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Abstract. We describe a model of object recognition as machine
translation. In this model, recognition is a process of annotating image
regions with words. Firstly, images are segmented into regions, which
are classified into region types using a variety of features. A mapping
between region types and keywords supplied with the images, is then
learned, using a method based around EM. This process is analogous
with learning a lexicon from an aligned bitext. For the implementation
we describe, these words are nouns taken from a large vocabulary. On
a large test set, the method can predict numerous words with high
accuracy. Simple methods identify words that cannot be predicted well.
We show how to cluster words that individually are difficult to predict
into clusters that can be predicted well — for example, we cannot
predict the distinction between train and locomotive using the current
set of features, but we can predict the underlying concept. The method
is trained on a substantial collection of images. Extensive experimental
results illustrate the strengths and weaknesses of the approach.

Keywords: Object recognition, correspondence, EM algorithm.

1 Introduction

There are three major current types of theory of object recognition. One reasons
either in terms of geometric correspondence and pose consistency; in terms of
template matching via classifiers; or by correspondence search to establish the
presence of suggestive relations between templates. A detailed review of these
strategies appears in [4]. These types of theory are at the wrong scale to address
core issues: in particular, what counts as an object? (usually addressed by
choosing by hand objects that can be recognised using the strategy propounded);
which objects are easy to recognise and which are hard? (not usually
addressed explicitly); and which objects are indistinguishable using our
features? (current theories typically cannot predict the equivalence relation im-
posed on objects by the use of a particular set of features). This paper describes
a model of recognition that offers some purchase on each of the questions above,
and demonstrates systems built with this model.
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sea sky sun waves cat forest grass tiger jet plane sky

Fig. 1. Examples from the Corel data set. We have associated keywords and segments
for each image, but we don’t know which word corresponds to which segment. The
number of words and segments can be different; even when they are same, we may
have more than one segment for a single word, or more than one word for a single blob.
We try to align the words and segments, so that for example an orange stripy blob will
correspond to the word tiger.

1.1 Annotated Images and Auto-Annotation

There are a wide variety of datasets that consist of very large numbers of anno-
tated images. Examples include the Corel dataset (see figure 1), most museum
image collections (e.g. http://www.thinker.org/fam/thinker.html), the web
archive (http://www.archive.org), and most collections of news photographs
on the web (which come with captions). Typically, these annotations refer to the
content of the annotated image, more or less specifically and more or less com-
prehensively. For example, the Corel annotations describe specific image content,
but not all of it; museum collections are often annotated with some specific ma-
terial — the artist, date of acquisition, etc. — but often contain some rather
abstract material as well.
There exist some methods that cluster image representations and text to

produce a representation of a joint distribution linking images and words [1,
2]. This work could predict words for a given image by computing words that
had a high posterior probability given the image. This process, referred to as
auto-annotation in those papers, is useful in itself (it is common to index
images using manual annotations [7,12]; if one could predict these annotations,
one could save considerable work). However, in this form auto-annotation does
not tell us which image structure gave rise to which word, and so it is not really
recognition. In [8], Mori et.al. proposed a method for annotating image grids
using cooccurences. In [9,10], Maron et al. study automatic annotation of images,
but work one word at a time, and offer no method of finding the correspondence
between words and regions. This paper shows that it is possible to learn which
region gave rise to which word.

Recognition as translation. One should see this process as analogous to ma-
chine translation. We have a representation of one form (image regions; French)
and wish to turn it into another form (words; English). In particular, our mod-
els will act as lexicons, devices that predict one representation (words; English),
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given another representation (image regions; French). Learning a lexicon from
data is a standard problem in machine translation literature (a good guide is
Melamed’s thesis [11]; see also [5,6]). Typically, lexicons are learned from a form
of dataset known as an aligned bitext— a text in two languages, where rough
correspondence, perhaps at the paragraph or sentence level, is known. The prob-
lem of lexicon acquisition involves determining precise correspondences between
words of different languages. Datasets consisting of annotated images are aligned
bitexts — we have an image, consisting of regions, and a set of text. While we
know the text goes with the image, we don’t know which word goes with which
region. As the rest of this paper shows, we can learn this correspondence using
a variant of EM.
This view — of recognition as translation — renders several important object

recognition problems amenable to attack. In this model, we can attack: what
counts as an object? by saying that all words (or all nouns, etc.) count as
objects; which objects are easy to recognise? by saying that words that can
be reliably attached to image regions are easy to recognise and those that cannot,
are not; and which objects are indistinguishable using our features? by
finding words that are predicted with about the same posterior probability given
any image group — such objects are indistinguishable given the current feature
set.

2 Using EM to Learn a Lexicon

We will segment images into regions and then learn to predict words using re-
gions. Each region will be described by some set of features. In machine transla-
tion, a lexicon links discrete objects (words in one language) to discrete objects
(words in the other language). However, the features naturally associated with
image regions do not occupy a discrete space. The simplest solution to this prob-
lem is to use k-means to vector quantize the image region representation. We
refer to the label associated with a region by this process as a “blob.”
In the current work, we use all keywords associated with each image. If we

need to refer to the abstract model of a word (resp. blob) — rather than an
instance — and the context doesn’t make the reference obvious, we will use the
term “word token” (resp. blob token). The problem is to use the training data
set to construct a probability table linking blob tokens with word tokens. This
table is the conditional probability of a word token given a blob token.
The difficulty in learning this table is that the data set does not provide ex-

plicit correspondence — we don’t know which region is the train. This suggests
the following iterative strategy: firstly, use an estimate of the probability table
to predict correspondences; now use the correspondences to refine the estimate
of the probability table. This, in essence, is what EM does.
We can then annotate the images by first classifying the segments to find the

corresponding blobs, and then finding the corresponding word for each blob by
choosing the word with the highest probability.
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N : Number of images.
MT : Number of words. LT : Number of blobs.
Mn : Number of words in the n-th image. Ln : Number of blobs in the n-th image.
wn : words in the n-th image, bn : blobs in the n-th image,
wn = (wn1, . . . , wnj , . . . , wnMn) bn = (bn1, . . . , bni, . . . , bnLn)
w� : A particular word. b� : A particular blob.

an : Assignment an = {an1, . . . , anMn}, such that anj = i if bni translates to wnj .
t(w|b) : Probability of obtaining instance of word w given instance of blob b;
p(anj = i) : Assignment probabilities;
θ : Set of model parameters θ = (p(anj = i), t(wnj |bni)).
p(anj = i|wnj , bni, θ

(old)) : Indicators;

Fig. 2. Notation

sunsky sea
w w w31 2

b bb1 2 3

p(a  =2) p(a  =3)2

p(a  =1)2

2

Fig. 3. Example : Each word is predicted with some probability by each blob, meaning
that we have a mixture model for each word. The association probabilities provide the
correspondences (assignments) between each word and the various image segments.
Assume that these assignments are known; then computing the mixture model is a
matter of counting. Similarly, assume that the association probabilities are known;
then the correspondences can be predicted. This means that EM is an appropriate
estimation algorithm.

2.1 EM Algorithm for Finding the Correspondence between Blobs
and Words

We use the notation of figure 2. When translating blobs to words, we need
to estimate the probability p(anj = i) that in image n, a particular blob bi

is associated with a specific word wj . We do this for each image as shown in
Figure 3.
We use model 2 of Brown et.al. [3], which requires that we sum over all the

possible assignments of words to blobs.

p(w|b) =
N∏

n=1

Mn∏
j=1

Ln∑
i=1

p(anj = i)t(w = wnj |b = bni) (1)

Maximising this likelihood is difficult because of the sum inside the prod-
ucts; the sum represents marginalisation over all possible correspondences. The
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problem can be treated as a missing data problem, where the missing data is
the correspondence. This leads to the EM formulation. (From now on, we write
t(w = wnj |b = bni) as t(wnj |bni). )

Initialise
E step

1. For each n = 1, . . . , N , j = 1, . . . , Mn and i = 1, . . . , Ln, compute

p̃(anj = i|wnj , bni, θ
(old)) = p(anj = i)t(wnj |bni) (2)

2. Normalise p̃(anj = i|wnj , bni, θ
(old)) for each image n and word j

p(anj = i|wnj , bni, θ
(old)) =

p̃(anj = i|wnj , bni, θ
(old))∑Ln

i=1 p(anj = i)t(wnj |bni)
(3)

M step
1. Compute the mixing probabilities for each j and image of the same size

(e.g. L(n) = l and M(n) = m)

p(anj = i) =
1

Nl,m

N∑
n:L(n)=l,M(n)=m

p(anj = i|wnj , bni, θ
(old)) (4)

where Nl,m is the number of images of the same length.
2. For each different pair (b
, w
) appearing together in at least one of the

images, compute
t̃(wnj = w
|bni = b
)

=
N∑

n=1

Mn∑
j=1

Ln∑
i=1

p(anj = i|wnj , bni, θ
(old))δ(w�,b�)(wnj , bni) (5)

where δ(w�,b�)(wnj , bni) is 1 if b
 and w
 appear in image and 0 otherwise.
3. Normalise t̃(wnj = w
|bni = b
) to obtain t(wnj = w
|bni = b
).

Fig. 4. EM (Expectation Maximization) algorithm

2.2 Maximum Likelihood Estimation with EM

We want to find the maximum likelihood parameters

θML =
argmax

θ
p(w|b, θ) = argmax

θ

∑
a

p(a, w|b, θ). (6)

We can carry out this optimisation using an EM algorithm, which iterates be-
tween the following two steps.

1. E step: Compute the expected value of the complete log-likelihood func-
tion with respect to the distribution of the assignment variables QML =
Ep(a|w,b,θ(old)) [log p(a, w|b, θ)], where θ(old) refers to the value of the param-
eters at the previous time step.
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2. M step: Find the new maximum θ(new) =
argmax

θ
QML.

In our case, the QML function is given by

QML =
N∑

n=1

Mn∑
j=1

Ln∑
i=1

p(anj = i|wnj , bni, θ
(old)) log [p(anj = i)t(wnj |bni)] . (7)

We need to maximise QML subject to the constraints
∑

i p(anj = i) = 1
for all words j in all images n with equal number of words and blobs, and∑

w� t(w
|b
) = 1 for any word w
 and each blob b
. This can be accomplished
by introducing the Lagrangian

L = QML+
∑

αn,l,m

αn,l,m

(
1−

Ln∑
i=1

p(anj = i)

)
+
∑
b�

βb�

(
1−

∑
w�

t(w
|b
)

)
(8)

and, computing derivatives with respect to the multipliers (α, β) and the pa-
rameters (p(anj = i), t(w
|b
)). Note that there is one αn,l,m multiplier for each
image n with L(n) = l blobs and M(n) = m words. That is, we need to take
into account all possible different lengths for normalisation purposes. The end
result is the three equations that form the core of the EM algorithm shown in
Figure 4.

3 Applying and Refining the Lexicon

After obtaining the probability table, we can annotate image regions in any test
image. We do this by assigning words to some or all regions. We first determine
the blob corresponding to each region by vector quantisation. We now choose
the word with the highest probability given the blob and annotate the region
with this word. There are several important variants available.

3.1 Controlling the Vocabulary by Refusing to Predict

The process of learning the table prunes the vocabulary to some extent, because
some words may not be the word predicted with highest probability for any
blob. However, even for words that remain in the vocabulary, we don’t expect
all predictions to be good. In particular, some blobs may not predict any word
with high probability, perhaps because they are too small to have a distinct
identity. It is natural to establish a threshold and require that

p(word|blob) > threshold

before predicting the word. This is equivalent to assigning a null word to any
blob whose best predicted word lies below this threshold. The threshold itself
can be chosen using performance measures on the training data, as in section 4.
This process of refusing to predict prunes the vocabulary further, because some
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words may never be predicted with sufficient probability. In turn, this suggests
that once a threshold has been determined, a new lexicon should be fitted using
only the reduced vocabulary. In practice, this is advantageous (section 4), prob-
ably because reassigning probability “stolen” by words that cannot be predicted
improves correspondence estimates and so the quality of the lexicon.

3.2 Clustering Indistinguishable Words

Generally, we do not expect to obtain datasets with a vocabulary that is totally
suitable for our purposes. Some words may be visually indistinguishable, like cat
and tiger, or train and locomotive. (some examples are shown in figure 11).
Other words may be visually distinguishable in principle, but not using our fea-
tures, for example eagle and jet, both of which occur as large dark regions of
roughly the same shape in aerial views. Finally, some words may never appear
apart sufficiently often to allow the correspondence to be disentangled in detail.
This can occur because one word is a modifier — for example, in our data set,
polar reliably predicts bear — or because of some relation between the con-
cepts — for example, in our data set, either mare or foals almost quite reliably
predicts horses — but in either case, there is no prospect of learning the cor-
respondence properly. There are some methods for learning to form compounds
like polar bear [11], but we have not yet experimented with them.
All this means that there are distinctions between words we should not at-

tempt to draw based on the particular blob data used. This suggests clustering
the words which are very similar. Each word is replaced with its cluster label;
prediction performance should (and does, section 4) improve.
In order to cluster the words, we obtain a similarity matrix giving similarity

scores for words. To compare two words, we use the symmetrised Kullback-
Leibler (KL) divergence between the conditional probability of blobs, given the
words. This implies that two words will be similar if they generate similar image
blobs at similar frequencies. We then apply normalised cuts on the similarity
matrix to obtain the clusters [13]. At each stage, we set the number of clusters
to 75% of the current vocabulary.

4 Experimental Results

We train using 4500 Corel images. There are 371 words in total in the vocabulary
and each image has 4-5 keywords. Images are segmented using Normalized Cuts
[13]. Only regions larger than a threshold are used, and there are typically 5-
10 regions for each image. Regions are then clustered into 500 blobs using k-
means. We use 33 features for each region (including region color and standard
deviation, region average orientation energy (12 filters), region size, location,
convexity, first moment, and ratio of region area to boundary length squared).
We emphasize that we chose a set of features and stuck with it through the
experimental procedure, as we wish to study mechanisms of recognition rather
than specific feature sets.
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Fig. 5. For 500 test images, left: recall values in sorted order, right: corresponding
precision values. top: original words, middle: refitted data, bottom: word clusters.
The axes are same in all of the figures. We have some very good words with high recall,
and some words with low recall. However, the precision values are not so much different
from each other. Although they don’t have high recall values, some words have very
high precision values, which means that they are not predicted frequently, but when
we do predict them we can predict them correctly. When we restrict ourselves only to
the reduced vocabulary and run the EM algorithm again, the number of words that
we can predict well doesn’t change much, but the values increase slightly. Most of the
clusters group indistinguishable words into one word, so clustering slightly increases
the recall for some clusters (like horse-mare, coral-ocean)
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4.1 Evaluating Annotation

Annotation is relatively easy to evaluate, because the images come from an
annotated set. We use 500 images from a held-out test set to evaluate annotation
performance. A variety of metrics are possible; the receiver operating curve is
not particularly helpful, because there are so many words. Instead, we evaluate
the performance of a putative retrieval system using automatic annotation. The
class confusion matrix is also not helpful in our case, because the number of
classes is 371, and we have a very sparse matrix.

Evaluation method: Each image in the test set is automatically annotated, by
taking every region larger than the threshold, quantizing the region to a blob,
and using the lexicon to determine the most likely word given that blob; if the
probability of the word given the blob is greater than the relevant threshold, then
the image is annotated with that word. We now consider retrieving an image
from the test set using keywords from the vocabulary and the automatically
established annotations. We score relevance by looking at the actual annotations,
and plot recall and precision.

Base results: Only 80 words from the 371 word vocabulary can be predicted
(others do not have the maximum value of the probability for any blob). We
set the minimum probability threshold to zero, so that every blob predicts a
word. As figure 5 shows, we have some words with very high recall values, and
we have some words with low recall. The precision values shown in the figure
don’t vary much on the whole, though some words have very high precision. For
these words, the recall is not high, suggesting that we can also predict some low
frequency words very well. Table 1 shows recall and precision values for some
good words for which recall is higher than 0.4 and precision is higher than 0.15.

The effect of retraining: Since we can predict only 80 words, we can reduce
our vocabulary only to those words, and run EM algorithm again. As figure 5
shows, the results for the refitted words are very similar to the original ones.
However, we can predict some words with higher recall and higher precision.
Table 2 shows the recall and precision values for the selected good words after
retraining. The number of good words are more than the original ones (compare
with table 1), since the words have higher probabilities.

The effect of the null probability: We compare the recall and precision
values for test and training data on some chosen words. As can be seen in
figure 6, the results are very similar for both test and training data. We also
experiment with the effect of null threshold by changing it between 0 and 0.4. By
increasing the null threshold the recall decreases. The increase in the precision
values shows that our correct prediction rate is increasing. When we increase
the null threshold enough, some words cannot be predicted at all, since their
highest prediction rate is lower than the null threshold. Therefore, both recall
and precision values become 0 after some threshold. Table 1 and table 2 shows
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Fig. 6. Recall versus precision for selected words with increasing null threshold values
(0-0.4) : On the left some good words with high recall and precision, and on the right
some bad words with low recall and precision are shown. The top line shows the results
for training and bottom line shows the results for test. Solid lines show the initial
results using all of the original words in training, dashed lines show the results after
training on reduced vocabulary. The axes for good words are different than the axes
for bad words. The results are very similar both for training and test. Recall values
decrease by increasing null threshold, but usually precision increase since the correct
prediction rate increase. After a threshold value, all precision and recall may go to 0
since we cannot predict the words anymore.

that, with the increasing null threshold values, the number of words decreases
but we have more reliable words. Since null word prediction decreases the word
predictions, recall decreases. The increase in the precision shows that null word
prediction increases the quality of the prediction.

The effect of word clustering:We also compute recall and precision after clus-
tering the words. As figure 5 shows, recall values of the clusters are higher than
recall values of the single words. Table 3 shows that we have some very nice clus-
ters which have strong semantic or visual relations like kit-horses-mare-foals,
leaf-flowers-plants-vegetables or pool-athlete-vines-swimmers and the
results are better when we cluster the words (compare with table 1).

4.2 Correspondence

Evaluation Method: Because the data set contains no correspondence informa-
tion, it is hard to check correspondence canonically or for large volumes of data;
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Table 1. Some good words with their recall and precision values for increasing null
threshold. Words are selected as good if their recall values are greater than 0.4 , and
precision values are greater than 0.15. The null threshold changes between 0 and 0.4.
With the increasing threshold the number of good words decreases, since we can predict
fewer words. While the recall is decreasing precision is increasing, since we predict the
remaining words more accurately.

word th = 0 th = 0.1 th = 0.2 th = 0.3 th = 0.4
rec - prec rec - prec rec - prec rec - prec rec - prec

petals 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00
sky 0.83 - 0.34 0.80 - 0.35 0.58 - 0.44

flowers 0.67 - 0.21 0.67 - 0.21 0.44 - 0.24
horses 0.58 - 0.27 0.58 - 0.27 0.50 - 0.26
foals 0.56 - 0.29 0.56 - 0.29 0.56 - 0.29
mare 0.78 - 0.23 0.78 - 0.23
tree 0.77 - 0.20 0.74 - 0.20

people 0.74 - 0.22 0.74 - 0.22
water 0.74 - 0.24 0.74 - 0.24
sun 0.70 - 0.28 0.70 - 0.28
bear 0.59 - 0.20 0.55 - 0.20
stone 0.48 - 0.18 0.48 - 0.18

buildings 0.48 - 0.17 0.48 - 0.17
snow 0.48 - 0.17 0.48 - 0.19

Table 2. Some good words with their recall and precision values for increasing null
threshold after reducing the vocabulary only to the predicted words and running the
EM algorithm again. Words are selected as good if their recall values are greater than
0.4, and precision values are greater than 0.15. The null threshold changes between 0
and 0.4. When we compare with the original results (table 1), it can be observed that
words remain longer, which means that they have higher prediction probabilities. We
have more good words and they have higher recall and precision values.

word th = 0 th = 0.1 th = 0.2 th = 0.3 th = 0.4
rec - prec rec - prec rec - prec rec - prec

petals 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00 0.50 - 1.00
sky 0.83 - 0.31 0.83 - 0.31 0.75 - 0.37 0.58 - 0.47

people 0.78 - 0.26 0.78 - 0.26 0.68 - 0.27 0.51 - 0.31
water 0.75 - 0.25 0.75 - 0.25 0.72 - 0.26 0.44 - 0.27
mare 0.78 - 0.23 0.78 - 0.23 0.67 - 0.21
tree 0.71 - 0.19 0.71 - 0.19 0.66 - 0.20
sun 0.60 - 0.38 0.60 - 0.38 0.60 - 0.43
grass 0.57 - 0.19 0.57 - 0.19 0.49 - 0.22
stone 0.57 - 0.16 0.57 - 0.16 0.52 - 0.23
foals 0.56 - 0.26 0.56 - 0.26 0.56 - 0.26
coral 0.56 - 0.19 0.56 - 0.19 0.56 - 0.19

scotland 0.55 - 0.20 0.55 - 0.20 0.45 - 0.19
flowers 0.48 - 0.17 0.48 - 0.17 0.48 - 0.18
buildings 0.44 - 0.16 0.44 - 0.16
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Table 3. Some good clusters, where the recall values are greater than 0.4, and precision
values are greater than 0.15 when null threshold is 0. Cluster numbers shows how
many times we cluster the words and run EM algorithm again. Most of the clusters
appear to represent real semantic and visual clusters (e.g.kit-horses-mare-foals,
leaf-flowers-plants-vegetables, pool-athlete-vines-swimmers). The recall and
precision values are higher than those for single words (compare with table 1).

1st clusters r p 2nd clusters r p 3rd clusters r p
horses mare 0.83 0.18 kit horses mare foals 0.77 0.16 kit horses mare foals 0.77 0.27
leaf flowers 0.69 0.22 leaf flowers plants 0.63 0.25 leaf flowers plants 0.60 0.19

vegetables vegetables
plane 0.12 0.14 jet plane arctic 0.46 0.18 jet plane arctic prop 0.43 0.17

flight penguin dunes
pool athlete 0.33 0.31 pool athlete vines 0.17 0.50 pool athlete vines 0.75 0.27

swimmers
sun ceiling 0.60 0.30 sun ceiling 0.70 0.30 sun ceiling cave store 0.62 0.35
sky beach 0.83 0.30 sky beach cathedral 0.82 0.31 sky,beach cathedral 0.87 0.36

clouds mural
arch waterfalls

water 0.77 0.26 water 0.72 0.25 water waves 0.70 0.26
tree 0.73 0.20 tree 0.76 0.20 tree 0.58 0.20

people 0.68 0.24 people 0.62 0.26 people 0.54 0.25

instead, each test image must be viewed by hand to tell whether an annotation
of a region is correct. Inevitably, this test is somewhat subjective. Furthermore,
it isn’t practically possible to count false negatives.

Base Results: We worked with a set of 100 test images for checking the cor-
respondence results. The prediction rate is computed by counting the average
number of times that the blob predicts the word correctly. For some good words
(e.g: ocean) we have up to 70% correct prediction as shown in figure 7; this
means that, on this test set, when the word ocean is predicted, 70% of the time
it will be predicted on an ocean region. This is unquestionably object recognition.
It is more difficult to assess the rate at which regions are missed. If one is

willing to assume that missing annotations (for example, the ocean appears in
the picture, but the word ocean does not appear in the annotation) are unbiased,
then one can estimate the rate of false negatives from the annotation performance
data. In particular, words with a high recall rate in that data are likely to have
a low false negative rate.
Some examples are shown in figures 8 and 9. We can predict some words like

sky, tree, grass always correctly in most of the images. We can predict the
words with high recall correctly, but we cannot predict some words which have
very low recall.

The effect of the null prediction: Figure 10 shows the effect of assigning null
words. We can still predict the well behaved words with higher probabilities. In
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Fig. 7. Correspondence results for 100 test images. Left: results for original data,
middle: after first clustering words, right: after assigning null threshold to 0.2. The
light bar shows the average number of times that a blob predicts the word correctly in
the right place. The dark bar shows the total number of times that a blob predicts the
word which is in the image. Good performance corresponds to a large dark bar with a
large light bar, meaning the word is almost always predicted and almost always in the
right place. For word clusters, for example if we predict train-locomotive and either
train or locomotive is keyword, we count that as a correct prediction. We can predict
most of the words in the correct place, and the prediction rate is high.

Fig. 8. Some examples of the labelling results. The words overlaid on the images are
the words predicted with top probability for corresponding blob. We are very successful
in predicting words like sky, tree and grass which have high recall. Sometimes, the
words are correct but not in the right place like tree and buildings in the center
image.
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Fig. 9. Some test results which are not satisfactory. Words that are wrongly predicted
are the ones with very low recall values. The problem mostly seen in the third image
is since green blobs coocur mostly with grass, plants or leaf rather than the under
water plants.
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figure 7 we show that null prediction generally increases the prediction rate for
the words that we can predict.

Fig. 10. Result of assigning null. Some low probability words are assigned to null,
but the high probability words remain same. This increases the correct prediction
rate for the good words, however we may still have wrong predictions as in the last
figure. The confusion between grass and foals in the second figure is an example of
correspondence problem. Since foals almost always occur with grass in the data, if
there is nothing to tell the difference we cannot know which is which.

The effect of word clustering: In figure 11 we show the effect of cluster-
ing words. As can be seen generally similar words are grouped into one (e.g.
train-locomotive, horse-mare ). Figure 7 shows that the prediction rate
genarally increases when we cluster the words.

5 Discussion

This method is attractive, because it allows us to attack a variety of otherwise
inaccessible problems in object recognition. It is wholly agnostic with respect
to features; one could use this method for any set of features, and even for
feature sets that vary with object definition. It may be possible to select features
by some method that attempts to include features that improve recognition
performance. There is the usual difficulty with lexicon learning algorithms that a
bias in correspondence can lead to problems; for example, in a data set consisting
of parliamentry proceedings we expect the English word house to translate to
the French word chambre. We expect — but have not so far found — similar
occasional strange behaviour for our problem. We have not yet explored the
many interesting further ramifications of our analogy with translation.

– Automated discovery of non-compositional compounds. A greedy
algorithm for determining that some elements of a lexicon should be grouped
might deal with compound words (as in [11]), and might be used to discover
that some image regions should be grouped together before translating them.

– Exploiting shape. Typically, a set of regions should map to a single word,
because their compound has distinctive structure as a shape. We should like
to learn a grouping process at the same time as the lexicon is constructed.
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Fig. 11. Result of clustering words after the first, second, and third iterations of clus-
tering. Clustering increases the prediction since indistinguishable words are grouped
into one (e.g. locomotive-train, horses-mare).

– Joint learning of blob descriptions and the lexicon.We are currently
studying methods that cluster regions (rather than quantizing their repre-
sentation) to ensure that region clusters are improved by word information.
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