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Abstract— Robust perception is a vital capability for robotic
manipulation in unstructured scenes. In this context, full pose
estimation of relevant objects in a scene is a critical step towards
the introduction of robots into household environments. In this
paper, we present an approach for building metric 3D models
of objects using local descriptors from several images. Each
model is optimized to fit a set of calibrated training images, thus
obtaining the best possible alignment between the 3D model and
the real object. Given a new test image, we match the local de-
scriptors to our stored models online, using a novel combination
of the RANSAC and Mean Shift algorithms to register multiple
instances of each object. A robust initialization step allows for
arbitrary rotation, translation and scaling of objects in the test
images. The resulting system provides markerless 6-DOF pose
estimation for complex objects in cluttered scenes. We provide
experimental results demonstrating orientation and translation
accuracy, as well a physical implementation of the pose output
being used by an autonomous robot to perform grasping in
highly cluttered scenes.

I. INTRODUCTION

Autonomous robots operating in human environments

present some extremely challenging research topics in path

planning and dynamic perception, among others. Whether it

is in the workplace or in a household, a common character-

istic is the lack of static surroundings: people walk around,

tables and chairs are moved, objects are left in different

places. In order to successfully navigate in, and interact

with, such an environment, accurate and robust dynamic

perception is a must. In particular, an object recognition

system that provides accurate 6-DOF pose is very important

for performing complex manipulation tasks.

The object recognition and registration system we pro-

pose handles arbitrarily complex non-planar objects, is fully

automatic and based on natural (marker-free) features of

a single image. It is robust to outliers, partial occlusions,

changes in illumination, scale and rotation. It is able to detect

multiple objects and multiple instances of the same object

in a single image, and provide accurate pose estimation

for every instance. Using a calibrated camera, it is able to

localize each object in the robot’s coordinate frame to enable

on-line manipulation, as shown in Fig. 1.

Our system takes the core algorithm of Gordon and

Lowe [1] and extends it with a model alignment step that

enables accurate localization (section III-B), an automatic
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Fig. 1. Object grasping in a cluttered scene through pose estimation
performed with a single image. (top left) Scene observed by the robot’s
camera, used for object recognition/pose estimation. Coordinate frames
show the pose of each object. (top right) Virtual environment reconstructed
after running pose estimation algorithm. Each object is represented using a
simple geometry. (bottom) Our robot platform in the process of grasping an
object, using only the pose information from this algorithm.

initialization step for pose registration, and the combination

of RANSAC [2] with Mean-Shift [3] clustering to greatly

improve efficiency of recognizing multiple instances of the

same object. All these contributions make this algorithm

suitable for robotic manipulation of objects in cluttered

scenes, using only a single input image.

To accomplish these goals, the system we propose uses

SIFT features [4] to extract local descriptors from natural

features. As in [1], the system is separated into an off-

line object modelling stage and an on-line recognition and

registration stage. In the modelling stage, a sequence of

images of an object are taken from different viewpoints

using a camera with no pose information. The object is then

segmented in each training image, either manually or auto-

matically. Next, SIFT features are extracted for each image

and matched across the entire sequence. Using a structure-

from-motion bundle adjustment algorithm [5] described in



Section III, we obtain a metric 3D reconstruction of the

desired object, as illustrated in Fig. 2. Finally, the 3D model

is optimally aligned and scaled to accurately match a realistic

representation of the object (Fig. 3). During the on-line stage

described in Section IV, SIFT features for a new image

are extracted and matched against those of each 3D model.

For each object, Mean Shift clustering is applied to the

SIFT keypoint 2D positions to group points belonging to the

same object instance. On each cluster, RANSAC is combined

with a Levenberg-Marquardt non-linear optimization step to

recognize and register multiple instances of the object of

interest. Finally, results from all clusters are merged together,

removing multiple detections of the same object in different

clusters (see Fig.6).

The novelty of our approach is its ability to perform

accurate 6D pose estimation of many objects in cluttered

scenes, in an on-line fashion. The learned model alignment

provides great accuracy without adding computational cost.

The pose initialization (see Fig. 4) is robust to any trans-

formation within the learned model space, enabling a fully

automated system. Finally, the combination of RANSAC and

Mean Shift clustering allows for efficient search of multiple

instances of the same object with minimal extra overhead.

II. RELATED WORK

Reliable object recognition, pose estimation and tracking

are critical tasks in robotic manipulation [6], [7], [8], [9]

and augmented reality applications [10], [1]. While the

range of techniques proposed for these purposes is vast,

not many of them provide fully automated systems; most

of the approaches developed for these tasks rely on overly

simple initialization steps [11], cumbersome manual pose

initialization procedures [12], or do not consider the issue

at all [9].

In augmented reality research, the focus is obtaining the

camera position and orientation with respect to an object

or scene, and accurately registering the camera movement

from one frame to the next. The well known AR toolkit

[13] provides robust, accurate registration data from an object

without any manual initialization. However, it needs to use

markers for tracking, which makes it unsuitable for tracking

multiple objects independently, and would require placing

markers on each object the robot interacts with. Lepetit et al.

[10] overcome the marker limitation by using CAD models

of the tracked objects/scenes, and precomputing keyframes

from the most informatives views of each scene. Gordon

and Lowe [1] present the algorithm on which this paper

is based, providing a method for accurate camera tracking

using learned models of a scene and SIFT features, but

no quantitative localization/orientation results are shown. In

general, the main difficulty when evaluating our method

against the aforementioned articles is the lack of comparable

results: while augmented reality research focuses on mini-

mizing camera jitter and drift, we wish to obtain accurate

localization and orientation of objects in the real world.

In robotics research, many approaches try to solve a

simplified pose estimation problem, in which the object is

Fig. 2. Learning sparse 3D models. (a-b) Training images for a soda
can and learned 3D model and camera positions. (c-f) Learned models for
soda can (c), rice box (d), juice bottle (e) and notebook (f). Each box (c-f)
contains an image of the object, a projection of its corresponding sparse 3D
model, and its virtual representation in the robot’s workspace.

usually assumed to be lying on a planar surface, hence

restricting the search to a position [x y] plus an angular ori-

entation [14], [15]. A more sophisticated method developed

by Ekvall et al. [7], uses color co-occurrence histograms and

geometric modeling to estimate the 6-DOF pose of objects.

While the authors provide a fully automated system, this

approach has several limitations: the algorithm is very sensi-

tive to color variations; histogram-based methods make the

recognition of several close instances of an object extremely

hard; and geometric models rely on lines and edges for

accurate localization, thus restricting the range of usable

objects. Mittrapiyanuruk et al. [9] use Active Appearance

Models (AAMs) to estimate the 6-DOF pose of objects. The

authors provide similar results to our approach (less than

10mm of localization accuracy), although this method suffers

from the known issues in AAMs, namely their troublesome

initialization step and sensitivity to occlusions. Hinterstoisser

et al.[16] propose the creation of sets of close feature points

with distinctive properties to serve as natural 3D markers

(N3Ms). Unfortunately, the authors only provide pass/fail

experiments in synthetic images. It would be interesting to

compare their performance and accuracy in real data.

III. MODELLING OBJECTS USING NATURAL FEATURES

The first task towards the creation of our automated recog-

nition and registration system is the training stage. While

other approaches require objects with particular geometric

properties (i.e. planar surfaces), need CAD models, or rely

on the use of markers, our system uses natural features

of the object to create a 3D metric model. Reliable local

descriptors are extracted from natural features using SIFT

[4]. SIFT features have proven to be one of the most

distinctive and robust local descriptors across a wide range

of transformations [17]. Matching between SIFT descriptors



is performed using the Best Bin First [18] algorithm. Using

structure from motion on the matched SIFT keypoints, we

merge the information from each training image into a sparse

3D model. Finally, proper alignment and scale for each

model are optimized to match the real object dimensions.

A. Sparse 3D models

In order to create a 3D model of an object, we first need

to capture a set of training images of the object from various

positions (see Fig. 2). To simplify this training stage, an

ordered dataset is assumed, in which the most similar images

to a given image are its peers. SIFT features are extracted

from each image, and its descriptors are matched against

those of its peer images. Pair-wise correspondences are then

filtered by estimating the Fundamental matrix and enforcing

the epipolar constraint on each pair of images [19]. Finally,

multi-view correspondences are obtained by matching each

set of pair-wise correspondences against all other sets. Each

multi-view correspondence has one assigned SIFT feature,

which can be either chosen from the set of matching SIFT

features for that multi-view correspondence, or computed

through clustering. In essence, multi-view correspondences

are 2D projections of the 3D points of the object. Formally,

the relationship between a 3D point Pj = [Xj Yj Zj 1]
T

and its 2D projection in image i, pij = [xij yij 1]
T

, can be

expressed as:

pij ≡ KTiPj (1)

Ti =

[

Ri ti
0 1

]

(2)

where K is a 3 × 3 intrinsic camera calibration matrix, and

Ti is the camera transform comprised of Ri and ti, the

rotation and translation of camera i, respectively. The symbol

≡ denotes an equality up to scale.

A bundle adjustment algorithm [5] is used to build a

sparse 3D model of an object from its multi-view correspon-

dences. This algorithm jointly optimizes all 3D points Pj

and extrinsic camera parameters Ri and ti, by minimizing

the sum of reprojection errors of each 3D point into each

image (see Eq. 4). It is noteworthy to mention that, while

the intrinsic camera matrix K can also be optimized using

this method, the reconstructed 3D models significantly de-

crease their localization accuracy. Therefore, it is advisable

to obtain a better estimation of such parameters using a

checkerboard calibration step. For a set of parameters P =
[P1 · · ·PN ] ,R = [R1 · · ·RM ] , t = [t1 · · · tM ] containing

N 3D points and M camera positions, the optimal set of

parameters (P∗,R∗, t∗) is given by

score(P,Ri, ti) =

N
∑

j=1

[pij − proj(Pj,Ri, ti)]
2

(3)

(P∗,R∗, t∗) = arg min

P,R,t

M
∑

i=1

score(P, Ri, ti) (4)

where proj() represents the non-linear perspective projection

Fig. 3. Learning accurate model alignment. (right) input image. (left)
Transformation Ta,1 corresponds to the original model without realignment.
Ta,2 is the proper learned transformation Ta = [sRa|ta]. Ta,3 corresponds
to a model with proper orientation but double scale.

function given by
(

u
v

)

= proj(Pj , Ri, ti) (5)
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v

)

=
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x/w
y/w

)





x
y
w



 = K [Ri | ti]Pj (6)

The optimal set of parameters can be obtained with any

generic non-linear minimization method, such as Levenberg-

Marquardt [20]. Gordon and Lowe [1] demonstrated that the

convergence region for this problem is very broad. Therefore,

a simple initialization approach such as placing all points

in the XY plane and all cameras in the same arbitrary

position, facing the XY plane, is sufficient to obtain accurate

parameters after convergence.

B. Model alignment with real-world objects

The output model after bundle adjustment consists of a set

P of N 3D points with their corresponding SIFT features,

and a set R, t of M camera positions. While this model

is already usable for object tracking, it requires one further

alignment Ra, ta with the (manually set) coordinate frame of

the real-world object, as well as a scaling s to match its size.

The pose estimation algorithm computes the rotation and

translation Rest, test of a model with respect to the camera

frame. The projection of a 3D point in the real world onto

a 2D point in an image is given by

pj ≡ KTest

[

sRa ta
0 1

]

Pj (7)

The transformation [sRa | ta] can be obtained from a small

sample of images with known ground truth Rgt, tgt by

optimizing the following objective function

score(Ra, ta, s) =
∑

i

‖T i
gt − T i

est

[

sRa ta
0 1

]

‖ (8)

for some norm on transformations.

For our problem, we parametrize Ra by elements in S
3

using its roll, pitch, and yaw, and ta by elements in R
3, and

use the Euclidean norm in S
3×R

3 in the optimization. Once

a suitable [sRa | ta] is found, it is used to build the final

model with 3D points P′:

P′

j =

[

sRa ta
0 1

]

Pj (9)



Fig. 4. Initialization steps for a subset of 6 correspondences. Red crosses
refer to SIFT features in the input image, and blue circles refers to the
2D projections of the matching SIFT features in the 3D model. (a) Input
image. (b) Training image with most common matches with input image.
(c) Initial object pose, corresponds to that of the training image. (d) Scaling
adjustment. (e) Rotation adjustment. (f) Translation adjustment. After these
adjustments, the estimation is accurate enough to be given to the non-linear
minimization procedure.

IV. AUTOMATIC FULL POSE ESTIMATION

The on-line stage of this system is a fully automated object

recognition and pose estimation algorithm from a single

image. Using the information from each sparse 3D model

in section III, this algorithm is able to detect several objects

and several instances of each object by combining the LM

optimization with clustering and robust matching. The output

information is the object types and their transformations

Rest, test with respect to the camera frame. If the camera

has been extrinsically calibrated, all objects can be accurately

positioned in any virtual environment we wish to use (see

Fig. 6). Each object is processed independently in each image

when using this algorithm. Therefore, we will focus on the

recognition and estimation of a single object type in this

section.

A. Initialization

An accurate pose initialization is necessary to set the

non-linear minimization procedure in its convergence region.

After matching the test image against a 3D model’s SIFT

descriptors, a correspondence list pi ↔ Pi is obtained.

The training image with the most correspondences could be

used as an initial rough estimation R1, t1 of the object’s

pose. Unfortunately, SIFT features are specifically designed

to be invariant to scaling, translation, and orientation, thus

providing a matching training image that may greatly differ

from our test image. For example, the best feature match

for the test image Fig. 4(a) is the training image Fig. 4(b).

However, the non-linear optimization step cannot deal with

such large differences.

There exist several approaches to perform this initializa-

tion, which can be interpreted as a variants of the PnP

problem. Many solutions have been proposed in the literature

to obtain the position and orientation of a camera given

a set of 2D ↔ 3D correspondences, such as POSIT[21],

Clamped DLT and ePnP[22], among others. Alternatively,

the Hough transform[23], [24] can be used to identify

clusters of features in pose space that present a consistent

orientation and translation. This prediction, however, could

potentially have large errors due to perspective changes. In

this section, we provide a simple yet robust alternative for

initializing an object’s 3D model, whose main advantage over

the aforementioned methods is its much greater speed.

Our initialization uses a simple variant of the Orthogonal

Procrustes Decomposition [25] that accounts for scaling. We

first define pv
i to be a 2D point in the test image, and p

p
j =

proj(Pj , R, t) to be the 2D projection of the 3D point Pj

onto the camera positioned at R, t.
We first perform a scale correction using the standard

deviation ratio of all pairwise distances within the two

images pv and pp to displace the object closer or further

away in the camera frame (z coordinate):

σv =

√

√

√

√

1

N

N
∑

i=1

(pv
i − p̄v)

2
σp =

√

√

√

√

1

N

N
∑

j=1

(

p
p
j − p̄p

)2
(10)

t′ =





tx,1

ty,1
σp

σv

tz,1



 p
p
j = proj (Pj , R1, t

′) (11)

To perform the rotation initialization, we need to dis-

tinguish between out-of-plane and in-plane rotation. Out-

of-plane rotation modifies the object’s shape and visible

area, whereas in-plane rotation does not (see Fig. 5). We

have no information in the SIFT features that can help us

correct errors in out-of-plane rotation. To correct in-plane

rotation, we apply the solution to the Orthogonal Procrustes

Decomposition, namely the alignment of pv and pp with its

principal component:

uv = PCA(pv) up = PCA(pp) (12)

θ = arccos
(

uT
v up

)

(13)

R′ =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



R1 (14)

p
p
i = proj (Pj , R

′, t′) (15)

This provides the rotation matrix R′ that minimizes the

squared transformation error.

Finally, the initial translation needs to be addressed. Given

that the system needs to be robust to occlusions, it is

unrealistic to set the object’s center at the average of pv .

Instead, we must ensure that µv, µp, i.e. the averages of pv

and pp, are at the same relative position from the projected

model center C = [x y 1]T . Therefore, the model center

computation is as follows:

µp = 1
N

∑N

i=1 p
p
i µv = 1

N

∑N

i=1 pv
i (16)

C = proj
(

[0 0 0 1]T , R′, t′
)

(17)

C ′ = µv − µp + C Cb = K−1C ′ (18)

t′′ =





Cb
xt′z

Cb
yt′z
t′z



 (19)



Fig. 5. Examples of the different experiments run on the accuracy test. (Top row) Coke can translation test. (Middle row) Juice bottle out-of-plane rotation
test. (Bottom row) Notebook in-plane rotation test.

where Cb represents the model center back-projected in

3-space. Finally, a robust initialization for the non-linear

minimization procedure is Rinit = R′, tinit = t′′.

B. Pose estimation of a single instance

The objective of this algorithm is to obtain an optimal

transformation R, t of a 3D model w.r.t. the camera frame.

This can be accomplished with a non-linear minimization

on the sum of reprojection errors between the projected 3D

points from the model and the set of 2D points in the test

image, pv . The optimal parameters R∗, t∗ are defined as:

(R∗, t∗) =arg min

R,t

N
∑

i=1

[pv
i − proj (Pi,R, t)]

2
(20)

The Levenberg-Marquardt non-linear minimization algo-

rithm with initialization parameters Rinit, tinit provides an

accurate solution for most cases in which only one object

instance is present.

C. Pose estimation of multiple instances

One of the most important aspects of our algorithm is its

ability to find multiple instances of the same object. We have

integrated the recognition and pose estimation of multiple

instances in the same iterative algorithm. The set of matched

SIFT points pi ↔ Pi contains correspondences between

an object type and a 3D model. However, those matched

points can potentially belong to more than one instance,

with no a priori way to detect this outcome. While a naı̈ve

application of RANSAC alone should be enough to find

all instances of an object in an image, the probability of

finding a subset of points that all belong to the same object

decreases exponentially with the number of instances present

in an image. In turn, the required computation time grows

exponentially, making this approach infeasible. However, the

combination of RANSAC with a clustering technique avoids

the exponential computation time increase, because closer

points are more likely to be part of the same object instance

(see Fig. 6 for details).

In Fig. 6.b we see an image with 9 notebooks. Let us

assume all notebooks have the same amount of correspon-

dences, 30% of outliers, and that we require 5 inliers for

a successful detection. According to RANSAC’s iterations

estimation, finding one particular instance of a notebook with

95% probability requires over 1M iterations. On the other

hand, clustering the correspondences in smaller sets as in

Fig. 6.d means that fewer notebooks (at most 3) are present

in a given cluster. In such a scenario, finding one particular

instance of a notebook with 95% probability requires 16,

586 and 4386 iterations when 1, 2 and 3 notebooks, resp.,

are present in a cluster, at least three orders of magnitude

lower than before.

In our system, Mean Shift clustering is a good choice

because no fixed number of clusters needs to be specified.

The full algorithm is as follows:

1) Cluster SIFT feature 2D locations p using Mean Shift

algorithm. Each cluster contains a subset of points pk.

2) For each cluster of points pk, choose a subset of n
points and estimate a hypothesis with the best pose

according to those points. If the amount of points con-

sistent with the hypothesis is higher than a threshold ǫ,

create a new object instance and refine the estimated

pose using all consistent points in the optimization.

Keep repeating this procedure until the amount of

unallocated points is lower than a threshold, or the

maximum number of iterations has been exceeded.

3) Merge all found instances from different clusters

whose estimated R, t are similar. The instances with

the most consistent points survive.

V. EXPERIMENTS

In order to prove our pose estimation algorithm’s suit-

ability for robotic manipulation, two sets of experiments

have been conducted. The first set evaluates our algorithm’s

accuracy in estimating the position and orientation of objects

in images. The second set uses the full pose estimation

algorithm alongside a state-of-the-art planning algorithm to

grasp objects with a Barrett WAM robotic arm. It is important

to mention that in all experiments we have estimated the



Fig. 6. The importance of clustering in cluttered scenes. The camera position is represented as a red and white pyramid. (Col 1) Scene with 1 soda can, 2
juice bottles and 3 notebooks. The water bottle is not an object in the database, and is therefore only treated as another occlusion. Note that the notebook
on the right is upside down, and correctly detected. Without Mean Shift, this scene requires 121 iterations of RANSAC. With Mean Shift, it requires 38.
(Col 2) Scene with 9 highly-occluded notebooks. Without Mean Shift, the algorithm is only able to find 6 notebooks before the 3000 iterations limit is
reached. With Mean Shift, 9 clusters are formed and all 9 notebooks are detected -with no outliers- after 454 iterations. (Col 3) Scene with 2 soda cans, 2
juice bottles and 1 rice box. Without Mean Shift, 115 iterations. With Mean Shift, 33 iterations. (Col 4) Clusters of correspondences in Notebooks image.

full 6-DOF pose of objects, and no assumptions were made

on their orientation or position. In all cases, our algorithm

clusters the scene with a Mean Shift radius of 100 pixels,

and chooses subsets of 4 correspondences to compute each

RANSAC hypothesis.

The current system is implemented in Matlab, speed-

ing up the most expensive computations (SIFT matching,

Levenberg-Marquardt optimization) in C/C++. One dedi-

cated computer is used to compute SIFT descriptors, and

a second computer performs the actual recognition and pose

estimation. Using the aforementioned parameters and setup,

the average computation time ranges from 3 to 6 frames per

second.

A. Pose estimation accuracy

In this set of experiments, we evaluate our algorithm’s

accuracy over the short-to-medium distance most useful in

robotic manipulation. All experiments have been conducted

on a table on which a camera has been fixed and extrinsically

calibrated. The coordinate origin is set to be the table’s

corner. Four common objects with different shapes and sizes

were used: a juice bottle, a coke can, a rice box and a note-

book. Given the randomized nature of our implementation,

10 images are taken at each test position and their results

averaged, as shown in Fig. 7, to obtain a reliable measure of

accuracy. Fig. 5 depicts some examples of images used in

the pose estimation accuracy test.

1) Translation: The first experiment measures the pose

estimation accuracy of each object in the 30 to 90 cm

distance range. Each object is placed alone in an image and

moved in 10 cm intervals, from 30 to 90 cm away from the

camera (depth test) and laterally from 0 to 20 cm. Table I

shows the average translation error (in cm) for each object

and distance, measured as the Euclidean distance between the

center of the estimated object and the center of the ground

truth object. Best results are obtained in the 40-70cm range,

but it is remarkable that the average error across all objects

TABLE I

TRANSLATION ERROR TEST. ALL DISTANCES IN CM.

Distance from camera (cm) Can Juice Rice Notebook

30 0.93 0.55 0.47 0.98
40 0.14 0.82 0.34 0.75
50 0.61 0.63 0.24 0.51
60 0.55 0.94 0.49 0.36
70 – 0.41 0.49 0.49
80 – 0.81 0.98 0.75
90 – 2.56 1.36 0.95

and distances is only 0.67cm. No results are shown for the

Coke can in the furthest distances because the algorithm does

not find enough features to determine its pose accurately.

2) Out-of-plane rotation: The out-of-plane rotation test

measures the orientation accuracy of our algorithm for a fixed

depth. Keeping the object’s center at 50 cm away from the

camera, each object is rotated with respect to the Z axis from

-45 to 45 degrees, in 15 degree intervals. Orientation error for

a given axis v is computed as the angle between that axis in

Fig. 7. (left) Distribution of translation error (all objects). Average error:
0.67 cm. (right) Distribution of all rotation errors. Average error: 3.81
degrees.



Fig. 8. Examples of grasping objects in cluttered scenes. The first four images (top row, plus bottom-left) show our robotic arm grasping a soda can,
bottle juice, rice box and notebook (resp.). The fifth image (bottom-center) shows a detail of the required position accuracy necessary for cluttered scenes:
the arm executes a trajectory that passes less than 1 cm away from a soda can and a rice box without touching them. The bottom-right image shows our
whole test environment while the robot manipulates a rice box.

TABLE II

OUT-OF-PLANE ROTATION ERROR. ALL ERRORS IN DEGREES.

Angle (degrees) Can Juice Rice Notebook

−45 10.71 4.46 0.97 1.14
−30 6.03 2.50 0.71 1.08
−15 3.35 2.17 0.47 0.87
0 0.88 1.38 0.11 0.06
15 1.82 2.15 2.38 2.13
30 4.80 2.53 3.67 2.05
45 6.27 9.31 3.41 3.04

the estimated solution and its ground truth counterpart, i.e.:

uest = Restv ugt = Rgtv (21)

θ = arccos(
‖uT

estugt‖

‖uest‖‖ugt‖
), (22)

where Rest and Rgt are the estimated and ground truth 3×3
rotation matrices, respectively, and v is a column 3-vector

that represents one of the axes. Table II shows the out-of-

plane rotation error results. The average out-of-plane rotation

error is 3.81 degrees. It is noteworthy to mention that the

soda can and the juice bottle obtain the poorest results at −45
and 45 degrees, respectively, because these are the views with

lowest density of SIFT features in their 3D models. Even in

these extreme cases, such errors proved to be small enough

for most of our grasping experiments.

3) In-plane rotation: The in-plane rotation test measures

the orientation accuracy of our algorithm on 2D rotations

parallel to the image plane. For a given depth (50cm) and

position, each object is tilted up to 45 degrees to each side

in 15 degree intervals. Table III shows the in-plane rotation

error results. The average in-plane rotation error is 1.23

degrees.

TABLE III

IN-PLANE ROTATION ERROR. ALL ERRORS IN DEGREES.

Angle (degrees) Can Juice Rice Notebook

−45 4.81 1.75 1.02 0.54
−30 4.25 1.29 0.74 0.62
−15 2.57 0.96 0.16 1.94
0 1.02 1.59 0.51 1.24
15 0.42 0.99 0.58 0.03
30 1.22 0.48 0.11 1.02
45 2.76 1.05 0.34 0.94

B. Grasping objects

To gauge the effectiveness of our object pose estimation

approach for manipulation, we integrated the approach with

a planning algorithm for the Barrett WAM arm. The plan-

ning algorithm, called the Inverse-Kinematics BiDirectional

Rapidly-exploring Random Tree algorithm (IKBiRRT) [26],

plans a trajectory for the arm starting from its current

configuration and ending at a configuration that places the

wrist of the robot at an acceptable location for grasping.

Each object that was localized has an associated set of wrist

locations that are acceptable for grasping. Once the transform

of the object is found, the associated wrist locations are

input as goal regions for the planner, which then samples

from these goal regions as it plans. Note that, for scenes

where multiple graspable objects are present, we input all

the associated wrist locations for all objects into the planner,

which finds a trajectory to reach any one of them. Once the

robot completes the trajectory, the fingers are closed and the

object is lifted. Snapshots from the experiments are show in

Fig. 8. Notice that the accuracy of the pose estimates are

good enough for the robot to squeeze into narrow openings

and pick up objects within the clutter.

The grasping tests were performed by placing a single

object on a table within the robot’s reachable space. Prior to



TABLE IV

GRASPING TEST

Can Juice Rice Notebook Total

Attempts 25 25 25 25 100

Successful grasps 22 25 21 23 91

each grasping attempt, the object is placed in a new arbitrary

position and orientation (standing up, sideways and upside

down). As seen in IV, our results show an impressive 91%

overall grasping success rate, thus confirming the statement

that our pose estimation algorithm is accurate enough to

enable robotic manipulation of the detected objects. A video

containing vision-based grasping experiments in cluttered

scenes is submitted alongside this paper.

VI. CONCLUSIONS AND FUTURE WORK

We have presented and validated a system for the mark-

erless recognition and registration of common household

objects. A strength of our current algorithm is that it provides

full pose even from just one image. We have demonstrated

that the results are accurate enough for a robot to reach into

a cluttered scene registered from just one image and pick up

all of the objects.

We are currently exploring two extensions: the integration

of pose estimates from multiple views, and active sensing

to move the arm to good views for pose estimation. We

believe that our system provides a crucial capability that

will enable mobile manipulators to function and interact in

crowded indoor environments.
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