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Abstract 

Relatwnal database management system (DBMS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
&@itions and queries for complex (e.g. scientific) data- 
base applicatwns are typically large, hard to maintain, 
and involve terms that obscure the semuntics of the 
application-spec@ data structures and operations. Sincc 
it has been proven in practice that using an object (e.g. 
Entity-Relatwnship) ntodel greatly simpljEes database 
&@ition, one may expect a similar efect on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdatabarc 
querying by using an object query language. In this paper 
we describe such a query language called the Concise 
Object Query Language (COQL). COQL is unique in its 
conciseness, in its support of inheritance, and in the capa- 
bilities it provides for defining application-specific struc- 
tures. We present the CO@ to SQL translation, describe 
its implementatwn on top of a commercial relatwd 
DBMS, and discuss how COQL can be used for construct- 
ing application-speciific views for scientijic applications. 

1. Introduction 
Managing dataof sdentific database applications requires, 
in addition to the traditional capabilities provided by data- 
base management systems (DBMSs), "mu * for 

presenting, browsing, and querying the data in a way that 
users would easily understand. Several new technologies, 
such as objectdnted DBMSs and extended relational 
DBMSs, promise to have an important role in supporting 
such lne&"& * However, in practice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusers often prefer 
to use proven commercial DBMS technology, that is, rela- 
tional DBMSs, and ~IE content to perf- specialized 
operations (such as a spatial search, statistical summaries) 
outside DBMSs, in their application ppograms. 

Applications that are complex in tenns of the 
number of diffmnt types of objects and their relation- 
ships, need some metbods and tools for desaibing their 
data s t "  (scknas) in tenns of objects. These 
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schemas need to eventually be translated into dabbase 
definitions of relational DBMSs. Accordingly, a data 
model that can be diredly supported by relational DBMSs 
must be used We have shown in [q that one such model 
is rhe Extended Entity-Relationship @ER) model. We 
present in this paper an object query language based 011 

the EERmodel and a t "  from this query language 
into SQL. Together with a previously devebpea EER to 
relational DBMS schema translator PI, the object query 
translator allows application programs and usex 
to query damases in "s of objects. 

applications requite specialized object views of tbe data 

'Ibe problem we address is tbe link betwee0 8n 

application and its underlying relational DBMS. Oftea 

stored in the database. 'Ibe structure of these views usually 
cannot be represented directly by EiER objects, where 
some view objects currespond to multiple EER objects. 
For example, a biologist's view of a gewmic map in a 
molecular biology application looks as shown in figure 1. 
Genomic maps are schematic representations of DNA 
fragments which cormpond to regions OD a cbfom- 
each fragment contains locations of various DNA markers 
called loci. While from a biologist's point of view a 
genomic map is a single (complex) objed, the infamation 

Physical Conscasur Map chromosome 21 
Gemtic Consensus Map 

Fig. 1. Examplei of Genulnic Maps. 
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on a map is typically represented by several EER objects, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as shown in figure 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsection 5 ;  in a relational database 
such a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm p  would be represented by multiple tuples scat- 
tered among several relations. The definition of an 
application-specific object represented by multiple EER 
objects involves not only an EER structural specification, 
but also specifying the construction of an instance for that 
object from multiple instances of EER object-sets. In a 
relational DBMS this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be achieved by executing one or 
several fairly complex SQL queries. This is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa complex, 
tedious, and error-prone process when done manually. 
For a molecular biology application, for example, the pro- 
cedures supporting the manipulation of m p s  and related 
information amounted to over 5000 SQL lines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. 

Object-level query languages provide a more con- 
cise and intuitive way of specifying queries and defining 
application views. The design considerations for such a 
language, called COQL (Concise Object Query 
Language), its translation into SQL, and its use in a 
scientific application are presented in this paper. 

COQL is designed for expressing queries over an 
object-level data model. The only assumptions made zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
that such a data model is capable of describing objects, 
their attributes, and connections between objects. The 
nature of these connections is not visible in COQL, so that 
users do not have to understand concepts such as generali- 
zation or various types of object aggregations. 

Our experience with using COQL for complex data- 
base applications has shown that the complexity (in 
number of query lines) of COQL queries relative to 
equivalent SQL queries can decrease by a factor of 10. To 
illustrate the conciseness of COQL, consider genomic 
m p s  represented using the EER schema shown in figure 6 
of section 5 .  In order to retrieve genetic m p  objects 
together with their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloci and citations, the following COQL 
query can be specified: 
OUTPUT MAP: Name, Name OF LOCUS, 

CONDITIONS MAP: Type = "Genetic"; END 
The query above associates every genetic m p  instance of 
the MAP entity-set, with its name, a set of names for 
LOCUS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand a set of titles for CITATION. Expressing this 
query in SQL for the Sybase DBMS, for example, requires 
a sequence of two subqueries for a total of over 30 lines of 
SQL, where most of the query involves join conditions. 

Although our example is taken from a scientific 
application, we note that the need for application-specific 
views that reflect more closely the way users perceive the 
application, exists in conventional applications, as well. 

The development of COQL is part of an evolution- 
ary approach to the development of data management sys- 
tems. Our approach entails developing techniques and 

Title OF CITATION; 

tools that allow users to use existing commercial relational 
DBMSs, while ensuring a way to transfer io otber 
DBMSs in tbe future. This is achieved by insulating the 
applications from the underlying DBMS using an object 
model. In the short term, we are developing translators 
from this object model to commercial relational DBMSs. 
In the future, we plan to implement the same object model 
on top of new DBMSs. This will provide a smooth evolu- 
tion environment, since existing applications will continue 
to interact with the same object model. However, because 
the underlying DBMS will be more powerful, it will be 
possible to enrich the object model with specialized data 
structures and operations. 

The rest of tbe paper is organized as follows. As 
background, we describe in section 2 a three-level archi- 
tecture approach for supporting data management applica- 
tions, and work previously done on the translation of EER 
schemas into relational DBMS schemas [61. COQL is 
described in section 3. Section 4 describes the COQL to 
SQL translator, and discuss several practical issues related 
to the translation. An example of using COQL in support- 
ing scientific data management applications is discussed is 
section 5.  Section 6 contains concluding remarks and 
briefly discusses further plans. 

2. Background 

Typically, the languages provided by database manage- 
ment systems (DBMSs) for describing data structures and 
for querying data are at a general-purpose, lower level, of 
abstraction than that of the underlying applications. Data- 
base descriptions involve mainly technical terms that are 
foreign to application users, contain elements that have no 
direct counterpart in the application, and therefore obscure 
the semantics of the application. Moreover, DBMS data- 
bases have very large definitions (schemas). For the 
Sybase DBMS, for example, a database consisting of tens 
of tables requires thousand of lines of code for defining 
tables, indexes, and procedures for maintaining the 
integrity of data. Similarly, manipulating (i.e. retrieving 
and updating) data in databases involves the development 
of numerous procedures. Developing and maintaining 
database definitions and procedures is a tedious, error 
prone, and time consuming process. 

2.1 A Three Level Architecture 

Because of the discrepancy between the constructs pro- 
vided by DBMSs and the level of abstraction required by 
applications, there is a need for supporting data structures 
and operations at two levels: an upplicafion level that con- 
tains the application-specific data structure definition 
(schema) and operations, and a database level that con- 
tains the application data structured according to a data- 
base definition (schema) using constructs supported by the 
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underlying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADBMS. Consequently, the application-specific zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
schemas and operations must be mapped into database 
schemas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand operations, and the data retrieved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom the 
DBMS must be converted into data structured according to 
the application-specific schema. 

For reasons explained below, the schema, operation, 
and data mappings mentioned above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be simplified by 
introducing an intermediate object-level between the 
application and dabbase levels. We have selected the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Extended zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEnfity-Relationship zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(EER) model for this 
object-level mainly because of its widespread use in 
designing relational databases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As shown in figure 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeach level has schema, data 
and operations (queries) associated with i t  The intermedi- 
ary EER level allows decomposing the operation and 
schema mappings between the application and database 
levels into simpler mappings between the application and 
EER levels, and the EER and database levels, respectively. 
Once general purpose translators between the EER and 

relational DBMS levels are provided, it is significantly 
easier to develop rranslators for application-specific views 
for the following reason. EER schemas and queries are 
specified in tenns of objects and object connections, and 
therefore are inherently more concise, simpler to specify, 
and simpler to comprehend than relational DBMS sche- 

mas and queries. Accordingly, expressing application- 
specific data structures and operations using EER con- 
structs and queries is significantly simpler than using rela- 
tional DBMS constructs and queries. Furthermore, since 

. ,  I ~ LL- - - - r - - - : - - \ - - i  I 

Conversion 

Fig. 2. Data Management System Architecture. 

developing EER schemas and queries is independent of a 
specific DBMS, they can be transferred to other DBMSs 
without affecting existing application-specific software. 

As mentioned above, EER schemas can be imple- 
mented over commercial relational DBMS using tools that 
can automatically carry Out the EER to relational DBMS 

schema mapping [61. In this paper, we are concerned with 
the specification of EER operations and their and map- 
pings to relational DBMS queries. 

2.2 The Extended Entity-Relationship Model 

Tbe Extended Entity-Relationship @ER) model is a ver- 
sion of the popular Entity-Relufionship (ER) model [l]; 
the EER model has two additional constructs, genesaliza- 
tion and full aggregation [6]. For the sake of brevity, we 
present only the terms used to describe EER constructs; 
detailed definitions can be found in [q and [12]. 

An EER description of a dabbase application is 
called an EER schema, and can be represented graphically 
in a diagrammatic form as shown in figure 3. An EER 
schema consists of entify-sets (e.g. EMPLOYEE, PROJECT), 

and of entity-set associations, called relationship-sets 
(e.g. WORK. LOCATED). We refer commonly to entity-sets 
and relationshipsets as object-sets. Individual object-set 
instances are qualified by affributes (e.g. Name, Salary). 
Entity-sets, relationshipsets, and attributes are represented 
diagrammatically in an EER schema by rectangle, dia- 
mond, and ellipse shaped vertices, respectively; 
relationshipsets are connected by arcs to the object-sets 
they associate, and entity-sets and relationshipsets are 
connected by arcs to their attributes. Generalization is an 
abstraction mechanism that allows viewing a set of spe- 
cializufion entity-sets (e.g. MANAGER, SECRETARY) as a 
single generic entity-set (e.g. EMPLOYEE). A specialization 
entity-set (e.g. MANAGER) inherits the attributes and rela- 
tionship involvements of all its generic entity-sets (e.g. 
MANAGER inherits Age, salary, WORK, and ASSIGNED-TO 

from EMPLOYEE). Genemlization is represented diagram- 
matically in an EER schema by arcs labeled ISA , connect- 
ing specialization entity-sets to generic entity-sets. 

-4 EMPLOYEE 

+?k&q&, -6, 
Fig. 3. An Extended Entity-Relationship Schema Example. 
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2.3 Translating EER into Relational Schemas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Our approach to translating EER schemas into relational 
schemas [6], involves separating the translation process 
into several independent stages, such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas normalization, 
assigning names to relational attributes, merging relation- 
schemes, etc. The translation procedure developed in [6] 
has been implemented as part of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchema Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
Translation (SDT) tool [7]. 

SDT works in two main stages. In the first stage, 
SDT maps EER schemas into normalized DBMS- 

independent relational schemas consisting of definitions 
for relations, keys, and declarative referential integrity 
constraints. In this stage interchangeable procedures for 
assigning names to relational attributes and merging rela- 
tions can be applied. In tbe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsecond stage, SDT generates 
schema definitions for specific DBMS; for DBMSs that 
have procedural referential integrity mechanisms (e.g. 
triggers in Sybase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.0), SDT generates in this stage the 
appropriate insert, delete, and update procedures for main- 
taining the referential integrity constraints. In addition, 
SDT generates a met&abase that contains information 
on the EER schema, the generated relational schema, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the mapping between these two schemas. This metadata- 
base is implemented using the underlying DBMS, and is 
used by the COQL query translator. 

SDT targets several relational DBMSs: DB2, 

Sybase 4.0, Ingres 6.3, Informix 4.0, and Oracle 6.0. SDT 
has been used for the development of databases for 
scientific applications at various laboratories worldwide. 
SDT's automatic mapping from concise EER 
specifications to more verbose DBMS definitions is faster 
and less error-prone than developing DBMS definitions 
directly. For example, the EER schema for a molecular 
biology application, was about 150 lines long, while its 
Sybase schema definition, including trigger procedures, 
was about 3500 lines long [9]. 

3. A Concise Object Query Language 

Object data models are commonly used in practice for 
relational database design. For querying databases, how- 
ever, users often have to interact directly with relational 
DBMSs. A natural extension of using an object data 
model for designing databases is to provide a query 
language also based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the object data model. In this sec- 
tion we describe such a language, the Concise Object 
Query Language (COQL). The translation of COQL 
queries into SQL queries is discussed in the next section. 

Since we have selected the EER model as our object 
data model, we have considered initially adopting one of 
the ER or EER query languages proposed in the literature 
(e.g. [2, 3, 5, 111). Although COQL has features that are 
common to these languages, it is unique in its support of 

inheritance, its conciseness, and by allowing attributes 
associated with certain object-sets to be viewed as attri- 
butes of other object-sets. The lam is essential for sup- 
porting the construction of application-specific views. 
These features are described below. The full syntactic 
definition for COQL is given in [8]. The examples in this 
section are based on the EER schema shown in figure 3. 

3.1 Main Features 

We begin with a simple example that illustrates the con- 
ciseness and tbe main components of a COQL query. Con- 
sider a request for finding the names of departments that 
have managers earning more than 75K, along with the 
names of the employees working in these departments. 
The intention of this request is to restrict departments to 
those that have managers earning more than 75K, and 
view the names of employees as (foreign) attributes of 
departments, which entails considering departments 
regardless of whether they do or do not have employees. 
This request is expressed as follows in COQL: 
OUTPUT DEPARTMENT: Name, Name OF EMPLOYEE; 

CONDITIONS MANAGER: sal" > 75,000; 

The query above is concise and quite close to its English 
formulation. Note that the same construct is used for (local 
attribute) Name, (inherited attribute) Salary, and (foreign 
attribute) Name of EMPLOYEE. The latter is treated like any 

object is not associated with an EMPLOYEE, then a null 

Unambiguous connections between object-sets 
appearing in a COQL query do not need to be specified. 
The ability to express queries without explicit connections 
contributes to their conciseness, When the connections 
are ambiguous, several strategies can be used for selecting 
the intended connections, or the user can include an expli- 
cit connection statement in the query. In the query above, 
for example, tbere are two possible connections between 
MANAGER and DEPARTMENT and therefore one of them 
must be selected. Before being translated into SQL, tbe 
connections between the object-sets appearing in the 
COQL query are either fully specified by the user OT are 
derived by tbe system. The CONNECTIONS statement for 
the query above is: 

END 

Other attribute of DEPARTMENT, that is, if a DEPARTMENT 

EMPLOYEE Name is associated with that DEPARTMENT. 

CONNECTIONS MANAGER MANAGE DEPARTMENT; 

EMPLOYEE WORK DEPARTMENT; 
COQL is characterized by the separation of its OUT- 

PUT, CONDITIONS, and CONNECTIONS parts; the order 
of these parts is arbitrary. The main reason for this 
separation is clarity and conciseness. Embedding condi- 
tions with object-set connection statements, as usually 
done in other ER and EER query languages (as well as 
SQL), can be cumbersome and confusing. Quite often 
object-set connectivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be inferred without ambiguity, 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthen the user zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecify a query consisting of condi- 
tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand output statements only. 

COQL supports both attribute and relationship zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
inheritance. Thus, for entity-sets (e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMANAGER) that are 
specializations of generic entity-sets (e.g. EMPLOYEE). the 
attributes (e.g. Age) and relationshipsets (e.g. WORK) of 
the generic entity-sets are treated as if they are d m t l y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
associated with (i.e are inherited by) the specialization 
entity-sets. This capability simplifies the expression of 
COQL queries and improves their conciseness. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2 Basic COQL Constructs 

Object-sets are referenced in a COQL query using their 
names as specified in the underlying E R  schema. A 
COQL OUTPUT or CONDITIONS statement consists of an 
object-set name heuder followed by ':' and the body of the 
statement. If the same object-set name appears several 
times in a COQL query, then it is interpreted as the same 
reference to (the same instantiation of) an object-set. In 
order to distinguish between multiple references to the 
same object-set in the underlying schema, object-set 
aliases, consisting of object-set names suffixed with 
reference-labels, can be used. For example, object-set 
EMPLOYEE can be referenced in a query using its name, 
that is, EMPLOYEE, or an alias, Such as EMPLOYEE.l or 
EMPLOYEE.NEW. An example Of two distinct query refer- 
ences to the same object-set in the underlying schema is 
shown in the query below requesting the lists of employ- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ees for departments employing Jim Smith: 

OUTPUT DEPARTMENT: Name, Name OF EMPLOYEE; 

CONDITIONS EMPLOYEE. 1 : Name = "Jim smith"; END 

We refer below to object-set names and aliases appearing 
in COQL queries as query object-sets. 

COQL CONDITIONS statements have a form simi- 
lar to analogous constructs in other query languages. A 
CONDITIONS statement whose header refers to object-set 
Oi can involve local and inherited attributes of O i .  CON- 
DITIONS statements are formulas consisting of and/or 
compositions of atomic comparisons of the form A 8 val 
or A 0 B , where A and B are local or inherited attributes, 
8 is a comparison operator (such as '=', '>', MATCH, etc), 
and vu1 is a list of atomic values. For example, depart- 
ments with a floor number different than 2 and 4, and with 
names containing strings 'CS' or 'EE', are denoted by the 
following condition ('!=* denotes not equal, '96' denotes 
any string): DEPARTMENT: Floor != 2, 4 AND Name 
MATCH "%CS96", "96EE96". 

In a COQL query, compositions of atomic com- 
parisons which involve the same attribute in their left- 
hand-side can be abbreviated. For example, 'Age > 35 

AND Age < 55' can be expressed in the following abbrevi- 
ated form: 'Age [ > 35 AND < 55 1'. 

For describing further the COQL constructs. we use 
below a query example that expresses a request for finding 
the names and salaries of managers older than 35 and 
younger than 55, managing departments located in build- 
ing 3. along with the names of these departments and tbe 
names of tbe employees who are assigned to the "DB" 
project and who work in these departments: 
OUTPUT MANAGER: Name, Salary; 

CONDITIONS MANAGER: Age [ > 35 AND < 55 I ; 
DEPARTMENT: Name, Name OF EMPLOYEE; 

BUILDING: Number = 3; 
PROJECT Name = "DB"; 

CONNECTIONS MANAGER MANAGE DEPARTMENT; 
DEPARTMENT LOCATED BUILDING; 

EMPLOYEE ASSIGNED-TO PROJECT; 

EMPLOYEE WORK DEPARTMENT; END 

The query object-sets appearing in headers of OUT- 

PUT statements determine the object structure of (i.e., the 
type of objects that are included in) tbe query result, and 
therefore are said to be the primary query object-sets. 
Conversely, non-primary (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAauxiliary) query object-sets 
do not affect the object structure of the query result. AI&- 
liary query object-sets can appear in the body of OUTPUT 

statements or in headers of CONDITION statements. 

In a COQL query, a query object-set can be associ- 
ated with the local and inherited attributes of the object-set 
it references in the underlying schema. A primary query 
object-set can be also associated with (foreign) attributes 
of (i.e., that 'are associated with) auxiliary query object- 
sets. In the query above, for example, attribute Name of 

foreign attribute with (primary query object-set) DEPART- 
MENT; similarly, attribute Number of (auxiliary query 
object-set) BUILDING is associated as a foreign attribute 
with (primary query object-set) DEPARTMENT. Auxiliary 
query object-sets that appear in the body of OUTPUT 

statements can be associated, in turn, with foreign attri- 
butes of auxiliary query object-sets that appear in headers 
of CONDITION statements. For example, in the query 
above attribute Name of (auxiliary query object-set) PRO 
Jm is associated as a foreign attribute with (auxiliary 
query object-set) EMPLOYEE. 

The association of query object-sets with foreign 
attributes is detailed using the COQL CONNECTIONS 

statement that consists of a collection of sequences @a?hs) 
of query object-sets. For example, the associations of 

bute Name of PROJECT with EMPLOYEE, and of attribute 
Name of EMPLOYEE with DEPARTMENT, are expressed 
using the last three paths of the CONNECTIONS statement 
in the query above. Identical query object-sets in different 
paths of a CONNECTIONS statement are interpreted as 

(auxiliary query object-set) EMPLOYEE is &%OChted as a 

attribute Number of BUILDING with DEPARTMENT, Of attri- 
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identical references to the same object-set in the underly- 
ing schema; adjacent query object-sets must refer to 
object-sets that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare related in the underlying schema either 
directly or via an inherited relationshipset. 

The association of a foreign attribute, A ,  with a 
query object-set, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, in a COQL query zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be: 
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoptional, which entails considering the objects of Oi 

regardless of the existence of an associated value for A ; 
2. mandatory, which entails considering the objects of Oi 

only if they have an associated non-null value for A .  
The optional or mandatory type of the association of a 
foreign attribute A with a query object-set Oi is deter- 
mined as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f A  appears in the body of the OUT- 
PUT statement whose header contains Oi, then the associ- 
ation of A with Oi is considered optional; otherwise (if A 
appears in a CONDITIONS statement) the association of A 
with Oi is considered mandatory. 

Note that while the optional type of association 
expresses the usual way of associating attributes with 
objects, the mandatory type of association is implied by 
the requirement of having non-null values for attributes 
involved in condition formulas. In the query above, for 
example, DEPARTMENT has (i) a mandatory association 
with (foreign attribute) Number of BUILDING (i.e. only 
departments that are located in building 3 are included in 
the result), and (ii) an optional association with (foreign 
attribute) Name of EMPLOYEE (i.e. departments are 
included in the result regardless of them having or not 
having employees). 

In a COQL query all primary query object-sets have 
a mutual mandatory association. The mandatory type of 
this association entails including in the query result an 
object of an object-set referenced by a primary query 
object-set only if it is associated with an object from each 
object-set referenced by the other primary query object- 
sets. For example, in the query above the mandatory asso- 
ciation of primary query object-sets DEPARTMENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
MANAGER entails including in the query result only 
managers that manage some department and departments 
that have managers. The detailed association of primary 
query object-sets is also specified using the CONNEC- 

TIONS statement, as illustrated by the first path of the 
CONNECTIONS statement in the query above. 

Ambiguous object-set connections are not allowed 
in COQL queries. In the query above, for example, 
without explicit connections it would not be clear that 
PROJECT is related to EMPLOYEE. Unambiguous object-set 
connections, however, do not have to be fully specilied in 
CWL. For example, the connection DEPARTMENT 
LOCATED BUILDING in the query above, could be Specified 
only as DEPARTMENT BUILDING. Object-set connections 
must be fully specified in a COQL query (by users and/or 

via an inference process) prior to its translation into SQL. 

COQL allows the specification of aggregate func- 
tions (COUNT, AVG. MIN, MAX, SUM) in output state- 
ments. Such functions define derived attributes associated 
with the corresponding primary query object-set. For 
example, the following output statement 

OUTPUT DEPARTMENT: Name, COUNT EMPLOYEE; 
associates every DEPARTMENT with the number of 
EMPLOYEEs h the DEPARTMENT. A S h i h  Construct can 
be used in a condition statement, but has not been imple- 
mented yet. For example, the following condition state- 
ment DEPARTMENT: AVG Age OF EMPLOYEE > 30; 
denotes departments in which the average age of employ- 
ees is greater than 30. 

3 3  Semantics of COQL Queries 

A COQL query is interpreted as follows: 

1. first, evaluate the mandatory associations of query 
object-sets with foreign attributes appearing in 
CONDITION statements; 

2. next, apply selections according to formulas 
expressed in the CONDITION statements; 

3. evaluate optional associations of primary query 
object-sets with foreign attributes that appear in 
OUTPUT statements; 

4. evaluate aggregate functions, and associate the 
resulting aggregate (derived) attributes with the 
corresponding query object-sets; 
finally, evaluate the mandatory associations of pri- 
mary query object-sets. 

For example, consider the query above. First, the 
mandatory associations of DEPARTMENT with (foreign 
attribute) Number of BUILDING and of EMPLOYEE with 
(foreign attribute) Name of PROJECT are evaluated. As a 
result, only departments that are located in some building 
and employees that are assigned to some project are con- 
sidered for inclusion in the query result. Next, the selec- 
tions expressed by the condition statements are applied; 

are older than 35 and younger than 55, EMPLOYEE is res- 
tricted to the subset of employees assigned to project 
"DB", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand DEPARTMENT is restricted to the subset of 
departments located in building number 3. Then, the 

bute) Name of EMPLOYEE is evaluated, and, accordingly, 
departments are considered for inclusion in the query 
result regardless of whether they are associated with (one 
or several names of) employees or not. Finally, the manda- 

evaluated. Consequently, only departments having 
managers and only managers managing some department 
will appear in the result of the query. 

5. 

thus, MANAGER is restricted to the subset Of UlaWigerS that 

Optional association Of DEPARTMENT With (foreign attri- 

tory association Of DEPARTMENT With MANAGER is 
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4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATranslating COQL into SQL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsection we briefly describe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe COQL query editor, 
present the main features of the COQL translator, and dis- 
cuss some characteristics of translating COQL queries into 
Sybase SQL queries. 

We have developed a query editor far specifying 
COQL queries [lo] and a COQL translator for mapping 
COQL queries into queries in the SQL dialect specific to 
the underlying relational DBMS 181. The COQL editor 
and translator use a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmetadatabase which contains informa- 
tion on the EER schema, the underlying DBMS &ma, 
and the mapping between the EER and DBMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscbemas. 
Tbe metadatabase is essential far inferring the connections 
(paths) between the objects specified in a COQL query, 
and for providing the information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the correspondence 
of EER and DBMS constructs. As mentioned earlier, this 
me- is automatically generated by SDT during 
its EER schema translation process [7]. 

The COQL query editor supports the graphical 
specification of concise COQL queries in terms of objects, 
attributes, operators, and values. Its purpose is to guide 
the user through the various stages of query specification. 
As mentioned in the previous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsection, COQL queries can 
be simplified by omitting unambiguous object connec- 
tions. The connections that are not specified in the COQL 
query are inferred by the COQL query editor using the 
information stored in the metadatabase on the structure of 
the underlying EER schema. The result of this inference 
process is a COQL query with a complete connection 
statement. The COQL query editor is described in [lo]. 
A COQL translator which targets the Sybase DBMS has 
been fully implemented, and is briefly described below. 

The COQL translator maps a COQL query with a 
complete connection statement into one or several SQL 
queries in several steps listed below: 

1. Abbreviated condition statements are expanded. 

2. An object-connectivity graph that drives the COQL 
translation process is derived from the COQL query. 

3. The attribute and relationship inheritance is resolved 
by expanding the object-connectivity graph. 

4. The relational interpretation (outer or regular join) of 
the associations of query object-sets with foreign attri- 
butes or with other query object-sets is establisbed, 
according to the mandatory or optional type of these 
associations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 .  Using (semantic) information from the E R  schema, 
some outer joins are reduced to regular joins. 

6. An SQL query generation plan is developed with the 
goal of minimizing the number of SQL subqueries; 
this plan depends on the specific SQL capabilities sup- 

ported by the target DBMS. 

7. The expanded COQL query is translated into the SQL 
dialect of the underlying relational DBMS. 

Steps 1 through 5 do not depend on a specific DBMS, 
while steps 6 and 7 are specific to the target DBMS. We 
will illustrate below these steps using the COQL query 
presented in section 3.2. The COQL query translation 
process is described in detail in [8]. 

Tbe first step of the COQL query translation con- 
sists of expanding abbreviated COQL conditions into 
SQL-like conditions. For example, the condition associ- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ated with MANAGER in the COQL query Of section 3.2 
expanded into MANAGER: Age > 30 AND Age < 55. 

Tbe second step of the COQL query translation con- 
sists of constructing an object-connectivify graph for the 
COQL query; the edges of this graph represent pairs of 
adjacent query object-sets appearing in the CONNEC- 
TIONS clause of the COQL query, where each vertex 
represents a distinct query object-set appearing in the 
clause. For example, the objectannectivity graph for the 
COQL query of section 3.2 is shown in figure qi).  

Inheritance is resolved by expanding the object- 
connectivity graph as follows: if a query object-set, O i ,  
appears in the query associated with inherited attribute A ,  
where A is the attribute of generic object-set Oj, then a 
vertex representing a (new) query object-set referencing 
Oj is added to the graph, and is connected to the vertex 
representing Oi . For example, because MANAGER is asso- 
ciated in the COQL query of section 3.2 with inherited 
attribute Age, the object-connectivity graph shown in 
figure 4(i) is expanded with a vertex representing an alias 

that an alias is required here in order to distinguish the 
new reference to EMPLOYEE from the already existing one. 

for EMPLOYEE, EMPLOYEE.l, as Shown figure qii). Note zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e- - 

0 EMPLOYEE. 1 

Fig. 4. Object-Connectivity Graphs for Query Example. 
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The next step of the translation process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdeals with 
the relational interpretation of the associations of query 
object-sets with foreign attributes, and the mutual associa- 
tions of primary query object-sets. Let attribute A of 
query object-set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOm be assoCiated as a foreign attribute 
with query object-set 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Then the CONNECTIONS state- 
ment contains a path involving both 0 and Om. If the 
association of A with O1 is optional (resp. mandatory) 
then for every pair of adjacent query object-sets, 0,-1 and 
o k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the path between 0 and Om, the relation 
representing in the underlying database the object-set 
referenced by 0,-1 is left outer-joined (resp. regularly 
joined) with the relation representing the object-set refer- 
enced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,. In the object-connectivity graph, the edge 
representing the connection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 k - l  and 01: is directed 
(resp. undirected) from the vertex representing 4 - 1  to the 
vertex representing ok. Associations of primary query 
object-sets are interpreted in a similar way to mandatory 
associations of foreign attributes, using regular joins. 

In the COQL query of section 3.2, for example, only 
the path from DEPARTMENT tO EMPLOYEE COKeSpondS to 
an optional association of query object-sets with foreign 
attributes. Accordingly, in the object-connectivity graph 
the edges from DEPARTMENT to WORK and from WORK to 
EMPLOYEE are directed as shown in figure 4(ii). 

The next step of the query translation is a semantic 
optimization process. Using semantic information from 
the EER schema, the relational join interpretation for some 
query object-set pairs is changed (reduced) from outer join 
to regular join whenever the regular and outer joins are 
equivalent. For the COQL query of section 3.2, for exam- 
ple, tbe left outer join of the relations representing query 
object-sets WORK and EMPLOYEE is equivalent to their reg- 
ular join because WORK refers to a relationship-set and 
therefore (by definition in the EER model, and because of 
the referential integrity constraints in the relational data- 
base) there are no values in the joined columns of the 
WORK relation without a corresponding value in the joined 
columns of the EMPLOYEE relation. Consequently, the 
corresponding edge in the object-connectivity graph is 
changed from a directed into an undirected edge. Thus, the 
edge from WORK to EMPLOYEE in the object-connectivity 
graph of Egure 4(ii), is changed from a directed into an 
undirected edge. 

The order in which the joins involved in the 
interpretation of a COQL query are evaluated is deter- 
mined by the semantics of the COQL query, as defined in 
section 3.3. For example, for the expanded COQL query 
of section 3.2 (after semantic optimization) the joins 
corresponding to paths (1) DEPARTMENT LOCATED BUILD- 
ING and (2) EMPLOYEE ASSIGNED-TO PROJECT must be 

EMPLOYEE WORK DEPARTMENT, which, in t m ,  must be 
evaluated before the joins corresponding to path (3) 

evaluated before the joins corresponding to path (4) 

DBMSs such as Sybase 4.0 and Oracle 6.0 do not 
provide a way of enforcing tbe join precedence mentioned 
above, and therefore several SQL subqueries need to be 
generated. Moreover, systems such as Sybase 4.0 impose 
certain restrictions on combining outer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand regular joins, 
and these restrictions have also an effect on the number of 
SQL subqueries generated. In order to minimize the 
number of SQL subqueries generated, an SQL-gemtion 
plan is developed. This plan is based on (1) associativity 
rules for outer and regular joins, and (2) restrictions on 
combining outer and regular joins. Regarding associa- 
tivity, a left outer join followed by a regular join and a left 
outer join followed by a right outer join are not associative 
(see [4]). For the COQL query of section 3.2, for example, 
instead of four subqueries corresponding to the four paths 
above, associativity of regular joins followed by left outer 
joins allows generating one subquery corresponding to 

EMPLOYEE.1 MANAGER MANAGE DEPARTMENT. 

(composite) path EMPmYEE.1 MANAGER MANAGE DEPART- 
MENT LOCATED BUILDING combined with path DEPART- 

WORK EMPLOYEE ASSIGNED-TO PROJECI'. Associativity 
MENT WORK, and another subquery corresponding to path 

rules alone are not enough for developing an SQL- 
generation plan because certain associative combinations 
of outer joins are not allowed in some DBMSs. For exam- 
ple, Sybase 4.0 does not allow a relation to be involved in 
the inner and outer part of two left outer joins [121, 
although such a combination of outer joins is associative. 

The last step of the translation consists of generating 
a sequence of SQL subqueries in the SQL dialect of the 
target relational DBMS, following the previously 
developed SQL-generation plan. The details of this pro- 
cess for Sybase are described in [81. 

5. Application Example 
In this section we discuss the usefulness of the EER 
schema and COQL translators in developing data manage- 
ment systems for scientific applications. For illustration, 
we use the Chromosome Information System (CIS) 
developed at Lawrence Berkeley Laboratory [91. 

CIS is intended to support molecular biology pro- 
jects that are involved in constructing genomic maps such 
as those shown in figure 1. CIS provides biologists with 
facilities for storing, manipulating, and displaying such 
maps. The architecture of CIS follows the three-level 
architecture shown in figure 2, that is, consists of (1) 
mechanisms supporting application-specific data display 
and operations, (2) a database implemented using the 
Sybase relational DBMS, and (3) an intermediate level 
based on the EER model. The structure of the CIS data- 
base has been described using an EER schema that con- 
tains over 30 different object-sets representing maps, loci, 
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probes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbibliographic cifufions, etc., and their associations. 
A part of a simplified version of this schema is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshown in 
figure 6. This EER schema zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas been subsequently 
translated using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASDT into a Sybase database definition. 

At the application level, map and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAother application- 
specific objects are characterized by complex attributes. 
For example, map objects have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAname, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtype, sets of loci, 
cirorions, etc. At this level, objects can be viewed as attri- 
butes of other objects. The relationships between 
application-Specific objects iue implied when an object 
(e.g. loci) is used as an attribute of another object (e.g. 
map). Application-specific views are presented to CIS 
users in windows (one window for each object-set) where 
object instances are displayed using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets of 'tug: value' 
pairs. This application view can be characterized as fol- 
lows: tbe view consists of a single primary object-set, and 
a set of attributes that may be single or multi-valued. Pri- 
mary object-sets correspond to an object-set in the EER 
schema. The attributes in the view correspond to local 
attributes of the EER object-sets, inherited EER attributes, 
or attributes of other (auxiliary) object-sets. 

Consider, for example, the EER schema shown in 
figure 6. At the application level maps are viewed as 
characterized by their name, type, as well as the names of 
loci and probes associated with m p s ,  and titles of cita- 
tions associated with maps. Note that this view reflects the 
way biologists perceive genomic maps. For them it is 
irrelevant that some attributes are inherited and others are 
associated with other object-sets. Furthennore, they are 
not aware of, and do not care about, the way these views 
are supported by the underlying DBMS. 

The main operations supported by CIS at the appli- 
cation level are: 

1. select and display all instances of an object-set; 

2. select and display object instances that satisfy certain 

3. browse through selected instances of an object-set; 

4. for a given object instance, expand an attribute value; if 
this value identifies another object, then this operation 
entails displaying (by opening a new window) that 
object; this operation can be repeated recursively. 

In the initial version of CIS, a library of over 5000 lines 
of hand-coded SQL procedures were used for assembling 
application-level objects from the Sybase relations 
representing the EER object-sets. Implementing these 
procedures has been a tedious and error-prone process, 
especially as schema changes inevitably occurred. We 
show below how COQL and the COQL translator are 
currently used in order to replace the hand-coded pro- 
cedures, and thus increase the productivity and accuracy 
of the interface development process. 

conditions; 

An application-level object-set can be defined using 
a COQL query in a way similar to tbe view mechanism of 
relational databases. Here, however, the view mechanism 
is applied to the EER schema in order to specify compo- 
site application-level object-sets. For example, the follow- 
ing COQL query is used to assemble the instances of maps 
as required by the application-level interface: 
OUTPUT MAP: Name, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAType, Name OF LOCUS, 

CONNECTIONS MAP CONSISTS-OF LOCUS 

Title OF CITATION; 

MAP REFERENCED-IN CITATION, END 

Executing the SQL queries generated by the COQL trans- 
lator for this COQL query provides all map instances 
required by the first interface operation mentioned above. 

The selection of map instances that satisfy certain 
conditions requires modifying the COQL query above by 
adding a condition statement, such as: 
CONDITIONS MAP: Type = "Cytogenetic"; 

Each application-level object-set is associated with 
a COQL query such as that shown above. Expanding an 
attribute value of a selected object instance, where rbe 
attribute value identifies another object, X ,  implies execut- 
ing a modified version of the COQL query associated with 
the object-set containing X. For example, suppose that 
citations are associated with the following COQL query: 
OUTPUT CITATION: Title, Name OF AUTHOR; 

CONNECTIONS CITATION WRWEN-BY AUTHOR; END 

and that for a selected m p  instance a particular citation, 
X ,  is selected for expansion. This expansion requires exe- 
cuting a m d i e d  version of the COQL query above, 
namely a query with the following added condition: 
CONDITIONS CITATION: Title = "x"; 

As illustrated above, application-level interfaces for 
browsing, querying, and navigating between application- 
level object-sets can be supported by simple modifications 
of predefined COQL queries. Note that in the example 
above each application-specific view involves only one 

n 

Fig. 6. An EER Schema for Genomic Maw. 
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primary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(in COQL terms) object-set. In general, COQL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
can support the definition of application views involving 
multiple primary object-sets. 

We have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshown above how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACQQL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be used to 
support both the definition of application-specific views, 
and operations on such views. This approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreduces 
significantly the complexity of developing interfaces to 
applications supported by an underlying relational DBMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

6. Concluding Remarks 

We have described the Concise Object Query Language 
(COQL). Although COQL has features that are common 
to other object languages, it is unique in its conciseness 
and in allowing attributes associated with certain (mi& 
ary) objects to be viewed as attributes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOther (primary) 
objects. We have described the translation process of 
COQL into SQL queries, and discussed its implementation 
for the Sybase DBMS. We have illustrated the m s u u c -  
tion of application-specific views for scientific applica- 
tions using COQL and its translator. 

Several practical considerations have guided the 
design of the initial version of COQL. The complexity of 
implementing the COQL translator both influenced and 
restricted the capabilities of this version of COQL. For 
example, only conjunctive object-set associations can be 
currently expressed in COQL and attributes of different 
object-sets cannot appear in the same condition statement. 
Nevertheless, COQL is powerful enough to express selec- 
tion conditions, output, and aggregate functions. We plan 
to gradually extend COQL. As a first extension, we are 
currently incorporating update capabilities into the next 
version of COQL and COQL translator. 

We are working on further optimizing the SQL 
queries generated by the COQL translator by detecting 
extraneous joins, that is, joins that can be removed from 
the generated SQL queries while preserving the semantics 
of the original COQL queries. 

An important issue not addressed in this paper is 
dealing with results of COQL queries. While COQL 
allows the specification of complex application-specific 
object-sets, the result of a COQL query is currently 
returned in an unnormalized relational form. A more 
appropriate structuring of the data needs to be explored, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and conversion procedures into such structures must be 
developed. 

Finally, we have not fully explored performance 
issues related to the use of the COQL translator in data 
management systems. The COQL translation introduces 
an overhead (several seconds) that might be unacceptable 
in an environment where short response time is essential. 
In such environments the COQL translator can be used off 
line to generate parameterized stored SQL procedures, that 

can then be invoked at run time. Various altematives for 
impmving performance are currently examined. 
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