
OBJECr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQUERIES OVER RELATIONAL DATABASES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:

LANGUAGE, IMPLEMENTATION, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND APPLICATIONS *

Victor M. Markowitz and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArie Shoshani

Data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAManagement Research and Development Group
Information and Computing Sciences Division

Lawrence Berkeley Laboratory, Berkeley, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACA 94720 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract

Relatwnal database management system (DBMS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
&@itions and queries for complex (e.g. scientific) data-
base applicatwns are typically large, hard to maintain,
and involve terms that obscure the semuntics of the
application-spec@ data structures and operations. Sincc
it has been proven in practice that using an object (e.g.
Entity-Relatwnship) ntodel greatly simpljEes database
&@ition, one may expect a similar efect on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdatabarc
querying by using an object query language. In this paper
we describe such a query language called the Concise
Object Query Language (COQL). COQL is unique in its
conciseness, in its support of inheritance, and in the capa-
bilities it provides for defining application-specific struc-
tures. We present the CO@ to SQL translation, describe
its implementatwn on top of a commercial relatwd
DBMS, and discuss how COQL can be used for construct-
ing application-speciific views for scientijic applications.

1. Introduction
Managing dataof sdentific database applications requires,
in addition to the traditional capabilities provided by data-
base management systems (DBMSs), "mu * for

presenting, browsing, and querying the data in a way that
users would easily understand. Several new technologies,
such as objectdnted DBMSs and extended relational
DBMSs, promise to have an important role in supporting
such lne&"& * However, in practice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusers often prefer
to use proven commercial DBMS technology, that is, rela-
tional DBMSs, and ~IE content to perf- specialized
operations (such as a spatial search, statistical summaries)
outside DBMSs, in their application ppograms.

Applications that are complex in tenns of the
number of diffmnt types of objects and their relation-
ships, need some metbods and tools for desaibing their
data s t " (scknas) in tenns of objects. These

bytbo Applied Mubemuid SciencU Ruum Rogrun M d che office
of Huw md En-u Rsrurch F"Q d the alia of bagy

* LNsdu teddcd repat LBL3m19. Thb w a k WM Npported

Rewuch, US. d k g y , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuoda Chmu DE-ACO3-
76SRMO98.

schemas need to eventually be translated into dabbase
definitions of relational DBMSs. Accordingly, a data
model that can be diredly supported by relational DBMSs
must be used We have shown in [q that one such model
is rhe Extended Entity-Relationship @ER) model. We
present in this paper an object query language based 011

the EERmodel and a t " from this query language
into SQL. Together with a previously devebpea EER to
relational DBMS schema translator PI, the object query
translator allows application programs and usex
to query damases in "s of objects.

applications requite specialized object views of tbe data

'Ibe problem we address is tbe link betwee0 8n

application and its underlying relational DBMS. Oftea

stored in the database. 'Ibe structure of these views usually
cannot be represented directly by EiER objects, where
some view objects currespond to multiple EER objects.
For example, a biologist's view of a gewmic map in a
molecular biology application looks as shown in figure 1.
Genomic maps are schematic representations of DNA
fragments which cormpond to regions OD a cbfom-
each fragment contains locations of various DNA markers
called loci. While from a biologist's point of view a
genomic map is a single (complex) objed, the infamation

Physical Conscasur Map chromosome 21
Gemtic Consensus Map

Fig. 1. Examplei of Genulnic Maps.

71
U.S. Government Work Not Protected by U.S. Copyright

on a map is typically represented by several EER objects, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as shown in figure 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsection 5 ; in a relational database
such a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm p would be represented by multiple tuples scat-
tered among several relations. The definition of an
application-specific object represented by multiple EER
objects involves not only an EER structural specification,
but also specifying the construction of an instance for that
object from multiple instances of EER object-sets. In a
relational DBMS this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be achieved by executing one or
several fairly complex SQL queries. This is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa complex,
tedious, and error-prone process when done manually.
For a molecular biology application, for example, the pro-
cedures supporting the manipulation of m p s and related
information amounted to over 5000 SQL lines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9].

Object-level query languages provide a more con-
cise and intuitive way of specifying queries and defining
application views. The design considerations for such a
language, called COQL (Concise Object Query
Language), its translation into SQL, and its use in a
scientific application are presented in this paper.

COQL is designed for expressing queries over an
object-level data model. The only assumptions made zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare
that such a data model is capable of describing objects,
their attributes, and connections between objects. The
nature of these connections is not visible in COQL, so that
users do not have to understand concepts such as generali-
zation or various types of object aggregations.

Our experience with using COQL for complex data-
base applications has shown that the complexity (in
number of query lines) of COQL queries relative to
equivalent SQL queries can decrease by a factor of 10. To
illustrate the conciseness of COQL, consider genomic
m p s represented using the EER schema shown in figure 6
of section 5 . In order to retrieve genetic m p objects
together with their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloci and citations, the following COQL
query can be specified:
OUTPUT MAP: Name, Name OF LOCUS,

CONDITIONS MAP: Type = "Genetic"; END
The query above associates every genetic m p instance of
the MAP entity-set, with its name, a set of names for
LOCUS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand a set of titles for CITATION. Expressing this
query in SQL for the Sybase DBMS, for example, requires
a sequence of two subqueries for a total of over 30 lines of
SQL, where most of the query involves join conditions.

Although our example is taken from a scientific
application, we note that the need for application-specific
views that reflect more closely the way users perceive the
application, exists in conventional applications, as well.

The development of COQL is part of an evolution-
ary approach to the development of data management sys-
tems. Our approach entails developing techniques and

Title OF CITATION;

tools that allow users to use existing commercial relational
DBMSs, while ensuring a way to transfer io otber
DBMSs in tbe future. This is achieved by insulating the
applications from the underlying DBMS using an object
model. In the short term, we are developing translators
from this object model to commercial relational DBMSs.
In the future, we plan to implement the same object model
on top of new DBMSs. This will provide a smooth evolu-
tion environment, since existing applications will continue
to interact with the same object model. However, because
the underlying DBMS will be more powerful, it will be
possible to enrich the object model with specialized data
structures and operations.

The rest of tbe paper is organized as follows. As
background, we describe in section 2 a three-level archi-
tecture approach for supporting data management applica-
tions, and work previously done on the translation of EER
schemas into relational DBMS schemas [61. COQL is
described in section 3. Section 4 describes the COQL to
SQL translator, and discuss several practical issues related
to the translation. An example of using COQL in support-
ing scientific data management applications is discussed is
section 5. Section 6 contains concluding remarks and
briefly discusses further plans.

2. Background

Typically, the languages provided by database manage-
ment systems (DBMSs) for describing data structures and
for querying data are at a general-purpose, lower level, of
abstraction than that of the underlying applications. Data-
base descriptions involve mainly technical terms that are
foreign to application users, contain elements that have no
direct counterpart in the application, and therefore obscure
the semantics of the application. Moreover, DBMS data-
bases have very large definitions (schemas). For the
Sybase DBMS, for example, a database consisting of tens
of tables requires thousand of lines of code for defining
tables, indexes, and procedures for maintaining the
integrity of data. Similarly, manipulating (i.e. retrieving
and updating) data in databases involves the development
of numerous procedures. Developing and maintaining
database definitions and procedures is a tedious, error
prone, and time consuming process.

2.1 A Three Level Architecture

Because of the discrepancy between the constructs pro-
vided by DBMSs and the level of abstraction required by
applications, there is a need for supporting data structures
and operations at two levels: an upplicafion level that con-
tains the application-specific data structure definition
(schema) and operations, and a database level that con-
tains the application data structured according to a data-
base definition (schema) using constructs supported by the

72

underlying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADBMS. Consequently, the application-specific zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
schemas and operations must be mapped into database
schemas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand operations, and the data retrieved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom the
DBMS must be converted into data structured according to
the application-specific schema.

For reasons explained below, the schema, operation,
and data mappings mentioned above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be simplified by
introducing an intermediate object-level between the
application and dabbase levels. We have selected the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Extended zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEnfity-Relationship zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(EER) model for this
object-level mainly because of its widespread use in
designing relational databases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As shown in figure 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeach level has schema, data
and operations (queries) associated with i t The intermedi-
ary EER level allows decomposing the operation and
schema mappings between the application and database
levels into simpler mappings between the application and
EER levels, and the EER and database levels, respectively.
Once general purpose translators between the EER and

relational DBMS levels are provided, it is significantly
easier to develop rranslators for application-specific views
for the following reason. EER schemas and queries are
specified in tenns of objects and object connections, and
therefore are inherently more concise, simpler to specify,
and simpler to comprehend than relational DBMS sche-

mas and queries. Accordingly, expressing application-
specific data structures and operations using EER con-
structs and queries is significantly simpler than using rela-
tional DBMS constructs and queries. Furthermore, since

. , I ~ LL- - - - r - - - : - - \ - - i I

Conversion

Fig. 2. Data Management System Architecture.

developing EER schemas and queries is independent of a
specific DBMS, they can be transferred to other DBMSs
without affecting existing application-specific software.

As mentioned above, EER schemas can be imple-
mented over commercial relational DBMS using tools that
can automatically carry Out the EER to relational DBMS

schema mapping [61. In this paper, we are concerned with
the specification of EER operations and their and map-
pings to relational DBMS queries.

2.2 The Extended Entity-Relationship Model

Tbe Extended Entity-Relationship @ER) model is a ver-
sion of the popular Entity-Relufionship (ER) model [l];
the EER model has two additional constructs, genesaliza-
tion and full aggregation [6]. For the sake of brevity, we
present only the terms used to describe EER constructs;
detailed definitions can be found in [q and [12].

An EER description of a dabbase application is
called an EER schema, and can be represented graphically
in a diagrammatic form as shown in figure 3. An EER
schema consists of entify-sets (e.g. EMPLOYEE, PROJECT),

and of entity-set associations, called relationship-sets
(e.g. WORK. LOCATED). We refer commonly to entity-sets
and relationshipsets as object-sets. Individual object-set
instances are qualified by affributes (e.g. Name, Salary).
Entity-sets, relationshipsets, and attributes are represented
diagrammatically in an EER schema by rectangle, dia-
mond, and ellipse shaped vertices, respectively;
relationshipsets are connected by arcs to the object-sets
they associate, and entity-sets and relationshipsets are
connected by arcs to their attributes. Generalization is an
abstraction mechanism that allows viewing a set of spe-
cializufion entity-sets (e.g. MANAGER, SECRETARY) as a
single generic entity-set (e.g. EMPLOYEE). A specialization
entity-set (e.g. MANAGER) inherits the attributes and rela-
tionship involvements of all its generic entity-sets (e.g.
MANAGER inherits Age, salary, WORK, and ASSIGNED-TO

from EMPLOYEE). Genemlization is represented diagram-
matically in an EER schema by arcs labeled ISA , connect-
ing specialization entity-sets to generic entity-sets.

-4 EMPLOYEE

+?k&q&, -6,
Fig. 3. An Extended Entity-Relationship Schema Example.

73

2.3 Translating EER into Relational Schemas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Our approach to translating EER schemas into relational
schemas [6], involves separating the translation process
into several independent stages, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas normalization,
assigning names to relational attributes, merging relation-
schemes, etc. The translation procedure developed in [6]
has been implemented as part of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchema Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand
Translation (SDT) tool [7].

SDT works in two main stages. In the first stage,
SDT maps EER schemas into normalized DBMS-

independent relational schemas consisting of definitions
for relations, keys, and declarative referential integrity
constraints. In this stage interchangeable procedures for
assigning names to relational attributes and merging rela-
tions can be applied. In tbe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsecond stage, SDT generates
schema definitions for specific DBMS; for DBMSs that
have procedural referential integrity mechanisms (e.g.
triggers in Sybase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.0), SDT generates in this stage the
appropriate insert, delete, and update procedures for main-
taining the referential integrity constraints. In addition,
SDT generates a met&abase that contains information
on the EER schema, the generated relational schema, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the mapping between these two schemas. This metadata-
base is implemented using the underlying DBMS, and is
used by the COQL query translator.

SDT targets several relational DBMSs: DB2,

Sybase 4.0, Ingres 6.3, Informix 4.0, and Oracle 6.0. SDT
has been used for the development of databases for
scientific applications at various laboratories worldwide.
SDT's automatic mapping from concise EER
specifications to more verbose DBMS definitions is faster
and less error-prone than developing DBMS definitions
directly. For example, the EER schema for a molecular
biology application, was about 150 lines long, while its
Sybase schema definition, including trigger procedures,
was about 3500 lines long [9].

3. A Concise Object Query Language

Object data models are commonly used in practice for
relational database design. For querying databases, how-
ever, users often have to interact directly with relational
DBMSs. A natural extension of using an object data
model for designing databases is to provide a query
language also based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the object data model. In this sec-
tion we describe such a language, the Concise Object
Query Language (COQL). The translation of COQL
queries into SQL queries is discussed in the next section.

Since we have selected the EER model as our object
data model, we have considered initially adopting one of
the ER or EER query languages proposed in the literature
(e.g. [2, 3, 5, 111). Although COQL has features that are
common to these languages, it is unique in its support of

inheritance, its conciseness, and by allowing attributes
associated with certain object-sets to be viewed as attri-
butes of other object-sets. The lam is essential for sup-
porting the construction of application-specific views.
These features are described below. The full syntactic
definition for COQL is given in [8]. The examples in this
section are based on the EER schema shown in figure 3.

3.1 Main Features

We begin with a simple example that illustrates the con-
ciseness and tbe main components of a COQL query. Con-
sider a request for finding the names of departments that
have managers earning more than 75K, along with the
names of the employees working in these departments.
The intention of this request is to restrict departments to
those that have managers earning more than 75K, and
view the names of employees as (foreign) attributes of
departments, which entails considering departments
regardless of whether they do or do not have employees.
This request is expressed as follows in COQL:
OUTPUT DEPARTMENT: Name, Name OF EMPLOYEE;

CONDITIONS MANAGER: sal" > 75,000;

The query above is concise and quite close to its English
formulation. Note that the same construct is used for (local
attribute) Name, (inherited attribute) Salary, and (foreign
attribute) Name of EMPLOYEE. The latter is treated like any

object is not associated with an EMPLOYEE, then a null

Unambiguous connections between object-sets
appearing in a COQL query do not need to be specified.
The ability to express queries without explicit connections
contributes to their conciseness, When the connections
are ambiguous, several strategies can be used for selecting
the intended connections, or the user can include an expli-
cit connection statement in the query. In the query above,
for example, tbere are two possible connections between
MANAGER and DEPARTMENT and therefore one of them
must be selected. Before being translated into SQL, tbe
connections between the object-sets appearing in the
COQL query are either fully specified by the user OT are
derived by tbe system. The CONNECTIONS statement for
the query above is:

END

Other attribute of DEPARTMENT, that is, if a DEPARTMENT

EMPLOYEE Name is associated with that DEPARTMENT.

CONNECTIONS MANAGER MANAGE DEPARTMENT;

EMPLOYEE WORK DEPARTMENT;
COQL is characterized by the separation of its OUT-

PUT, CONDITIONS, and CONNECTIONS parts; the order
of these parts is arbitrary. The main reason for this
separation is clarity and conciseness. Embedding condi-
tions with object-set connection statements, as usually
done in other ER and EER query languages (as well as
SQL), can be cumbersome and confusing. Quite often
object-set connectivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be inferred without ambiguity,

14

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthen the user zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecify a query consisting of condi-
tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand output statements only.

COQL supports both attribute and relationship zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
inheritance. Thus, for entity-sets (e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMANAGER) that are
specializations of generic entity-sets (e.g. EMPLOYEE). the
attributes (e.g. Age) and relationshipsets (e.g. WORK) of
the generic entity-sets are treated as if they are d m t l y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
associated with (i.e are inherited by) the specialization
entity-sets. This capability simplifies the expression of
COQL queries and improves their conciseness. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2 Basic COQL Constructs

Object-sets are referenced in a COQL query using their
names as specified in the underlying E R schema. A
COQL OUTPUT or CONDITIONS statement consists of an
object-set name heuder followed by ':' and the body of the
statement. If the same object-set name appears several
times in a COQL query, then it is interpreted as the same
reference to (the same instantiation of) an object-set. In
order to distinguish between multiple references to the
same object-set in the underlying schema, object-set
aliases, consisting of object-set names suffixed with
reference-labels, can be used. For example, object-set
EMPLOYEE can be referenced in a query using its name,
that is, EMPLOYEE, or an alias, Such as EMPLOYEE.l or
EMPLOYEE.NEW. An example Of two distinct query refer-
ences to the same object-set in the underlying schema is
shown in the query below requesting the lists of employ- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ees for departments employing Jim Smith:

OUTPUT DEPARTMENT: Name, Name OF EMPLOYEE;

CONDITIONS EMPLOYEE. 1 : Name = "Jim smith"; END

We refer below to object-set names and aliases appearing
in COQL queries as query object-sets.

COQL CONDITIONS statements have a form simi-
lar to analogous constructs in other query languages. A
CONDITIONS statement whose header refers to object-set
Oi can involve local and inherited attributes of O i . CON-
DITIONS statements are formulas consisting of and/or
compositions of atomic comparisons of the form A 8 val
or A 0 B , where A and B are local or inherited attributes,
8 is a comparison operator (such as '=', '>', MATCH, etc),
and vu1 is a list of atomic values. For example, depart-
ments with a floor number different than 2 and 4, and with
names containing strings 'CS' or 'EE', are denoted by the
following condition ('!=* denotes not equal, '96' denotes
any string): DEPARTMENT: Floor != 2, 4 AND Name
MATCH "%CS96", "96EE96".

In a COQL query, compositions of atomic com-
parisons which involve the same attribute in their left-
hand-side can be abbreviated. For example, 'Age > 35

AND Age < 55' can be expressed in the following abbrevi-
ated form: 'Age [> 35 AND < 55 1'.

For describing further the COQL constructs. we use
below a query example that expresses a request for finding
the names and salaries of managers older than 35 and
younger than 55, managing departments located in build-
ing 3. along with the names of these departments and tbe
names of tbe employees who are assigned to the "DB"
project and who work in these departments:
OUTPUT MANAGER: Name, Salary;

CONDITIONS MANAGER: Age [> 35 AND < 55 I ;
DEPARTMENT: Name, Name OF EMPLOYEE;

BUILDING: Number = 3;
PROJECT Name = "DB";

CONNECTIONS MANAGER MANAGE DEPARTMENT;
DEPARTMENT LOCATED BUILDING;

EMPLOYEE ASSIGNED-TO PROJECT;

EMPLOYEE WORK DEPARTMENT; END

The query object-sets appearing in headers of OUT-

PUT statements determine the object structure of (i.e., the
type of objects that are included in) tbe query result, and
therefore are said to be the primary query object-sets.
Conversely, non-primary (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAauxiliary) query object-sets
do not affect the object structure of the query result. AI&-
liary query object-sets can appear in the body of OUTPUT

statements or in headers of CONDITION statements.

In a COQL query, a query object-set can be associ-
ated with the local and inherited attributes of the object-set
it references in the underlying schema. A primary query
object-set can be also associated with (foreign) attributes
of (i.e., that 'are associated with) auxiliary query object-
sets. In the query above, for example, attribute Name of

foreign attribute with (primary query object-set) DEPART-
MENT; similarly, attribute Number of (auxiliary query
object-set) BUILDING is associated as a foreign attribute
with (primary query object-set) DEPARTMENT. Auxiliary
query object-sets that appear in the body of OUTPUT

statements can be associated, in turn, with foreign attri-
butes of auxiliary query object-sets that appear in headers
of CONDITION statements. For example, in the query
above attribute Name of (auxiliary query object-set) PRO
Jm is associated as a foreign attribute with (auxiliary
query object-set) EMPLOYEE.

The association of query object-sets with foreign
attributes is detailed using the COQL CONNECTIONS

statement that consists of a collection of sequences @a?hs)
of query object-sets. For example, the associations of

bute Name of PROJECT with EMPLOYEE, and of attribute
Name of EMPLOYEE with DEPARTMENT, are expressed
using the last three paths of the CONNECTIONS statement
in the query above. Identical query object-sets in different
paths of a CONNECTIONS statement are interpreted as

(auxiliary query object-set) EMPLOYEE is &%OChted as a

attribute Number of BUILDING with DEPARTMENT, Of attri-

75

identical references to the same object-set in the underly-
ing schema; adjacent query object-sets must refer to
object-sets that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare related in the underlying schema either
directly or via an inherited relationshipset.

The association of a foreign attribute, A , with a
query object-set, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, in a COQL query zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be:
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoptional, which entails considering the objects of Oi

regardless of the existence of an associated value for A ;
2. mandatory, which entails considering the objects of Oi

only if they have an associated non-null value for A .
The optional or mandatory type of the association of a
foreign attribute A with a query object-set Oi is deter-
mined as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f A appears in the body of the OUT-
PUT statement whose header contains Oi, then the associ-
ation of A with Oi is considered optional; otherwise (if A
appears in a CONDITIONS statement) the association of A
with Oi is considered mandatory.

Note that while the optional type of association
expresses the usual way of associating attributes with
objects, the mandatory type of association is implied by
the requirement of having non-null values for attributes
involved in condition formulas. In the query above, for
example, DEPARTMENT has (i) a mandatory association
with (foreign attribute) Number of BUILDING (i.e. only
departments that are located in building 3 are included in
the result), and (ii) an optional association with (foreign
attribute) Name of EMPLOYEE (i.e. departments are
included in the result regardless of them having or not
having employees).

In a COQL query all primary query object-sets have
a mutual mandatory association. The mandatory type of
this association entails including in the query result an
object of an object-set referenced by a primary query
object-set only if it is associated with an object from each
object-set referenced by the other primary query object-
sets. For example, in the query above the mandatory asso-
ciation of primary query object-sets DEPARTMENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand
MANAGER entails including in the query result only
managers that manage some department and departments
that have managers. The detailed association of primary
query object-sets is also specified using the CONNEC-

TIONS statement, as illustrated by the first path of the
CONNECTIONS statement in the query above.

Ambiguous object-set connections are not allowed
in COQL queries. In the query above, for example,
without explicit connections it would not be clear that
PROJECT is related to EMPLOYEE. Unambiguous object-set
connections, however, do not have to be fully specilied in
CWL. For example, the connection DEPARTMENT
LOCATED BUILDING in the query above, could be Specified
only as DEPARTMENT BUILDING. Object-set connections
must be fully specified in a COQL query (by users and/or

via an inference process) prior to its translation into SQL.

COQL allows the specification of aggregate func-
tions (COUNT, AVG. MIN, MAX, SUM) in output state-
ments. Such functions define derived attributes associated
with the corresponding primary query object-set. For
example, the following output statement

OUTPUT DEPARTMENT: Name, COUNT EMPLOYEE;
associates every DEPARTMENT with the number of
EMPLOYEEs h the DEPARTMENT. A S h i h Construct can
be used in a condition statement, but has not been imple-
mented yet. For example, the following condition state-
ment DEPARTMENT: AVG Age OF EMPLOYEE > 30;
denotes departments in which the average age of employ-
ees is greater than 30.

3 3 Semantics of COQL Queries

A COQL query is interpreted as follows:

1. first, evaluate the mandatory associations of query
object-sets with foreign attributes appearing in
CONDITION statements;

2. next, apply selections according to formulas
expressed in the CONDITION statements;

3. evaluate optional associations of primary query
object-sets with foreign attributes that appear in
OUTPUT statements;

4. evaluate aggregate functions, and associate the
resulting aggregate (derived) attributes with the
corresponding query object-sets;
finally, evaluate the mandatory associations of pri-
mary query object-sets.

For example, consider the query above. First, the
mandatory associations of DEPARTMENT with (foreign
attribute) Number of BUILDING and of EMPLOYEE with
(foreign attribute) Name of PROJECT are evaluated. As a
result, only departments that are located in some building
and employees that are assigned to some project are con-
sidered for inclusion in the query result. Next, the selec-
tions expressed by the condition statements are applied;

are older than 35 and younger than 55, EMPLOYEE is res-
tricted to the subset of employees assigned to project
"DB", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand DEPARTMENT is restricted to the subset of
departments located in building number 3. Then, the

bute) Name of EMPLOYEE is evaluated, and, accordingly,
departments are considered for inclusion in the query
result regardless of whether they are associated with (one
or several names of) employees or not. Finally, the manda-

evaluated. Consequently, only departments having
managers and only managers managing some department
will appear in the result of the query.

5.

thus, MANAGER is restricted to the subset Of UlaWigerS that

Optional association Of DEPARTMENT With (foreign attri-

tory association Of DEPARTMENT With MANAGER is

76

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATranslating COQL into SQL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsection we briefly describe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe COQL query editor,
present the main features of the COQL translator, and dis-
cuss some characteristics of translating COQL queries into
Sybase SQL queries.

We have developed a query editor far specifying
COQL queries [lo] and a COQL translator for mapping
COQL queries into queries in the SQL dialect specific to
the underlying relational DBMS 181. The COQL editor
and translator use a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmetadatabase which contains informa-
tion on the EER schema, the underlying DBMS &ma,
and the mapping between the EER and DBMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscbemas.
Tbe metadatabase is essential far inferring the connections
(paths) between the objects specified in a COQL query,
and for providing the information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the correspondence
of EER and DBMS constructs. As mentioned earlier, this
me- is automatically generated by SDT during
its EER schema translation process [7].

The COQL query editor supports the graphical
specification of concise COQL queries in terms of objects,
attributes, operators, and values. Its purpose is to guide
the user through the various stages of query specification.
As mentioned in the previous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsection, COQL queries can
be simplified by omitting unambiguous object connec-
tions. The connections that are not specified in the COQL
query are inferred by the COQL query editor using the
information stored in the metadatabase on the structure of
the underlying EER schema. The result of this inference
process is a COQL query with a complete connection
statement. The COQL query editor is described in [lo].
A COQL translator which targets the Sybase DBMS has
been fully implemented, and is briefly described below.

The COQL translator maps a COQL query with a
complete connection statement into one or several SQL
queries in several steps listed below:

1. Abbreviated condition statements are expanded.

2. An object-connectivity graph that drives the COQL
translation process is derived from the COQL query.

3. The attribute and relationship inheritance is resolved
by expanding the object-connectivity graph.

4. The relational interpretation (outer or regular join) of
the associations of query object-sets with foreign attri-
butes or with other query object-sets is establisbed,
according to the mandatory or optional type of these
associations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 . Using (semantic) information from the E R schema,
some outer joins are reduced to regular joins.

6. An SQL query generation plan is developed with the
goal of minimizing the number of SQL subqueries;
this plan depends on the specific SQL capabilities sup-

ported by the target DBMS.

7. The expanded COQL query is translated into the SQL
dialect of the underlying relational DBMS.

Steps 1 through 5 do not depend on a specific DBMS,
while steps 6 and 7 are specific to the target DBMS. We
will illustrate below these steps using the COQL query
presented in section 3.2. The COQL query translation
process is described in detail in [8].

Tbe first step of the COQL query translation con-
sists of expanding abbreviated COQL conditions into
SQL-like conditions. For example, the condition associ- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ated with MANAGER in the COQL query Of section 3.2
expanded into MANAGER: Age > 30 AND Age < 55.

Tbe second step of the COQL query translation con-
sists of constructing an object-connectivify graph for the
COQL query; the edges of this graph represent pairs of
adjacent query object-sets appearing in the CONNEC-
TIONS clause of the COQL query, where each vertex
represents a distinct query object-set appearing in the
clause. For example, the objectannectivity graph for the
COQL query of section 3.2 is shown in figure qi).

Inheritance is resolved by expanding the object-
connectivity graph as follows: if a query object-set, O i ,
appears in the query associated with inherited attribute A ,
where A is the attribute of generic object-set Oj, then a
vertex representing a (new) query object-set referencing
Oj is added to the graph, and is connected to the vertex
representing Oi . For example, because MANAGER is asso-
ciated in the COQL query of section 3.2 with inherited
attribute Age, the object-connectivity graph shown in
figure 4(i) is expanded with a vertex representing an alias

that an alias is required here in order to distinguish the
new reference to EMPLOYEE from the already existing one.

for EMPLOYEE, EMPLOYEE.l, as Shown figure qii). Note zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e- -

0 EMPLOYEE. 1

Fig. 4. Object-Connectivity Graphs for Query Example.

I1

The next step of the translation process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdeals with
the relational interpretation of the associations of query
object-sets with foreign attributes, and the mutual associa-
tions of primary query object-sets. Let attribute A of
query object-set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOm be assoCiated as a foreign attribute
with query object-set 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Then the CONNECTIONS state-
ment contains a path involving both 0 and Om. If the
association of A with O1 is optional (resp. mandatory)
then for every pair of adjacent query object-sets, 0,-1 and
o k , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the path between 0 and Om, the relation
representing in the underlying database the object-set
referenced by 0,-1 is left outer-joined (resp. regularly
joined) with the relation representing the object-set refer-
enced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,. In the object-connectivity graph, the edge
representing the connection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 k - l and 01: is directed
(resp. undirected) from the vertex representing 4 - 1 to the
vertex representing ok. Associations of primary query
object-sets are interpreted in a similar way to mandatory
associations of foreign attributes, using regular joins.

In the COQL query of section 3.2, for example, only
the path from DEPARTMENT tO EMPLOYEE COKeSpondS to
an optional association of query object-sets with foreign
attributes. Accordingly, in the object-connectivity graph
the edges from DEPARTMENT to WORK and from WORK to
EMPLOYEE are directed as shown in figure 4(ii).

The next step of the query translation is a semantic
optimization process. Using semantic information from
the EER schema, the relational join interpretation for some
query object-set pairs is changed (reduced) from outer join
to regular join whenever the regular and outer joins are
equivalent. For the COQL query of section 3.2, for exam-
ple, tbe left outer join of the relations representing query
object-sets WORK and EMPLOYEE is equivalent to their reg-
ular join because WORK refers to a relationship-set and
therefore (by definition in the EER model, and because of
the referential integrity constraints in the relational data-
base) there are no values in the joined columns of the
WORK relation without a corresponding value in the joined
columns of the EMPLOYEE relation. Consequently, the
corresponding edge in the object-connectivity graph is
changed from a directed into an undirected edge. Thus, the
edge from WORK to EMPLOYEE in the object-connectivity
graph of Egure 4(ii), is changed from a directed into an
undirected edge.

The order in which the joins involved in the
interpretation of a COQL query are evaluated is deter-
mined by the semantics of the COQL query, as defined in
section 3.3. For example, for the expanded COQL query
of section 3.2 (after semantic optimization) the joins
corresponding to paths (1) DEPARTMENT LOCATED BUILD-
ING and (2) EMPLOYEE ASSIGNED-TO PROJECT must be

EMPLOYEE WORK DEPARTMENT, which, in t m , must be
evaluated before the joins corresponding to path (3)

evaluated before the joins corresponding to path (4)

DBMSs such as Sybase 4.0 and Oracle 6.0 do not
provide a way of enforcing tbe join precedence mentioned
above, and therefore several SQL subqueries need to be
generated. Moreover, systems such as Sybase 4.0 impose
certain restrictions on combining outer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand regular joins,
and these restrictions have also an effect on the number of
SQL subqueries generated. In order to minimize the
number of SQL subqueries generated, an SQL-gemtion
plan is developed. This plan is based on (1) associativity
rules for outer and regular joins, and (2) restrictions on
combining outer and regular joins. Regarding associa-
tivity, a left outer join followed by a regular join and a left
outer join followed by a right outer join are not associative
(see [4]). For the COQL query of section 3.2, for example,
instead of four subqueries corresponding to the four paths
above, associativity of regular joins followed by left outer
joins allows generating one subquery corresponding to

EMPLOYEE.1 MANAGER MANAGE DEPARTMENT.

(composite) path EMPmYEE.1 MANAGER MANAGE DEPART-
MENT LOCATED BUILDING combined with path DEPART-

WORK EMPLOYEE ASSIGNED-TO PROJECI'. Associativity
MENT WORK, and another subquery corresponding to path

rules alone are not enough for developing an SQL-
generation plan because certain associative combinations
of outer joins are not allowed in some DBMSs. For exam-
ple, Sybase 4.0 does not allow a relation to be involved in
the inner and outer part of two left outer joins [121,
although such a combination of outer joins is associative.

The last step of the translation consists of generating
a sequence of SQL subqueries in the SQL dialect of the
target relational DBMS, following the previously
developed SQL-generation plan. The details of this pro-
cess for Sybase are described in [81.

5. Application Example
In this section we discuss the usefulness of the EER
schema and COQL translators in developing data manage-
ment systems for scientific applications. For illustration,
we use the Chromosome Information System (CIS)
developed at Lawrence Berkeley Laboratory [91.

CIS is intended to support molecular biology pro-
jects that are involved in constructing genomic maps such
as those shown in figure 1. CIS provides biologists with
facilities for storing, manipulating, and displaying such
maps. The architecture of CIS follows the three-level
architecture shown in figure 2, that is, consists of (1)
mechanisms supporting application-specific data display
and operations, (2) a database implemented using the
Sybase relational DBMS, and (3) an intermediate level
based on the EER model. The structure of the CIS data-
base has been described using an EER schema that con-
tains over 30 different object-sets representing maps, loci,

78

probes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbibliographic cifufions, etc., and their associations.
A part of a simplified version of this schema is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshown in
figure 6. This EER schema zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas been subsequently
translated using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASDT into a Sybase database definition.

At the application level, map and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAother application-
specific objects are characterized by complex attributes.
For example, map objects have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAname, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtype, sets of loci,
cirorions, etc. At this level, objects can be viewed as attri-
butes of other objects. The relationships between
application-Specific objects iue implied when an object
(e.g. loci) is used as an attribute of another object (e.g.
map). Application-specific views are presented to CIS
users in windows (one window for each object-set) where
object instances are displayed using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets of 'tug: value'
pairs. This application view can be characterized as fol-
lows: tbe view consists of a single primary object-set, and
a set of attributes that may be single or multi-valued. Pri-
mary object-sets correspond to an object-set in the EER
schema. The attributes in the view correspond to local
attributes of the EER object-sets, inherited EER attributes,
or attributes of other (auxiliary) object-sets.

Consider, for example, the EER schema shown in
figure 6. At the application level maps are viewed as
characterized by their name, type, as well as the names of
loci and probes associated with m p s , and titles of cita-
tions associated with maps. Note that this view reflects the
way biologists perceive genomic maps. For them it is
irrelevant that some attributes are inherited and others are
associated with other object-sets. Furthennore, they are
not aware of, and do not care about, the way these views
are supported by the underlying DBMS.

The main operations supported by CIS at the appli-
cation level are:

1. select and display all instances of an object-set;

2. select and display object instances that satisfy certain

3. browse through selected instances of an object-set;

4. for a given object instance, expand an attribute value; if
this value identifies another object, then this operation
entails displaying (by opening a new window) that
object; this operation can be repeated recursively.

In the initial version of CIS, a library of over 5000 lines
of hand-coded SQL procedures were used for assembling
application-level objects from the Sybase relations
representing the EER object-sets. Implementing these
procedures has been a tedious and error-prone process,
especially as schema changes inevitably occurred. We
show below how COQL and the COQL translator are
currently used in order to replace the hand-coded pro-
cedures, and thus increase the productivity and accuracy
of the interface development process.

conditions;

An application-level object-set can be defined using
a COQL query in a way similar to tbe view mechanism of
relational databases. Here, however, the view mechanism
is applied to the EER schema in order to specify compo-
site application-level object-sets. For example, the follow-
ing COQL query is used to assemble the instances of maps
as required by the application-level interface:
OUTPUT MAP: Name, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAType, Name OF LOCUS,

CONNECTIONS MAP CONSISTS-OF LOCUS

Title OF CITATION;

MAP REFERENCED-IN CITATION, END

Executing the SQL queries generated by the COQL trans-
lator for this COQL query provides all map instances
required by the first interface operation mentioned above.

The selection of map instances that satisfy certain
conditions requires modifying the COQL query above by
adding a condition statement, such as:
CONDITIONS MAP: Type = "Cytogenetic";

Each application-level object-set is associated with
a COQL query such as that shown above. Expanding an
attribute value of a selected object instance, where rbe
attribute value identifies another object, X , implies execut-
ing a modified version of the COQL query associated with
the object-set containing X. For example, suppose that
citations are associated with the following COQL query:
OUTPUT CITATION: Title, Name OF AUTHOR;

CONNECTIONS CITATION WRWEN-BY AUTHOR; END

and that for a selected m p instance a particular citation,
X , is selected for expansion. This expansion requires exe-
cuting a m d i e d version of the COQL query above,
namely a query with the following added condition:
CONDITIONS CITATION: Title = "x";

As illustrated above, application-level interfaces for
browsing, querying, and navigating between application-
level object-sets can be supported by simple modifications
of predefined COQL queries. Note that in the example
above each application-specific view involves only one

n

Fig. 6. An EER Schema for Genomic Maw.

79

primary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(in COQL terms) object-set. In general, COQL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can support the definition of application views involving
multiple primary object-sets.

We have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshown above how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACQQL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be used to
support both the definition of application-specific views,
and operations on such views. This approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreduces
significantly the complexity of developing interfaces to
applications supported by an underlying relational DBMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.

6. Concluding Remarks

We have described the Concise Object Query Language
(COQL). Although COQL has features that are common
to other object languages, it is unique in its conciseness
and in allowing attributes associated with certain (mi&
ary) objects to be viewed as attributes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOther (primary)
objects. We have described the translation process of
COQL into SQL queries, and discussed its implementation
for the Sybase DBMS. We have illustrated the m s u u c -
tion of application-specific views for scientific applica-
tions using COQL and its translator.

Several practical considerations have guided the
design of the initial version of COQL. The complexity of
implementing the COQL translator both influenced and
restricted the capabilities of this version of COQL. For
example, only conjunctive object-set associations can be
currently expressed in COQL and attributes of different
object-sets cannot appear in the same condition statement.
Nevertheless, COQL is powerful enough to express selec-
tion conditions, output, and aggregate functions. We plan
to gradually extend COQL. As a first extension, we are
currently incorporating update capabilities into the next
version of COQL and COQL translator.

We are working on further optimizing the SQL
queries generated by the COQL translator by detecting
extraneous joins, that is, joins that can be removed from
the generated SQL queries while preserving the semantics
of the original COQL queries.

An important issue not addressed in this paper is
dealing with results of COQL queries. While COQL
allows the specification of complex application-specific
object-sets, the result of a COQL query is currently
returned in an unnormalized relational form. A more
appropriate structuring of the data needs to be explored, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and conversion procedures into such structures must be
developed.

Finally, we have not fully explored performance
issues related to the use of the COQL translator in data
management systems. The COQL translation introduces
an overhead (several seconds) that might be unacceptable
in an environment where short response time is essential.
In such environments the COQL translator can be used off
line to generate parameterized stored SQL procedures, that

can then be invoked at run time. Various altematives for
impmving performance are currently examined.

Acknowledgements. We want to thank Ernest Szeto
for his outstanding implementation of the COQL editor
and COQL translator.

References

[I] P.P. Chen, "The Entity-Relationship Model- Towards a
Unified View of Data", ACM Trans. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Database Systems

[2] B. Czejdo, R. Elmasri, D.W. Embley, and M. Rusinkiewicz,
"A Graphical Data Manipulation Language for an Extended
Entity-Relationship Model". IEEE Computer 23, 3 (March

[3] R. Elmasri and G. Wiederhold, "GORDAS: A Formal
High-Level Query Language for the Entity-Relationship
Model", Entity-Relationship Approach to Information
Modeling and Analysis, ER-Institute, 1981, pp. 49-12.

[4] C. Galindo-Jegaria and A. Rosenthal, "How to Extend a
Conventional Optimizer to Handle One- and Two-sided
Outerjoin", Proc. of the 8th In?. Conf on Data Engineering,

[5] V.M. Markowitz and Y. Raz, "ERROL An Entity-
Relationship Role Oriented Query Language", Entity-
Relationship Approach to SopVare Engineering, North-

Holland, 1983, pp. 329-345.

[6] V.M. Markowitz and A. Shoshani, "Representing Extended
Entity-Relationship Structures in Relational Databases: A
Modular Approach", ACM Trans. on Database Systems, 17,
3 (Sep. 1992), pp. 423-464.

[7] V.M. Markowitz and W. Fang, "SDT 4.1. Reference
Manual", Lawrence Berkeley Laboratory Technical Report

[8] V.M. Markowitz and E. Szeto. "The COQL Translator.
Design Document and Reference Manual", Lawrence
Berkeley Laboratory Technical Report LBL-31451,1991.

[9] V.M. Markowitz, S. Lewis, J. McCarthy, F. Olken, and M.
Zorn, "Data Management for Genomic Mapping Applica-
tions: A Case Study", Proc. of the 6th Int. Con$ on Scientifi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and Statistical Database Management, June 1992.

[10]V.M. Markowitz, A. Shoshani, and E. Szeto, "The COQL
Graphical Editor. Reference Manual", Lawrence Berkeley
Laboratory Technical Report LBL-33218, 1993.

[11] A. Shoshani, "CABLE: A Language Based on the Entity-
Relationship Model", Lawrence Berkeley Laboratory
Technical Report LBL-22033.1978.

[I21 Sybase, Inc., "Transact-SQL User's Guide", Release 4.0,
Emeryville, Califomia, Oct. 1989.

[13]T.J. Teorey, D. Yang, and J.P. Fry, "A Logical Design
Methodology for Relational Databases Using the Extended
Entity-Relationship Model", Computing Surveys 18.2 (June

1, l (March 1976), pp. 9-36.

1990), pp. 26-36.

pp. 402-409, 1992.

LBL-27843.1991.

1986), pp. 197-222.

