con-  of correspondences and which doesn't suffer from the
straint associated with thex33 matrix describing the  limitations that are inherent to closed-form methods.
orientation between the 3-D object and the camera. In- The method recently proposed by DeMenthon and
deed, the linear pose algorithms using weak perspectiveDavis (1992, 1995) requires an arbitrary number of
and paraperspective do not guarantee that this matrix ispoint correspondences. The 3-D points must be in gen-
orthogonal. The orthogonalization method that we de- eral position (i.e., non coplanar) and there should be
scribe below computes the best rotation in close form at least 4 point correspondences. The method is fast
using unit quaternions. This orthogonalization method and it is robust with respect to image measurements
considerably increases the accuracy of the method atand to camera calibration errors. However, the object
the cost of very few extra computations. We charac- pose algorithm as suggested by DeMenthon and Davis
terize the best experimental setup that allows one to has convergence problems if the object is too faraway
compute a precise pose even in the presence of camerdrom the optical axis of the camera—a limitation that
calibration errors. Finally we provide a comparison can be overcome as explained farther in this paper. The



method of DeMenthon and Davis was extended to the
case of a coplanar set of points by Oberkampf et al.,
(1993) and by DeMenthon (1993).

1.2. Paper Organization

The remainder of this paper is organized as follows.
In Section 2 we briefly recall the perspective cam-
era model and two possible approximations of this

model, weak and paraperspective. Section 3 describes

the iterative weak perspective algorithm as it has been
proposed in DeMenthon and Davis (1995). Section 4
describes the new iterative paraperspective algorithm
that we propose as well as how to compute the object
pose from a paraperspective approximation. Section 5
provides details for solving the linear equations asso-
ciated with pose computation in the case of both non
coplanar and planar sets of object points. Section 6
analyses the convergence of both the iterative weak

and paraperspective algorithms and Section 7 shows

how to improve the pose algorithms using a simple
and straightforward formulation of the orthogonality
constraint. Section 8 analyses the sensitivity of both
algorithms with respect to camera calibration errors,
and Section 9 provides an experimental comparison of
the two methods described in this paper together with
a comparison of these methods with a non-linear mini-
mization method. Section 10 shows many examples of
application of pose computation. Finally, Section 11
provides a discussion and gives directions for future
work.

2. Camera Models

We consider a simple setup, as depicted on Fig. 1. We
denote byP, a 3-D point with coordinate¥;, Y;, and

Z; in a frame that is attached to the object—the object
frame. The origin of this frame is the object poiRy.

An object pointP; projects onto the image ip; with
camera coordinateg andy; and we haveR; is the
vector from pointPy to pointR):

i P4ty
L — 1
X = h T, 1)
JPI+ty
. — 2
Y =P L 2
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Figure L This figure shows the general setup. One of the object’s
point is selected as the origin of the object frame. Therefore, the
pose parameters are the coordinates of this object pBitir the
camera frame and the orientation of the object frame with respect to
the camera frame.

object frame to the camera frame is:

T it Yy _( Rt
KTt 000 1
000 1

The relationship between the camera coordinates and
the image coordinates may be easily obtained by intro-
ducing the intrinsic camera parameters:

Ui = ayX; + U¢

®3)
(4)

Vi = oY + U

In these equationa, and«, are the vertical and
horizontal scale factors ang. and v, are the image
coordinates of the intersection of the optical axis with
the image plane.

We divide both the numerator and the denominator
of Egs. (1) and (2) by,. We introduce the following
notations:

e | =i/t, is the first row of the rotation matrix scaled
by thez-component of the translation vector;

These equations describe the classical perspectives J = j/t; is the second row of the rotation matrix

camera model where the rigid transformation from the

scaled by the-component of the translation vector;
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e Xp = ty/t;andyp = ty/t; are the cameracoordinates  With this approximation, Egs. (5) and (6) become:
of po which is the projection oP;—the origin of the

object frame, and X' —x=1-P 9)
o5 =k P/t Y —Yo=J-P (10)
We may now rewrite the perspective equations as: |, these two equations” andy” are the camera coor-
| -P, + X dinates of the weak perspective projection of the point
X = ®)  p. By identification with Egs. (7) and (8) we obtain
J-Pi+ Yo the relationship between the weak perspective and the
Il B (6) perspective projections ¢ :
I
These equations may also be written as in DeMenthon X' =X1+e) (11)
and Davis (1995): Y\ =VYi(1+ &) (12)
Xi(14+e)—x=1-P (7) These equations allow us to determine the quality
Vil+e)—yo=J-P (8) of the weak perspective approximation with respect to

the perspective projection. Indeed the error between

Whenever the object is at some distance from the the weak perspective projection and the “true” projec-
camera, the; are small compared to 1. We may there- tionis:
fore introduce two approximations of the perspective
equations: weak and paraperspective. One can find a AXY =[x = x| = il (13)
geometric description of these projections in Poelman Ay” = |yiw _ Yi| = lyi&il (14)
and Kanade (1994).
Hence the quality of the approximation depends both
2.1. Weak Perspective on the value of; and on the position of the pointin the
image. We consider for example a 52512 image.
Weak perspective assumes that the object points lie in Approximate values for the intrinsic parameters are:
a plane parallel to the image plane passing through theay = o, = 1000 andi; = vc = 256. Therefore using
origin of the object frame, i.eRy, e.g., Fig. 2. Thisis  Egs. (3) and (4) we have:
equivalent to a zero-order approximation:
0<x, Yy <025

1 -
~1 Vi,ie{l...n}
l+g The lower bound corresponds to the point of inter-
plave approximating section of the optical axis with the image plaxe £
the object .
yi = 0). The upper bound corresponds to the image
‘;’:;kp;m; ;,__ﬁ nomalized. borders:
BN ROl L _Ui—U 512-256
O "7 ey 1000 '
center of projection °
optical axis
N We conclude that for small distance/size ratios, i.e.,
B . large values fok;, the weak perspective approxima-
: tion is still valid provided that the object lies in the
neighbourhood of the optical axis

Figure 2 This figure showsy, pi—the perspective projections
of two object points Py and P, and p*, pP—the weak and para- 2.2. Paraperspective
perspective projections d?. The quality of the paraperspective

projection depends on the angle between the line of projection of p ti | t be Vi d first-ord
P and the line of projection oP. Similarly, the quality of the araperspeclive may aimost be viewed as a nirst-order

weak perspective projection depends on the angle between the line a_\pproximation of PerSpeCtive- |nq33d1 two apprOXima_"
of projection of P, and the optical axis. tions are needed in order to obtain the paraperspective



camera model. With the approximation:

1
1+ ¢

~l—g Vi,ie{l...n)

we obtain the paraperspective projectionR®f e.g.,
Fig. 2:

P = (1P +x0)(1— &)

~ | -Pj 4+ Xo — Xos&i

i P k-P
= + Xo — Xo

tz z

where the termin At2 was neglected. Thereis asimilar
expression foy;".
Finally, the paraperspective equations are:

— X k
X — %o = LN (15)
tz
— Yok
¥’ —Yo= J tyo Py (16)
Y4

In order to obtain the relationship between the para-
perspective and the perspective projectiond?ofve
can write these equations as follows:

p

X

D =Xo+ |- Pi —Xogi
¥’ =Yo+J-P — yosi

Again, by identification with Egs. (7) and (8) we obtain
the relationship between the paraperspective and the
perspective projections d¢¥,:

X =X (14 &) — Xoti

Yl = yi(1+ &) — Yoei

(17)
(18)

As in the previous section, we can easily estimate

the error between the paraperspective and perspective

projections:
AXP = |xP — x| = |(x — Xo)eil (19)
AYP = |yP — yi| = [(yi — Yol (20)

Whenever an object poirR, is far from the optical
axis then the weak perspective model is a poor approxi-
mation. However, a proper choice of the origin, iR,

and the use of the paraperspective model can compen-the same 3-D point.

sate and provide a good approximation evef i§ not
small.
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3. From Weak Perspective to Perspective

In order to solve the pose problem, DeMenthon and
Davis (1995) noticed that Egs. (9) and (10) are similar
to Egs. (7) and (8) for which thg are setto 0. They
conclude that:

e Whenever the; are fixed (not necessarily null) the
pose Egs. (7) and (8) become lineadiandJ. A
solution can be found if at least 4 object points are
provided (see Section 5).

e Itis possible to solve Egs. (7) and (@rativelyby
successive linear approximations.

In this case the pose algorithm proposed in DeMenthon
and Davis (1995) starts with a weak perspective cam-
era model and computes an approximated pose. This
approximated pose is improved iteratively as follows:

1. Foralli,i e{1...n},n>3,¢ =0;

2. Solve the overconstrained linear system of Egs. (7)
and (8) which provides an estimation of vectors
andJ, i.e., Section 5;

Compute the position and orientation of the object
frame with respect to the camera frame:

3.

o 1( 11 )
AT
tx = Xotz
ty = yotz
. |
= —

(Yl
o3

131l
K=ix]j

4. For alli, compute:
kP
& =
t,

If the & computed at this iteration are equal to the
&i computed at the previous iteration then stop the
procedure, otherwise go to Step 2.

While iterating, the above algorithm replaces the ac-
tual image coordinates andy; (which are perspec-
tive projections of a 3-D point) with (1+¢j) and
yi (1+ &i), which are weak perspective projections of
A geometric interpretation of
this algorithm can be found in DeMenthon (1993),
DeMenthon and Davis (1995).
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4. From Paraperspective to Perspective We therefore obtain:
In this section we provide a generalization of the above 1 \/1 + X3 \/1 + y¢
algorithm to deal with the paraperspective case. We 2= 2 Il * 3l @3)

consider again the perspective Egs. (7) and (8) and let
us subtract thparaperspective terrfitom both the left

and:
and right sides of these equations. We obtain:
1 tx = Xot
X (L+ &) — X — Xo —k - P, © e
ti _ ty = Yotz
&
1 1 Second, we derive the three orthogonal unit vectors
= Pi-Xxrk-P i,j, andk. From Egs. (23) and (24) we obtain:
Z z
1 .
yl(l_|_£|)_y0_y0t_kpl |:tz|p+xok (26)
i\f—-’ J = tzJp + y0k (27)
&
= Zj-P —yo—k-P The third vectork is the cross-product of these two
tz tz vectors:
These equations can be written more compactly as: K=ixj
(Xi—Xo)(l+8i)=|p~Pi (21) =t22|pXJp+tzyo|pXk—tZXOJpXk

Y —Yo)(X+¢i) =Jp - P 22
ML ' P (22) Let S(a) be the skew-symmetric matrix associated with

with: a 3-vectora and I3, 3 be the identity matrix. The pre-

i — %ok vious expression can now be written as follows:

. z (|3x3_tzy08(| p)+thOS(Jp))k ZtZZIpXJp (28)
3= J — Yok (24)
t; This equation allows us to compukteprovided that
One may notice that when all thg are null, the tmhéeltlrlir:(ezr system above has full rank. Indeed, the3

perspective equations above—Egs. (21) and (22)—

become identical to the paraperspective equations—

Egs. (15) and (16). A= lgx3 — t2¥0S(I p) + tz2X0S(JIp)
Asinthe weak perspective case, we have nowalinear

method for computing the pose with a paraperspective is of the form:

model and an iterative method to compute the object 1 ¢ —b

pose with a perspective model by successive para- A— ( )

perspective approximations. More precisely, the pose

parameters can be derived framandJ, as follows.

First, one may notice that: Its determinant is always strictly positive:
(i — XoK) - (i — Xok)
I pll? = > detA) =1+a2+b2+c?
Z
2
- 1+x Therefore, one can easily determikeising Eq. (28)
t? andi and] using Egs. (26) and (27).
and: Theeg; can now be easily computed as before and the
5 pose algorithm becomes:
1+ys

19pl? = — .
t7 1. Foralli,i e{l...n},n> 3,5 =0;
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2. Solve the overconstrained linear system of Egs. (21) One may notice that the pseudo-inversePotan be
and (22) which provides an estimation of vectiys computed off-line and hence the estimation aihdJ
andJ,, i.e., Section 5; is particularly efficient.

3. Compute the positioriy, ty, andt,) and orientation
(i, j, andk) of the object frame with respect to the
camera frame as explained above in this section;

4. For alli, compute:

5.2. Coplanar Object Points

If the object points are coplanar then the raniea 2

and the above solution cannot be considered anymore.
We consider the plane formed in this case by the object
L points and letu be the unit vector orthogonal to this
plane. Vectord andJ (and equivalentlyl , and J,)

can be written as a sum of a vector belonging to this
plane and a vector perpendicular to this plane, namely
(see (DeMenthon, 1993; Oberkampf et al., 1993) and
Fig. 3):

If the &; computed at this iteration are equal to the
&i computed at the previous iteration then stop the
procedure, otherwise go to Step 2.

5. Solving the Linear Equations

Il =log+Au (31)
Both the weak perspective and paraperspective itera- J=Jo+ pnu (32)
tive algorithms need to solve an overconstrained lin-
ear system of equations, namely Eqgs. (7), (8) (weak By substituting these expressions foandJ into
perspective) and Egs. (21), (22) (paraperspective). In Egs. (29) and (30) we obtain:
matrix form these equations can be written as:

Plo =x
P I = X (29) Plo=y
nx3 3x1 nx1
&\‘L =Y (30) These linear equations can be solved provided that the
nx3 3x1 nx1 following additional linear constraints are used:
whereP is an x 3 matrix formed by the 3-D coordi-
nates ofn vectorsP; - - - P,,. Since the poin; is the u-lo=0
origin of the object frame, this matrix can be written as: u-Jo=20
X1 Y1 Z3
P=|f:
Xn Yo Zn

In order to solve for these linear equations one has to
distinguish two cases: non coplanar and coplanar sets
of object points. /

5.1. Non Coplanar Object Points

If the object points are not coplanar, the rankrois 3 /
and therefore the solutions fbandJ (and equivalently /
for | , andJ,) are simply given by:

| = (PTP)"1PTx -

J= (PT P)_l PTy Figure 3 A coplanar configuration of object points.
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Thus we obtain solutions fdg andJg as follows.

X
IO _ (P/T P/)flP/T <O)

\]0 — (P/T P/)—].P/T (g)

With P’ defined by:

()

Obviously, the rank oP’ is equal to 3.
In order to estimat¢ andJ (and equivalentlyl
andJp) one is left with the estimation of two scalars,

A andu. In the case of weak perspective Oberkampf

With:

A=a’—g
B =2a’d — gd+ e — 2ac
C = a%d? + ¢® — 2acd

_ XoYo
1+ %35

X
b — oyo2
1+ys
c=1p-Jo
d = ||lo|®
e = [ Jol?
g_1+y§
S 14+x3

et al. (1993) provided a solution using the constraints In order to study the number of real roots of Eq. (33)

1= 191 and! - J = 0.

In the case of paraperspective a similar solution can

be obtained using the following constraints oht@nd
Jp (derived from Egs. (23) and (24)):

o2 = 1H%

13,2 = 1Y
XoYo

ID"]PZ t—z

By eliminatingt, we obtain two constraints:

XoYo

2
|p'Jp: 1+Xg |||p||
XoYo 2

By substituting in these expressidnsandJ, given by
Egs. (31) and (32) we obtain:

XoYo 2 2
lo-Jo+Au = —22 (ol + A
0-Jo+Au 1+X5(|Io|l )

XoYo 2 2
lg-J = ——(||J
0-Jo+Au 1+y§(” ol + 1)

And finally, by eliminatingw we obtain a biquadratic
equation in one unknown:

AV 4+ BA2+C=0 (33)

we substitute.? by t:
A2+ Bt+C=0
We examine the signs of the roots of this equation.

Therefore we have to examine the sign of their product,
i.e.,C/A. We have:

C
— = f ) ) 7d
1 (Xo, Yo, €, d)

—x3yad? — (1+ xg)2 ¢ + 2%oYo(1 + X3) cd

14+ %2+ y2
_ (oyod—(1+x) o°
- 1+ x2+ Y2

Therefore, the value ofC/.A is either negative or
null. Therefore there are one positive (or null) root and
one negative (or null) root far. Hence there are two
real roots forr—a positive one and a negative one—
and two imaginary roots.

The two real roots fok provide two solutions fog
and hence there are two solutions ffiglandJ,. These
two solutions correspond to the well-known reversal
ambiguity associated with an affine camera model.
These two solutions are shown on Fig. 4. The points
P, (lying on the planar object in one orientation) and
P/ (lying on the planar object in another orientation)
have the same paraperspective projection but different
perspective projections. Notice that these object orien-
tations are symmetric with respect to a plane which is
perpendicular to the line of sight passing through



|
‘\‘ plane of symmetry
i

pax?pexjspecﬁve
projection of 2 & pi'

center of
projection

first object
orientation

optical axis

image plane

Figure 4 A planar object and a paraperspective camera model pro-
duces two orientations. However, these two object orientations have
distinct perspective projectionsgr-and p;.

Therefore, the iterative algorithm described in

Section 4 produces two poses at each iteration. The

two poses have the same translation vector but differ-
ent orientations. Hence, afteriterations there will

be 2' solutions. In order to avoid this redundancy we

proceed as follows. At the first iteration we retain both

solutions while at the next iterations we retain only

one solution—the solution which is the most consistent
with the data. At convergence we obtain two solutions
for the orientation of the planar object: one solution

associated with the “left” branch of the search tree and
another solution associated with the “right” branch of

the search tree (see Fig. 5). Among the final two so-
lutions, one of them is generally closer to the image
data than the other. However, if the orientation of the
planar object is close to the orientation of the plane
of symmetry, the ambiguity remains and the algorithm

provides two solutions.

6. An Analysis of Convergence
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Figure 5 A binary tree search for selecting the best object pose
when the object points are coplanar.

Both these sets of equations describdtligerspec-
tive projection. The firstones allows to express the pose
problem in terms of an iterative weak perspective algo-
rithm while the second ones allows to express the pose
problem in terms of an iterative paraperspective algo-
rithm. From Fig. 2 and Section 2 we have:

e Xo andyp are the camera coordinatesmf, the per-
spective projection oPy;

e X; andy; are the camera coordinates gt the per-
spective projection oP;;

e X (1+ &) andy; (1 + ¢;) are the camera coordinates
of pY, the weak perspective projection B

e Xi(1+¢i)—Xoei andy; (1+¢;) — Yogi are the camera
coordinates op’, the paraperspective projection of
R

Therefore, if good estimates fer(i € {1...n}) are
available, then the perspective pose problem is reduced

In order to analyse the convergence of these algorithmsto solving an overconstrained set of linear equations.

(Sections 3 and 4) we consider again Egs. (7) and (8):

X(1+e)—X=1I-P
Yil+e)—Yo=J-Pi

as well as Egs. (21) and (22):

(Xi —X0)(A+¢&) =1p- P
i — Yo +e&) =Jp- P

These equations provide a solution eitherfandJ or
for I , andJ, from which a pose may be easily calcu-
lated. However, in practice it is rather difficult to pro-
vide such estimates. Hence, one has to use a heuristic.
The simplest heuristic is to initialize the valuesspfo
zero and to use either the iterative weak perspective or
the iterative paraperspective algorithms.

We consider the first one of these two algorithms and
lete;” be the true values that the algorithm is supposed to
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compute. Therefore, at the first iteration, one attempts in the vicinity of the optical axis then the paraperspec-
to solve in a least-square sense a linear set of equationgive and weak perspective models will yield the same
of the form: results.

: 7. The Orthogonality Constraint
I -Pi=% — Xo 9 y

J-Pi=¥ =Y The algorithms described so far are linear and in the

general case (non coplanar object points) they don't

guarantee that the matrix describing the orientation of
The pose thus computed is just an approximation since the object frame with respect to the camera frame is
one uses; andy; instead o andy”. Therefore the a rotation matrix. This matrix is formed by the three
“pose errors” are proportional to the following “pro- row vectorsi’, j7, andk™. These vectors are updated

jection errors”: at each step of the pose algorithms and we want to
compute a rotation matrix from these three vectors. In
AV — “ b — pY ”2 otherwords, we seek a rotation matRxvhich verifies:
I ]
= (¢ + D) lefl? AT
o . R|i" = l3x3
If these projection errors are large, the linear least- KT

square solution provided by the first iteration of the
algorithm will be rather different than the true solution : . . .
This expression can be written as:
and convergence cannot be guaranteed. DeMenthon
and Davis noticed that the iterative weak perspective )
algorithm converges with values as large #pras 1, Ri=¢
provided that the object lies in the neighbourhood of R =e
the optical axis Indeed, when the object is close to the RK = &
optical axis, the camera coordinates of its projections,
x; andy;, are small (the origin of the camera frame lies

onto the optical axis) and they compensate for the large WNeree: is theith column of the identity matrix. The
values ofs* solution is given by the rotation matrix which mini-
x,

In theory, the iterative paraperspective algorithm is Mizes the following criterion:

able to deal with configurations where the weak per-

spective algorithm diverges. Indeed, in the case of mini IRV — &2
paraperspective, the projection errors are: R & !
p p|2 L . .
A = H Pi— B H wherev; is eitheri, j, or k. It is well known that
= ((X — X0)? + (i — Yo)?)le1|? this minimization problem has a closed-form solution

(Faugeras, 1993). Indeed, if the unknown rotation is
represented by a unit quaternignthen the minimiza-

. tion problem can be written as a quadratic form:
Whenever one wants to use the paraperspective cam-

era model, the choice fg, (and hence foP) is cru- T

cial. The bestway to choog® is to compute the center rram(q Ba)

of gravity of all the image points and to select the im-

age point which is the closest to this center of gravity. whereB is a 4x 4 symmetric, semi definite, and pos-
Hencex — Xo andy; — yo will be small and they will itive matrix. Therefore, the quaterniapwhich mini-
compensate for large valuesgdt Therefore, theitera-  mizes this quadratic form is the eigen vector associated
tive paraperspective algorithm is likely to converge for with the smallest eigen value 8f One may notice that
those configurations where the weak perspective onetwo vectors, i.e. andj are sufficient for computing the
diverges. Notice that if the poiny thus computed lies  orthogonal matrixR.

= [Ipi — poll®le}I?



Object Pose 183

8. Sensitivity to Camera Calibration In the first class of experiments (precision) we com-
pare the results obtained with three algorithms: the two
So far we assumed that the camera is calibrated, whichlinear algorithms described above and a non-linear al-
means that the intrinsic camera parameters are known,gorithm (Phong et al., 1995). In the second class of
i.e., Egs. (3) and (4). Itis well known that camera experiments (convergence) we compare the two linear
calibration is difficult and that the camera parameters algorithms. In both classes, the simulated object is a
vary a lot. In this section we analyse the sensitivity of configuration of four points (tetrahedron), such that the
the pose algorithms that we just described with respect three line segments joining the reference point to the
to variations of the intrinsic camera parameters. other three points are equal and perpendicular to each
We consider the equations associated with full per- other.
spective. By combining Egs. (3) and (4) with Egs. (7) For each experiment we fix a number of positions

and (8) we obtain: of the object with respect to the camera and for each
such position the object is rotated at 1000 random ori-

Ui (1+ &) — Uo — Ucgi = aul - P (34) entations. These experiments are repeated for various
vi(l+ &) —vg — vegi = apd - Py (35) levels of image and/or camera noise. The rotation ma-

trices defining these 1000 orientations are computed

When a camera is calibrated, relatively stable values from Euler angles chosen by a random number gen-
may be obtained for the horizontal and vertical scale erator in the range [®r]. The position of an object
factorsa, anday while the image coordinates of the Wwith respect to the camera is described by the transla-
optical centeru. andv can vary with up to 10% of  tion vector from the center of projection of the camera
their nominal values (Tsai, 1987; Faugeras, 1993). By to the origin of the object frame. More quantitatively,
inspecting the previous equations it is easy to notice we compute the error between the theoretical pose and
that the influence ofi. andv, is weighted byg;. For the pose computed by an algorithm. For each position
any object pointP,, &; is the projection of the vector ~ we plot the average of this error over all the 1000 ori-
PoP: onto the optical axis, divided by the z-component entations. The pose errors are: orientation error and
of the displacement vector position error. The orientation error is defined as the ro-

If the object is too far from the camera, the influence tation angle in degrees required to align the coordinate
of u; andv, can be neglected but one needs to detect system of the object in its computed orientation with
image points with great accuracy. If the object is too the coordinate system of the object in its theoretical ori-
close to the camera, the influenceugfandv. becomes entation. The position error is defined as the norm of
quite large. Therefore, in practice, the object should the vector which represents the difference between the
be at a distance from the camera that is roughly 5 to two translation vectors: the computed one and the the-
10 times the size of the object. In that case the values oretical one, divided by the norm of the second vector.
of & will be between 0.1 and 0.2 and the errorgn The horizontal coordinates of all the following plots
and vc will be scaled down by a factor of 5 to 10. represents the z-component of the translation vector
These remarks are validated by experimental results asscaled by the object size.

reported in the next section. Figure 6 shows the variation of the error in orien-
tation in the presence of image gaussian noise as a
9. Experiments function of the ratio between the distance to the cam-

era and the object size, where the object size has been
In this section we study the performances of the itera- fixed to a constant value. The three curves in this figure

tive weak and para perspective algorithms. Two types correspond to the iterative paraperspective algorithm
of performances are studied: (solid line), the iterative paraperspective algorithm with

the orthogonal constraint described in Section 7 (dot-
o the precision of pose as a function of position and ted line) and to the non-linear algorithm described in
orientation of the object with respect to the camera (Phong et al., 1995) (dashed). The iterative weak per-
in the presence of image and/or camera noise, and spective algorithm yields a curve that is identical to the
e the convergence of the iterative pose algorithms as paraperspective one.
a function of position and orientation of the object Figure 7 shows the variation of the relative error in
with respect to the camera. position in the presence of image gaussian noise as a
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of image gau_ssian no_ise. The solid Iine corresponds to the i_terati_ve of camera uniform noise. The behaviour of the iterative paraperspec-
paraperspective algorithm, the dotted line corresponds to the iterative tive algorithm (solid line) is compared with a non linear algorithm
paraperspective algorithm combined with the orthogonal constraint, (dashed line)

and the dashed line corresponds to a non linear algorithm.
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image data has been perturbed with gaussian noise with
a standard deviation equal to 1 pixel.

Figure 8 shows the variation of the error in ori-
entation as a function of the distance to the camera
scaled by the object size. The difference between
this figure and Fig. 6 is that here we added uniformly
; : ; distributed noise to the intrinsic camera parameters.
N Al Namely the coordinates of the optical axis in the image

: // : frame were perturbed with uniform noise in the interval

[—15% +15%]. The behaviour of the iterative para-
perspective algorithm (solid line) is the one predicted
by Egs. (34) and (35)—the effect of an inacurate cen-
ter of projection vanishes as the object is farther away
from the camera. For short distances the non-linear al-
gorithm (dashed line) is more acurate than the iterative

N . ' ” i s o paraperspective algorithm.

Distance to Camera / Object Size If we combine camera noise and image noise, then
- 4 . . . we obtain two other curves shown on Fig. 9.

igure 7. Error in position as a function of depth in the presence . . L. .
of image gaussian noise. The iterative weak and paraperspective Uniform plxel noiseinthe |nterval-[0.5, +0'5] has
algorithms have the same behaviour (solid line) while the non linear been added to the data. The iterative paraperspective
algorithm (dashed line) performs slightly better. algorithm (solid line) has a minimum for a distance/size
ratio equal to 10. This is consistent with the theoretical

function of the ratio between the distance to the camera predictions of Section 8. We conclude that the optimal
and the object size. The solid line corresponds to the behaviour of the iterative pose algorithms occur when
iterative weak and paraperspective algorithms (identi- the distance between the object and the camera is 5
cal behaviour) and the dashed line corresponds to theto 10 times the size of the object. In the presence
non-linear algorithm. In both cases (Figs. 6 and 7) the of both camera noise and image noise, the non linear
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Figure 9 Error in orientation as a function of depth in the presence  Figure 10 Speed of convergence as a function of depth, the offset is
of camera and image uniform noise. The iterative paraperspective €dualto 23 (triangles: paraperspective, squares: weak perspective).
algorithm (solid line) has a behaviour that differs from the non-linear
algorithm (dashed line).

21

algorithm (dashed line) performs better than the linear
algorithm.

We compare now more thoroughly the two iterative
pose algorithms. More precisely we study the conver-
gence of these algorithms. We performed the follow-
ing kinds of experiments. The first kind is meant to
compare the number of iterations needed by each one
of these algorithms to converge to the theoretical so-
lution. In order to take into account the effect of the
offset from the optical axis, we constrain the origin of
the object frame to belong to a fixed line of sight. The
object offset can now be defined as the angle between 2

(average)
18

15

Iterations
12
|

of
=]

er

this line of sight and the optical axis. 3 : : : : :
For each such offset and for each position (depth) = — T T T
we randomly selected 1000 different orientations and Bistance Lo Camera / Object Sime

we run both algorithms for each such position and ori-

entation. We plot the average value of the number of Figure11 Speed of convergence as a function of depth, the offsetis

iterations over all the 1000 random orientations. equal to 30 (triangles: paraperspective, squares: weak perspective).
Figures 10 and 11 show the number of iterations

as a function of depth—more precisely, the distance The second kind is meant to compare the rate of

from the object to the camera scaled by the object size. convergence of each one of these algorithms for small

The lines with squares correspond to the weak per- distance/size ratios.

spective algorithm, the lines with triangles correspond  Figures 12 and 13 show the percentage of the con-

to the paraperspective algorithm. These figures corre- vergence of both algorithms as a function of depth.

spond respectively to two offsets,28nd 30. On an These figures correspond respectively to two offsets,

average, the paraperspective algorithm converges 2 to30° and 35. As studied above in the paper, the weak

3 times faster than the weak perspective algorithm.  perspective algorithm has an optimal behaviour when
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Figure 13 Rate of convergence as a function of depth, the offset is
equal to 35 (triangles: paraperspective, squares: weak perspective).

the object is either quite far from the camera or close
to the optical axis. In theory, the paraperspective al-
gorithm does not suffer from the offset limitations (see
Figs. 10-13). For example (Fig. 13), when the distance
from the object to the camera is 1.4 times the size of
the object, the paraperspective algorithm has always
converged (solid line with triangles) while the weak
perspective algorithm has converged only in 76% of
the configurations.

10. Examples

The iterative algorithms proposed in this paper have
been applied to a number of images. For example,
Fig. 15 shows the image of a polyhedral object to be
located (top-left) and its wireframe representation (top-
right) whose position and orientation with respectto the
camerahas beenroughly hypothesized. Boththeimage
and the model are described by a network of straight
lines and junctions which are matched using a method
similar to the one described in (Gros, 1993). Using this
technique, 10 junctions were correctly matched (mid-
dle). The first iteration of the algorithm found a “para-
perspective pose” (bottom-left). After only three iter-
ations the algorithm correctly determined the position
and orientation of the polyhedral object with respect to
the camera (bottom-right).

The second example, i.e., Fig. 16 illustrates a situ-
ation where only 4 junctions have been matched cor-
responding to coplanar model vertices (top). The first
iteration found an approximated pose (bottom-left) and
after 3 iterations the algortihm converged to the correct
pose (bottom-right).

In both examples the iterative paraperspective al-
gorithm converged after.® x 10~2 seconds on a
Sun/Sparcl0.

The third example illustrates the behaviour of the
linear and non linear algorithm with 4 coplanar object
points, e.g., Fig. 14 and Table 1. As one may easily
notice, the iterative paraperspective algorithm is faster
(both in term of number of iterations and CPU time)
than the iterative weak perspective algorithm. The non-
linear algorithm was initialized with the solution ob-
tained by using a paraperspective model, i.e., the pose
computed at the first iteration of the iterative paraper-
spective algorithm.

The fourth example illustrates the behaviour of the
iterative paraperspective and non linear algorithms as a
function of the number of point correspondences. Asin
the previous experiment we are interested by the speed
of convergence of the algorithm and by the computa-
tion time. Figure 17-left shows the image of a scene

Table 1 A comparison of the performance of the three
algorithms. The computer being used is a Sun Sparc10/51.

Method Number of iterations ~ CPU time (ms)

It. weak persp. 10 4.3
It. parapersp. 5 29
Non linear 91 65.3
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Table 2 A comparison of the iterative paraperspective and non
linear methods as a function of the number of points. One may
notice the large number of iterations required by the non linear
method for 4 point correspondences.

Iterative paraperspective Non linear
No. No. of CPU time No. of  CPUtime
of points  iterations (ms) iterations (ms)
4 5 0.87 114 87.5
5 5 0.95 67 58.7
6 6 1.02 66 68.0
7 5 1.06 66 72.5
8 6 1.12 58 70.5
9 6 1.33 82 108.6
10 6 1.38 78 117.4
11 6 1.47 78 123.6

and 11 points that correspond to the vertices of a poly-

Figure 14 The four image dots correspond to a coplanar set of hedral object. Figure 17-right shows the pose found

object points. Because the object is farther away from the optical for this object using these 11 points and the iterative
axis, the iterative paraperspective method performs better in this case paraperspective algorithm.

than the iterative weak perspective method.

Figure 15 An example of applying the iterative paraperspective
algorithm to a non coplanar set of point correspondences.

Table 2 summarizes the results obtained with a vary-
ing number of point correspondences.

11. Discussion

In this paper we proposed an extension to paraperspec-
tive of the iterative weak perspective pose algorithm
developped by DeMenthon and Davis (1992). We es-
tablished a link between perspective, weak perspective,
and paraperspective camera models. We described a
linear method for computing object pose with a para-
perspective model and an iterative algorithm which
computes pose with a perspective model by successive
paraperspective approximations.

We studied, both theoretically and experimentally,
the convergence of the iterative weak and paraperspec-
tive algorithms. We showed that, on an average, the
latter algorithm requires 2.5 times less iterations than
the former algorithm. Moreover, when the objectis rel-
atively close to the camera and at some distance from
the optical axis, then the chance of convergence of the
paraperspective algorithm is higher than the chance of
convergence of the weak perspective one. Because it
requires, on an average, less iterations, the iterative
paraperspective algorithm is more time-efficient than
the iterative weak perspective algorithm. Of course,
if the experimental conditions are such that the image
center of gravity of the set of points is near the optical
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Figure 16 An example of applying the iterative paraperspective algorithm to a set of 4 coplanar point correspondences.

However, in the presence of noise the performances of
the iterative linear methods degrade faster with increas-
ing noise amplitude than the non linear method. Thisis
due to the fact that non-linear minimization numerical
techniques are much more robust to noise than linear
algebraic techniques.

Whenever speed is an important concern, itera-
tive linear pose methods should however be prefered.
Indeed, the iterative linear algorithms described by
DeMenthon and Davis (1995) and in this paper are one
hundred times faster than the non-linear algorithms—
this feature allows one to include these iterative linear
axis then the weak perspective model should be pref- techniques in real-time vision and robotics applications
ered. (Horaud et al., 1995).

We showed that both algorithms (iterative weak and  Itis interesting to notice that the iterative linear tech-
paraperspective) can take advantage of a simple ortho-niques described here are able to deal with the prob-
gonality constraint associated with the rotation matrix lem of reconstruction from multiple views (Christy and
of the object pose. Moreover, we compared the accu- Horaud, 1996). Indeed, attempts have been made to
racy of the results obtained with these iterative linear solve the multiple view reconstruction problem using
algorithms with the results obtained with a non-linear either an approximated (linear) camera model or a pro-
one. The former algorithms are much faster and al- jective (non-linear) camera model, but no attempts have
most as precise as the latter, especially when the or-been made to properly establish a link between these
thogonality constraint mentioned above is being used. two classes of algorithms.

Figure 17. Ittakes 1.47 miliseconds on a Sun-Sparc10/51 to com-
pute the pose in this case with the iterative paraperspective algorithm.
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