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Abstract.  We demonstrate the use of a Genetic Algorithm (GA) to match 
a flexible template model to image evidence. The advantage of the GA is that 
plausible interpretations can be found in a relatively small number of trials; 
it is also possible to generate multiple distinct interpretation hypotheses. The 
method has been applied to the interpretation of ultrasound images of the 
heart and its performance has been assessed in quantitative terms. 

1 Introduction 
Flexible template matching has become an established technique for image interpretation 
[4,5,6]. It is particularly relevant to problems such as medical image interpretation, 
where there can be considerable variation between examples of the same object. The 
basis of the approach is to project instances of the template into the image until one 
which is well supported by the observed data is found. There are several requirements: 

�9 A template with a (small) number of controlling parameters; for any particular set 
of parameter values it must be possible to reconstruct a feasible instance of the 
object the model represents. 

�9 For any model instance which is projected back into the image an objective function 
which can assess support provided by the image evidence; in general this objective 
function is likely to be non-linear with respect to the model parameters, 
multi-modal, possibly noisy and/or discontinuous. 

�9 A method of optimisation which can search the parameter space of the model in 
order to identify the particular set of parameter values for which the objective 
function is maximised i.e. for which the image evidence is greatest. 

In this paper we have employed the approach described by Cootes et al [1] for 
constructing flexible template models which satisfy the first requirement listed above. 
For the echocardiogram exemplar we consider in this paper, the variation in shape can 
be described approximately by 6 parameters. In general, it is also necessary to translate 
scale and rotate the template onto the image, giving 4 additional parameters for 2D 
models. Altogether, then, we have 10 parameters which instantiate and project the 
model onto the image. If we employ n bits to  e n c o d e  each parameter a search space 

of 21~ n ~ 10 3 n results. Clearly, even for modest values of n, the search space is large. 
In the literature this problem has been overcome by assuming that a reasonably good 
approximation to the solution is available so that the search space can be drastically 
reduced. We argue that this is often an unrealistic assumption and have attempted to 
develop methods of finding good solutions without restricting the search space. 

The problem, as stated, is one of optimisation of a multi-modal, non-linear function 
of many variables, the function being possibly discontinuous and/or noisy. A class of 
methods which have been proposed as a solution to problems of this nature are Genetic 
Algorithms (GAs) [2,3]. It is claimed that GAs can robustly find good solutions 
(although not guaranteed to be optimal) in large search spaces using very few trials. Given 
an objective function, f, which measures the evidential support for any particular 
projection into the image of the model, a GA search can find a set of parameters which 
�9 This research was funded by the UK Science & Engineering Research Council and Department of 
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provide a good explanation (or interpretation) of the image. Our results demonstrate 
the feasibility of this approach. 

2 G e n e t i c  A l g o r i t h m s  
GAs employ mechanisms analogous to those involved in natural selection to conduct 
a search through a given parameter space for the global optimum of some objective 
function. The main features of the approach are as follows : 

�9 A point in the search space is encoded as a chromosome.  
�9 A population of N chromosomes/search points is maintained. 
�9 New points are generated by probabilistically combining existing solutions. 
�9 Optimal solutions are evolved by iteratively producing new generations of 

chromosomes using a selective breeding strategy based on the relative values of 
the objective function for the different members of the population. 

A solution x_ = (xl,x2, ..,xn), where the xi are in our case the model parameters, is 

encoded as a string of genes to form a chromosome representing an individual. In many 
applications the gene values are [0,1] and the chromosomes are simply bit strings. An 
objective function, f, is supplied which can decode the chromosome and assign a f i tness 
value to the individual the chromosome represents. 

Given a population of chromosomes the genetic operators crossover and mutation 
can be applied in order to propagate variation within the population. Crossover takes 
two parent  chromosomes, cuts them at some random gene/bit position and recombines 
the opposing sections to create two children e.g. crossing the chromosomes 010-11010 
and 100-00101 at position 3-4 gives 010-00101 and 100-11010. Mutation is a 
background operator which selects a gene at random on a given individual and mutates 
the value for that gene (for bit strings the bit is complemented). 

The search for an optimal solution starts with a randomly generated population of 
chromosomes; an iterative procedure is used to conduct the search. For each iteration 
a process of selection from the current generation of chromosomes is followed by 
application of the genetic operators and re-evaiuation of the resulting chromosomes. 
Selection allocates a number of trials to each individual according to its relative f i tness 

value A f t ,  7 = 1IN Ift + 1'2 + .. + fN} �9 The  f i t ter  an individual the more trials it will 

be allocated and vice versa. Average individuals are allocated only one trial. 
Trials are conducted by applying the genetic operators (in particular crossover) to 

selected individuals, thus producing a new generation of chromosomes. The algorithm 
progresses by allocating, at each iteration, ever more trials to the high performance areas 
of the search space under the assumption that these areas are associated with short 
sub-sections of chromosomes which can be recombined using the random cut-and-mix 
of crossover to generate even better solutions. 

3 Flexible  Template  C o n s t r u c t i o n  
We have employed a modified version of the method described by described by Cootes 
et al [1] for constructing flexible templates. The templates are generated from a set 
of examples of the object to be modelled. The technique is to represent each example 
by a set of labelled points (xi, yi) so that each (xi, yi) is at an equivalent position for each 
example. The mean position of the points gives the average shape of the template and 
a principle component analysis of the deviations from the mean gives a set of modes 
of variation. These modes represent the main ways in which the shape deforms from 
the mean. By adding weighted sums of the first m modes to the average shape, new 

examples of the object can be generated. The m weights /7 -- (bl, b2, ..,bin) give a set 

of parameters for the model. 
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4 The Echoeardiogram Exemplar 
We have evaluated the method using ultrasound images of the heart (apical 4-chamber  
echocardiograms). A typical example is shown in figure 1.a. The problem we address 

Figure l .a  : Example echocardiograrn Figure 1.b : Associated LV boundary 

is that of locating the boundary of the left ventricle (LV) as shown in figure 1.b. The 
aim is to provide quantitative information concerning LV function. 

In order to construct a flexible template model of the left ventricle we employed a 
training set of 66 apical 4-chamber  echocardiograms with LV boundaries labelled by 
an expert, On each of these boundaries 4 fiducial points were placed by the expert at 
the apex and mitral valve - see figure 1.b. A number of intermediate points were 
generated automatically by positioning equidistant points along the boundary to give 18 
points in all, The principle component analysis identified 6 major modes of variation 
in LV shape for this training set, 

5 The Objective Function 
To perform the experiments described below we used a simple and rather ad-hoc  
objective function. A number of points, P, on the boundary of the candidate object 
are selected for processing. For each of these points a grey level profile perpendicular 
to the boundary at that point is extracted. For each profile the position 
(Pi, P ~  <- Pi < P,~) and strength (gi) of the largest intensity step along the profile are 
recorded. The objective function is then given by : 

f - e P  i-1 ~ + - 1  where ~ = P 2 g ' , . l  

When we use the objective function to evaluate instances of the model we seek to 
minimise f,  thus favouring solutions with strong edges (g large) of equal magnitude 

( ~i/g- 11 --* 0 ) located close to the boundary position predicted by the model (Pi ~ 0 ). 

6 Results 
In order to assess the method we employed 2 frames from each of ten echocardiogram 

time sequences. The frames showed the LV in its most extended and contracted state 
for each sequence and the LV boundary was delineated on each frame by an expert. 
The images were interpreted using the model-based approach described above and the 
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resulting LV boundaries were compared with the expert-generated boundaries using the 
P 

1 
mean pixel distance between boundaries A = p Z/(a i ,x-bjJ)2  + (a~y-bJ,y)2 where 

i = 1  

= (bj~,bja) is the point on the expert boundary closest to the point .~ on the GA 

generated boundary. The control parameters for the GA were : population size (N) = 
50, crossover rate (C) = 0.6 and mutation rate (M) of 0.005. A limit of 5000 objective 
function evaluations was employed. For 19 of the 20 images A < 6 and for 14 of the 
20 images A ~ 4. A typical result is show in figure 2. 

Figure 2.a : Expert boundary. Figure 2.b : GA boundary. 

7 Niches  and Spec ie s  
During the course of the above experiments it became obvious that one of the major 
problems for the GA search was premature convergence to sub-optimal solutions in the 
presence of multiple plausible interpretations. Rather than extract a single solution, we 
would like the GA search to extract a handful of strong, ranked candidates for the object 
we wish to locate. The problem of locating multiple optima when using GAs is discussed 
by Goldberg [2]. The approach adopted is to reduce the number of individuals in 
over-crowded areas of the search space by modifying their function values. 

In this case the fitness of an individual is weighted by the number of neighbours the 
individual has. The more neighbours an individual has the worse its fitness value. The 
number of individuals allowed to crowd into the various areas of the search space is 
thus proportional to the relative fitness value associated with the different areas of the 
search space. In order to maintain stable sub-populations two further modifications are 
necessary. The first is simply to increase the size of the population in order to prevent 
extinction due to sampling errors. The second is to implement a restricted mating strategy 
in order to promote speciation i.e. prefer neighbours to distant individuals for crossover. 
The key to the entire procedure is the ability to decide Who is a neighbour? i.e. how 
close are two points in the search space. We define two individuals x_l,x~ to be neighbours 

if they lie within a sub-space defined by the global transformation parameters, translation 
(tx, ty), scaling (s) and rotation (dO) : 

Itx.l-txal <- 6tx, Jty:-t,.2l <- 6t , ,  [sl-s2] < 6s, [r162 -< 6 r  
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We have employed this mechanism to extract multiple solutions from 
echocardiogram images�9 An example  of applying the me thod  is shown in figure 3. The  
groups are listed in order  of size, group 1 containing the largest number  of individuals. 
The  species these groups represent  were generated using N = 100, C = 0.5, M = 0.005 
and 100 generations. 
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group 2 

. . . . . . .  group 3 

. . . .  g r o u p  4 

Figure 3 : Species adapted to different chambers. 

8 Conclusions 
One of the major  attributes of the mode l -ba sed  approach is the ability to correctly 
interpret  incomplete  and/or  noisy image data by constraining all possible interpretations 
using knowledge represented  by a model .  In order for this process to be successful it 
may  be necessary to search a high-dimensional ,  non- l inear ,  mul t i -modal  and noisy 
search space. The  combinat ion of a flexible template  model  and a powerful search 
technique has been  shown to give very promising results. The  major  feature of GAs which 
is useful for object  location is a population of solutions. This allows alternative 
interpretations to compete  with one another,  the strongest solution having the greatest 
probabili ty of success. This property of a GA search also allows multiple plausible 
interpretations to be  extracted.  

References 
[1] Comes T. E, Cooper D. H., Taylor C. J . ,  Graham J. : A Trainable Method of Parametric Shape 

Description. Proa British Machine Vision Conference, Glasgow (1991) Springer Verlag 54-61. 
[2] Goldberg D. E. : Genetic Algorithms in Search, Optimisation and Machine Learning. 

Addison-Wesley (1989). 
[3] Holland J. H. : Adaptation in Natural and Artificial Systems. University of Michegan Press, Ann 

Arbor (1975). 
[4] Lipson P., Yuille A.L, O'Keeffe D., Cavanaugh J., Taaffe J., Rosenthal D. : Deformable Templates 

for Feature Extraction from Medical Images. Proc. 1st European Conference on Computer Vision, 
Lecture Notes in Computer Science, Springer-Verlag, (1990) 413-417. 

[5] Pentland A., Sclaroff S. : Closed-Form Solutions for Physically Based Modeling and Recognition. 
IEEE Trans. on Pattern Analysis and Machine Intelligence 13(7) (1991) 715-729. 

[6] Yuille A.L, Cohen D.S., Hallinan P. : Feature Extraction from Faces using Deformable Templates. 
Proa Computer Vision, San Diego (1989) 104--109. 


