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Abstract. Recently, DeMenthon and Davis (1992, 1995) proposed a method for determining the pose of a 3-
D object with respect to a camera from 3-D to 2-D point correspondences. The method consists of iteratively
improving the pose computed with a weak perspective camera model to converge, at the limit, to a pose estimation
computed with a perspective camera model. In this paper we give an algebraic derivation of DeMenthon and
Davis’ method and we show that it belongs to a larger class of methods where the perspective camera model is
approximated either at zero order (weak perspective) or first order (paraperspective). We describe in detail an
iterative paraperspective pose computation method for both non coplanar and coplanar object points. We analyse
the convergence of these methods and we conclude that the iterative paraperspective method (proposed in this paper)
has better convergence properties than the iterative weak perspective method. We introduce a simple way of taking
into account the orthogonality constraint associated with the rotation matrix. We analyse the sensitivity to camera
calibration errors and we define the optimal experimental setup with respect to imprecise camera calibration. We
compare the results obtained with this method and with a non-linear optimization method.
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1. Introduction

Recently, DeMenthon and Davis (1992, 1995) pro-
posed a method for determining the pose of a 3-D ob-
ject with respect to a camera from 3-D to 2-D point
correspondences. The method consists of iteratively
improving the pose computed with a weak perspective
camera model to converge, at the limit, to a pose esti-
mation computed with a perspective camera model. To
our knowledge, the method proposed by DeMenthon
and Davis is among one of the first attempts to link

∗This work has been supported by the Esprit programme through
the Basic Research Project “SECOND” (Esprit-BRA No. 6769).
R. Horaud acknowledges partial support from the University of Bern,
Institut fur Informatik und angewandte Mathematik, where he was a
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linear techniques, associated with the weak perspec-
tive camera model, with non-linear techniques, asso-
ciated with a perspective camera model. Indeed, on
one side, linear resolution methods can be used but the
solution thus obtained is just an approximation and,
on the other side, non linear resolution methods lead
to a very accurate solution but proper initialization is
required.

One possibility could be to use a robust numerical
method to perform the non linear minimization that
is initialized with the solution obtained by a linear
method. However, there are several drawbacks. First,
such an approach does not take into account the simple
mathematical link that exists between the perspective
model and its linear approximations. Second, the linear
approximation may be quite faraway from the true solu-
tion and a large number of iterations would be required
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before the non-linear minimization process converges
to a stable solution. For example, as it will be described
below, a non-linear method requires 10 times more it-
erations than the method of DeMenthon and Davis and
than the method described in this paper.

The perspective projection is modelled by a projec-
tive transformation mapping the 3-D projective space
to the 2-D projective plane. Weak perspective is just
an affine approximation of full perspective. More pre-
cisely, it may well be viewed as a zero-order approxi-
mation: 1/(1 + ε) ≈ 1. Paraperspective (Aloimonos,
1990) is a first order approximation of full perspec-
tive: 1/(1 + ε) ≈ 1 − ε. The method proposed by
DeMenthon and Davis starts with computing the pose
of an object using weak perspective and after a few
iterations converges towards a pose estimated under
perspective. The method is very elegant, very fast,
and quite accurate. It is however limited to situations
where the weak perspective approximation is valid. If
the object is close to the camera and/or at some dis-
tance away from the optical axis then the pose algo-
rithm of DeMenthon and Davis either converges very
slowly (100 iterations rather than 5 to 10) or it doesn’t
converge at all.

In this paper we show how the initial method pro-
posed in DeMenthon and Davis (1994, 1995) may be
extended to paraperspective. More precisely, we de-
scribe a method for computing object pose with a para-
perspective model and we establish the link between
paraperspective pose and perspective pose. We show
that the case of a coplanar set of object points is some-
how more complex than the case of a non coplanar set
of object points and we describe a method which can
deal with both cases. We show both theoretically and
experimentally that our method has better convergence
properties than the method proposed by DeMenthon
and Davis. Moreover we introduce a simple computa-
tional way of taking into account the orthogonality con-
straint associated with the 3× 3 matrix describing the
orientation between the 3-D object and the camera. In-
deed, the linear pose algorithms using weak perspective
and paraperspective do not guarantee that this matrix is
orthogonal. The orthogonalization method that we de-
scribe below computes the best rotation in close form
using unit quaternions. This orthogonalization method
considerably increases the accuracy of the method at
the cost of very few extra computations. We charac-
terize the best experimental setup that allows one to
compute a precise pose even in the presence of camera
calibration errors. Finally we provide a comparison

between the results obtained with this method and the
results obtained with a non-linear minimization method
(Pong et al., 1993, 1995).

1.1. Background

The problem of object pose from 2-D to 3-D correspon-
dences has received a lot of attention both in the pho-
togrammetry and computer vision literatures. Haralick
et al. (1989) cites a German dissertation from 1958
that surveys nearly 80 different solutions from the pho-
togrammetry literature. Various approaches to the ob-
ject pose (or external camera parameters) problem fall
into 2 distinct categories: closed-form solutions and
numerical solutions.

Closed-form solutions may be applied only to a
limited number of correspondences (Dhome et al.,
1989; Fischler and Bolles, 1981; Horaud et al., 1989).
Whenever the number of correspondences is larger
than 4 then closed-form solutions are not efficient any
more and iterative numerical solutions are necessary
(Haralick et al., 1989; Lowe, 1991; Yuan, 1989). These
approaches are, in general, very robust but they con-
verge towards the correct solution on the premise that
a good initial estimate of the true solution is provided.
Phong et al. (1995) describe a method that uses trust-
region optimisation and that is less sensitive to initial-
isation than other minimization methods. However,
the method of Phong et al. performs well for a rela-
tively large number of correspondences. Whenever the
number of correspondences is between 3 and 10, then
the trust-region minimization method either requires a
large number of iterations or doesn’t converge towards
the correct solution. From a practical point of view,
it is important to have available an object pose algo-
rithm which doesn’t necessarily require a large number
of correspondences and which doesn’t suffer from the
limitations that are inherent to closed-form methods.

The method recently proposed by DeMenthon and
Davis (1992, 1995) requires an arbitrary number of
point correspondences. The 3-D points must be in gen-
eral position (i.e., non coplanar) and there should be
at least 4 point correspondences. The method is fast
and it is robust with respect to image measurements
and to camera calibration errors. However, the object
pose algorithm as suggested by DeMenthon and Davis
has convergence problems if the object is too faraway
from the optical axis of the camera—a limitation that
can be overcome as explained farther in this paper. The



              P1: ICA

International Journal of Computer Vision KL409-Horaud-04 February 27, 1997 9:31

Object Pose 175

method of DeMenthon and Davis was extended to the
case of a coplanar set of points by Oberkampf et al.,
(1993) and by DeMenthon (1993).

1.2. Paper Organization

The remainder of this paper is organized as follows.
In Section 2 we briefly recall the perspective cam-
era model and two possible approximations of this
model, weak and paraperspective. Section 3 describes
the iterative weak perspective algorithm as it has been
proposed in DeMenthon and Davis (1995). Section 4
describes the new iterative paraperspective algorithm
that we propose as well as how to compute the object
pose from a paraperspective approximation. Section 5
provides details for solving the linear equations asso-
ciated with pose computation in the case of both non
coplanar and planar sets of object points. Section 6
analyses the convergence of both the iterative weak
and paraperspective algorithms and Section 7 shows
how to improve the pose algorithms using a simple
and straightforward formulation of the orthogonality
constraint. Section 8 analyses the sensitivity of both
algorithms with respect to camera calibration errors,
and Section 9 provides an experimental comparison of
the two methods described in this paper together with
a comparison of these methods with a non-linear mini-
mization method. Section 10 shows many examples of
application of pose computation. Finally, Section 11
provides a discussion and gives directions for future
work.

2. Camera Models

We consider a simple setup, as depicted on Fig. 1. We
denote byPi a 3-D point with coordinatesXi , Yi , and
Zi in a frame that is attached to the object—the object
frame. The origin of this frame is the object pointP0.
An object pointPi projects onto the image inpi with
camera coordinatesxi and yi and we have (Pi is the
vector from pointP0 to point Pi ):

xi = i · Pi + tx
k · Pi + tz

(1)

yi = j · Pi + ty

k · Pi + tz
(2)

These equations describe the classical perspective
camera model where the rigid transformation from the

Figure 1. This figure shows the general setup. One of the object’s
point is selected as the origin of the object frame. Therefore, the
pose parameters are the coordinates of this object point (P0) in the
camera frame and the orientation of the object frame with respect to
the camera frame.

object frame to the camera frame is:

T =


iT tx
j T ty

kT tz
0 0 0 1

 =
(

R t
0 0 0 1

)

The relationship between the camera coordinates and
the image coordinates may be easily obtained by intro-
ducing the intrinsic camera parameters:

ui = αuxi + uc (3)

vi = αv yi + vc (4)

In these equationsαu and αv are the vertical and
horizontal scale factors anduc andvc are the image
coordinates of the intersection of the optical axis with
the image plane.

We divide both the numerator and the denominator
of Eqs. (1) and (2) bytz. We introduce the following
notations:

• I = i/tz is the first row of the rotation matrix scaled
by thez-component of the translation vector;

• J = j/tz is the second row of the rotation matrix
scaled by thez-component of the translation vector;
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• x0 = tx/tz andy0 = ty/tz are the camera coordinates
of p0 which is the projection ofP0—the origin of the
object frame, and

• εi = k · Pi /tz.

We may now rewrite the perspective equations as:

xi = I · Pi + x0

1 + εi
(5)

yi = J · Pi + y0

1 + εi
(6)

These equations may also be written as in DeMenthon
and Davis (1995):

xi (1 + εi ) − x0 = I · Pi (7)

yi (1 + εi ) − y0 = J · Pi (8)

Whenever the object is at some distance from the
camera, theεi are small compared to 1. We may there-
fore introduce two approximations of the perspective
equations: weak and paraperspective. One can find a
geometric description of these projections in Poelman
and Kanade (1994).

2.1. Weak Perspective

Weak perspective assumes that the object points lie in
a plane parallel to the image plane passing through the
origin of the object frame, i.e.,P0, e.g., Fig. 2. This is
equivalent to a zero-order approximation:

1

1 + εi
≈ 1 ∀i, i ∈ {1 . . . n}

Figure 2. This figure showsp0, pi —the perspective projections
of two object points,P0 and Pi , and pw

i , pp
i —the weak and para-

perspective projections ofPi . The quality of the paraperspective
projection depends on the angle between the line of projection of
Pi and the line of projection ofP0. Similarly, the quality of the
weak perspective projection depends on the angle between the line
of projection ofPi and the optical axis.

With this approximation, Eqs. (5) and (6) become:

xw
i − x0 = I · Pi (9)

yw
i − y0 = J · Pi (10)

In these two equationsxw
i andyw

i are the camera coor-
dinates of the weak perspective projection of the point
Pi . By identification with Eqs. (7) and (8) we obtain
the relationship between the weak perspective and the
perspective projections ofPi :

xw
i = xi (1 + εi ) (11)

yw
i = yi (1 + εi ) (12)

These equations allow us to determine the quality
of the weak perspective approximation with respect to
the perspective projection. Indeed the error between
the weak perspective projection and the “true” projec-
tion is:

1xw = ∣∣xw
i − xi

∣∣ = |xi εi | (13)

1yw = ∣∣yw
i − yi

∣∣ = |yi εi | (14)

Hence the quality of the approximation depends both
on the value ofεi and on the position of the point in the
image. We consider for example a 512× 512 image.
Approximate values for the intrinsic parameters are:
αu = αv = 1000 anduc = vc = 256. Therefore using
Eqs. (3) and (4) we have:

0 ≤ xi , yi ≤ 0.25

The lower bound corresponds to the point of inter-
section of the optical axis with the image plane (xi =
yi = 0). The upper bound corresponds to the image
borders:

xi = ui − uc

αu
= 512− 256

1000
≈ 0.25

We conclude that for small distance/size ratios, i.e.,
large values forεi , the weak perspective approxima-
tion is still valid provided that the object lies in the
neighbourhood of the optical axis.

2.2. Paraperspective

Paraperspective may almost be viewed as a first-order
approximation of perspective. Indeed, two approxima-
tions are needed in order to obtain the paraperspective
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camera model. With the approximation:

1

1 + εi
≈ 1 − εi ∀i, i ∈ {1 . . . n}

we obtain the paraperspective projection ofPi , e.g.,
Fig. 2:

xp
i = (I · Pi + x0)(1 − εi )

≈ I · Pi + x0 − x0εi

= i · Pi

tz
+ x0 − x0

k · Pi

tz

where the term in 1/t2
z was neglected. There is a similar

expression foryp
i .

Finally, the paraperspective equations are:

xp
i − x0 = i − x0 k

tz
· Pi (15)

yp
i − y0 = j − y0 k

tz
· Pi (16)

In order to obtain the relationship between the para-
perspective and the perspective projections ofPi we
can write these equations as follows:

xp
i = x0 + I · Pi − x0εi

yp
i = y0 + J · Pi − y0εi

Again, by identification with Eqs. (7) and (8) we obtain
the relationship between the paraperspective and the
perspective projections ofPi :

xp
i = xi (1 + εi ) − x0εi (17)

yp
i = yi (1 + εi ) − y0εi (18)

As in the previous section, we can easily estimate
the error between the paraperspective and perspective
projections:

1xp = ∣∣xp
i − xi

∣∣ = |(xi − x0)εi | (19)

1yp = ∣∣yp
i − yi

∣∣ = |(yi − y0)εi | (20)

Whenever an object pointPi is far from the optical
axis then the weak perspective model is a poor approxi-
mation. However, a proper choice of the origin, i.e.,P0,
and the use of the paraperspective model can compen-
sate and provide a good approximation even ifεi is not
small.

3. From Weak Perspective to Perspective

In order to solve the pose problem, DeMenthon and
Davis (1995) noticed that Eqs. (9) and (10) are similar
to Eqs. (7) and (8) for which theεi are set to 0. They
conclude that:

• Whenever theεi are fixed (not necessarily null) the
pose Eqs. (7) and (8) become linear inI andJ. A
solution can be found if at least 4 object points are
provided (see Section 5).

• It is possible to solve Eqs. (7) and (8)iterativelyby
successive linear approximations.

In this case the pose algorithm proposed in DeMenthon
and Davis (1995) starts with a weak perspective cam-
era model and computes an approximated pose. This
approximated pose is improved iteratively as follows:

1. For alli , i ∈ {1 . . . n}, n ≥ 3, εi = 0;
2. Solve the overconstrained linear system of Eqs. (7)

and (8) which provides an estimation of vectorsI
andJ, i.e., Section 5;

3. Compute the position and orientation of the object
frame with respect to the camera frame:

tz = 1

2

(
1

‖I‖ + 1

‖J‖
)

tx = x0tz

ty = y0tz

i = I
‖I‖

j = J
‖J‖

k = i × j

4. For alli , compute:

εi = k · Pi

tz

If the εi computed at this iteration are equal to the
εi computed at the previous iteration then stop the
procedure, otherwise go to Step 2.

While iterating, the above algorithm replaces the ac-
tual image coordinatesxi and yi (which are perspec-
tive projections of a 3-D point) withxi (1+ εi ) and
yi (1+ εi ), which are weak perspective projections of
the same 3-D point. A geometric interpretation of
this algorithm can be found in DeMenthon (1993),
DeMenthon and Davis (1995).
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4. From Paraperspective to Perspective

In this section we provide a generalization of the above
algorithm to deal with the paraperspective case. We
consider again the perspective Eqs. (7) and (8) and let
us subtract theparaperspective termfrom both the left
and right sides of these equations. We obtain:

xi (1 + εi ) − x0 − x0
1

tz
k · Pi︸ ︷︷ ︸
εi

= 1

tz
i · Pi − x0

1

tz
k · Pi

yi (1 + εi ) − y0 − y0
1

tz
k · Pi︸ ︷︷ ︸
εi

= 1

tz
j · Pi − y0

1

tz
k · Pi

These equations can be written more compactly as:

(xi − x0)(1 + εi ) = I p · Pi (21)

(yi − y0)(1 + εi ) = Jp · Pi (22)

with:

I p = i − x0k
tz

(23)

Jp = j − y0k
tz

(24)

One may notice that when all theεi are null, the
perspective equations above—Eqs. (21) and (22)—
become identical to the paraperspective equations—
Eqs. (15) and (16).

As in the weak perspective case, we have now a linear
method for computing the pose with a paraperspective
model and an iterative method to compute the object
pose with a perspective model by successive para-
perspective approximations. More precisely, the pose
parameters can be derived fromI p andJp as follows.

First, one may notice that:

‖I p‖2 = (i − x0k) · (i − x0k)

t2
z

= 1 + x2
0

t2
z

and:

‖Jp‖2 = 1 + y2
0

t2
z

We therefore obtain:

tz = 1

2


√

1 + x2
0

‖I p‖ +
√

1 + y2
0

‖Jp‖

 (25)

and:

tx = x0tz

ty = y0tz

Second, we derive the three orthogonal unit vectors
i, j , andk. From Eqs. (23) and (24) we obtain:

i = tzI p + x0k (26)

j = tzJp + y0k (27)

The third vector,k is the cross-product of these two
vectors:

k = i × j

= t2
z I p × Jp + tzy0 I p × k − tzx0 Jp × k

Let S(a) be the skew-symmetric matrix associated with
a 3-vectora and I3×3 be the identity matrix. The pre-
vious expression can now be written as follows:

(I3×3−tzy0 S(I p) + tzx0 S(Jp))k = t2
z I p×Jp (28)

This equation allows us to computek, provided that
the linear system above has full rank. Indeed, the 3× 3
matrix A:

A = I3×3 − tzy0S(I p) + tzx0S(Jp)

is of the form:

A =
 1 c −b

−c 1 a
b −a 1


Its determinant is always strictly positive:

det(A) = 1 + a2 + b2 + c2

Therefore, one can easily determinek using Eq. (28)
andi andj using Eqs. (26) and (27).

Theεi can now be easily computed as before and the
pose algorithm becomes:

1. For alli , i ∈ {1 . . . n}, n ≥ 3, εi = 0;
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2. Solve the overconstrained linear system of Eqs. (21)
and (22) which provides an estimation of vectorsI p

andJp, i.e., Section 5;
3. Compute the position (tx, ty, andtz) and orientation

(i, j , andk) of the object frame with respect to the
camera frame as explained above in this section;

4. For alli , compute:

εi = k · Pi

tz

If the εi computed at this iteration are equal to the
εi computed at the previous iteration then stop the
procedure, otherwise go to Step 2.

5. Solving the Linear Equations

Both the weak perspective and paraperspective itera-
tive algorithms need to solve an overconstrained lin-
ear system of equations, namely Eqs. (7), (8) (weak
perspective) and Eqs. (21), (22) (paraperspective). In
matrix form these equations can be written as:

P︸︷︷︸
n×3

I︸︷︷︸
3×1

= x︸︷︷︸
n×1

(29)

P︸︷︷︸
n×3

J︸︷︷︸
3×1

= y︸︷︷︸
n×1

(30)

whereP is an × 3 matrix formed by the 3-D coordi-
nates ofn vectorsP1 · · · Pn. Since the pointP0 is the
origin of the object frame, this matrix can be written as:

P =

 X1 Y1 Z1
...

...
...

Xn Yn Zn


In order to solve for these linear equations one has to

distinguish two cases: non coplanar and coplanar sets
of object points.

5.1. Non Coplanar Object Points

If the object points are not coplanar, the rank ofP is 3
and therefore the solutions forI andJ (and equivalently
for I p andJp) are simply given by:

I = (PT P)−1PTx

J = (PT P)−1PTy

One may notice that the pseudo-inverse ofP can be
computed off-line and hence the estimation ofI andJ
is particularly efficient.

5.2. Coplanar Object Points

If the object points are coplanar then the rank ofP is 2
and the above solution cannot be considered anymore.
We consider the plane formed in this case by the object
points and letu be the unit vector orthogonal to this
plane. VectorsI andJ (and equivalentlyI p andJp)
can be written as a sum of a vector belonging to this
plane and a vector perpendicular to this plane, namely
(see (DeMenthon, 1993; Oberkampf et al., 1993) and
Fig. 3):

I = I0 + λu (31)

J = J0 + µu (32)

By substituting these expressions forI and J into
Eqs. (29) and (30) we obtain:

PI0 = x

PJ0 = y

These linear equations can be solved provided that the
following additional linear constraints are used:

u · I0 = 0

u · J0 = 0

Figure 3. A coplanar configuration of object points.
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Thus we obtain solutions forI0 andJ0 as follows.

I0 = (P′T P′)−1P′T
(

x
0

)
J0 = (P′T P′)−1P′T

(
y
0

)

With P′ defined by:

P′ =
(

P
u

)
Obviously, the rank ofP′ is equal to 3.

In order to estimateI and J (and equivalentlyI p

andJp) one is left with the estimation of two scalars,
λ andµ. In the case of weak perspective Oberkampf
et al. (1993) provided a solution using the constraints
‖I‖ = ‖J‖ andI · J = 0.

In the case of paraperspective a similar solution can
be obtained using the following constraints ontoI p and
Jp (derived from Eqs. (23) and (24)):

‖I p‖2 = 1 + x2
0

t2
z

‖Jp‖2 = 1 + y2
0

t2
z

I p · Jp = x0y0

t2
z

By eliminatingtz we obtain two constraints:

I p · Jp = x0y0

1 + x2
0

‖I p‖2

I p · Jp = x0y0

1 + y2
0

‖Jp‖2

By substituting in these expressionsI p andJp given by
Eqs. (31) and (32) we obtain:

I0 · J0 + λµ = x0y0

1 + x2
0

(‖I0‖2 + λ2)

I0 · J0 + λµ = x0y0

1 + y2
0

(‖J0‖2 + µ2)

And finally, by eliminatingµ we obtain a biquadratic
equation in one unknown:

Aλ4 + Bλ2 + C = 0 (33)

With:

A = a2 − g

B = 2a2d − gd + e− 2ac

C = a2d2 + c2 − 2acd

a = x0y0

1 + x2
0

b = x0y0

1 + y2
0

c = I0 · J0

d = ‖I0‖2

e = ‖J0‖2

g = 1 + y2
0

1 + x2
0

In order to study the number of real roots of Eq. (33)
we substituteλ2 by t :

At2 + Bt + C = 0

We examine the signs of the roots of this equation.
Therefore we have to examine the sign of their product,
i.e.,C/A. We have:

C
A = f (x0, y0, c, d)

= −x2
0 y2

0d2 − (
1 + x2

0

)2
c2 + 2x0y0

(
1 + x2

0

)
cd

1 + x2
0 + y2

0

= −
(
x0y0 d − (

1 + x2
0

)
c
)2

1 + x2
0 + y2

0

Therefore, the value ofC/A is either negative or
null. Therefore there are one positive (or null) root and
one negative (or null) root fort . Hence there are two
real roots forλ—a positive one and a negative one—
and two imaginary roots.

The two real roots forλ provide two solutions forµ
and hence there are two solutions forI p andJp. These
two solutions correspond to the well-known reversal
ambiguity associated with an affine camera model.
These two solutions are shown on Fig. 4. The points
Pi (lying on the planar object in one orientation) and
P′

i (lying on the planar object in another orientation)
have the same paraperspective projection but different
perspective projections. Notice that these object orien-
tations are symmetric with respect to a plane which is
perpendicular to the line of sight passing throughP0.
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Figure 4. A planar object and a paraperspective camera model pro-
duces two orientations. However, these two object orientations have
distinct perspective projections—pi and p′

i .

Therefore, the iterative algorithm described in
Section 4 produces two poses at each iteration. The
two poses have the same translation vector but differ-
ent orientations. Hence, aftern iterations there will
be 2n solutions. In order to avoid this redundancy we
proceed as follows. At the first iteration we retain both
solutions while at the next iterations we retain only
one solution—the solution which is the most consistent
with the data. At convergence we obtain two solutions
for the orientation of the planar object: one solution
associated with the “left” branch of the search tree and
another solution associated with the “right” branch of
the search tree (see Fig. 5). Among the final two so-
lutions, one of them is generally closer to the image
data than the other. However, if the orientation of the
planar object is close to the orientation of the plane
of symmetry, the ambiguity remains and the algorithm
provides two solutions.

6. An Analysis of Convergence

In order to analyse the convergence of these algorithms
(Sections 3 and 4) we consider again Eqs. (7) and (8):

xi (1 + εi ) − x0 = I · Pi

yi (1 + εi ) − y0 = J · Pi

as well as Eqs. (21) and (22):

(xi − x0)(1 + εi ) = I p · Pi

(yi − y0)(1 + εi ) = Jp · Pi

Figure 5. A binary tree search for selecting the best object pose
when the object points are coplanar.

Both these sets of equations describe thefull perspec-
tive projection. The first ones allows to express the pose
problem in terms of an iterative weak perspective algo-
rithm while the second ones allows to express the pose
problem in terms of an iterative paraperspective algo-
rithm. From Fig. 2 and Section 2 we have:

• x0 andy0 are the camera coordinates ofp0, the per-
spective projection ofP0;

• xi andyi are the camera coordinates ofpi , the per-
spective projection ofPi ;

• xi (1+ εi ) andyi (1+ εi ) are the camera coordinates
of pw

i , the weak perspective projection ofPi ;
• xi (1+εi )−x0εi andyi (1+εi )− y0εi are the camera

coordinates ofpp
i , the paraperspective projection of

Pi ;

Therefore, if good estimates forεi (i ∈ {1 . . . n}) are
available, then the perspective pose problem is reduced
to solving an overconstrained set of linear equations.
These equations provide a solution either forI andJ or
for I p andJp from which a pose may be easily calcu-
lated. However, in practice it is rather difficult to pro-
vide such estimates. Hence, one has to use a heuristic.
The simplest heuristic is to initialize the values ofεi to
zero and to use either the iterative weak perspective or
the iterative paraperspective algorithms.

We consider the first one of these two algorithms and
letε?

i be the true values that the algorithm is supposed to
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compute. Therefore, at the first iteration, one attempts
to solve in a least-square sense a linear set of equations
of the form: 

...

I · Pi = xi − x0

J · Pi = yi − y0
...

The pose thus computed is just an approximation since
one usesxi andyi instead ofxw

i andyw
i . Therefore the

“pose errors” are proportional to the following “pro-
jection errors”:

1w
i = ∥∥pi − pw

i

∥∥2

= (
x2

i + y2
i

)|ε?
i |2

If these projection errors are large, the linear least-
square solution provided by the first iteration of the
algorithm will be rather different than the true solution
and convergence cannot be guaranteed. DeMenthon
and Davis noticed that the iterative weak perspective
algorithm converges with values as large forε?

i as 1,
provided that the object lies in the neighbourhood of
the optical axis. Indeed, when the object is close to the
optical axis, the camera coordinates of its projections,
xi andyi , are small (the origin of the camera frame lies
onto the optical axis) and they compensate for the large
values ofε?

i .
In theory, the iterative paraperspective algorithm is

able to deal with configurations where the weak per-
spective algorithm diverges. Indeed, in the case of
paraperspective, the projection errors are:

1
p
i = ∥∥pi − pp

i

∥∥2

= ((xi − x0)
2 + (yi − y0)

2)|ε?
i |2

= ‖pi − p0‖2|ε?
i |2

Whenever one wants to use the paraperspective cam-
era model, the choice forp0 (and hence forP0) is cru-
cial. The best way to choosep0 is to compute the center
of gravity of all the image points and to select the im-
age point which is the closest to this center of gravity.
Hence,xi − x0 andyi − y0 will be small and they will
compensate for large values ofε?

i . Therefore, the itera-
tive paraperspective algorithm is likely to converge for
those configurations where the weak perspective one
diverges. Notice that if the pointp0 thus computed lies

in the vicinity of the optical axis then the paraperspec-
tive and weak perspective models will yield the same
results.

7. The Orthogonality Constraint

The algorithms described so far are linear and in the
general case (non coplanar object points) they don’t
guarantee that the matrix describing the orientation of
the object frame with respect to the camera frame is
a rotation matrix. This matrix is formed by the three
row vectorsiT , j T , andkT . These vectors are updated
at each step of the pose algorithms and we want to
compute a rotation matrix from these three vectors. In
other words, we seek a rotation matrixRwhich verifies:

R

 iT

j T

kT

T

= I3×3

This expression can be written as:

Ri = e1

Rj = e2

Rk = e3

whereei is thei th column of the identity matrix. The
solution is given by the rotation matrix which mini-
mizes the following criterion:

min
R

3∑
i =1

‖Rvi − ei ‖2

where vi is either i, j , or k. It is well known that
this minimization problem has a closed-form solution
(Faugeras, 1993). Indeed, if the unknown rotation is
represented by a unit quaternionq, then the minimiza-
tion problem can be written as a quadratic form:

min
q

(qT Bq)

whereB is a 4× 4 symmetric, semi definite, and pos-
itive matrix. Therefore, the quaternionq which mini-
mizes this quadratic form is the eigen vector associated
with the smallest eigen value ofB. One may notice that
two vectors, i.e.,i andj are sufficient for computing the
orthogonal matrixR.
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8. Sensitivity to Camera Calibration

So far we assumed that the camera is calibrated, which
means that the intrinsic camera parameters are known,
i.e., Eqs. (3) and (4). It is well known that camera
calibration is difficult and that the camera parameters
vary a lot. In this section we analyse the sensitivity of
the pose algorithms that we just described with respect
to variations of the intrinsic camera parameters.

We consider the equations associated with full per-
spective. By combining Eqs. (3) and (4) with Eqs. (7)
and (8) we obtain:

ui (1 + εi ) − u0 − ucεi = αuI · Pi (34)

vi (1 + εi ) − v0 − vcεi = αvJ · Pi (35)

When a camera is calibrated, relatively stable values
may be obtained for the horizontal and vertical scale
factorsαv andαu while the image coordinates of the
optical center,uc andvc can vary with up to 10% of
their nominal values (Tsai, 1987; Faugeras, 1993). By
inspecting the previous equations it is easy to notice
that the influence ofuc andvc is weighted byεi . For
any object pointPi , εi is the projection of the vector
P0Pi onto the optical axis, divided by the z-component
of the displacement vectort.

If the object is too far from the camera, the influence
of uc andvc can be neglected but one needs to detect
image points with great accuracy. If the object is too
close to the camera, the influence ofuc andvc becomes
quite large. Therefore, in practice, the object should
be at a distance from the camera that is roughly 5 to
10 times the size of the object. In that case the values
of εi will be between 0.1 and 0.2 and the error onuc

and vc will be scaled down by a factor of 5 to 10.
These remarks are validated by experimental results as
reported in the next section.

9. Experiments

In this section we study the performances of the itera-
tive weak and para perspective algorithms. Two types
of performances are studied:

• the precision of pose as a function of position and
orientation of the object with respect to the camera
in the presence of image and/or camera noise, and

• the convergence of the iterative pose algorithms as
a function of position and orientation of the object
with respect to the camera.

In the first class of experiments (precision) we com-
pare the results obtained with three algorithms: the two
linear algorithms described above and a non-linear al-
gorithm (Phong et al., 1995). In the second class of
experiments (convergence) we compare the two linear
algorithms. In both classes, the simulated object is a
configuration of four points (tetrahedron), such that the
three line segments joining the reference point to the
other three points are equal and perpendicular to each
other.

For each experiment we fix a number of positions
of the object with respect to the camera and for each
such position the object is rotated at 1000 random ori-
entations. These experiments are repeated for various
levels of image and/or camera noise. The rotation ma-
trices defining these 1000 orientations are computed
from Euler angles chosen by a random number gen-
erator in the range [0, 2π ]. The position of an object
with respect to the camera is described by the transla-
tion vector from the center of projection of the camera
to the origin of the object frame. More quantitatively,
we compute the error between the theoretical pose and
the pose computed by an algorithm. For each position
we plot the average of this error over all the 1000 ori-
entations. The pose errors are: orientation error and
position error. The orientation error is defined as the ro-
tation angle in degrees required to align the coordinate
system of the object in its computed orientation with
the coordinate system of the object in its theoretical ori-
entation. The position error is defined as the norm of
the vector which represents the difference between the
two translation vectors: the computed one and the the-
oretical one, divided by the norm of the second vector.
The horizontal coordinates of all the following plots
represents the z-component of the translation vector
scaled by the object size.

Figure 6 shows the variation of the error in orien-
tation in the presence of image gaussian noise as a
function of the ratio between the distance to the cam-
era and the object size, where the object size has been
fixed to a constant value. The three curves in this figure
correspond to the iterative paraperspective algorithm
(solid line), the iterative paraperspective algorithm with
the orthogonal constraint described in Section 7 (dot-
ted line) and to the non-linear algorithm described in
(Phong et al., 1995) (dashed). The iterative weak per-
spective algorithm yields a curve that is identical to the
paraperspective one.

Figure 7 shows the variation of the relative error in
position in the presence of image gaussian noise as a
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Figure 6. Error in orientation as a function of depth in the presence
of image gaussian noise. The solid line corresponds to the iterative
paraperspective algorithm, the dotted line corresponds to the iterative
paraperspective algorithm combined with the orthogonal constraint,
and the dashed line corresponds to a non linear algorithm.

Figure 7. Error in position as a function of depth in the presence
of image gaussian noise. The iterative weak and paraperspective
algorithms have the same behaviour (solid line) while the non linear
algorithm (dashed line) performs slightly better.

function of the ratio between the distance to the camera
and the object size. The solid line corresponds to the
iterative weak and paraperspective algorithms (identi-
cal behaviour) and the dashed line corresponds to the
non-linear algorithm. In both cases (Figs. 6 and 7) the

Figure 8. Error in orientation as a function of depth in the presence
of camera uniform noise. The behaviour of the iterative paraperspec-
tive algorithm (solid line) is compared with a non linear algorithm
(dashed line).

image data has been perturbed with gaussian noise with
a standard deviation equal to 1 pixel.

Figure 8 shows the variation of the error in ori-
entation as a function of the distance to the camera
scaled by the object size. The difference between
this figure and Fig. 6 is that here we added uniformly
distributed noise to the intrinsic camera parameters.
Namely the coordinates of the optical axis in the image
frame were perturbed with uniform noise in the interval
[−15%, +15%]. The behaviour of the iterative para-
perspective algorithm (solid line) is the one predicted
by Eqs. (34) and (35)—the effect of an inacurate cen-
ter of projection vanishes as the object is farther away
from the camera. For short distances the non-linear al-
gorithm (dashed line) is more acurate than the iterative
paraperspective algorithm.

If we combine camera noise and image noise, then
we obtain two other curves shown on Fig. 9.

Uniform pixel noise in the interval [−0.5, +0.5] has
been added to the data. The iterative paraperspective
algorithm (solid line) has a minimum for a distance/size
ratio equal to 10. This is consistent with the theoretical
predictions of Section 8. We conclude that the optimal
behaviour of the iterative pose algorithms occur when
the distance between the object and the camera is 5
to 10 times the size of the object. In the presence
of both camera noise and image noise, the non linear
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Figure 9. Error in orientation as a function of depth in the presence
of camera and image uniform noise. The iterative paraperspective
algorithm (solid line) has a behaviour that differs from the non-linear
algorithm (dashed line).

algorithm (dashed line) performs better than the linear
algorithm.

We compare now more thoroughly the two iterative
pose algorithms. More precisely we study the conver-
gence of these algorithms. We performed the follow-
ing kinds of experiments. The first kind is meant to
compare the number of iterations needed by each one
of these algorithms to converge to the theoretical so-
lution. In order to take into account the effect of the
offset from the optical axis, we constrain the origin of
the object frame to belong to a fixed line of sight. The
object offset can now be defined as the angle between
this line of sight and the optical axis.

For each such offset and for each position (depth)
we randomly selected 1000 different orientations and
we run both algorithms for each such position and ori-
entation. We plot the average value of the number of
iterations over all the 1000 random orientations.

Figures 10 and 11 show the number of iterations
as a function of depth—more precisely, the distance
from the object to the camera scaled by the object size.
The lines with squares correspond to the weak per-
spective algorithm, the lines with triangles correspond
to the paraperspective algorithm. These figures corre-
spond respectively to two offsets, 23◦ and 30◦. On an
average, the paraperspective algorithm converges 2 to
3 times faster than the weak perspective algorithm.

Figure 10. Speed of convergence as a function of depth, the offset is
equal to 23◦ (triangles: paraperspective, squares: weak perspective).

Figure 11. Speed of convergence as a function of depth, the offset is
equal to 30◦ (triangles: paraperspective, squares: weak perspective).

The second kind is meant to compare the rate of
convergence of each one of these algorithms for small
distance/size ratios.

Figures 12 and 13 show the percentage of the con-
vergence of both algorithms as a function of depth.
These figures correspond respectively to two offsets,
30◦ and 35◦. As studied above in the paper, the weak
perspective algorithm has an optimal behaviour when
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Figure 12. Rate of convergence as a function of depth, the offset is
equal to 30◦ (triangles: paraperspective, squares: weak perspective).

Figure 13. Rate of convergence as a function of depth, the offset is
equal to 35◦ (triangles: paraperspective, squares: weak perspective).

the object is either quite far from the camera or close
to the optical axis. In theory, the paraperspective al-
gorithm does not suffer from the offset limitations (see
Figs. 10–13). For example (Fig. 13), when the distance
from the object to the camera is 1.4 times the size of
the object, the paraperspective algorithm has always
converged (solid line with triangles) while the weak
perspective algorithm has converged only in 76% of
the configurations.

10. Examples

The iterative algorithms proposed in this paper have
been applied to a number of images. For example,
Fig. 15 shows the image of a polyhedral object to be
located (top-left) and its wireframe representation (top-
right) whose position and orientation with respect to the
camera has been roughly hypothesized. Both the image
and the model are described by a network of straight
lines and junctions which are matched using a method
similar to the one described in (Gros, 1993). Using this
technique, 10 junctions were correctly matched (mid-
dle). The first iteration of the algorithm found a “para-
perspective pose” (bottom-left). After only three iter-
ations the algorithm correctly determined the position
and orientation of the polyhedral object with respect to
the camera (bottom-right).

The second example, i.e., Fig. 16 illustrates a situ-
ation where only 4 junctions have been matched cor-
responding to coplanar model vertices (top). The first
iteration found an approximated pose (bottom-left) and
after 3 iterations the algortihm converged to the correct
pose (bottom-right).

In both examples the iterative paraperspective al-
gorithm converged after 0.7 × 10−3 seconds on a
Sun/Sparc10.

The third example illustrates the behaviour of the
linear and non linear algorithm with 4 coplanar object
points, e.g., Fig. 14 and Table 1. As one may easily
notice, the iterative paraperspective algorithm is faster
(both in term of number of iterations and CPU time)
than the iterative weak perspective algorithm. The non-
linear algorithm was initialized with the solution ob-
tained by using a paraperspective model, i.e., the pose
computed at the first iteration of the iterative paraper-
spective algorithm.

The fourth example illustrates the behaviour of the
iterative paraperspective and non linear algorithms as a
function of the number of point correspondences. As in
the previous experiment we are interested by the speed
of convergence of the algorithm and by the computa-
tion time. Figure 17-left shows the image of a scene

Table 1. A comparison of the performance of the three
algorithms. The computer being used is a Sun Sparc10/51.

Method Number of iterations CPU time (ms)

It. weak persp. 10 4.3

It. parapersp. 5 2.9

Non linear 91 65.3
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Figure 14. The four image dots correspond to a coplanar set of
object points. Because the object is farther away from the optical
axis, the iterative paraperspective method performs better in this case
than the iterative weak perspective method.

Figure 15. An example of applying the iterative paraperspective
algorithm to a non coplanar set of point correspondences.

Table 2. A comparison of the iterative paraperspective and non
linear methods as a function of the number of points. One may
notice the large number of iterations required by the non linear
method for 4 point correspondences.

Iterative paraperspective Non linear

No. No. of CPU time No. of CPU time
of points iterations (ms) iterations (ms)

4 5 0.87 114 87.5

5 5 0.95 67 58.7

6 6 1.02 66 68.0

7 5 1.06 66 72.5

8 6 1.12 58 70.5

9 6 1.33 82 108.6

10 6 1.38 78 117.4

11 6 1.47 78 123.6

and 11 points that correspond to the vertices of a poly-
hedral object. Figure 17-right shows the pose found
for this object using these 11 points and the iterative
paraperspective algorithm.

Table 2 summarizes the results obtained with a vary-
ing number of point correspondences.

11. Discussion

In this paper we proposed an extension to paraperspec-
tive of the iterative weak perspective pose algorithm
developped by DeMenthon and Davis (1992). We es-
tablished a link between perspective, weak perspective,
and paraperspective camera models. We described a
linear method for computing object pose with a para-
perspective model and an iterative algorithm which
computes pose with a perspective model by successive
paraperspective approximations.

We studied, both theoretically and experimentally,
the convergence of the iterative weak and paraperspec-
tive algorithms. We showed that, on an average, the
latter algorithm requires 2.5 times less iterations than
the former algorithm. Moreover, when the object is rel-
atively close to the camera and at some distance from
the optical axis, then the chance of convergence of the
paraperspective algorithm is higher than the chance of
convergence of the weak perspective one. Because it
requires, on an average, less iterations, the iterative
paraperspective algorithm is more time-efficient than
the iterative weak perspective algorithm. Of course,
if the experimental conditions are such that the image
center of gravity of the set of points is near the optical
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Figure 16. An example of applying the iterative paraperspective algorithm to a set of 4 coplanar point correspondences.

Figure 17. It takes 1.47 miliseconds on a Sun-Sparc10/51 to com-
pute the pose in this case with the iterative paraperspective algorithm.

axis then the weak perspective model should be pref-
ered.

We showed that both algorithms (iterative weak and
paraperspective) can take advantage of a simple ortho-
gonality constraint associated with the rotation matrix
of the object pose. Moreover, we compared the accu-
racy of the results obtained with these iterative linear
algorithms with the results obtained with a non-linear
one. The former algorithms are much faster and al-
most as precise as the latter, especially when the or-
thogonality constraint mentioned above is being used.

However, in the presence of noise the performances of
the iterative linear methods degrade faster with increas-
ing noise amplitude than the non linear method. This is
due to the fact that non-linear minimization numerical
techniques are much more robust to noise than linear
algebraic techniques.

Whenever speed is an important concern, itera-
tive linear pose methods should however be prefered.
Indeed, the iterative linear algorithms described by
DeMenthon and Davis (1995) and in this paper are one
hundred times faster than the non-linear algorithms—
this feature allows one to include these iterative linear
techniques in real-time vision and robotics applications
(Horaud et al., 1995).

It is interesting to notice that the iterative linear tech-
niques described here are able to deal with the prob-
lem of reconstruction from multiple views (Christy and
Horaud, 1996). Indeed, attempts have been made to
solve the multiple view reconstruction problem using
either an approximated (linear) camera model or a pro-
jective (non-linear) camera model, but no attempts have
been made to properly establish a link between these
two classes of algorithms.



    
P1: ICA

International Journal of Computer Vision KL409-Horaud-04 February 27, 1997 9:31

Object Pose 189

References

Aloimonos, Y. 1990. Perspective approximations.Image and Vision
Computing, 8(3):177–192.

Christy, S. and Horaud, R. 1996. Euclidean shape and motion from
multiple perspective views by affine iterations.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(11):1098–1104.

DeMenthon, D.F. 1993.De la Vision Artificielle à la Ŕealité
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