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Abstract

Hierarchical segmentation based object proposal meth-

ods have become an important step in modern object detec-

tion paradigm. However, standard single-way hierarchical

methods are fundamentally flawed in that the errors in early

steps cannot be corrected and accumulate. In this work,

we propose a novel multi-branch hierarchical segmentation

approach that alleviates such problems by learning multiple

merging strategies in each step in a complementary manner,

such that errors in one merging strategy could be corrected

by the others. Our approach achieves the state-of-the-art

performance for both object proposal and object detection

tasks, comparing to previous object proposal methods.

1. Introduction

The goal of generic object proposal generation is to find

all candidate regions that may contain objects in an im-

age [1]. A generic object proposal algorithm has the follow-

ing requirements: it should be able to capture objects of all

scales, has small bias towards object class, and most impor-

tantly: achieve high detection recall with as few proposals

as possible. The problem has received intensive interests in

recent years, as it serves as an effective preprocessing for

other high-level computer vision tasks such as object detec-

tion. Recent works [14, 16, 15] demonstrate that the pro-

posal algorithm can indeed significantly speed up the object

detection task and improves its performance.

Generic object proposal is first addressed within tra-

ditional sliding window object detection framework [1].

Methods such as [1, 22, 9, 7, 28] use features like saliency,

image gradient and contour information to measure the ob-

jectness of a given sliding window.

Different from the above, methods such as [19, 6, 21, 26,
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5, 23] address the problem from the image segmentation

perspective. Starting from an initial oversegmentation, ob-

ject proposals are modeled as a composition of neighboring

segments. This segment composition space is exponential,

so the principle of all segment-based methods is to use ef-

ficient strategy such as automatic foreground-background

segmentation [19, 6], randomized prim sampling [21], hi-

erarchical image segmentation [26], combinatorial group-

ing [5], or a combination of above [23] to search the seg-

ment composition space.

In this work, we develop our approach based on hierar-

chical image segmentation. As proposed in [26], using seg-

ments from hierarchical segmentation as proposal regions

handles multiple scales by natural. Moreover, organizing

object proposals with a hierarchical structure coincides with

the intuition that the semantic meanings of real world ob-

jects are hierarchical.

Hierarchical segmentation divides an image into a hierar-

chy of regions [20]. Each region is visually or semantically

homogeneous, and regions in lower level of the hierarchy

form subparts of regions in higher levels. It is most com-

monly implemented as a bottom-up greedy merging pro-

cess [4, 12, 23, 26, 24]. Starting from an initial oversegmen-

tation, the image segmentation hierarchy is generated by it-

eratively merging neighboring segments in a greedy man-

ner: a merging strategy gives a score to each pair of adjacent

segments and the pair with the highest score is merged. This

greedy merging process continues until either the whole im-

age is merged into one segment [26, 4] or the maximum

merging score is below some threshold [23, 24, 12].

The merging strategy has been defined in various ways.

The method in [4, 3, 5] gives merge scores using global

contour detection result; the methods in [12, 26, 23] heuris-

tically define merging strategies based on appearance sim-

ilarity and segment’s size; the methods in [24, 27] trains

a cascade of linear classifiers and uses classifiers’ decision

value as merge score.
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Figure 1. Illustration of hierarchical segmentation with branching.

Bottom left: input image. Top: greedy merging process using only

one merging strategy. The red circle indicates an incorrect merg-

ing: the dog’s head is merged to a piece of background and it is

lost. Bottom right: following the yellow arrows, by using the sec-

ond complementary merging strategy, the dog is finally success-

fully detected.

The performance of bottom-up greedy merging heavily

relies on the accuracy of the merging strategy because any

mistakes made in early stages are irremediable due to its

greedy nature. In the context of object proposal problem,

once a part of an object is incorrectly merged with the back-

ground, this object has little chance to be found later. How-

ever, since most of the real world objects are very com-

plicated, direct using segments from a single hierarchical

segmentation achieves low object detection recall. To in-

crease recall, the method in [26] directly combines object

proposals from a set of hierarchical segmentations with var-

ious merging strategies and initial oversegmentations. The

method in [23] combines proposals generated by searching

from different foreground seeds.

To search the segment composition space more effec-

tively, we propose our multi-branched hierarchical segmen-

tation based on a more general principle: an object consists

of subparts with various colors and textures may require a

combination of different merging strategies to bring it to-

gether. As illustrated in Fig. 1: given an image of a running

dog wearing a blue jacket, the most salient boundary in the

whole image is between the jacket and the dog’s three sep-

arate body parts. The first row shows the merging process

which uses color and texture similarity as merge score. Af-

ter merging superpixels into visually homogeneous parts,

it incorrectly merges the dog’s head with a piece of back-

ground (marked by the red circle), and this leaves the sub-

sequent merging no chance to detect the dog. Our solu-

tion for this is branching. By starting a new branch with a

new merging strategy specifically designed to be comple-

mentary to the first merging strategy right before where it

went wrong (shown in the bottom row), the dog is success-

fully detected in the branch.

To make our multi-branched hierarchical segmentation

effective, we address two important problems: how to de-

sign complementary merging strategies capable of fixing

mistakes made by others, and how to organize branching

since arbitrary branching causes exponentially large search

space. We handle those issues as below:

Learning complementary merging strategies. We model

the merging strategies as binary linear classifiers. We

propose an automatic learning procedure that trains the

complementary merging strategies (classifiers) by altering

weights for each training samples in a boosting-like fash-

ion. Different from traditional boosting [13], our goal is not

to combine the classifiers into a strong one, but to obtain a

set of complementary ones to enrich the chances of finding

objects missed in each other. This makes the later classifiers

capable of fixing the mistakes made in earlier classifiers.

Multi-staged branching. Using the complementary merg-

ing strategies (classifiers), we branch the searching into

multiple directions. New branches start only when the clas-

sifier’s decision scores of all pairs of adjacent segments are

below zero. This setting splits one single greedy merging

process into multiple stages. Merging strategies in each

stages are different.

Since the total number of branches at the last stage is

exponential to the stage number, it appears that this multi-

staged branching would generate too many proposals. But

as shown in Sec. 3, if we use a small branch degree (2 in our

experiment) and a large merging pace (merges 50% pairs of

segments) in each stage, the proposal number can be kept

relatively small.

The segmentation method in [24] also organizes the

greedy merging process in cascaded stages with learned

merging strategies, but based on different principles. Com-

pared to their work, we emphasize on improving object de-

tection recall by branching with complementary merging

strategies, rather than high boundary recall with single se-

quence of merging.

Extensive comparison to previous object proposal meth-

ods indicates that our approach achieves the state-of-the-

art results in terms of object proposal evaluation protocols.

Moreover, in order to investigate how well these methods

perform for real-world object detection tasks, we test all

compared object proposal methods using the state-of-the-

art R-CNN detector [14] on PASCAL VOC2007 [10]. To

the best of our knowledge, we are the first to give this end

to end comparison. 1

2. Related Work

The existing object proposal algorithms generally fall

into two categories: scoring-based and segment-based. We

review the two categories separately in the below. A more

comprehensive survey is provided in [18].

The pioneer work in [1, 2] firstly addresses the prob-

lem of measuring the generic objectness scores of image

1The contemporary work [17] also perform such an object proposal

evaluation using the R-CNN detector.



windows. It adopts a variety of appearance and geometry

properties contained in an image window to measure how

likely there exists an object. It is improved in [22, 9] by

using more complicated features and learning methods. Re-

cent works in [7] and [28] score image windows by simple

concepts using only image gradients and contours [8] and

they show very fast computational speed compared to other

methods.

On the other hand, segment-based methods such as [19,

6, 21, 26, 5, 23] address the generic object proposal from a

different angle. Starting from an initial oversegmentation,

their principle is to use efficient strategy such as automatic

foreground-background segmentation [19, 6], randomized

prim sampling [21], hierarchical image segmentation [26],

combinatorial grouping [5], or a combination of above [23]

to search the segment composition space. The approach

in [26] has been proven effective by recent object detec-

tion works. Due to its high recall and reasonable compu-

tational speed, many state-of-the-art object detection algo-

rithms [14, 16] use its proposals as input object candidates.

Our work is mostly related to [26], as both use hierar-

chical image segmentation and multiple merging strategies.

Our approach differs in that it is built on two more general

principles: multi-staged branching and automatic learning

of complementary merging strategies. As shown in exper-

iments, our method is more effective as it finds a smaller

number of proposal with higher qualities.

3. Multi-branch Hierarchical Segmentation

3.1. Greedy merging

Hierarchical segmentation is commonly implemented as

a bottom-up greedy merging process [4, 12, 23, 26, 12].

Starting from an initial oversegmentation, it evaluates the

merging score for each pair of neighboring segments with

some merging strategy. Then in each merging iteration,

the pair of segments with the highest score is merged to-

gether. This process carries on until either the whole image

is merged into one segment or the maximum score of the

remaining pairs are below some threshold.

3.2. Cascaded multi­branch greedy merging

In order to enrich the search capability for complex

objects, we propose to try different merging strategies

throughout the greedy merging process, which we call

branching. This approach turns the original hierarchical

image segmentation’s sequential evolution structure into a

tree-like structure. As illustrated in Fig. 2, objects will have

a better chance to be detected in one of those tree branches.

For each branch, we model the merging strategy as a bi-

nary classifier by using its decision value as merge score.

For the branches starting from the same parent branch, their

merging strategies are trained to be complementary in a se-

Figure 2. Illustration of our approach. Top left: ground truth

bounding box annotation (blue), our proposal windows with high-

est IoU score (red). Top right: initial oversegmentation rendered

with mean color. Mid right: the tree structure of multi-branch hi-

erarchical image segmentation. Bottom & mid left: three objects

successfully detected at different branches.

quential manner, which makes each of them capable of fix-

ing some mistakes made by the others. We describe how

our merging strategies are learned in Sec. 3.3

We organize branching by splitting the greedy merging

process into several cascaded stages. Algorithm 1 illustrates

our algorithm. During each stage, current branches progress

until no pair of adjacent regions are classified as positive,

which pronounces the end of that stage. Then at the be-

ginning of the next stage, each branch splits into K new

branches with K complementary merging strategies. This

process carries on until the last stage. The remaining seg-

ments are then merged greedily until the whole image is

merged as one segment.

One may worry that such a multi-branch tree structure

will bring exponentially large number of object proposals.

Indeed, a T -staged K-branch greedy merging can generate

a total of KT different hierarchical segmentation results.

Despite that the number of segmentations is exponential to

the number of the stages, the number of proposal number

can be kept relatively low if we use suitable parameters as

shown below:

Suppose each stage reduces current segment number

by a portion of λ, a T -staged K-branch greedy merging

roughly produces
∑T

t=1 K
tN(1− λ)

t−1
λ proposal win-

dows, where N is the superpixel number for the initial over-



Algorithm 1 Multi-branch hierarchical image segmentation

algorithm for object proposal generation.

Input: stage number T , branch degree K

Input: initial oversegmentation S0 = {s1, ..., sN}

Input: classifiers for each branch f
(t)
j,k

Input: thresholds for each branch b
(t)
j,k

Initialize: proposal region set: R = S0, segmentation

queue: Q = {S0}.
for t = 1 to T do

branch num← |Q|
for j = 1 to branch num do

for k = 1 to K do

(P, S)← greedy merging Sj via f
(t)
j,k , b

(t)
j,k

Add segmentation S to the back of queue Q

R ← R∪ P

end for

Remove Sj from Q.

end for

end for

return bounding boxes of each regions inR

segmentation. If we set K = 2, and λ = 0.5, the result

proposal number is just TN , which is linear to the stage

number. Therefore, by setting a reasonable pace (merg-

ing speed λ) and branch degree (2 in experiment) for each

stage, our multi-branch hierarchical image segmentation al-

gorithm can explore more different segmentation results

while keeping the number of overall proposal windows not

too large.

We propose to control the pace of each stage by setting a

target miss rate τ for each classifier fk by searching a bias

threshold bk. We empirically set this target miss rate τ as

0.7. This means roughly 30% of the regions which belongs

to some objects will be merged in each stage. In test time,

we found that about 30% to 60% of regions are merged in

each stage, and for an image with 400 initial segments, a

4-staged 2-branched greedy merging produces roughly 900

proposal windows after removing duplicates.

3.3. Complementary merging strategy learning

Our key motivation is, in order to detect real-world ob-

jects, a combination of different merging strategies is nec-

essary. We propose to try different merging strategies

throughout the greedy merging process. To make this miss-

and-fix style framework effective, merging strategies for

each branch should be complementary. This means each of

them are supposed to be able to fix some mistakes made by

the others. To achieve this requirement, we propose an auto-

matic learning procedure, which models merging strategies

as binary linear classifiers, and train them in sequence.

We use PASCAL VOC2007’s segmentation dataset [10]

for training. For each image, a ground truth segmentation

map is given, which splits the image into three types of re-

gions: the objects, the background and the void (or unla-

belled) regions.

For clarity, we first describe how to train merging strate-

gies for branches starting from the same parent branch.

Then we show how to train merging strategies for multiple

stages. The whole pipeline is summarized in Algorithm 2.

Training for branches starting from the same parent

branch. From an initial input image segmentation pro-

duced by the parent branch, we classify each pair of neigh-

boring segments in the initial segmentation into three cat-

egories. It is positive if both segments belong to the same

object in ground truth. It is negative if the two segments

belong to different objects, or one of them belongs to the

background. Otherwise, it is unknown. We use the positive

and negative pairs as our training samples.

We use linear SVM with weighted loss [11] to train a set

of linear classifiers {fk(·)} sequentially. The loss weights

α
(k)
i for each samples are defined following the two intu-

itions below:

Diversify classifier’s preference. Weighted loss is used

to simulate different data’s prior distributions. Similar as

Boosting [13], we increase the loss weight for each training

sample if it’s wrongly classified by previous classifier. This

makes the classifiers complementary to each other.

Balance training set. Given an image with hundreds

of segments, positive samples largely outnumber negative

samples since most pairs of neighboring segments are wait-

ing to be merged. Therefore, we need to properly increase

the loss weight for those negative samples in order to keep

a reasonably small false positive rate. This is important to

reduce the effect of early mistakes, which are irremediable

in greedy merging.

The learning procedure works as follow:

1. Suppose some weight p
(k)
i with initial value 1 is al-

ready assigned to each training sample xi. Instead of

directly using p
(k)
i as weights in the loss function, the

loss weight α
(k)
i for each sample is computed by bal-

ancing positive and negative samples’ total weights:

α
(k)
i =

N

2
(
ι(yi)

P
(k)
pos

+
ι(1− yi)

P
(k)
neg

)p
(k)
i , (1)

where ι(·) is the indicator function, which output 1 if

input number is positive, and 0 otherwise; N is the

training set size, and P
(k)
pos, P

(k)
neg are the sum of posi-

tive/negative training samples’ weight p
(k)
i .

2. Train the kth linear classifier fk(·) with loss weights

α
(k)
i , and evaluate it over the training set: ŷi

(k) =
fk(xi).



3. Increase p
(k)
i by β times if the sample xi is wrongly

classified by fk(·):

p
(k+1)
i = β ι(1− yiŷi

(k))p
(k)
i . (2)

4. Return to step 1. to train the next classifier fk+1(·).

We control the degree of diversity by the parameter β.

A larger β makes the classifier more focusing on the wrong

samples and behaving more differently to its predecessors,

since the altered training data distribution emphasizes more

on the mistakes made by previous classifiers. However such

increase of diversity comes with a price of classification

precision reduction. As shown in Fig. 3, if β is too large, the

detection recall would slightly decrease. In our experiment,

we empirically set β = 2.

Training for multiple stages. In order to fit the evolution

of this multi-branch greedy merging process as closely as

possible, our complementary classifiers are trained specif-

ically for each branch in different stages. The thresholds

used to control stage pace are searched on a separate vali-

dation set (we use the training/validation split provided by

PASCAL VOC2007’s segmentation dataset). As illustrated

in Algorithm 2 , at each stage t, the Kt−1 sets of com-

plementary linear classifiers are learnt using the previously

described learning algorithm. These complementary linear

classifiers creates Kt new branches. Then for each such

branch, its classifier’s threshold is searched from the valida-

tion set, and new segmentation result on training/validation

images are generated for the next stage.

4. Experiments

4.1. Implementation details

We use the same initial oversegmentations and features

as in [26], for their simplicity and efficiency. Moreover,

using the same features and oversegmentations enables us to

exhibit the improvements caused by our automatic learning

and multi-branched hierarchical segmentation.

In details, we utilize the region-based features in [26] to

train our classifiers, including color histogram intersection,

texture histogram intersection, union region area over full

image size and area over bounding box size of the adjacent

regions to be merged. We also tried other features such as

region’s bounding box aspect ratio, perimeter, centroid or

major (minor) axis, but do not see noticeable improvement.

We use the graph-based segmentation algorithm [12] to

produce four initial over-segmentations per image by adopt-

ing two color spaces (Lab and HSV) and two different pa-

rameters (k = 50 and k = 100) respectively. This is the

same setting as in [26]. We start our merging processes in-

dividually from those 4 over-segmentations and combines

their proposal results.

Algorithm 2 Learning merging strategies for multi-branch

hierarchical segmentation.

Input: stage number T , branch degree K,

target miss rate τ

Input: training/validation image sets Itrain, Ivalid
Input: ground truth segmentation annotations: G
generate initial segmentations: S0

train, S0
valid

init queue: Qtrain ← {S
0
train}

init queue: Qvalid ← {S
0
valid}

for t = 1 to T do

for j = 1 to Kt−1 do

Strain ← Qtrain.POP()

Svalid ← Qvalid.POP()

Strain ← collect train samples from Strain,G
Svalid ← collect valid samples from Svalid,G

{f
(t)
j,k} ← train K complementary classifiers from

Xtrain

for k = 1 to K do ⊲ prepare data for next stage.

predict on Xvalid with f
(t)
j,k

search bias term b
(t)
j,k s.t. miss rate = τ

Sk
train ←GREEDY MERGE(Strain, f

(t)
j,k , b

(t)
j,k)

Sk
valid ←GREEDY MERGE(Svalid, f

(t)
j,k , b

(t)
j,k)

Qtrain.PUSH(Sk
train)

Qvalid.PUSH(Sk
valid)

end for

end for

end for

return complementary classifiers f
(t)
j,k and thresholds b

(t)
j,k

To select proposals for each image given a proposal bud-

get, we randomly rank our proposals using the same strat-

egy as [26]. Each proposal is firstly assigned an initial value

that equals to its position in the segmentation hierarchy,

then we multiply it by a random number to get the prior-

ity value for the proposal. All proposals of an image are

finally sorted according to their priority values.

We implement our method in Matlab. The average run-

time for our method is around 2.8 seconds per image on an

Intel 3.4GHz CPU.

4.2. Experiment settings

Following previous methods [2, 26, 7, 28], we conducts

our experiments on the PASCAL VOC2007 dataset [10],

which consists of 9963 images from 20 categories. Our

classifiers are trained on the VOC’s segmentation set. We

validate the proposed approach in Sec. 4.3, using the vali-

dation set to investigate the impact of and determine several

important parameters. We report the results compared to

other state-of-the-arts on the test set in Sec. 4.4.

Since current proposal methods are tuned on PASCAL’s
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20 object categories, there’s some concern about whether

these methods can generalize well for novel object cate-

gories. Hence, in Sec. 4.4, we also evaluate our method on

ImageNet2013 [25] validation set, which consists of over

20000 images with 200 object categories.

4.3. Investigation of parameters

In this section, we investigate the effect of our multi-

branch approach. Because it is hard to tell by which branch

an object is found if we combine object proposals using

multiple initial over-segmentations, in this section we only

use one initial over-segmentation (Lab color space and k =
50) for clarity.

Impact of important parameters. To evaluate our algo-

rithm’s behavior upon the branch degree and classifier com-

plementary factor β, which both influence the branch di-

versity, we vary their values on each stage respectively and

then compute the recall rate obtained on different intersec-

tion over union2 (IoU) thresholds. Note that we just show

the result on the third stage in Fig. 3 for brevity, since the

results on other stages are similar. As shown in Fig. 3 (left),

increasing branch degree can continuously improve the re-

call rate, but little improvement is observed when branch

degree is larger than 2. From Fig. 3 (right), we can see that

maximum recall rate is reached when β is around 2. Thus

we use a four-stage, two-branch (using 2 complementary

2The Intersection over Union (IoU) [10] is typically used to measure

the accuracy of a window proposal. Is is defined as the intersection area of

a proposal with its nearest ground truth box divided by their union.

classifiers) structure in our experiment below and set β to 2

on each stage.

Evaluation of multi-stage branching. We evaluate our

multi-stage branching by comparing it against a baseline

without branching, which only uses the first classifier in

each stage. Then we produce other variants by starting

branching on different stages or stoping branching after one

certain stage, respectively. Finally, we compare our ap-

proach to all these variants. Detailed recall rates using the

IoU threshold of 0.7 on each stage are reported in Fig. 4.

We make two important observations from Fig. 4.

Firstly, branching can significantly improve the perfor-

mance. Specifically, after using branching, the recall rate

increases from 0.45 to 0.7, and achieves more than 50%

improvement. Secondly, branching at different stages can

always make a progress and removing a branch at any stage

will lead to performance drop. Therefore, it is necessary to

branch at all stages to obtain the best performance.

4.4. Comparison with the state­of­the­art

We compare with recent state-of-the-art methods, in-

cluding selective search (SS) [26], geodesic object pro-

posals (GOP) [19], global and local search (GLS) [23],

edge boxes (EB) [28] and binarized normed gradients

(BING) [7]. Notice that EB and BING are scoring-based

methods, while the others are segment-based.

In the experiment, we use the setting EdgeBox70 (opti-

mized for IoU=0.7) for EB; NS = 200, NΛ = 15 for GOP,

and default settings for the rest of the methods. These set-

tings should yield the best overall performance for them.

Object proposal evaluation. The standard Recall-

#Proposal, Recall-IoU and AUC-#Proposal Curves are em-

ployed to evaluate the performance of each method. In the

Recall-#Proposal Curve, the IoU threshold is fixed first and

then recall rates are computed when proposal number in-

creases. Instead, the Recall-IoU Curve shows the perfor-

mance of top N boxes proposed on the different IoU thresh-

olds. Finally, AUC-#proposal Curve shows the area under

curve (AUC) values of Recall-IoU curves at different win-

dow proposal number thresholds.

Typically an IoU threshold of 0.5 is used to judge

whether an object is successfully detected by the detector

in object detection tasks. However as observed in recent

works [28, 19, 18] that an object proposal with 0.5 IoU is

too loose to fit the ground truth object, which usually leads

to the failure of later object detectors. In order to achieve

good detection results, an object proposal with higher IoU

such as 0.7 or 0.8 is desired. Therefore, the recall perfor-

mance measured under a tight IoU threshold is more im-

portant than under a loss threshold like 0.5. Moreover, it’s

shown in [17] that the mAP rate of a detector is most re-

lated to the AUC score of the object proposal method. This

is confirmed in our latter experiment in Sec 4.4.
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Figure 5. Comparison of our method to various state-of-the-art methods on PASCAL VOC2007 test set. Top left & middle: recall rate no

less than a fixed IoU threshold for different proposal numbers. Top right: Area under curve (AUC) for different proposal numbers. Bottom:

recall rate using different IoU thresholds for fixed proposal budgets.
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Figure 6. Comparison on ImageNet2013 validation set.

As shown in Fig. 5, scoring-based methods (EB and

BING) are competitive on the IoU threshold of 0.5 due to

their effective scoring algorithms. However, as the thresh-

old increases, their curves drops significantly. By con-

trast, all segment-based approaches show favourable per-

formance consistently when IoU threshold is changed. We

note that our method, SS and GOP always rank top at dif-

ferent IoU thresholds and top N proposal budgets. Ours

outperforms SS and GOP under tight IoU thresholds, and

has the best AUC-#Proposal Curve.

As mentioned previously, SS [26] is the most related

work with ours. To further understand why our branching

can improve, we compare our method with SS on different

object sizes. Since SS on average generates 2000 propos-

als per image, we report our proposal results using the first

2000 proposals for fairness. Fig. 8 shows their proposal

number and recall rate. We can see that ours outperforms

SS [26] for large objects (bounding box area > 104), and SS

is only moderately better on small objects. This is because

our branching increases the search space for large complex

objects, while SS concentrates its search more on small ob-

jects (see Fig. 8 left).

In addition, in order to show whether ours and other

methods generalize well outside PASCAL’s 20 object cat-



Figure 7. Qualitative examples of our proposal results. Blue: ground truth boxes. Red: our proposal windows with IoU ≥ 0.7. Green: our

proposal windows with IoU < 0.7.
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Figure 8. Comparison of our method and SS [26] on different ob-

ject sizes (10n pixels). Left: proposal number of two methods.

Right: recall rate of ours (solid line) and SS (dashed line).

mAP (%) recall AUC avg #prop.

BING [7] 37.9 0.321 1927

EB [28] 52.0 0.602 4049

GLS [23] 52.6 0.580 1787

SS [26] 54.2 0.584 2008

GOP [19] 53.8 0.648 2954

Ours(fast) 54.4 0.592 1315

Ours 55.2 0.648 2506

Table 1. R-CNN object detection results using various generic

object proposal methods on the PASCAL VOC2007 test dataset.

Mean average precision (mAP), area under the curve (AUC) of

recall rate, average proposal number per image are reported.

egories, we further conduct evaluation on ImageNet2013

validation set. As shown in Fig. 6, our method achieves the

most competitive results among all the compared methods.

Moreover, it’s worth noticing that our approach’s improve-

ment over other methods on ImageNet is larger than that on

PASCAL VOC.

Using object proposal for object detection. In object de-

tection task, the object proposal algorithm provides candi-

date windows for subsequent object detectors. Therefore, it

is essential to evaluate the performance of proposal meth-

ods by the final detection precision. For this purpose, we

directly evaluate the state-of-the-art R-CNN [14] detector’s

performance using different object proposal methods as de-

tector’s input. We turn off the bounding box regression pro-

cess described in [14] in order to compare the original per-

formance of different proposal methods on a fair basis.

In addition to our approach’s standard version, we eval-

uate a fast version of ours, which only combines 2 (Lab,

k = 50, 100) out of the 4 initial oversegmentations.

Detailed results are reported in Table 1. As seen, our ap-

proach’s standard version achieves both the best mAP (55.2)

and the highest AUC (0.648), while our approach’s fast ver-

sion generates the fewest object proposals (1315) and still

obtains better mAP (54.4) than all the other state-of-the-art

object proposal methods. Although GOP has the same AUC

as ours, its proposal numbers is about 500 more.

5. Conclusions

We propose a novel object proposal algorithm that learns

multiple complementary merging strategies to branch the

search for object proposals. The approach achieves the

state-of-the-art performance under most object proposal

quality measurements. Future work includes exploiting

more effective features and applying the multi-branch idea

to semantic image segmentation.
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