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“Oh! Piglet,” said Pooh excitedly, “we’re going on an
Expotition, all of us, with things to eat. To discover
something.”

“To discover what ?” said Piglet anxiously.

“Oh! just something.”

A.A. Milne, Winnie-the-Pooh.

Ter nagedachtenis
aan mijn grootvader,
Jacob Buurman
(1901-1971).
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1 Introduction

1.1 Computer vision

This thesis describes work in the field of computer vision. In this introduction, an attempt is
made to delineate this field, and indicate where this research should be positioned. Then, some
remarks are made on how vision research could be done. The position of robot vision will be
discussed. Finally, the structure of the rest of the thesis is introduced.

Computer vision is defined in a popular textbook® as “the enterprise of automating and inte-
grating a wide range of processes and representations used for vision perception”. This defini-
tion is at first glance by no means clear. “Vision perception” seems to imply that there is
something to be perceived, which we call a scene. From this scene, an observation or image is
obtained using some kind of sensor using an optical (or similar) process. However, as vision is
not just about “seeing” but rather about “perception”, useful information has to be extracted
from the image. Computer vision covers the whole trajectory from scene to final information,
and hence the above definition.

However, computer vision does not attempt to solve one specific problem. Different applica-
tions can be found in the medical world, in the industrial world and in the military world.
These may vary in the scene to be observed (either in the subject of the scene or the dimen-
sionality, ranging from simple 2-dimensional black and white views to time series of 3-dimen-
sional or coloured scenes) and in the kind of information required from the scene (other
images, qualitative observations, measurements or combinations of these). As a result of this
variation, different sensors and data representations are being used by different researchers for
different problems. As there are many different kinds of scenes, sensors, images and useful
information, computer vision covers a broad range of processes and data representations.

Because of the large scope of the definition, it is often practical to distinguish several disci-
plines within the field of vision. There are of course the mere practical distinct areas, such as
motion analysis, stereo vision or remote sensing, where the main point is the application of a
specific technique or the application to a specific problem. However, it is also not uncommon
to divide the field into Image Processing and Pattern Recognition.

Image processing can simply be defined as “manipulation of images”6. In fact, there are sev-
eral definitions used by different researchers in different fields as a result of which confusion
arises. This involves whether such areas as image coding, image compression and image seg-
mentation are part of image processing‘k. In the Pattern Recognition Group, it is common not
to include coding and compression in Image Processing. This is the definition used throughout
this thesis.

1. In the Dutch language, most of these debates can be solved by the distinction between “beeldbewerk-
ing”, where the result of any operation is another image, and “beeldverwerking”, where the result could
br anything. Unfortunately, this cannot be translated into English.
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An example of image processing could be, given an image of an object, to generate an image
that has one value where the object was present and another value where the object was not
present. Also, the size of the area corresponding to the object could be measured.

Pattern recognition is the traditional way of doing object recognition. From a processed
image, a number of measurements is extracted. These measurements can then be used to
assign one of a set of labels to the regions in the image. For instance, based on a measurement
and the set of labels { block, pyramid }, the label “‘block” could be assigned.

The division of vision in image processing and pattern recognition is too rigid to describe
modern vision research. A lot of research uses a model of the scene and objects and uses
knowledge acquired about the scene to update the model and direct further vision. Further-
more, this process may require a continuous interaction between image processing and other
knowledge manipulation methods. For instance, a recent development is active vision, in
which the output of the vision system is used to direct its attention towards interesting objects
in the scene. This can be implemented at various levels, ranging from cameras that move and
are readjusted to software that exhibits similar behaviour.

The problem addressed in this thesis is a typical computer vision problem: the recognition and
pose determination of industrial parts as they enter a flexible assembly cell. A scene is
observed that contains an unknown number of objects, and the aims are not only to determine
how many and which, but also is what position and orientation they are there. This requires a
combination of techniques that will be discussed in subsequent chapters.

1.2 Methodology

There are several approaches to vision (apart from traditional pattern recognition), based on
models of human perception. These include expert systems and neural networks. Although
successes of each approach has been reported, no one appears to be the solution to all prob-
lems. Therefore, computer vision should be the discipline of building working vision systems
for specific applications, where components can be borrowed from each of the approaches
mentioned above. This idea seems to be held by most researchers in the field.

This seems to reduce vision to an engineering discipline. Most researchers are working on
problems that are at least slightly different, and since they are all trying to build working sys-
temns, these systems are generally hard to compare. Moreover, researchers publish solutions to
their own specific problems, resulting in a flood of publications. This seems to be one of the

causes behind the recent debate on the future of computer vision?,

The first way out of this unsatisfactory situation seems to be to focus on small sub-problems

which are common to a lot of applications, and on which comparable results can be obtained.
This has as a disadvantage that no working systems will be produced. The second alternative
would be the development of “standard” problems of sufficient complexity, that should be
made available to as many researchers as possible. As standard problems are not available yet,
they should be proposed.




Chapter 1 Introduction

1.3 Robot vision

Why should one use vision in the first place, in order to solve automation problems? The
required information is rarely visual (this is usually referred to as visualisation rather than
vision), and other ways of getting that information are almost always available. In a recent
critical paper54, Miller describes how he made his intelligent robot vehicle work by reducing
his sensor system from a stereo vision system (a complex system using several cameras in
order to obtain detailed 3-d information) yielding megabytes of data to a few contact and
proximity sensors yielding one byte each.

Part of this success can of course be explained by the failure of computer vision to come up
with real progress, as described in 39 and 34, It could be argued though, that it is the result of a
bad specification as well. If the task is to see whether something large is in the way, stereo
vision may not be the correct solution. However, if the task is to recognise an object, stereo
vision can be the solution, providing the stereo vision system is designed well. In particular,
such a system should deliver data suitable for recognition rather than nice range images. If the
task also requires flexibility and easy reconfiguration (as is the case in this thesis), vision is
even very likely to provide a possible solution, because after all, the parts to be reconfigured
are in this case the contents of databases rather than mechanical devices. The challenge is to
design such a system.

1.4 This thesis

In this thesis, a computer vision system is described for object recognition in a a flexible
assembly cell. As parts enter the cell (lying on pallets, in separate slots), they have to be rec-
ognised and their position established. This means that scenes containing several objects are
to be examined. From the way the problem is stated, it follows that the engineering approach
is followed: the main goal is to arrive at working algorithms, without choosing a model
beforehand.

The main reason for using vision in this case is flexibility, not the flexibility in operation that
Miller* argues can be obtained easily with simple sensors or no sensors at all, but flexibility
in configuration: the cell is meant for the production of small series and it must be possible to
start production of new product series with minimal changes. A vision system can be reconfig-
ured to recognise new, similar parts with only the change of some files, whereas mechanical
devices would have to be readjusted or otherwise changed.

The system uses stereo vision for obtaining 3-dimensional data about the scene. Rather than
trying to obtain a good range image of the scene, it tries to find those features that are specific
for the family of parts considered: straight lines and circular arcs. A matcher is available that
compares the wireframe generated by the stereo vision system to a set of CAD-derived mod-
els. This is illustrated in Fig. 1-1, which reappears throughout this thesis as the separate parts
of the system are described.

This thesis has the following structure: chapter 2 supplies some background theory on the sub-
jects of stereo vision and recognition. Chapter 3 introduces the DIAC project and states the
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edge
detection

edge
detection

CAD database

Fig. 1-1 Overview of the recognition system. The output of the stereo vision system

Chapter 1

line-based
stereo

3-d wireframe

3-d wireframes '

(top, chapter 4) is compared to the CAD-derived or learned models (bottom, chap-
ter 7) by the matcher (right, chapter 5). The system as a whole is evaluated in chap-

ter 6.

problem to be solved there. Chapter 4 describes the stereo vision system as a separate part,
whereas chapter 5 describes the recognition system. In chapter 6, the combination of the two is
evaluated. In chapter 7, the acquisition of models is described, either from CAD models or
from a learning procedure using the same stereo vision system and algorithms similar to those
in recognition. Finally, chapter 8 concludes the thesis with a discussion of results.
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2 CAD-based object recognition

The object recognition system described in this thesis can be
divided into two main parts: a system for acquisition of an observation
of the scene, and a system for recognition of parts in the observation.
This chapter deals mainly with the foundations of those: what ways are
there of acquiring the observation, and what ways are there of doing the
recognition. Related to these issues is the choice of a model represen-
tation. For a field as large as Computer Vision, it is impossible to be
complete in these respects. Therefore, the section on acquisition is lim-
ited to an overview of sensing methods. The section on recognition
focuses on the main paradigms for doing object recognition in contem-
porary computer vision.

2.1 Introduction

A basic outline of an object recognition system is given in Fig. 2-1. In the lower part, data is
acquired (which involves image processing). Extracted from this is a description of the scene
in primitives, suitable for recognition. These are offered to a recognition part which compares
the scene description to one or more models. This process leads to the result: a list of object
identities and poses. For more complex systems, the recognition process may influence the
image acquisition process (indicated by the grey arrow).

Recognition —» result

scene description T ? control

Acquisition

Fig. 2-1 Basic architecture of a recognition vision system. It consists of a data ac-
quisition part that obtains images and a recognition part that uses the models gen-
erated elsewhere. In active systems, the recognition part will control the aquisition
part.

In this chapter, several of the foundations of three of these steps are addressed. At first, differ-
ent models are discussed. Then, different ways of acquiring the scene description are indi-
cated. Finally, different ways for doing recognition are discussed. The fourth non-trivial step,
control of the acquisition process by the recognition process, is a complex topic in itself and
lies outside the scope of this thesis.
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2.2 Models
2.2.1 CAD models and vision models

For the application addressed in this thesis, coupling the vision system and a CAD database is
of prime importance in order to achieve the required automatic reconfiguration when new
parts are defined. Unfortunately, the models used in both worlds are not necessarily compati-
ble, a problem that was addressed earlier by Bhanu!®. Of the various ways of describing
objects in CAD systems, the two most important are Constructive Solid Geometry (CSG) and
boundary representations (b-rep). These will be discussed below.

2.2.2 Constructive solid geometry

In CSG, an object is described in terms of simple geometric shapes, combined by additions
and subtractions. For instance, a ring can be described as the subtraction of a small cylinder
from a larger cylinder, see Fig. 2-2. Although CSG is very useful in CAD systems, its does not
lend itself very well to vision systems. The reason for this is the fact that vision only sees the
outside of objects, so many details introduced by geometric manipulations are invisible.

Fig. 2-2 Constructive solid geometry: an object is considered as a combination of
simple geometric parts by means of addition, or, in this case: substraction.

2.2.3 Boundary representations

Boundary representations are a broad class of descriptions of the outside of objects. This out-
side can be described by surface patches with various mathematical representations, or by var-
ious kinds of surface contours, or both. Some kind of boundary representation can usually be
produced by a CAD system. Possibilities include:

- Wire frames of straight lines: an object is described by a straight line approximation of
the edges of its surfaces. This is the simplest kind of description. It can only describe
polyhedra exactly (such as the objects used in chapter 6), any curved shapes have to be
approximated by a number of straight lines.

- Wire frames including other curves: including circles, ellipses or splines extends the
class of objects that can be represented in this way. In the application described in
chapter 3, all objects can be described by straight lines and circular arcs.
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- Wire frames extended with descriptions of the enclosed surface patches. This could be
a plane equation, of an equation of a quadric surface, or a more complex description.

- Descriptions of objects as sets of surface patches only.

Wire frame representations lend themselves well for use with sensing methods that acquire
data of object edges, while surface patch representations can best be used with sensing meth-
ods that acquire data over complete surfaces. The choice of a model representation is therefore
closely related to the choice of a sensing method, as described in the next section.

2.3 Sensing methods
2.3.1 Introduction

Although other image sensors exist, the main tool for vision is the camera. This device con-
sists of an optical system (a set of lenses, focused on the scene) and a set of sensors, which
translate the incoming light into a matrix (a digital image) whose elements represent the
brightness in a specific area. Usually, the rectangular grid of the matrix directly represents a
similar grid of areas.

The following is a model of the optical behaviour of a camera. It assumes linear behaviour,
and is derived from the simplest optical model, that where the sensor is placed behind a pin-
hole, see Fig. 2-3.

e
.

\%#\\ T ] "
X2 t‘ et NL:JN::: ............. !

Tz, . Y1
camera plane e

pin-hole

Fig. 2-3 The pin-hole camera model and associated coordinate transformation.

The optical system of the camera can be described by its mapping of world coordinates y; to
camera coordinates x; (in homogeneous coordinates, multiplication with a 4-by-3 matrix C)

¥
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After the optical system, the remaining data is sampled by the set of sensors (typically a CCD
array), such that the above mentioned matrix appears. Although this process is not perfect (the
sampling is not done in points, and the grid can be distorted), it is often assumed to be.

2.3.2 2-D vision

The simplest way of acquiring images is using one camera. This gives us monocular vision.
Equation (1) shows that a point in an image may correspond with a set of points in space: if C,
x7 and x, are known there are three equations with four unknowns (y;, y;, y3 and s), or after
elimination of s, two equations with three unknowns. This set of points turns out to be a line>”.
Sometimes it is possible to obtain depth information from monocular vision using secondary
depth cues (perspective, shading, focus), however the use of these results in sparse and usually

inaccurate information, see e.g. 1
2.3.3 Passive stereo vision

Using two or more cameras, depth information can be obtained by triangulation. The principle
is illustrated in Fig. 2-4. If a point can be identified in both images, the corresponding point in
3-dimensional space can be calculated by crossing the corresponding lines in space, if the
camera geometry is known. This can be done for all points that can be identified in both
images. The result of this procedure is a 2-d image, in which for a number of points the dis-
tance to the imaging plane can be calculated. Such an image, reminiscent of a height map, is
called a range image.

left image right image

Fig. 2-4 The principle of stereo vision. A point is visible in both images. Using the
corresponding camera matrices, the lines can be computed of points in 3-d dimen-
sional space that may correspondto each. The corresponding point can be found by
calculating the point where the lines cross.

It follows from equation (1) that the stereo vision problem is over-determined: once two points
are known (one in each image) there are four equations with three unknowns. This means that
the 3-d point must be calculated using an extra constraint. For instance, the two lines in Fig. 2-
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4 will in general not cross in one point. This means that the closest point must be determined.

The main problem in stereo vision lies in the identification of corresponding points. Shirai®?
distinguishes between area-based stereo vision and feature-based stereo vision. In area-based
stereo vision, corresponding points are identified by searching for similar areas around points
in the two images. This is done by calculating a similarity function (e.g. the correlation of
light intensity), and assigning correspondence to points for which this function shows a local
maximum. As this can be a time-consuming process, candidate areas must be selected using
known properties of the camera geometry. The most common setup is to have the cameras
aligned so that the only difference between their parameters is a horizontal translation.

Feature-based stereo vision was developed in order to overcome two drawbacks of area-based
stereo vision: the high complexity of computing the similarity function, and the dependence
on photometric properties of the two cameras. In feature-based stereo vision, features (like
edges) are detected, and the stereo vision process calculates depth from the correspondence of
those features. As there are less features than candidate areas, this is generally a faster process,
and as features are detected in both images indei)endently, it is less suitable to photometric
properties. A disadvantage of feature-based stereo is that features must always be detected in
both images in order to get depth information.

In both ways of stereo vision, the depth information recovered is sparse in nature: if corre-
spondence cannot be established, no depth information is recovered. This can either be due to
a failure of the detection algorithm, or to the fact that a point is visible only in one image and
not in the other (because it is occluded). In both cases, this means that either this sparseness
has to be unimportant for the application (e.g. if recognition is the aim), or some algorithm
must be used to fill in the missing elements of the range image. Horn37 addresses the latter
problem.

There are a number of variations on the classical stereo vision paradigm, like the use of multi-
ple cameras, choice of different similarity functions, different features etc. For an overview,

we refer to reference 2/

2.3.4 Active stereo vision

Passive stereo vision as described in the previous section has two major drawbacks: the com-
putational cost of establishing correspondence, and the sparseness of the depth information
found. If one of the cameras is replaced by an active device like a laser or another kind of pro-
jector, both can be overcome. The principle of this process is illustrated in Fig. 2-4. Points in
the scene are labelled uniquely by the laser, so the corresponding point in 3-d can be calcu-
lated without having to search for correspondence. Furthermore, as any point in the scene can
be marked, depth information is not restricted to feature points. Of course, the problem of
occlusions is fundamental to triangulation methods and cannot be solved in this way.

There are two main possibilities in active triangulation: a laser can be used to indicate a point
or rather a line in an otherwise dark scene, or a pattern can be projected over the entire scene
labelling all points simultaneously. The first method requires a fast acquisition sensor because
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laser

image

Fig. 2-5 The principle of active triangulation. One camera is replaced by a laser or
similar device which sends out a ray of light of known geometry that uniquely labels
a point in the scene. By locating that point in the image, the corresponding 3-d point
can be calcullated immediately.

many points or lines have to be measured. The second method usually requires several pat-
terns in order to label each point uniquely, but is still much less demanding with that respect
than the first one. Shirai%? describes both methods in more detail.

The major disadvantages of active triangulation are that the scene must be dark by itself, and
projecting a pattern on it must be allowed. This means that other vision systems will be influ-
enced by it, and reflecting objects can cause problems. Also, there is the additional task of con-
structing a light source capable of producing the desired pattern with known geometry at the
desired resolution.

2.3.5 3-D Images

In some fields, it is possible to acquire image information for complete 3-d volumes. These
include such different fields as computed tomography, magnetic resonance imaging and con-
focal microscopy. Although these fields are rather distant from the main stream of computer
vision, they are mentioned here for completeness. With the exception of confocal microscopy,
these methods do not use optical information. Here, they are mentioned for completeness.

2.4 Recognition methods
2.4.1 Introduction

Pattern recognition traditionally 6.32 deals with vectors of features, which are considered to
represent observations of objects belonging to certain classes (indicated by labels). Within
each class, there is a certain distribution which is either explained by variations in the objects
of a class or by noise in the observation. The task of recognition is to correctly assign a label to
a new feature vector. This can be based on either learning sets of feature vectors (whose labels
may be known), or on knowledge of the distribution of vectors belonging to each class (a
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model). Techniques used were mostly based on statistics (statistical pattern recognition).
Using these however, knowledge about the structure of the objects to be recognised could not
be represented, one was mostly restricted to the use of global features. In complicated scenes,
global features are hard to establish. Syntactic models based on a linguistic description of the
classes had the disadvantage that the incorporation of noise appeared to be difficult.

Later, other representations of observations have been proposed which allow more of the
structure and local features to be represented, such as structural descriptions35 and attributed
graphs7’16‘63. Other ways are used here to handle the variation in observations, such as (inex-
act) graph matching techniques. These often lead to a distance or a similarity measure.
Although these representations are clearly more powerful in expressing properties of objects,
the methods cannot be compared very well in statistical terms because of their different ways
of evaluation. Only for specific tasks, performances can be compared.

Recently, in computer vision, the fact has been recognised that the variation in feature values
is often caused by one or more underlying parameters. For instance, the way a 3-dimensional
object is observed varies as a function of its position and orientation*!. In fact, in a lot of
applications, these parameters are part of the desired output result! This is only possible in
those cases, where the variation as a result of the parameters is significantly larger than the
variation as a result of noise, in other words: the signal-to-noise ratio must be significantly
large. Most recent work in computer vision uses some kind of structural representation.

With computer vision however, a wild growth of methods has arisen. As Grimson>> remarks,
it is impossible to write a complete and up-to-date overview of the field. Therefore, in this sec-
tion only an outline can be given. A good overview can be found in 3.

2.4.2 Recognition as a search problem

Recognition of objects amounts to establishing a correspondence between the local features of
an observed object and those of a model. In other words, pairs must be found of features in
observation and model that correspond under a certain geometrical transformation that repre-
sents the position and orientation of the observed object. In 33, three different kinds of corre-
spondence are described:

- Selection: what subset of the data corresponds to the object?
- Indexing: what model corresponds to the data subset?

- Correspondence: what individual model features correspond to each individual
observed feature?

Each of these correspondences entails some kind of search problem. Different search algo-
rithms can be applied to solve each. Besides, the search can be performed in the space of all
possible transformations, the space of all possible correspondences, or in a mixed approach.
These are described below.

2.4.3 Correspondence space search

If the search space consists of all possible feature correspondences, it can easily become very

11
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large. If there are m model features and s observed features, the number of possible corre-
spondences becomes of the order of m®. Clearly, careful pruning is required to reduce the
search complexity to an acceptable level 33,

2.4.4 Pose space search

If the search is performed in the space of all possible transformations (the pose space), the
transformation is searched which gives the best correspondence between model and observa-
tion. An example of this is the generalised Hough transform®, where the pose space is divided
into discrete volumes. Each pair of model and observed features increases the support for a
number of volumes of pose space. After all pairs have been examined (which requires m.s
examinations), the transformation corresponding to the most supported volume is chosen.

The problem with the generalised Hough transform is to find a good compromise for the
number of discrete volumes in pose space. A small number leads to high speed but low accu-
racy, whereas a large number gives an accurate result but a low speed.

2.4.5 Mixed approach

A mixed approach exists in which a limited search in correspondence space takes place in
order to compute a small number of complete transformations. This gives us a number of
points in pose space, each of which is a hypothesis about a possible presence of an object in
the data set. Each of these hypotheses is now tested by evaluating additional evidence for each

hypothesis. This usually means transforming the model accordingly and look for additional
model features in the data set. This approach is often called hypothesis generation and testing.
Grimson3? lists a number of references that all use this approach.




3 The Delft Intelligent Assembly Cell

In this chapter, a description will be given of the DIAC project.
This project has influenced the work in this thesis in two ways. First, the
stereo vision and recognition tasks described in chapters 4 and 5 have
been designed for the objects to be used in DIAC. These objects are
described in this chapter.

Second, the systems carrying out these vision tasks should be
incorporated in DIAC. The problem that arises here is that of the use of
several different vision systems in one larger environment. This is a
problem that will become more frequent as vision becomes more and
more integrated in modem industrial projects. Work on the use of differ-
ing vision systems in one environment is also reported in this chapter,
although it should be noted that, as the DIAC project is unfinished, no
definitive quantitative results can be given.

The latter part of this chapter includes a description of the verifi-
cation system that is also being developed as a part of the DIAC
projectT.

Section 3.1 outlines the project. In section 3.2, the vision tasks in
DIAC are described. Chapter 3.3 lists requirements of the interface
between the vision systems and the rest of DIAC. In the remainder of
the chapter (sections 3.4 - 3.9) such an interface is proposed.

3.1 About DIAC
3.1.1 Introduction

The DIAC pmjc:ct"'4 is a five year project with the aim of building an flexible intelligent robot
cell, where robots would be able to assemble small product series. Flexibility here means that
upon the introduction of a new product, the cell can automatically be reconfigured to assemble
the new product. Where fixed (or inflexible) robots can be used to assemble mass products
effectively, the investment in automation for small series can only be justified if the adjust-
ment to new products can be made easily. This requires the ability to derive all sorts of param-
eters, ranging from sensor settings to the order of assembly, from the product model itself.

Intelligence in the robot cell is required for unmanned production. If anything goes wrong
during the night, when no operators are available, the cell should be able to recover from the
problem itself. This may take some time, but recovery after a quarter of an hour is still better

+. The cooperation with Dave Bierhuizen on sections 3.4 - 3.9 and especially his contribution to section
3.7 is gratefully acknowledged.
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than the loss of a whole night of production.

The project officially started in January, 1988, and will be finished by the end of 1992, Four
faculties of Delft University of Technology are participating: Mechanical Engineering,
Applied Physics, Electronical Engineering and Informatics. Eight research groups are
involved, and at the end of the project fifteen Ph.D. students (mostly A.1.O.s) hope to receive a
doctorate on work that is completely or partially in the project.

Organizationally, the project has been split up into six different groups, so-called packages.
Packages two until six each have their specific tasks in preparing systems and subsystems to
be placed in the cell. For instance, package three deals with the vision systems involved. The
exception to this is package one, which had the task to determine the cell architecture. Initially,
this work was done by a team including all Ph.D. students. As the architecture became clear,
activities of package one were limited to actions of the project manager and configuration
manage153.

The DIAC project is part of the SPIN-FLAIR?2 stimulation programme of the Dutch ministry
of Economical Affairs. As the successor to the FLAIR project (FLexible Assembly and Intelli-
gent Robots), it became a project sponsored by SPIN (Stimulerings Project Informatica Neder-
land). The project focuses on the design of the Delft Intelligent Assembly Cell, hence the
project name.

3.1.2 Architecture of DIAC

The architecture of the cell, as proposed in>3, can be explained in brief using Fig. 3-1. Four
levels are identified:

- The top level, the cell master control system that coordinates all tasks.

- The second level, the processes involved in planning and control. This involves a
number of steps ranging from production planning (where assembly plans are gener-
ated upon the specification of a new product) to exception handling (active when any-
thing goes wrong during the actual production).

- The third level defines an abstract set of (so-called ‘virtual’) sensors and actuators.
Essentially, three abstract properties are defined: location, identity and quality. Each
virtual sensor is a system capable of either sensing location (determining the position
and/ or orientation of an object with respect to a reference), sensing identity (establish-
ing a logical link between an object at a known location and the model of that object)
or sensing quality (judging the matching of sensed features and model features of an
object). Similarly, each virtual actuator is able to either change location (move an
object), change identity (assemble two parts into one subassembly) or change quality
(correct assembly errors).

- The fourth level contains the physical sensors and actuators. These include the robots,
sensors (including vision systems), transport and feeder systems. The robots are actu-

ally seen both as a coarse-motion subsystem and as a fine-motion subsystem because
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Fig. 3-1 The architecture of the cell (after

53)'

these tasks are completely different with respect to robot control and collision avoid-
ance: while coarse motion moves from one location to another without hitting any-
thing, fine motion for assembly generally means move until you touch something or
rather while touching something.

3.1.3 Description of DIAC

A description of the cell layout can be found in 33 and Fig. 3-2. The cell is built around two
different robots: one Bosch scara robot with four degrees of freedom, and one ASEA antropo-
morphic robot with six degrees of freedom. The robots have a shared workspace, and each has
its own private area. An internal transport system provides the possibility to move and store
parts and subassemblies. Small parts are input through feeder systems, whereas larger parts
arrive using an Automatic Guided Vehicle (AGV). This AGV also removes the assembled
products. Further included in the cell are various vision systems (see section 3.2).

3.1.4 Research topics

Within the DIAC project as specified above, the following research topics may be identified:
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Fig. 3-2 Layout of the Delft Intelligent Assembly Cell

- Automatic assembly planning, interface to Computer Aided Design and Computer
Aided Manufacturing (CAD/CAM).

- Planning of collision-free paths for multiple robots, control of robots following these
paths.

- Planning, scheduling and dispatching of all tasks within the cell.

- Design of fast and powerful vision systems for identification and inspection (see sec-
tion 3.2).

- Development of a natural language operator interface.

- Error analysis and exception handling for the cell.

3.2 Diac vision tasks

The following physical sensor tasks within DIAC are performed by vision systems:

- Object Identification. As they enter the cell, parts must be identified and their position
and orientation with respect to a reference must be determined. Note that this does not
apply to all parts: screws and such are provided by a special feeder. However, the
larger parts arrive on a pallet from the AGV. For this task, sets of cameras are provided
around both entry points. Two vision systems are available: the verification system
developed by Bierhuizen (see section 3.7) and the recognition system described in
chapters 4 and 5 in this thesis. Their respective tasks are discussed in sections 3.4 and
further.

- Scene Inspection. The robot workspace is continually checked by a structured light
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vision systc:m59 that acquires a height map of the scene. This image can be used to
check collision free paths and, more generally, whether the scene corresponds to the
predictions made by the scheduler.

- Part Inspection. A hand-held sensor using laser triangulation and a position-sensitive
device (PSD)64 can be used to measure dimensions of subassemblies in order to check
the assembly.

For the object identification systems, flexibility is again a requirement. The set of objects to be
recognized is not completely specified at the time of design. Instead, the systems should be
reconfigured automatically whenever the set of parts changes. However, for the purpose of
evaluation of DIAC, two test products have been designed that are sufficiently challenging for
assembly planning. These products are also assumed to be representative of the class of
objects that need to be recognized. They are shown in Fig. 3-3. This figure has been obtained
using the models extracted from the Product Data Model>! on behalf of the vision system (see
7.2). They have been drawn at camera resolution by the vision system. The following charac-
teristics can be observed:

- The objects consist of cylindrical and prismatic primitives, as a result of which only
straight lines and circular arcs are present (which result in straight lines and ellipses in
the drawing).

- The objects are mostly metal, with reflections and places with low contrast.
-Object sizes range from 1 to 15 cm.

Of the 31 parts that are required to build the two products, 14 are small parts (such as screws)
that are provided by special feeders. Two parts are such that they have no stable position and
therefore cannot be transported on a pallet without special support, making recognition and
pose estimation as they enter the cell a trivial problem. 18 parts remain to be recognized (see
Table 3-1).

Table 3-1 Summary of the Diac parts

kind of object objects listed
Small part 1,2,3,6,12,13,19,20,22,23,25,26,30,31
Special part 5,15
Part to be recognised 4,7,8,9,10,11,14,16,17,18,21,24,27,28,29

3.3 Interface between the recognition system and the rest of the cell

At level 4 of the DIAC architecture, two vision systems are available to find the identity, posi-
tion and orientation of objects on a pallet. Typically, these produce a list of all the objects rec-
ognized on the pallet, with their respective positions and orientations (relative to a reference).
At level 3, this must be translated into the virtual location and identity sensors. The informa-
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tion obtained by the sensor systems must be presented in a consistent way. Furthermore, plan-
ning requires that an estimate can be given of the cost (time taken and resources used) of a
vision task. This means that a layer of software must be present that integrates the results,
monitors the costs and decides between systems in a meaningful way. One possibility of the
virtual sensor concept is that it is possible to treat different physical sensors as alternatives, the
choice between them being based on cost alone. The approach proposed here is to treat them
as complementary. This is described below.

3.4 Verification vs. recognition

The current developments in the field of automated assembly systems show an increasing
interest in systems that are flexible in both CAD based product design and CAD based assem-
bly. One of the main steps undertaken here is the integration of the design system with the
manufacturing system in order to obtain automatic generation of assembly strategies. For the
identification and localization of assembly parts vision appears to be an inexpensive solution.
To be a profitable tool in the sense that it is flexible and can be fully integrated in the assembly
system, it can be expected that in analogy to the manufacturing system the integration with the

CAD system is an important goal. A study by Bhanu!? supports this trend in vision research.

Another requirement is speed and robustness. The first requirement is met by using a verifica-
tion system that generates hypotheses based on outside information and common object posi-
tions and accepts those if sufficient support can be found. However, this system fails for all
exceptional cases. These require a more general system. For this purpose a recognition system
is used which tries to find the best matching mode! from the set of all possible models.

In the remaining sections of this chapter an object identification system is proposed, that is
composed of a verification- and a recognition system in order to meet respectively the speed
and robustness requirements. Switching from verification to recognition is performed by a
control mechanism that minimizes the overall error rate and the computation time. In section
3.5 the vision system’s architecture is described globally. Section 3.6 describes the control
strategy and the formulation of the goals. The verification system is described in more detail
in sections 3.7, whereas the recognition system is described in chapters 4 and 5 of this thesis.
Section 3.8 describes experiments on minimization of the overall system costs. Section 3.9
gives the conclusions.

3.5 Overview of the proposed two stage approach

In this section, a two stage approach is proposed to the integration of the vision systems in the
virtual sensors for identity and location (see Fig. 3-4):

For maximum speed, a hypothesis is set up about the identity and pose of the object. This may
be based on outside information e. g. from the device that filled the pallet, or on an image from
a camera that has an overview of the scene. Some alternative stable positions may be consid-
ered. This hypothesis is then verified, using characteristic features of the object. Acceptance of
the hypothesis means that the identity, position and orientation of the object are known.

If verification fails, a more general recognition system is used. This makes use of general fea-
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Fig. 3-4 Overview of the proposed vision system

tures, and takes into account a set of objects. This is faster than verifying all possible hypothe-
ses, because no characteristic features have to be generated for each hypothesis. It is slower
than the simple verification of one hypothesis, but it can solve more situations.

Verification means that the observation is only compared to one model, as opposed to recogni-
tion, which chooses the best model after comparing the observation to all models. In order to
make the combination of the two work, it is necessary that verification does not accept false
hypotheses. In case of doubt, recognition should be used.

Furthermore, some other components are needed:

The camera module is shared by both systems. It contains an overview camera called FAR,
which may do a quick reduction of the set of possible objects, and do a first pose estimate, and
a multiple view camera system called NEAR, which is closer to the scene and is used for accu-
rate verification and recognition.

The control block should consider which vision system is being used for scene interpretation,
switching as necessary. It should also communicate with the rest of the robot cell, extracting
models from the CAD database and returning information about the scene. The control strat-
egy will be described in detail below.

3.6 Control strategy

For the control module, we will simplify the verification system to a system with one parame-
ter that can be controlled by the control module. Verification is able to estimate its execution
time at the beginning of a job, and is able to update that estimate as new information becomes
available. Similarly, the recognition system is simplified to a one-parameter system that can

estimate its execution time.
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The control strategy concerns two primary decisions. By default, we start by verifying the
most likely hypothesis. If the result of verification is insufficient (to be decided by the control
module), the recognition module is activated. Furthermore, if the predicted execution time of
verification exceeds that of recognition, recognition is also activated. For ease of the discus-
sion, we will treat these as independent decisions. Both will be described in detail below.

3.6.1 Result optimization strategy

Both verification and recognition return values for the “goodness of fit” of their resulting iden-
tification and pose, F, and F, respectively. Each of these is normalized, a value of 0 indicating
no fit and 1 indicating a perfect match. In both cases, we accept a result if its fit value exceeds
a certain threshold T, in other words verification is successful if

F,>T, @

and recognition is successful if

F >T, €)

These thresholds are to be determined by the control module, based on the criteria below:

Both verification and recognition have three possible results: correct classification, incorrect
classification and rejection. In case of a rejection by verification, recognition is activated. The
fraction of rejections by verification is a function of the verification threshold and can be writ-
ten as £, (7,). Similarly, for the fraction of errors made by verification we may write £, (7,) .
For recognition, these functions are £, (7,) and f, (7,) , respectively.

We need to assign costs to the use of the verification system, the use of the recognition system,
an incorrect classification by either system, and a rejection by the recognition system. The
cost of the use of each system is mostly determined by the execution time of each. The costs
of incorrect classification and rejection must be determined by the cell as a whole, and cannot
be found by vision alone. If the costs of verification, recognition, rejection and error are ¢, ¢,,
¢ and ¢*, respectively, the total expected cost of object verification ¢ is

C=c,+f, c+f, (c,+ ferce + fryc’ ) 4)
or
C=c,+ (£, (T) +f, (T)f, (T))c*+f, (T,)c,+f, (T)f, (T,)c &)

In order to optimize total performance, we must minimize this cost as a function of both
thresholds. Note that we expect

c,<c, «c «cf (6)

Using these relations and constraints, the thresholds T, and 7, may be found. The necessary
functions £, (7,) .f, (T,)»f, (T,) and f, (T,) must be estimated by the control module. This must
be done by monitoring the actual performance of the system, starting with a sufficiently accu-
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rate estimate. Estimating fgv(Tv)' and £, (T,) will be especially hard, because they are supposed
to be very small and identification errors can only be detected during assembly by the cell
error manager which is prone to errors itself. This happens for instance when a part does not
fit. It is assumed however, that these estimates can be made, assuming that all objects belong
to a class of parts with more or less similar properties.

Costs ¢, and c, result from the vision system itself and will mainly be determined by execution
times, whereas ¢” and ¢* are dependent on the whole robot cell and cannot be supplied by the
vision system alone. For instance, " may increase as the reject buffer fills.

3.6.2 Time optimization strategy.

During the on-line operation the verification strategy monitors the analysis results and esti-
mates the time required to perform the verification. Based upon this it is decided whether to
remain in the verification stage or to switch to recognition. The system is placed in two possi-
ble scenarios: A limited execution time and minimization of the total execution time.

At every time ¢ the expected verification time 1, (+ and the expected recognition time <, (2
are known. Here <, (1) is an estimate function of the time required, which is based on the
number of edges to be detected. The expected recognition time is actually a constant during
the verification stage. To perform the vision within a limited time (dictated by the cell) the
analysis result must be available within time ¢ = ¢, ... Thus a decision must be made at time
t=¢ -1, . Atthis time a switch to recognition takes place if:

max

Tver(tmax - trer.‘) > Tree (0. Q)

In case of minimization of the total execution time a decision is made at any time t. Thus a
switch from verification to recognition at this time is decided for if:

%, (0>1,, ®

3.7 The verification system’
3.7.1 Overview.

The verification algorithm basically consists of two steps: the FAR and the NEAR analysis.
The FAR analysis is performed first in order to rapidly generate object hypotheses based on
2D image processing. The FAR analysis outputs a coarse 3DPO (3D Position and Orientation)
estimation. Consequently all NEAR steps can be performed by hypothesizing and verifying
edges at predicted locations (regions-of-interest). The presence of an edge is verified by using
a stereo image pair. Since edge detection is a time consuming operation it is worth reasoning
about which edges are to be selected to reach the verification goals. This forms the core of the
verification strategy.

The NEAR step is decomposed into three steps: Stable position/orientation discrimination,

+. This system is being built by Bierhuizen and will be reported in his Ph.D. thesis. Earlier resuits have
been published in !9 and 12,
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object discrimination and object evidence gathering. 3DPO refinement is concurrently per-
formed for the detected edges with techniques similar to those of Horaud®. The FAR and
NEAR steps are shown in Fig. 3-5. Every step requires the success of the previous step, which

'
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'

Stable pose
Orientation —
Discrimination

Recognition
¢

Object
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!

Object
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i

Fig. 3-5 Overview of the verification system.

implies that early escapes to recognition may occur in the presence of errors. A brief descrip-
tion is given below.

« FAR

The FAR analysis implemented is based on binary image processing. The results are a clas-
sification of statistical measures and a 2DPQ estimation based on geometrical moments.
The used algorithms are fast and simple46.

+  Stable pose/Orientation discrimination.

The FAR results may contain some ambiguities: Identical views for several stable object
positions or symmetry in the view which have to be resolved first before further object ver-
ification is performed. The strategy here is a search through a tree that is composed of
features that are space variant for different stable position and orientation combinations.

+  Object discrimination.

In this step the object is verified based on features that are distinctive against those of a set
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of alternative objects (dictated by the cell task). The alternative objects are here those object
hypotheses that cannot be distinguished in the FAR step.

«  Object evidence support.

The object evidence support step pursues a high overall reliability of the object verification
by gathering a sufficient number of model-image matches. With respect to the type of edges
verified this step is only completing. Thus edges selected for this purpose are not specific.

3.7.2 Control of the verification system.

The verification strategy is initially constructed off-line to minimize on-line computations.
This strategy is explicitly represented in a vision database in the form of selected features for
all steps. What is essential here is that the verification strategy is opportunistic in the sense that
it tries to minimize on-line computations by minimizing feature complexity. However, due to
noise and lighting effects segmentation errors may occur which may either make an edge
undetectable or give rise to a false detection. The-second problem is solved implicitly since the
resulting acceptance of a wrong hypothesis inevitably leads to an error in one of the subse-
quent steps. With respect to the first problem the on-line control of the system is able to find
new features that (, once detected,) satisfy the original goals. In this process the time optimiza-
tion criteria are evaluated

3.7.3 Definitions of object discriminating features.

In order to be able to determine whether the hypothesized object is really present, a set of fea-
tures (in this case edges) must found that completely discriminates that object from the set of
all other objects, given a specific viewpoint. These sets (called edge combinations) can be
determined beforehand (off-line). This is described in this subsection in two steps: first we will
describe how an object can be discriminated from some other objects using a pair of edges,
afterwards this is extended to discriminating the object from all other objects using a larger set
of edges.

Edge combinations v, are defined as subsets of the set of observable edges of object A,
Ea = {e, e, ..¢,} , with n the number of edges. The edges are observed in a stereo configura-
tion, so all 3-D coordinates are known. For every pair of edges ¢, ¢, in an edge combination
the 2-dimensional feature vector (% 3 ;] T can be defined, with as elements the angle @,
and the shortest distance 8, , between the edges (see Fig. 3-6). In case the edges intersect or
intersect after extrapolating one or both, , , is zero. The measurements of the feature vectors
will be corrupted with noise, so instead of instead of a fixed value for the parameter vector we
can expect to measure a value on an interval around that value. For an edge combination, all
feature vectors of all possible edge pairs are considered together. So, for each edge combina-
tion v, an uncertainty domain Ua, is defined as the union of all intervals of feature vector val-
ues associated with edge pairs from 2

Ideally, edge combinations of object A exist which have a unique feature vector thus do not
appear in other object descriptions. Now v, discriminates object A from object B, expressed by
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Fig. 3-6 The distance and angle features of an edge combination

the boolean discrimination function C, (4, B), if there is no overlap between Ua, and all U, ,
[ ) i
or:

Cy(A,B) & Ua, NUb, = @,VV;CEb. )

In general an edge combination consisting of a single edge pair will only discriminate object
A from a subset § y. of the complete set of alternative objects S. An edge combination that dis-
criminates A from the complete set will then have size greater than two. In order to construct
this complete discriminating edge combination, the following property is given:

if |v|>2and C, (4, Sy) then it follows that SV.- = k})Svj

forall v, Cv; with |vj| = 2 and Cvj (A, Svj) ) (10)

or in words, an edge combination v, of size greater than two discriminates object A from an
object set Sv. which is the union of all discriminated subsets Sv. which follow from the sub-
set edge combinations v;of size two. Thus to construct an edge combination that discriminates
A from an alternative object set we may build it from edge combinations of size two.

3.8 Experiments

Experiments are performed to show that minimization of the overall cost function is possible
by using data from two working systems.

For the experiments we choose a two class classification in which the classes are two models
of DIAC assembly parts, parts 10 and 11 in Fig. 3-3. From each part 10 image triples (FAR
and a NEAR pair) were acquired, each with the parts in a different pose or orientation. The
parts are shown in Fig. 1.

For both systems variable thresholds for the goodness of fit are used to estimate the relevant
error- and reject fractions. These thresholds are chosen at the interval (0..1) having an equal
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Fig. 1. Both objects considered in the two-class experiment.

distance of 0.1. In the verification system the FAR classification step is deactivated, since this
classification step is not very interesting here. Further, for a hypothesis acceptance at least one
discriminating feature has to be found and for the object evidence support step the goodness of
fit threshold has to be exceeded. In the recognition system the goodness of fit threshold has to
be exceeded for acceptance of the best fitting model.

The reject- and error fractions as a function of the thresholds for verification and recognition
are shown in Fig. 3-7 and Fig. 3-8.
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Fig. 3-7 Accept and reject (dashed) rates for the verification system as a function of the ver-
ification threshold. the error rate for this system in this experiment was 0.




Chapter 3 The Delft Intelligent Assembly Cell

reject
i
|
_
] [
0.8 -
!
0 |
o 0.67 |
8 -4
31
& 0.4 ]
;——“ accept
0.27 _ r—= =
e
1 " . "
0.2 0.4 0.6 0.8 1

Threshold —

Fig. 3-8 Accept, reject (dashed) and error (dotdashed) rates for the recognition system as
a function of the verification threshold.

The costs are expressed as the time (in seconds) required to perform the action (verification-
and recognition costs) and the delay of a classification result (reject- and error delay). They
are chosen as follows:

c,=5,¢,=25,c =400 and ¢* = 1000.

The value for rejection is based on the assumption that parts are partly offered in kits (sets of
parts necessary for one product), so that it is expensive to wait for another, identical part. The
cost of error is still higher, however.

The cost function as a function of both thresholds is shown in Fig. 3-9. Minimization of the
overall cost function results to an optimal verification threshold F, = 0, an optimal recognition
threshold F, = 0.1 and an overall cost ¢ = 71. The reason for a zero valued optimal verification
threshold is that the fraction of errors is zero for all thresholds in the experiments.

3.9 Conclusions

In this chapter, the DIAC project has been described. The tasks to be performed by DIAC
define the demands on the recognition system described elsewhere in this thesis. Parts have to
be recognized and their position and orientation determined in a data driven way. The parts
consist of straight lines and circular arcs.

A two stage system for object identification in DIAC has been proposed. The first stage (the
verification system) tries to verify a hypothesis based on outside information and common
object positions. In case of insufficient result, the more general recognition system is acti-
vated. Criteria have been found for switching from verification to recognition. Minimization
of an overall cost function leads to optimal thresholds for both verification and recognition.
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Fig. 3-9 Total cost as a function of both thresholds for this experiment.

Our current assumption is that the reject fraction of recognition can be determined independ-
ently of the reject fraction of verification. Although the systems are based upon completely
different principles, this assumption is unlikely to be valid. The reason for this is that a rejec-
tion of verification due to a low image quality will inevitably result to a rejection by verifica-
tion too. On the other hand, a rejection by verification due to a wrong hypothesis (for example
a non-stable position) is not related to the classification result of recognition. Therefore a clear
distinction should be made between possible causes for rejection by verification, and this
should be expressed in the cost function. While this is impossible, the current solution (treat-
ing the systems as independent) seems a reasonable alternative.
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4 The stereo vision system

In this chapter, the stereo vision system is described that is part
of the Diac object recognition system. Its task is to observe the scene,
and produce an output wireframe description of the relevant part of that
scene. This description should be sufficient for recognition of the rele-
vant objects. It is not necessary though to reconstruct the scene.

This chapter starts with an introduction. In section 4.2, the image
acquisition and preprocessing steps are described. Section 4.3
describes the transition from images to 2-d geometrical features,
whereas sections 4.4 and 4.5 describe the two main stereo vision algo-
rithms that derive 3-d features from 2-d features. Section 4.6 deals with
the calibration of the whole system, and section 4.7 evaluates the
stereo vision system.

4.1 Introduction
4.1.1 Why feature-based stereo vision?

A general discussion on stereo vision techniques has been given in section 2.3. They differ
with respect to efficiency and sparseness of their output data. For the recognition of objects, a
full 3-d reconstruction of the scene is not necessary. Instead, we will require that a sufficiently
powerful set of 3-d features has been observed adequately. The features in each of the two
images are well-known in advance (see section 3.2). They will be straight lines and ellipses,
since they result from straight lines and circles in 3-d. This allows feature-based stereo to be
used. From the stereo vision techniques mentioned in chapter 2, feature-based stereo vision
should be an appropriate solution for the following reasons:

- Feature-based stereo vision is efficient as it does not need to calculate correspondence for
every pixel in the image, but instead only processes a much smaller number of features.

- The result of feature-based stereo is a list of 3-d features, which can be used immediately for
recognition purposes. This differs from stereo vision techniques that describe the scene in
terms of a 21/2-d (range) image, that still needs segmentation etc.

There are of course some disadvantages to feature-based stereo:

- If the two corresponding features in both images of the stereo vision pair are not both
detected correctly, no 3-d feature will be found. If the features are straight lines and ellipses,
missing one feature implies that an entire line or circle will not be found.

- The stereo vision system will be limited to scenes in which these features occur. If objects of
other shapes (such as objects with elliptic or B-spline shapes) need to be detected, the stereo
vision has to be redesigned. The present system will try to decompose these shapes into
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known features.

For the DIAC application, the efficiency arguments in favour of feature-based stereo vision
are preferred over the other arguments against it, provided that the stereo vision system is able
to detect sufficient features for recognition. Such a system will be described in the remainder
of this chapter.

4.1.2 Overview

The position of the stereo vision system in the recognition system is indicated in Fig. 4-1. It
processes images, resulting in 3-d wireframes that are compared with model wireframes by the
matcher. The image processing takes a number of steps. First, two images are acquired. As the
features in the stereo vision system are edges, edge detection is applied to both. Subsequently,
straight edges and elliptical edges are separated. To both kinds of edges, a different stereo
vision algorithm is applied.

edge line-based
detection stereo
.
|| edge ellipse-based| ’ e
D detection stereo matcher
s
p—— = .
¢ CAD database 3-d wireframes |
. i . /,r"

Fig. 4-1 The stereo vision part of the recognition system.

A prototype of the system is running at the Pattern Recognition Group. This will be referred to
in this chapter simply as the prototype. A final implementation will be built in the DIAC cell in
the near future. Wherever necessary, it will be referred to as the final implementation.

4.2 Image acquisition and processing
4.2.1 Image acquisition

The prototype is organized as follows: two cameras are overlooking the scene that is lighted
by a number of fluorescent tubes. Nearby is an ASEA IRB 6/2 robot that is able to grab objects
from within the camera area. The robot is also used in the calibration procedure. The cameras
grab 512 x 512 pixel images, and are connected to the image processing computers. These are:
a 68020-based system running OS-9 (currently only for frame grabbing) and a Sun SPARC
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workstation running SunOs (for all image processing). This setup is sketched in Fig. 4-2, and
a picture is shown in .Fig. 4-3

/O O\lightin g

@ cameras

Fig. 4-2 The setup of the prototype.

Fig. 4-3 Picture of the prototype.

The final implementation will run on a SPARC/ SunOs - 68030/ OS-9 combination. Imaging
Technology (Woburn, Massachusetts, USA) special purpose hardware will be present in the
cell and may be used to speed up the processing.

The stereo vision first does edge detection, then the list of edges (represented as chaincodes) is
searched for candidate ellipses. If these are found, an ellipse is fit to them. To all edges a
straight line fit is applied, splitting up those edges that cannot be fit. The result is a list of
ellipses and a list of straight lines for each image. To the ellipses in each image an ellipse-
based stereo algorithm is applied, and to the straight lines in each image a line-based stereo
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algorithm is applied.

This procedure may imply that edges are treated twice, both by the ellipse and by the straight
line procedure. The impact of this is reduced by the fact that few edges give meaningful results
after stereo vision for both procedures: real straight lines cannot be represented well by
ellipses and although ellipses can be represented by straight lines, this generally happens dif-
ferently for both images resulting in poor correspondence. The few remaining cases, where an
edge in the scene is doubly represented, must be handled by the recognition procedure.

The outputs are lists of circular arcs and straight lines that are combined into a 3-d wireframe
representing the scene. We will discuss the separate steps below, using the detailed Fig. 4-4.

edge chain ellipse
™ ™| threshold codes
strength fit
E
)
& — B~
g g
. 2
straight
L edge —— line
localization fit

Fig. 4-4 Detailed description of the segmentation procedure.

4.2.2 Edge detection

Edge detection may be defined as the detection of places in images where rapid changes of
intensity occur, usually in conjunction with an estimate of the “speed” of this change. It is
desirable that these edges are represented by one pixel thick lines. This is generally seen as the
combination of two problems: those of finding both the location of an edge and its strength.
While edge strength is not critical, the determination of edge location is of importance in this
situation. There are two main approaches:

- Detection of the maxima of the gradient of the image. This is relatively hard on a digi-
tized grid. The most popular edge detector of this kind is Canny’szz.

- Detection of the zero-crossings of the derivative of the gradient in the gradient direc-
tion. Although this is fairly straightforward, the main problem that arises is the impos-
sibility of dealing with edge junctions, see Fig. 4-5. While the sign of the gradient
clearly changes at each separate edge, it cannot change for every edge at junctions of
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an odd number of edges. A number of these edge detectors are given in 67,

20

100

Fig. 4-5 Problems with zero crossings-based edge detection. While the sign of the
zero-crossing is clear for each individual edge (the numbers are grey values for each
region), edge junctions cannot be described.

There is a vast literature on edge detection, see e.g. 67 Rather than doing more research in this
field, it was decided to pick an available, relatively fast detector, that produces edges that lend
themselves well to further processing. The latter requires that the edges are one pixel thick,
and few short false edges are introduced. For this purpose, the DYC edge detector® has been
chosen. Although this edge detector produces contours, a simple binary neighbourhood opera-
tion (e.g. one Hilditch skeleton iteration) is sufficient to transform these into a real skeleton.

This edge detector uses the filter by Lee et al.*” to find edge strength and the zero crossings of
the DYG filter® to find edge location. The two results are combined and the resulting edges
after thresholding are represented by chaincodes. We keep the edge location image for the
straight line fitting stage to obtain sub-pixel accuracy at low computational cost. Unfortu-
nately,‘it is not useful to do this for ellipse fitting as most edge detectors are slightly biased in
the presence of curved edges%.

Both the Lee and DYG filters are implemented using filtering with local minimum and maxi-
mum operation. A gaussian blurring is applied beforehand, as in 8, Summarizing, the edge
detection procedure consists of four steps:

(1) Initial smoothing filter a gaussian filter.

(2) Determining the edge strength by applying the Lee filter 47 to the output of (1).

3) Détermining the edge location by the zero-crossings of the DYG 65 of the output of (1).
(4) Calculating the skeleton of (3).

(5) Multiplying the outputs of (2) and (4).
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4.3 Segmentation
4.3.1 From edges to chaincodes

The output of the edge detector is an image ¢; J still containing grey values, which indicates the
strength of the edge. These grey values are zero for non-edge pixels or positive for edge pix-
els. The edges are one pixel thick. This image is thresholded at a low threshold T; and the
resulting binary edge image is transferred into strings of Freeman codes, starting and ending at
end points and junctions of edges. Along each edge, the grey values ¢; j are summed and this
sum is again thresholded with a threshold T, discarding chaincodes that are as a whole to
weak.

This approach is based on the observation that edges may have a local strength below the
noise level, but still show up as one edge in the edge detector image. It can be summarized as

ei’j>T1’ed2geei'j>T2 (11)

and the resulting set of edges is a more useful set than when a single threshold had been
applied, as illustrated by Fig. 4-6. The effect is similar to that of hysteresis thresholding 2

Fig. 4-6 The edge threshold method illustrated. From left to right: original image,

edge image after applying a pixel threshold of 6 to the output of the DYC edge detec-
tor, image after applying a pixel threshold of 2 and an edge threshold of 100 to the
output of the DYC edge detector, as described in the text. The latter method keeps edg-
es connected while suppressing individual noise pixels. For the stereo vision methods
used in the system described here, keeping edges connected is of great importance.

4.3.2 Straight line fit

To each remaining string of chaincodes, a straight line is fit using a minimal square error esti-
mator. In this procedure, we apply a first order fit to the edge location image in order to get
sub-pixel accuracy. Because we only look at “interesting” points in the image, this can be done
at very little computational cost. If the chaincode string corresponds to points in the image that
are too far away from the fitted straight line, the string is split at the point of highest distance,
and the procedure is repeated. This is illustrated in Fig. 4-7.
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Fig.4-7 On the left is shown how the maximum distance of the chaincode (grey) to the
single straight line (black) is too large. The chaincode is then split up at that point,
and the two parts are approximated separately. This procedure is repeated until the
distance no longer exceeds the threshold at any point.

Once all the straight lines have been found, junctions are recovered by crossing the fitted
lines. Care must be taken to ensure that distorted junctions are not misinterpreted, see Fig. 4-8.

Fig. 4-8 Recovering junctions. Four times the data and the result are shown. Left:
wrong approach. Right: correct approach. The top example shows two lines meeting,
the bottom one shows three lines meeting, of which two are parallel. In each drawing
shading has been used to indicate the grey level.

This figure illustrates two cases where careless calculation of junction points can lead to erro-
neous results. In the top case a rounded corner is shown. Because of its smoothing property,
every edge detector will round corners. For a correct calculation of the corner location, it is
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necessary to disregard those edge pixels that are a result of rounding. The second example of
Fig. 4-8 shows the case where three lines are meeting, of which two are parallel. If the two
lines are close enough, a single crossing point will result which may have a large positional
error. The correct result will include a small extra edge linking the two parallel lines.

The result of the straight line fit is a graph, with as its nodes vertices in the image and with its
edges representing straight lines in the image.

4.3.3 Ellipse fit

In order to determine which ellipses are present in each image, we resort to fitting, but this
requires that the set of points belonging to one ellipse are identified first. We need to split up
strings of chaincodes, until each string only contains one ellipse. Accuracy of the fit requires
that these strings are as large as possible. Splitting based on the derivative of the curvature at
each part of the string does not work very well, because of the eccentricity of some ellipses.
Instead, we apply a simple grammar to the strings and split where the grammar no longer
applies. This algorithm is simple and fast, and works as long as the smoothing effect of the
edge detector is sufficient to deal with most of the noise on each ellipse.

Let ¢; be a Freeman code for direction i, and ¢;,; (c; ;) be the code for the next direction
(counter-) clockwise. Let ¢* denote zero or more, and ¢+ denote one or more occurrences of c¢.
Likewise, let (c)* be zero or more occurrences of (possibly different) realizations of c. A string
belonging to an ellipse can either be written as:

(et CipD*(e)*(cip gt cit)*(Cip ) ¥(Cian CipgH)*... (12)
or
(Cit Cpp ¥ (e)*(Cp g+ e () (gt cigb*... 13)

These grammars can be interpreted as follows: a straight line of any orientation can be repre-
sented by strings of chaincode consisting of at most two different codes, which two codes are
determined by its orientation (see e.g. 28). Eight special orientations can be represented by
strings containing only one chaincode. Any curve, for which the curvature does not change
sign (such as an ellipse), will monotonously assume a range of orientations. Therefore, all
strings representing it can be split into substrings in which either only one chaincode occurs,
or two chaincodes alternate, where the order of the substrings depends on the sign of the cur-
vature.

Each parenthesized expression corresponds to an orientation in one of sixteen directions or
ranges of directions. In (12), these directions are passed in a clockwise direction, and in (13)
counterclockwise. Our splitting algorithm tries both grammars (12) and (13) to find out how
far from the start of the string they still apply, and splits the siring after the longest of these
substrings. This is done for each string of chaincodes, repeatedly if necessary.

To each of the resulting strings of chaincodes, the fitting algorithm is applied. An ellipse in an
image with axes x| and x; can be written as
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2 2 =
QLX)+ O X Xy + 0 X5 + 0aXy + 0L x, + 05 = 0, (14)

where o _s are constants, of which 0y can be set to 1 without loss of generality. Some con-
straints apply, see e.g. 8, Ellipse fitting can be described as finding the set of &) _s that satisfies
(14) “best”. Different interpretations of “best” are possible, e.g. finding the maximum likeli-
hood estimator (when a noise model is available) or finding the ellipse that the points repre-
sented by the chaincode are closest to (using the average, or mean square average). However,
in this case an appropriate noise model (taking into account all preprocessing) is not available.
Also, minimizing the average distance or average square distance of an ellipse to a set of
points is a complex and time-consuming procedure. Therefore, following 30 we minimize the
average squared left hand side of (14):

2
2 2
ming o o a, “s( Z (X7 + 00X X + Gy X5 + OgXy + 0uX, + Og) ) (15)

all points on edge
which, although somewhat biased towards eccentric ellipses30, is a good and efficient estima-
tor of ellipse parameters. If the minimal error per pixel is below a threshold, and the set of
parameters that minimizes it corresponds to an ellipse (and not another conic section), we
accept the ellipse. This threshold has been tuned over several hundreds of images and has
been applied successfully to a large number of images obtained afterwards.

As a final step, we go through the set of ellipses found to see whether two ellipses can be
merged, keeping the average error over the union of the pixels below the threshold. This is
done repeatedly until no more mergers are possible.

4.4 Line-based stereo
4.4.1 Problem description

A relatively fast way to do stereo vision is based on finding corresponding straight line seg-
ments, and computing their 3-d equivalent. A summary of related research is given in 4.4.2. In
our case, this is made easy by the relatively low complexity of the scenes: they consist of a
few objects and the pallet as a background, all edges confined to a small volume. This results
in a fairly straightforward algorithm. The main algorithm (described in 4.4.3) allows incom-
plete edges by using edge orientation as the key feature. This approach fails for certain cases
in which no unique 3-d edge can be found. In this case, an alternative algorithm using edge
endpoints is used. This algorithm (described in 4.4.4) uses more information. Both algorithms
use the same constraints, as described in 4.4.5, and are evaluated in 4.4.6.

4.4.2 Related research

The line based stereo vision approach has been used by a number of researchers. Their work
mainly differs in the way they find the best global correspondence. In 52 an iterative proce-
dure is used to minimize a disparity criterion in a certain neighbourhood. In 4. asearch proce-
dure over the tree of possible matches is used to minimize disparities. In 3, only local
information is used initially, and one iteration over neighbouring segments is used to correct
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the list of correspondences somewhat.

In the work described here, we have chosen to use local information only. Using the strong
constraints that are made possible by the nature of the problem, a simple and fast procedure
can be obtained that performs with sufficient results.

4.4.3 Main algorithm

Our straight line stereo algorithm takes pairs of edges in both images of the stereo pair, and
computes the corresponding 3-d lines. If these lines are possible, they are stored with a certain
confidence value. All combinations of lines are processed that meet certain constraints as
described in 4.4.5. The resulting list of edges is merged with that of the alternative algorithm.
Finally, the best match for each line is found. Each step is described below:

The camera is modelled by its mapping of world coordinates y; to camera coordinates x; (in
homogeneous coordinates, multiplication with a matrix C)

N
x,$
xs = C- 7, (16)
S y3

1

where both camera matrices C; and Cp are assumed to be known. The correspondence
between lines is found in the following way: to a line in an image with dimensions x; and x;
with equation

RX +nyXy+ny =0 an
corresponds a plane in 3-d plane with equation

»

(n,C+ny,Ca+nyCy) - P2 = 0 (18)
¥3
1

where C; .. C3 are the rows of the camera matrix C. If we have lines in both images, we can
compute the intersecting line of the two planes in 3-d, and we can compute the projections of
the endpoints of each 2-d line onto the 3-d line. By averaging the corresponding endpoint
coordinates, we can find the 3-d line, see Fig. 4-9 and Fig. 4-10. The confidence value £ here is

2 2
_ ri—hL ry—ly
= (omn) +(7=) @

where r; etc. are the coordinates of the points indicated in Fig. 4-10 in any 1-d coordinate sys-

tem along the intersecting line. This value is zero if the two edges correspond perfectly, and
higher when they overlap less along the crossing line. Large values correspond to little overlap
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™

left image S
right image

Fig.4-9 The line-based stereo algorithm. The 3-d line is found by crossing the planes
through the lines in each image. Endpoints are found by averaging projected end-
points.

Fig.4-10 . 3-d edge based on the projected endpoints. The points I; and 1, are the pro-
jected endpoints of the left edge.The points r; and r) are the projected endpoints of the
right image, where ry is chosen closest to 1;. The endpoints of the final 3-d edges sy and
sy are in the middle of (r;,1;) and (ry,ly), respectively.

and can be rejected immediately. Therefore, edges with a confidence value above a certain
threshold are rejected. This value is only symmetric when both edges, projected on the cross-
ing line, are equally long. As this is the case for good correspondences, this is not a problem.

If the straight lines are nearly parallel to the epipolar lines of the camera system, this approach
becomes inaccurate, as the two crossing planes are nearly parallel. In that case, an alternative
strategy is used as described in the next subsection.
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4.4.4 Algorithm for near-epipolar lines

Epipolar lines are defined’” as the lines of points in one stereo image that can correspond to a
single point in the other image. Because of the equivalence of both cameras, complete lines
can be found in both images, for which every point on one line could match every point on the
other, see Fig. 4-11. From this definition it is clear that epipolar line segments cannot be
matched without assuming the correctness of the endpoints: without point information any
point on one segment could match any point on the other segment.

Near-epipolar lines in the images are lines (corresponding to edges) that are nearly parallel to
the epipolar lines in that part of the image. Without using endpoint information, there would
be infinitely many possible 3-d edges corresponding to near-epipolar pairs. Therefore, the
algorithm for near-epipolar lines is based on this correspondence of the end points. It is
applied to lines that make an angle with epipolar lines in the image that is smaller than a cer-
tain threshold. Because of the use of endpoint information, the algorithm will only work well
if both endpoints can be found accurately in both images, for instance at corers. However, it
does help to solve a number of cases.

left image nght image

Fig.4-11 Examples of epipolar lines. Any point on one of the lines a,b, or c in the left im-
age could match any point on the lines a,b or c in the right image, respectively. In a gen-
eral camera setup, epiolar lines are not necessarily parallel.

Given a point in an image and the camera matrix C, we can calculate the line of all points in
space that can correspond to that points. This can be done for all four endpoints considered,
yielding two lines projecting from each image into space. The endpoints of the new 3-d edge
are found at the point where corresponding lines are closest, in the middle of the lines that
connect corresponding projection lines at the closest point, see Fig. 4-12, The confidence
value in this case is given by

& &
E_,= _1+_g,
? o2

(20
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where d; and d; are the distances at the closest point, and / is the length of the resulting 3-d
edge. In this way, the confidence value is related to the correspondence of the end points. It is
unitless, symmetric and zero for a perfect match, and similar to the confidence value for gen-
eral lines. L.

Fig. 4-12 Algorithm for the correspondence of near-epipolar

4.4.5 Constraints

A line is accepted if the projections of the two 2-d lines are sufficiently close and the end-
points of the 3-d line are both within a certain volume (region of interest). The last condition is
made sufficiently simple by the fact that we are working with a robotics application: the actual
volume in 3-d space that contributes to our images is of a very limited extent. This also
reduces the number of possible matches.

Other constraints taken into account are:
- uniqueness. Each edge in one image may only match one edge in the other image.

- continuity. Connected edges in each image may correspond to either a corner or a disconti-
nuity in 3-d. If a discontinuity is found that is sufficiently small, continuity is restored. This
results in a well-connected 3-d wireframe.

- sign. A light-to-dark transition (assuming reasonable similarity between viewpoints) cannot
match a dark-to-light transition. For this purpose, the direction of each edge is stored at the
time of the straight line fit.

4.4.6 Experiments

These algorithms have been implemented in the DIAC system using TCL-image. A typical
image sequence is shown in Fig. 4-13.Shown are images of two of the DIAC parts, the edges
detected in those images, straight lines fitted to these edges, and the straight lines found in 3-d.
The images illustrate the fact that the images are not necessarily aligned or equally bright. The
side view of the 3-d scene shows that errors occur, especially in the vertical direction. Also,
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not all edges visible are found. This may not be a problem, as the aim is recognition. This will
be examined in (chapter 6).

It is very difficult to make quantitative statements about the performance of this kind of stereo
vision system. One cannot just measure a large set of edges and conclude from them a few
numbers describing the system completely. There are simply too many parameters that one
can vary. For instance, the length of edges may vary, but also the difference in grey value
(which is not necessarily constant over the entire edge). The orientation of the edge in space
may vary (over two angles) and the presence of other edges (and reflections) also influences
the problem. Finally, there is the influence of noise.

One solution to this problem would be the availability of standard scenes, with a known
“ground truth”. Ideally, these should be shared with other researchers in the field in order to
allow for comparable results. These, however, are not generally accepted. The prototype setup
does allow one to create known scenes though using the robot, up to the accuracy of the robot.
Objects can be put in front of the camera in a known position and orientation. This possibility
has been exploited.

A limited experiment has been performed to evaluate the accuracy of the system. In this exper-
iment, a rectangular black block with a white top is put in front of the camera on a black back-
ground by the robot in several positions (differing by a 15 degree rotation around the object’s
z-axis). In each position 10 image pairs are taken and the resulting lines calculated. The setup
is such that mainly lines originating from the top of the object are analysed, because the exper-
iment is limited to these in order to have a ground truth. The lines found during this experi-
ment are shown in Fig. 4-14 (for the x- and y-coordinates) and Fig. 4-15 (for x and z). In 12
cases, an expected line was not detected (out of 480), whereas there were 34 other detected
lines. Most of the latter could be attributed to other sides of the block.

These figures show that although measurements of an individual edge reproduce fairly well
over the 10 images of each position (most of the clusters of lines in both figures are less than 1
mm thick), the accuracy obtained is worse than that. Most of the clusters in these figures lie
within 5 mm of each other, while there are some outliers that are much further away. The fact
that the precision is much better than the accuracy suggests that the cause of these outliers is
deterministic in nature. The outliers in Fig. 4-14 correspond to the angles of 105 degrees for
the short side of the rectangle and 15 degrees for the long side. Since the two sides have an
angle of 90 degrees, these correspond to the same direction in the image. The latter position is
shown in Fig. 4-16. In this figure, the directions of the epipolar lines in the image have been
indicated by white lines. This indicates that these outliers are unrelated to the near-epipolar
problem.

It can be concluded that the line-based stereo vision system can find individual, well-defined
edges up to a few (2-3) mm, while there are some directions where the accuracy of the system

may be 6 mm. The precision G of the system is on the order of 1 mm.
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.
Fig. 4-13 Image sequence illustrating the line based stereo vision algorithms at
work.. From top to bottom are shown: the two images, edges detected and straight
lines fitted to those edges.
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Fig.4-13 (continued). 3-d straight lines found in the two images. On the left a top view
of the scene, with darker lines indicating higher edges, and on the right a side view. The
actual volume drawn is the region of interest, which accounts for different scales along
different axes.
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Fig. 4-14 Experiment to determine the accuracy of the straight line stereo algorithm. At dif-
ferent orientations (indicated by different line styles, with angles in degrees) ten image
pairs were obtained and the corresponding 3-d lines calculated. The lines corresponding
to the object top are shown here, rotated back to the original orientation. Coordinates are
relative to the robot, in mm.
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Fig. 4-15 Experiment to determine the accuracy of the straight line stereo algorithm (con-

tinued). This figure shows the x- and z-components of the lines found.
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Fig. 4-16 The block used in the experiments, in the position corresponding to a rota-
tion of 15 degrees. Overlaid are lines with directions corresponding to the epipolar
lines in the camera setup used.

4.5 Ellipse-based stereo
4.5.1 Problem description

When is circle is seen under perspective projection, the result is an ellipse. Projecting lines
from the focal point through each point on the ellipse back into 3-d space yields a “cone” with
an elliptical section. Stereo vision results in one ellipse in each image. However, computing
the section of the “cones” does not lead to a single circle. If the ellipses found were exactly
correct, we would find the two different interpretations that are possible: the circle and a very
eccentric ellipse (see and also 60,

This is illustrated in Fig. 4-17 and Fig. 4-21. In the first figure, the two interpretations are
shown, left the circle and right the ellipse, from three orthogonal viewpoints. In extreme
cases, the ellipse may become another conic section, like a hyperbola. In Fig. 4-21, corre-
sponding points on the circle and the ellipse are indicated, with lines connecting the points
and ending in the focal point of the camera (left).

In general however, the two 2-D ellipses will not be exact, and the axes of the two “cones”
will not meet in one point. The section of the two cones will then look like the example in Fig.
4-19, a single curve that is not planar, but instead switches between the circle and the eccentric
ellipse. Parts of the circle and the ellipse can still be distinguished. Of course, if two entirely
unrelated ellipses are matched, the section of the “cones” may well be empty.

So, the problem of finding 3-d circles through stereo vision can be split into three steps:
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left camera image right camera image
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circle interpretation ellipse interpretation
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Fig. 4-17 Two images of a 3-d circle (top), and the different interpretations of a
stereo ellipse pair. In the circle interpretation (left) the left circle corresponds to
the right image, in the elongated ellipse interpretation (right) the left circle cor-
responds to the mirror image of the right circle.
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Fig. 4-18 Two interpretations of ellipses in both images. In this figure, corresponding
point for the lower viewpoint have been connected by lines.

i

..........

Fig. 4-19 100 points on a typical section of inexact “cones” . Both the circle and the
ellipse are still visible.

- Finding ellipses in 2-D images.

- Computing the section of the corresponding “cones”.

- Identifying the circle in each of these sections.

In this section, we have written “cones” to denote that the set of all lines through one point
and an ellipse does not, in general, have a circular section. In the remainder of this chapter, we
will use the word “cone” assuming that the reader is aware of this.

We will use the following two descriptions of ellipses in 2 dimensions:

The ellipse equation is given by
OUgXS + 0L X, + 05 + O + O Xy + Ol = O 1)

and has been described in section 4.3.3 An ellipse can also be described by its major and
minor axes Apy; and Apiy, centre (x¢1.X¢2) and the angle of the major axis and the x; axis ¢,
using a parameter ¢:

X o |Xer| 4 Apgjc0s, —Ap;,sind | icosd = o4 M. |05 22)
X, Xpo|  |AmgSing, A,,;,cos0,| [sind sin¢
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with vector ¢ and matrix M defined appropriately. Transformation of one form into the other is
possible through the following equations:

_ 2(12(13 -, 0,

xcl = (23)
oy — 40,0,
200,00, — O, O
X, = #_13 (24)
af —4o,0,
o = 1atan % +E o, <O
e 2" oy—a, 270
9, =004 =,
6 = laan 1 o > 25)
a 2 ao_ (] 2
A -2K, 26
A -2K, 27
where K and K, are given by:
2 2
K| = 05— (0xg) + 0 X Xy + 0XL,) (28)

K, = Jo2+ (ay-a)™ (29)

Note that these equations are defined if and only if (21) describes an ellipse, and not another
conic section. The circle is included as the special case o = ot;. Some of these equations are
also found in 8, however the coefficients in (21) are chosen slightly differently, and some of
the equations in 8are incorrect.

4.5.2 Related research

In recent years, there have been a number of publications on the subject of ellipse finding. A

number of researchers use the Hough transform to find (possibly partially occluded) ellipses,
e.g. 25,31 38 4pg 70

Hough transform. Ellipse detection based on moments

. These methods are computationally expensive, due to the nature of the
48 cannot deal with partially occluded
objects. Our method of ellipse finding tries to estimate the parameters corresponding to a sin-
gle edge string, similar to 30, 1t differs from 30 in the addition of a merging step, and the use of
a simpler ellipse selection algorithm. If the noise level is not too high, it performs sufficiently
well at low computational cost. In 36, ellipse parameters are estimated using a bias corrected
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Kalman filter. That method has the advantage of the bias correction, but no speed figures are
given there.

A recent overview of the stereo vision literature is found in 27. There is very little reference to
stereo vision based on parametrized curves of higher order than a straight line. Initially, we

d 33, where it is mentioned without detail and 3 which is a predecessor to our work.

only foun
The reason for this may be that it is mainly attractive when the curve considered is really a
primitive of the scene. Such is the case in our work, where cylindrical objects must be recog-

nized.

In very recent conferences, other references appeared. In 0 a partial solution is described.
The approach described there is similar to our approach, which was presented at the same con-
ference'8. However, no effort is made to obtain the final circle equation. In %0 a closed form
solution to the ellipse based stereo problem is described. This solution is overdetermined and
therefore yields a matching criterion that indicates how well the circle corresponds to the
actual data. It is difficult to relate this criterion to actual distances so that it is hard to say
whether noise in the ellipse parameters is dealt with in a meaningful way. In 60 a closed form
solution for obtaining the plane of the circle only is described, however not just for circles but
for general quadric curves. No effort is made to recover the actual curve though.

4.5.3 Overview of the method

An overview of the method is shown in Fig. 4-20. Both images are treated identically by the
preprocessing steps: edge detection is applied and the detected edges are stored as chaincodes.
From these code strings, candidate elliptical edges are selected to which an ellipse fit algo-
rithm is applied. The output of this algorithm is a set of ellipse equations.

edge detection ellipse selection cone equations

Left segmentation ellipse fitting ’

stereo matching

edge detection ellipse selection
Right | segmentation ellipse fitting ellipses

Fig. 4-20 Overview of the ellipse stereo algorithm.

One of the sets of ellipse equations is first converted to a set of cone equations using the
appropriate camera matrix. This set of cones and the other set of ellipse equations with its
camera matrix are then passed to the stereo algorithm which outputs a set of 3-d circles. This
is done by trying to find a corresponding circle to every combination of ellipses from the two
sets that meets certain constraints (as described in 4.5.6).

53



The stereo vision system Chapter 4

4.5.4 Computing the 3-d circle

Our method is general in that it does not require the two cameras to be parallel. Rather, it
assumes that each camera can be described by (16). The set of all world points y that corre-
spond to a given image point (x;,x,) is the line described by the two equations

(Cy~x,C3) -y =0 (30)

where y is the column vector (y;,y2,y3,1 )T and C 1» Cp and Cjy are the rows of the camera
matrix C, see e.g. 37 The line corresponding to (30) and (31) can also be written in parameter

form, as is show for instance in 8,

The set of all points in 3-d space that correspond to a given ellipse and camera matrix can be
found in the following way: to any point on the ellipse parametrized by (22) corresponds a set
of two equations based on (30) and (31)

(l-fom [od)e) -

where x is the symbol for the cross product of two vectors. (32) may be rewritten as

cosd ot (16 vo |
[sinq)}(Q y=M ({CJ ch3J y ijy 33

where ; and ¢, are row vectors, defined appropriately. Squaring both sides (which is allowed
because of symmetry) and adding the two equations yields

(C3-9)% = (1) 2+ (19, (34
the equation of the ellipse cone.

Let E; be the equation belonging to the left ellipse and camera matrix. We can vary the value
of the parameter ¢ in equation (22) to obtain a number of points on the right ellipse, and, by
solving E; with (30) and (31) for these 2-d points, obtain a set of 3-d points P; on the section,
as indicated in Fig. 4-21. An example of such a set is shown in Fig. 4-19. Of course, it is pos-
sible that such a set could not be found, in which case we decide that the two ellipses did not
match.

Subsequently, we try to identify planes in the point set. We do that by moving a window of
width n over the set of points, trying to fit a plane to P;, P;, ;..P;,p.;. If one or two such planes
can be found, we try to fit a circle to all points in each plane. If two circles can be fit, we keep
the best (this is a rare special case). If only one circle can be fit, it is presumed to be the correct
circle. Otherwise, we decide that the two ellipses do not match. Both the plane fit and the cir-
cle fit are least squares fits. The circle fit returns a measure of fit: the average relative distance
of each point to the circle (which is zero for a perfect fit).
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Fig. 4-21 Finding points on the section of two cones. By varying the parameter of one
cone and crossing the resulting line with the other cone, a set of points is obtained in
which both interpretations are present.

The whole procedure can be written in pseudo-code as shown in Table 4-1

CIRCLE find 3d_circle(left_ imageleft camera matrixright imageright camera_matrix)
{
circleset = {};
for (L = all ellipses in left_ image){
E; = cone_equation(L,left camera matrix);
for (R = all ellipses in right image) {
pointset = (};
circlel = NULL;
circle2 = NULL;
for (p = points on R)
pointset=pointset+section(projected line(p,right camera matrix),E;);
no_of planes = find planes(pointset,planel,plane?);
if (no_of planes > 0){
circlel = fit circle(pointset,planel);
if (no_of_planes > 1}{
circle2 = fit circle(pointset,plane2);
if (measure of fit(circlel) < measure of fit(circle2))
circleset = circleset + circlel;
else
circleset = circleset + circle2;
}
else
circleset = circleset+ circlel;
}
}

return(circleset);

Table 4-1 Pseudo-code of the stereo algorithm.

4.5.5 Parameters

As mentioned in the preceding section, there are a number of parameters to the ellipse stereo
procedure. These are:

- the number of points N used to describe one ellipse. A number that is too small
decreases the accuracy. A number that is too high leads to an unnecessarily large com-
putation time. A typical value is 100, which provides accurate results while still being
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sufficiently fast.
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16.0001
—{—  Exee.time (ms)
1205
........ <}. R!].. ervor
100
> 1206
2
'-a' 1207 [
f
3 ;
g : %
o109 r i 1208
Q =
8 g

Ho. of points ->

Fig. 4-22 Illustration of the importance of the parameter N of the ellpise-based stereo
vision algorithm, using a test image containing one circle. The horizontal axis indicates
the value of N. The left hand y-axis and the squares show the increasing execution time
of the algorithm, while the right hand y-axis and the diamonds show the convergence
of one of the circle parameters (the radius). Considering the fact that the algorithm has
an accuracy of the order 1 02 and other steps in the stereo vision process have execu-
tion times of the orther 1 0% ms, the choice of N=100 is safe in both respects.

- the number of points n in the window used for plane fitting. This size is a fraction of N,
enlarging this will make the algorithm more critical. A typical value is N/20.

- the thickness d,,,, allowed to a plane (distance beyond which points are no longer con-
sidered part of the plane). This is of course related to the physical dimensions of the
scene. For the prototype, a size of 4 mm is used.

- an average error € allowed for each circle found. When the radius of the circle is r, and
the distance of point i to the circle centre is d;, this error is defined as
1

2
0= 3 (35)
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Smaller values will make the algorithm more critical. A typical value of 0.15 works well.
Except for plane thickness these are relative parameters and depend only on the noise.
4.5.6 Constraints

The process of stereo matching can be sped up considerably by the use of constraints. Without
constraints, the matching procedure would have to be applied to every ellipse found in one
image combined with every ellipse found in the other image. Our current implementation uses
the following constraints explicitly:

- The epipolar constraint. This well-known constraint indicates that points in one image can
only match points on a single line in the other image. This line is the section of the plane of the
other image with the plane through the point and the centres of projection, see 37 In our
implementation it is applied to ellipse centres: if the centres of two ellipses are not within a
given distance of an epipolar line, they are not considered in the matching process.

- The similarity constraint. Most structures in one image look almost like corresponding struc-
tures in the other image if that image is obtained from a viewpoint which is sufficiently close
(which is usually the case in stereo vision). If difference in length of the major axes of two
ellipses is not below a certain threshold, a match is not considered.

- Spatial constraints. Only ellipses within a specific volume in space are accepted. Because of
our application, we know very well where real ellipses can be. This constraint is applied after
a circle has been found, to determine whether it is a valid solution.

4.5.7 Experiments

The algorithm has been implemented and applied to a number of tests, using the following
parameter values: N = 100, n = 5, d = 4 mm, € = 0.15. First, the principle of the method is
illustrated in Fig. 4-23. Shown are: the stereo pair, edges extracted from each image, ellipses
found in each image and the circles found, projected back into the scene. The object shown is
DIC part 29 (see Fig. 3-3), with four circles of which three are partially visible. Note that only
the top side of the discs at each end are found, which is sufficient for recognition. The object is
about 10 cm wide and 5 cm high, and is one of the largest parts in the cell. Both cameras were
placed at 65 cm from the scene, 12 cm apart, without any special alignment.

Processing was done on a Sun 4/330 workstation using 512*512 images. For edge detection
about 25 s (image processing) was required, chaincode handling and ellipse fitting took 1 s
and the ellipse stereo algorithm 0.2 s (CPU times). Note that the image processing time (for
the edge detection) is independent of scene complexity and can be improved upon using edge
detection hardware.

In order to get more information on the accuracy of the algorithm, a set of experiments has
been performed. The (experimental) analysis of a scene consisting of circles is much easier
done automatically then that of a scene of straight lines (as in 4.4.6). More specifically, it is
easy to derive a “relative ground truth” from the relative positions of a set of circles. There-
fore, the experiment could be simpler than in the straight line case.
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Original
images

Edges
detected

Ellipses
found

Fig. 4-23 The stereo algorithm applied to a cylindrical part. The left and right col-
umns above show the steps as each image is processed. Note that there is no special
camera alignment. Shown are the original images, the edges detected and the ellipses
found. The excentric ellipse in the bottom right hand image is a false detection.
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Merged ellipses

Circles found

Fig. 4-23 (continued). The last two stages of the ellipse based stereo vision. Top row:
the ellipses found after merging. In both cases the two ellipses describing the top of the
object are merged. Bottom row: the two circles found, drawn in the two images using
the known camera matrices. For each circle, a line perpendicular to its plane and with
its radius as length is also drawn.
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The ellipse based stereo vision algorithm was applied to a number of drawings of circles
obtained using a drawing program and a laser printer. For example, the sheet shown in Fig. 4-
23 contained 15 circles of radius 2 cm, at 5 cm distance (centre to centre). For this scene,
chaincode handling and ellipse fitting cost 2 s and ellipse stereo 0.7 s of CPU time. Each sheet
was replaced a number of times to obtain a sufficient number of circles. First, the distances
between centres of adjacent circles were calculated. We found a systematic difference of 1%,
which was actually due to our laser printer. In our tables, the corrected circle sizes are men-
tioned. All distances and measured standard deviations are mentioned in Table 4-2. The figures
show that the method allows position estimates of circle centres with a standard deviation on
the order of 1% of the circle’s radius.

|

Fig.4-23 A typical testing image, and the circles found.

Table 4-2 Measured distances between circles.

d'true no. of average s.d. of coefficient

istance di measured R ..
istances . distance of variation

(cm) distance

3.96 72 3.969 0.079 1.99

4.95 62 4,952 0.086 1.74

5.94 68 5.929 0.129 2.17

6.93 42 6.939 0.131 1.88

7.92 42 7.905 0.197 2.49

A summary of the radii and orientations measured (with standard deviations) is shown in
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Table 4-3 It shows that no significant systematic error is made in the circle radius. The stand-

Table 4-3 Measured circle radii and angles with z-axis.

true no.of | 2VETA8C | (4 of Xz s.d. of yz s.d. of
radius circles radius radius angle x-z angle angle y-z angle
(mm) (mm) (degrees) (degrees)
14.85 46 14,948 0.242 0.062 0.967 -1.325 1.589
19.80 43 19.921 0.279 0.468 1.133 -0.402 1.446
2475 48 24.887 0.497 0.452 1.368 -0.202 1.564
29.70 36 29.986 0.335 0.177 0.499 -0.479 0.965
34.65 36 34.850 0.530 0.249 0.508 0.032 1.249

ard deviation of radii is about 1.7%. The angles measured are expected to be 0, because of the
horizontal table. The orientation angles show standard deviations on the order of 1 degree.
The difference in x- and y-direction was caused by the view direction, which was almost par-
allel to the y-axis.

Further research is needed for quantitative analysis of the performance of the algorithm where
ellipses are only partially visible. A significant increase of errors is to be expected. Further-
more, the integration of ellipse based stereo in the full stereo vision system needs further eval-
uation.

4.6 Calibration
4.6.1 Description

Obtaining full camera matrices is necessary for the stereo vision algorithms as described in
this chapter, because these allow for a general camera setup. Calibration generally implies that
a number of well known points in 3-d space must be observed and their coordinates measured
in image coordinates. If more than 5 points are found, the camera matrix can be estimated
from the sets of points using a standard least squares procedure(s). Usually, a larger number is
taken for improved accuracy.

The camera matrices are obtained in the following way: a simple robot tool has been made,
containing a single LED. Using the robot, the led is positioned in front of the cameras in a
number of well-known positions (specified in robot coordinates). For each of these tool posi-
tion‘s,‘ the location of the led blob in the image is measured for both cameras. From the sets of
robot and image coordinates, two camera matrices can be obtained. The robot positions are
points on a cube, typically a 3x3x3 cube (27 points for each matrix). The procedure is
described in 37.

The calibration procedure is made more complicated by the fact that there are several different
coordinate systems in the system. Each introduces its own errors. An analysis of this problem
for the entire cell is given in 5. As far as vision is concerned, the following systems can be
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Fig. 4-24 The calibration too, held by the robot. During the actual calibration
procedure, all other lights are switched off.

identified (see Fig. 4-25):

- The robot coordinate system. This is the system that the robot cell should actually use.
The robot is moved to coordinates specified in this system. Robot specifications
include an absolute accuracy and a reproduction accuracy (corresponding to what is
generally referred to as accuracy and precision). The former, as far as it is linear over
the observed volume, is taken into account by the calibration procedure. The latter nec-
essarily influences the calibration and recognition results. For the ASEA IRB 6/2, they
are specified as 0.1 mm and 0.2 mm, respectively.

- The calibration coordinate system. This differs from the robot coordinate system by a
fixed translation: the vector from the robot Tool Centre Point (TCP) to the location of
the LED when the calibration tool is held by the robot. This translation should result
from the design of the tool. If it is not exactly known, it can be measured.

- The camera coordinate system. This is the coordinate system in which the objects are
observed by the vision system. The aim of calibration is to make this system identical
to the calibration coordinate system.

4.6.2 Experiments

Experiments have been performed to determine:

- the number of points necessary for calibration
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robot TCP

/“camera frame to
be estimated,
with led

robot origin

Fig.4-25 . Different coordinate frames in the calibration setup.

- the accuracy of the calibrated system
- the influence of robot accuracy on the calibration result

The first experiment requires repetition of the calibration procedure for various numbers of
points. Each time the camera matrix is calculated, the distance is calculated for all points
between the measured point and the projection of the calibration tool using the camera matrix.
The average distance is listed in Table 4-4

Table 4-4 Calibration result as a function of the number of points.

Average Average
Number of . g distance
. distance left .
points (pixels) right
(pixels)
23 0.61 0.61
33 0.42 0.49
43 0.43 0.43
53 0.44 0.43

As can be seen from this table, there is no significant improvement of the calibration if more
than 3° points are used. Also, repeatedly measuring the same set of points (in another experi-
ment) did not give a reduction of average distance of the standard deviation. Apparently, these
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errors result from the noise in the measurements of the camera tool. It should be noted that in
this case we use the same points for calibration and evaluation.

The accuracy of the calibrated system has been evaluated in the following way: after calibrat-
ing the system with a varying number of points, the calibration tool is sent to 50 points ran-
domly chosen with a uniform distribution over the calibrated volume. Each time the stereo
vision system measured the position of the tool in 3-d. The distance of the measured position
of the tool to the predicted position has been measured, and the results are listed in Table 4-4
Note that in this case, different points are used for calibration and evaluation.

Table 4-5 Evaluation of calibration as a function
of the number of calibration points.

Number of Aycrage
. distance
pomts (mm)
23 0.56
33 0.47
43 0.38
53 0.44

Again, this experiment shows that extending calibration beyond 3 points does not gain any
accuracy improvement. Given that the robot specifications suggest an accuracy of 0.1 mm and
a precision of 0.2 mm, we may conclude that the contribution of the vision system to the inac-
curacy is comparable to that of the robot.

4.7 Conclusions

A stereo vision system has been described using straight lines and ellipses in images, repre-
senting straight lines and circles in 3-d. First, images are acquired and edge detection is per-
formed. This can be sped up considerably by use of edge detection hardware.

The straight line based stereo vision algorithm is straightforward, mainly caused by the use of
strong constraints. A straight line fit is applied to edges and lines are checked for correspond-
ence. The best correspondence for each is kept, if it is better than a certain threshold. Although
the system is capable of finding well defined straight lines mostly with an accuracy of 2-3 mm,
there are some outliers at certain orientations.

Ellipse based stereo vision is based on an algorithm to find ellipses or partial ellipses in gray
value images, and an algorithm to find the circle in 3-d corresponding to two ellipses. The
algorithms appears to be sufficiently fast and accurate. The performance of the stereo algo-
rithm where ellipses are only partially visible must still be investigated quantitatively.

The calibration procedure has been evaluated. It proves not to be useful to apply the calibra-
tion procedure at more than 27 points.



5 Matching wireframes

In this chapter, a system is described for the recognition of
objects using the output of the stereo vision system. It uses the geomet-
ric primitives that are present in the objects considered: straight lines
and circular arcs. The system is designed to be robust against the kind
of errars introduced by a feature-based stereo vision system.

The operation of the system is illustrated with examples. An eval-
uation of the system is impossible without evaluating the stereo vision
system as well, therefore this is not included in this chapter. This will be
done in chapter 6.

This chapter only describes the implementation of the recogni-
tion system, for a summary of popular recognition paradigms and some
similar systems the reader is referred to chapter 2.

5.1 Introduction

The recognition system described in this thesis takes the wireframes output by the stereo
vision system, and compares them with a set of model wireframes derived from models, see
Fig. 5-1. Some specifications of the recognition system are imposed by the application, others
by the stereo vision system. These specifications include:

§ line-based

edge
: stereo

g1 detection

edge

detection ! stereo matcher

A
—

CAD database | 3-d wireframes

Fig. 5-1 Overview of the recognition system.

- The possibility to handle objects that consist of straight lines and/ or circular arcs.
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- The possibility to handle scenes with several, or no objects.
- The use of models derived from the CAD database (see chapter 7).
- The use of the assumption that a known flat surface (a table or a pallet) is present.

The recognition algorithm has been designed to meet those specifications. It has been outlined

n 20 and 17, but will be described in more detail here. Like a number of other recognition
algorithms”, it uses the well-known paradigm of hypothesis generation and testing. There are
two main steps involved: for each model a set of hypotheses is found first, then for each of
these hypotheses it is evaluated how well it corresponds to the observed scene. The initial
hypotheses are based on a few selected features in the observed scene and some similar fea-
tures in each model, whereas the evaluation is based on the entire observation and model. The
final result consists of a set of hypotheses that are not conflicting and for which there is suffi-
cient support. This set may be empty, or may contain one or more hypotheses, because it is not
known in advance whether there are one or more objects in the scene. The whole process is
illustrated in Fig. 5-2.

Observation

selected features

all features similar features

Hypothesis generation

* hypotheses all features

T Hypothesis testing /

l result

Fig. 5-2 Hypothesis generation and testing. From a set of selected features in the ob-

servation and a set of similar features in the models, a list of hypotheses is generated.
These are then tested using all observed and model features.

There are two important issues in hypothesis testing. Both the definition of conflicting and a
means of expressing support (and determining whether it is sufficient) must be chosen. The
latter usually involves a distance or similarity measure. The choices made here are to a certain
extent arbitrary, as it is very difficult to draw conclusions that generalise different applications.
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This is unsatisfactory but common and accepted in this field.

The recognition system described here follows the paradigm, but adds to it a number of addi-
tional steps that are specific for this context. These are:

- Removal of hypotheses corresponding to symmetries of the models. These occur
rather frequently in man-made objects, such as the parts considered in this theses.

- Application of checks for bad matches at various steps, in order to reduce the compu-
tational cost of following steps.

- Application of information about the objects (which objects are possible?) as well as
about the scene (where is the table or pallet?).

The procedure is described in some more detail in Fig. 5-3. The selected observation features
mentioned earlier are called the start features, since they are used as starting points for a data-
base search. Whenever possibly corresponding model features are found, a feature pair is con-
structed, which references both the start feature and the corresponding model feature. A
hypothesis is defined as a tuple of a model name and a geometrical mapping from model to
observation. It can be considered as a possible identity and pose of an object in the scene. A
feature pair can be used to calculate the mapping. Once a mapping has been generated, it is
checked against all previous hypotheses using the same model, to see whether the two refer to
a rotation symmetry of the object. If this is true, the last hypothesis is deleted. These steps
together result in a list of hypotheses, and constitute the hypothesis generation stage.

Hypothesis testing is divided into several steps too. The most important step is the matching
step, where all features in model and observation are found that correspond according to the
mapping in a hypothesis. If the result is bad, or conflicting with a previous result, it is
removed. For the remaining hypotheses (these may be zero or more since there may be zero or
more objects in the scene), the mapping is improved upon using the extra information availa-
ble at this stage. Finally, any remaining bad matches are removed.

To most of the separate steps, sections of this chapter are dedicated. In this chapter, this is
illustrated with an example. The full evaluation of the total system is postponed to the next
chapter.

5.2 Model and Observation Representation

The stereo vision system provides two different data structures: a graph representing the
straight lines present in the scene, and a set of the circles that are also present. Although it
detects the end points of elliptical arcs, these are difficult to find accurately. Therefore no end
points are included in the final set of circles. The observation can therefore be described by a
tuple

0=(G,,C,). (36)

where G, is the graph and C,, a set of circles, represented by their centre and a normal vector
with the radius as length. The graph is given by

67



Matching wireframes

Observation

RN

Selection of observed features

.3) /

start feature \

L
[ Models

Selection of similar model features
(5.3)

* feature pair

Calculation of relative mappings
(Parameter estimation, 5.4)

Tﬁypotheses

Removal of hypotheses corre-

\sponding to symmetries (5.6)

Matching (5.5)

L
L

Y

Removal of bad or conflicting
matches (5.7.1, 5.7.2)

Y

Mapping refinement (5.8)

Y

Final removal of bad matches
(5.7.3)

Y

< Scene description >

uonersusd sisoypodAy

Sunsy sisoyiodAy

Chapter 5

tig. 5-3 Detailed plot of the recognition procedure, with numbers referring to the
(sub-)section where each stage is described.
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G,=(V,.E,). 37

where V, is a set of vertices (3-d points) and E, is a set of edges (referring to two vertices
wherever a straight line connected them). By a feature, we will generally mean either one or
more edges or circles.

It is convenient to have a similar representation for the model. However, the model contains
more information than the observation:

- The model contains information about all the views that can be obtained from a single
object.

- A new possibility, introduced in this work, is the use of information about rotation
symmetries of the object in order to reduce the computational complexity.

The first point can be realised by computing all the necessary views in advance and storing
them as separate models, but this is a complex procedure (see chapter 8). Another possibility
is to include all the views in one model by treating the object as if it were transparent. This can
be done whenever the absence of features is not used as extra information, as is the case here.
Therefore, the graph and circle set in the models contain all vertices, edges and circles present
in the object.

The second point is realised by defining the model as a 3-tuple. Given a set of model graphs
{M}, each model is defined as

M, =(G,,;, C.pp Spi)- (38)

where G,; and C,; are a graph and a set of circles, defined as in the case of the observation.
S, is a set of symmetry mappings as described in section 5.6. Implicit with each model or
observation is a coordinate system, which allows us to describe positions of elements of the
graph.

5.3 Finding suitable feature pairs
5.3.1 Introduction

The first two steps in hypothesis generation are finding start features and feature pairs. As the
two issues are closely connected, they are both described in this section.

Feature pairs are pairs of observed and model features that allow a mapping to be estimated.
As a mapping is a combination of a 3-d rotation and a 3-d translation, it has six degrees of
freedom. It can therefore be estimated if three point correspondences are known. Both the
start feature and the corresponding similar model feature should contain at least three different
points. There are two conflicting requirements here:

- In order to reduce the computational complexity, the list of start features should typi-
cally be short, and the corresponding model features should be easy to find.

- Accuracy of the mapping estimate depends on the fact that the points are at some dis-
tance from each other, and not on one line (if they are exactly on one line, the mapping
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could not be estimated).

Suitability of a feature for use as a start feature is indicated by a so-called preference function,
that can be defined for each kind of feature. A feature with a high preference value is more
suitable than a feature with a low preference value. Since a preference is usually based on two
lengths, a preference function has the dimension length squared. A number of different fea-
tures are discussed in the next subsections, each time defining a preference function and crite-
ria for selecting corresponding model features.

5.3.2 Preference functions for straight lines

Two straight lines provide sufficient information for a parameter estimate. Above all, in order
to prune the number of possibilities, it is required that corresponding straight lines (in observa-
tion and model) do not differ more than a factor of A; in length. However, another constraint
can be imposed. In order to keep the number of features low, a requirement can be that the two
observed edges have at least one end point in common. In that case the preference function for
two straight lines A and B with end vectors g;, @5, b; and b, can be defined as:

s,A,B) = { (@ —=ay) x (by—by)| if(a =byva;=byva,=b va,=b,) (39)
0 otherwise

The conditional part of (39) provides that the observed edges have a point in common. For
simple or badly observed objects, this may not result in any features found. In this case a sec-
ond preference function can be applied, to edges that specifically do not have end points in
common:

0 if(glsblvglsbzvgzzblvgzs

b2 40
Al BIC(a,)C(a,)C(b,)C(by) otherwise

5,(A,B) = {
where C(g) is the number of edges that are connected to vertex a. This increases the preference

for edges that are connected to others, which is motivated by the fact that they are usually
more accurate (they support each other).

A disadvantage of s, is that the angle between the edges make is no longer taken into account,
as was the case with 5;. A solution for that is to use a second constraint: the requirement that
the angle between the edges (or rather, the cosine of the angle) in start feature and model fea-
ture does not differ more than a value Ay, where the cosine of the angle of two edges A and B
is calculated as

(41 - GZ) : (-bl - bg)
21— a2, — &,

cos(A,B) = (41)

5.3.3 Preference functions for circles

One circle almost determines a mapping up to one rotation, however for objects that are solids
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of revolution (or cannot be distinguished from that by the stereo vision system), this is the best
that can be obtained. Therefore, there is a preference function for a single circle, which is
given by

530 = |ac|. “2)

where nc is the vector perpendicular to the circle, with as its length the radius of the circle. If
¢ is the vector of the centre of the circle, the three points used are ¢ + n, ¢ + 1y and ¢ + ny,
where n; and g, are vectors with the same length as i, but are perpendicular to it. One of the
coordinates of n; can be chosen, e.g. set to 0.

The corresponding model feature should of course be another circle, with a radius that is rela-
tively not more than A, different from the observed circle. However, these circles almost
determine the mapping, there are still two possibilities which both must be used as hypothe-
ses. Both hypotheses contain a flag that indicates the fact that a rotation symmetry could not
be resolved.

Should two circles be available that are not on the same axis (there is no line through both
centres, perpendicular to both), the mapping can be determined uniquely. The preference
function could then be defined as

54C1, Cy) = [me, % 1| (43)

however as no such objects are present in the DIAC database, this has never been imple-
mented. Two circles that are on the same axis but have a different radius could solve the case
aBové, where one circle still led to two hypotheses, however, the advantage of this is so minor
that it is neglected.

5.3.4 Preference functions for straight line and circle

If a straight line and a circle can be found, where the line is not on the line perpendicular
through the circle and through the circle centre, the mapping can be resolved uniquely. A pref-
erence function for this case could be defined as

55(C, A) = |ﬂc' (gl—g2)|, (44)

although this disregards the rare case where an edge can be found, perpendicular to the circle
but not on the axis (see Fig. 5-4). A corresponding model feature should consist of one line
and one circle, with length and radius differing no more than A; from the observed length and
radius, respectively.

For the DIAC objects, in the objects where this preference function could be helpful the cir-
cles are much larger than the straight lines, so the value of the preference function for circles
only would be much higher. Therefore, this feature would not be used and as an elegant solu-
tion for this could not be found, this has not been implemented.
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o o o

Fig. 5-4 Using a combination of a circle and a straight line as a start feature. In the
leftmost case, the rotation cannot be resolved. For the other two cases, it is possible
to resolve the rotation. The rightmost case is the exception not covered by the prefer-
ence function in equation (44).

5.4 Parameter estimation and transformation representation

5.4.1 Introduction

Geometrical transformations in 3-d can be represented in several ways with varying compact-
ness and ease of estimation>>, Related to the compactness is the issue of degrees of freedom:
do we allow scaling, skewing and other distortions of objects? In this thesis, we have rigid
objects of fixed scale (see section 3.2). As a result of this, the maximum number of degrees of
freedom to be represented is 6: three rotations and three translations.

In this section, a number of methods of describing these mappings will be described, and some
estimation methods described. For this system, one of each is chosen based on the following
criteria:

- Ease of estimation.

- Ease of use computationally.

- Ease of interpretation for humans.

5.4.2 Euler angles and translation

A transformation can be represented by rotations around the three major axes of the coordinate
system, followed by a translation. The angles of the three rotations are generally referred to as
the Euler angles. It is usually convenient to rewrite this transformation as

X, = Rx,+1 45)

where the matrix R is of a special form (because it represents a pure rotation). In fact, if o, B
and vy are the angles corresponding to rotations around the x-, y- and z-axes, which are applied
in that order, R can be written as
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cosfcosy cosysinasinP + cosasiny  sinosiny— cosysinasinf
R = |—cosBsiny coscosy— sinasinBsiny cosysina + cososinBsiny]- (46)
sinf3 —cosPsina cosocosf

It is not trivial to estimate o, B and y. Even estimating the sines and cosines (6 parameters with
3 constraints) rather than the actual angles is difficult. In 2, Arun et. al. describe a method for
estimating the angles using a singular value decomposition. In 8 Rijnierse applies a least
squares procedure to solve the general form of (45), where one element of the matrix R is set
to unity and the other eight are estimated as independent variables.This implies that skewing
and scaling of objects are allowed. The degree to which the matrix found differs from a strict
rotation is proposed as an indication of the validity of the transformation found. This seems an
insufficient argument for estimating 11 parameters (including the translation) instead of 6.

5.4.3 Quaternion and translation

This transformation, proposed by e.g. Horn7, Faugeras and Hebert 29 allows a compact rep-
resentation of rotations. Quaternions are defined in such a way that they can represent rota-
tions and translations, the former by multiplication, the latter by addition. In the case of
rotations, a quaternion can be interpreted as a representation of an axis around which the rota-
tion takes place, and an angle of rotation. In the case of translations, a quaternion is added in a
way similar to vector addition. The formal definition follows below.

A quaternion can be defined as a tuple ¢ = (w, s) , where w is a 3-vector and s is a scalar. Addi-
tion and multiplication are defined for quaternions:

(Wi, 87) + (wy, 59) = (W +w,,5,+5,) @47
(w1, 51) (Wo, 83) = (S10y+ 5,w; + Wy X Wy, 5,5~ W - W,), (48)
where - and x denote the vector dot and cross products, respectively. Quaternion multiplica-
tion is associative, but not commutative®’. A conjugate is defined as

(w,9)" = (-w,5) (49)
and the dot product as

(Wi, 8) - (wy,8) = w -wy+5.5, (50)
so that the norm of a quaternion can be defined as

| (w,)[| = (w,5) - (w,5). (51)

If a vector x in 3-d space is mapped onto a quaternion using
x= (x0),

it can be proven that a rotation over an angle 6 around an axis through the origin and unit vec-
tor ¥ can be written as
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X =qxq" = (w,5) (x,0) (-w,5), (52)
where

w = sin(g)v (53)
and

§ = cos (g). (54)

This provides a powerful way to describe rotations. One of the advantages is that rotations can
easily be combined, for instance, a rotation first using quaternion q; and then g, of a point
described by quaternion x, can be written as

x" = ‘hqlx‘h*(IZ*a (55)

furthermore, translations can be described by an addition of quaternions. Faugeras and
Hebert?? describe a vision system where the mapping from model to object space is expressed
using quaternions, they also describe a method of estimating the mapping between two sets of
other primitives than points (lines and quadrics). These are least squares methods, which
means that if {x;} and {x;'} are sets of corresponding points, the mapping found minimises:

n
Y |laxg" + x| (56)
i=1
where the rotation is described by ¢ and the translation by 7. The method is described in detail
in 2, Using this method, the transformation is described by four parameters for the rotation
(with the constraint that the norm of the quaternion is 1), and three parameters for the transla-
tion (the translation is used as a quaternion with s=0).

5.4.4 Matrix exponentials

Other useful representations have been published, most notably matrix exponentials,
described by Ayache and Faugcras3. They use the fact that every orthogonal matrix R can be
written as

R=¢, (57

where matrix exponentials are defined as

H H H

e =1+1_!+§T+T+"” (58)

and the matrix H can be written as
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0 —cb
H=|¢ 0 —q|- (59)
-ba O

They show that the vector [a b C]T has the orientation of the axis of rotation, where its norm is
equal to the rotation angle squared. By estimating the rotation represented with this vector, the
rotation is estimated using only three parameters without a constraint. Although their repre-
sentation seems to have computational advantages, it is hard to interpret.

5.4.5 Conclusion

For the recognition system, the quaternion notation has been chosen, for the following rea-
sons:

- It is very easy to invert the rotation, or combine several rotations and translations.
Therefore using the representation is easy.

- For humans, it is relatively easy to interpret (using axis and angle).

- Estimating the quaternion is comparable in computational cost to estimating the Euler
angles2.

5.5 Hypothesis testing
5.5.1 Introduction

Recognition of objects in the scene amounts to finding mappings from subsets of the observed
data to one or more models. This is done by finding similar (though not necessarily identical)
edges and arcs in each set. The matching process should be able to deal with incomplete data,
due to occlusions and noise. It also deals with the fact that only a certain view of the object is
observed. In the algorithm described here, no attempt is made to distinguish different views.
Instead, we are satisfied if the object is recognized from a significant observed part.

Let M;, be the model, which contains a set of features of an object i from our database. Let O
be the set of observed features, consisting of edges and arcs obtained using vision. Further-
more, let { F i } be a set of potential mappings from the model’s coordinate system to the
observation’s coordinate system, in other words F f is an hypothesis about the presence of
object i at a certain position and a certain orientation. Now consider each of the feature sets

H;=(0NF{M)), (60)
where N is an inexact section operator yielding a feature set /; containing corresponding
edges and arcs in two feature sets O and F;. Then H; represents the data found supporting the
presence of object i at the location indicated by F I We assume that no observed edge or arc

can be caused by two objects. This means that two hypotheses are conflicting if they are based
on the same evidence, in other words if

//Hijk// »0,j#k, ©61)
where //G// is an operator taking the size of a feature set G, and » is used to denote a signifi-
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cant difference. If two hypotheses are conflicting, we prefer the one with the most supporting
data. To interpret a scene (which may contain several objects), we are looking for the sets of
mappings {F i /j = 1..N} and associated hypotheses {Hj [ j = 1.N} which have a sufficient
amount of supporting data and are not conflicting. This means that

1 Hyll >0, (62)
and
//HjnHk//EO,j,k=I..N,j¢k. (63)

After having found H., in other words the match, we perform another estimate of the rotation
and translation parameters. This time we use all matched elements of O, to get as accurate an
estimate as possible. If several H; remain, we have identified several objects in the scene. As
this system does not make the assumption that only one object is present, all of these are part
of the output result.

In the matching process, the same edges are used both in the straight line stereo vision algo-
rithm and in the circle finding algorithm. Therefore, if possible a detected primitive is added to
both sets. Therefore, in the matching process, circles are only matched with circles and
straight lines are only matched with straight lines. The matching process then amounts to the
following steps:

- Determine whether two features match.

- Calculate a quantity indicating how well they match. This will be proportional to the
length of the corresponding parts of the edges.

- If this stage can be followed by a refinement step, calculate the corresponding points
which may improve upon the parameter estimate.

For both straight lines and circles, a separate subsection explains each step below.
5.5.2 Matching straight lines

The section operator (M) for model and object feature sets mentioned above is implemented
for straight lines in the following way: for each of the edges in O, calculate its mapping in
model space. Then, project each mapped observed edge onto each edge in the model (see Fig.
5-5). If the distance of the edge to its projection, and the displacement of the projected edge
along the model edge are not too large, we accept this as a possible match. For each observed
edge, the best match to the model holds and the projection is made part of the section. The
operator is implemented this way, because corner points and end points of edges can not be
measured very accurately. Also, loss of information due to occlusions, lighting conditions or
noise can be overcome in this way.

The projection can be determined as follows (see Fig. 5-6):

Let ab be the model edge, determined by its end vectors g and b. Let v be the direction vector
of unit length of the line through ab:
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a »
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Fig. 5-5 If the observed edge AB lies completely within the cylinder with axis a’b” and

>
,m b’,
>

radius r , and its endpoints are within the subcylinders delimited by l; and |, around the
endpoints a and b, it is considered to match with model edge ab. The matching length
is determined by the projection @’b’ of AB onto the axis a”b” . The radius r and the rel-
ative cylinder lengths I; / | and 1, | | are parameters of the matching routine.

A

Fig. 5-6 Calculating the projection of a point in the transformed observation onto
a model edge. Obtained are: the displacement along the edge )|, the distance dj of
the point to the model edge, and the projection a’.

b-a

l} =
—al

] 64)

Ll

Let A be the first end vector of the transformed observed edge. Without loss of generality, we
can assume that A corresponds to g, and the other observed vector B corresponds to b. If this
turns out not to be the case, A and B can be exchanged at the end of the calculation. Then, the
displacement A ; of the projection of g; onto the line through ab is given by

A =(4A-9) v 65)

whereas the projection itself, g’ is given by
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’

a’ = a+hy. (66)
The distance d; of the point a’ to the original endpoint of the transformed observation then is
given by

d=|A-d|. (67)

Similarly, the values A, and d, and the projection b, for the second observation vector B can
be found. There are three constraints that determine whether the two edges are considered
matching: the endpoints of the transformed, observed cylinder must be inside the cylinder:

di<rnd,<r, (68)

and they must lie within subcylinders around the end points of the model vector:

L 4
—7<X1<7, (69)
and
L 1

If the two edges match (that is, all criteria (68)...(70) are met), the amount of correspondence
between them is indicated by the length of the overlapping part:

1= ()‘2—7"1) ”b"g" (7D

For further refinement, the correspondence between the points A and @’, and B and b’ can be
stored. The parameters used in this straight line matching procedure are r, /;/1 and Iy/l.

5.5.3 Matching circles

Circles match when, after transformation, one circle refers approximately to the same set of
points in space as the other circle. As in the case of straight lines, it must be realised which part
of the information is most reliable. The stereo vision detects the fact that only a part of a circle
is present (and indicates which part), but once again these end points prove to be very noise
sensitive. Also, the part of the circle that is detected may differ between the left and right
image. Therefore, the matching program uses only a part of the information: the location, ori-
entation and radius of the whole detected circle are used, even if only part is detected.

Analogous to the definition for straight lines, the matching parts of two circles can be defined
by calculating a torus of thickness r around the one circle, and looking at the section of that
torus and the other circle, see Fig. 5-7. There are two differences though. First of all not the
whole circle is required to be inside the torus. This allows for the case where only a part of a
circle is visible, and the remaining part is estimated inaccurately.

Second, rather than analytically computing the section, which would be complicated even if
possible, the section can be approximated by approximating the second circle with n,, straight




Chapter 5 Matching wireframes

lines, and computing which of these are inside the torus. For large values of n, this converges
to the correct value (as the set of straight lines converges towards the curve of the circle),
while for small values this approximation gets worse, but its computation less demanding (the
algorithm complexity is of the order n,).

Fig. 5-7 The matching part of two circles can be defined using a torus of thickness r
around one. The part of the other circle inside the torus (here between the points A’
and B’ ) and the corresponding part of the original one (here, a'b’ ) are the matching
parts.

Fig. 5-8 If the second torus is approximated by straight lines, the section becomes
computationally easy.

A straight line is considered to be in the section if both its end points are in the section. In
order to find out whether a point p is inside the torus with radius r around the circle with cen-
tre vector ¢ and normal vector z (where the length of this vector is the radius of the circle), its
perpendicular distance to the circle must be calculated, see Fig. 5-9. In this figure, the signed
distance d; of the point to the plane through the circle is
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Fig. 5-9 Distance ds of the point X to the torus around ¢ with radius and orientation
indicated by p and thickness r, with intermediate steps d; (signed distance to the plane),
d, (distance to the axis of the circle), d3 (signed distance to a cylinder through the cir-
cle), dy (distance to the circle).

d = (xn-x-9, (72)

where the sign indicates whether the point is above or below the plane. The distance of the
point to the circle’s axis, dy, is given by

d 4 3)
=l X—C=5—8

2 (]

and the signed distance d3 of the point to a cylinder through the circle then is

dy = d,—|nll, (74)

where a negative sign indicates that the point is inside the cylinder. The distance of the point to
the circle itself, d4 follows from

d, = Jd*+d2 (75)

so that the signed distance ds of the point to the torus is

ds = dy—r, (76)
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where a negative sign indicates that the point is inside the torus. So a line segment is inside the
torus when for both endpoints, ds < 0.

Two circles are considered to match if their radii are within a certain ratio, and any line seg-
ment of the approximation of the observed circle is within the torus around the model circle. If
1, and r, are the radii of model and observed circle, respectively, this requirement can be
written as:

1 7w

E<r_<c, an

o

where  is a parameter of the system.

In that case, the amount of correspondence between them is given by the sum of the lengths of
the matching segments:

T,= Y lisegment|. (78)
segments
inside torus

This amount of correspondence is of dimension length (measured in robot units, where 1 unit
in the prototype is i 16 mm), hence it is comparable to that given in (71). For later refinement,
the end points of each matching segment and their projections onto the circle are stored. The

parameters used in the circle matching algorithm are the radius of the torus r and the limit to
the ratio of the radii, {.

5.6 Removal of symmetries
5.6.1 Use of symmetries

The number of hypotheses to be verified can be reduced by exploiting knowledge about
known symmetries in the object. A mapping S, such that

S(M;)=M, (79)

if S is not the identity mapping, indicates that the object i is symmetrical. Of course, mirror-
wise symmetry is not important here, since only rotations and translations can occur.

If we have the set of symmetries{ S, } and two hypotheses with associated mappings F ) and F,
respectively, and we find that for some S e { S, ]

F,°S=F, (80)

then, after verifying F i there is no need to verify F, and F, can be disregarded. This compari-
son is performed immediately after the parameters associated with a hypothesis have been
estimated. Two mappings with normalised axes directions g; and g, angles ¢} and o, and
translations ¢; and ¢, are considered equal if translations, axes and angles each do not differ
too much:
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where the second line corresponds to the case that the second axis is oriented inversely. 6, 63
and o3 are thresholds on the differences in translation, angle and axis, respectively, and thus
parameters of the matching procedure. Note that the difference between the axes is weighed
with the difference between the angles, if the rotations are over small angles the estimate of
the axis orientations becomes unreliable.

5.6.2 Finding symmetries

The set of symmetries { S; } of a model can be computed by applying the matching procedure
to the model and itself. However, a different set of parameters is used in order to find only real
symmetries and not approximate ones. Most notably, it is required that nearly all features in
both feature sets match (typically the threshold is put at 99.5 % to allow for some computa-
tional errors), and the parameter A, indicating the maximum distance between two matching
edges, is set to a very small value (a fraction of a mm).

Cylinders themselves have an infinite number of symmetries. This number is reduced artifi-
cially by the fact that the CAD system used (Medusa) inserts false edges in order to produce
simple wireframes. By maintaining these in our models, the number of symmetries is reduced,
see Fig. 5-10.

Fig. 5-10 Introduction of false edges by the CAD sys-

tem. Only the two ellipses are real edges, but they

would not constitute a simple wireframe. For that
reason four straight edges are introduced. These can

be used to reduce the number of symmetries from in-
finite to four.

5.7 Removal of bad matches
5.7.1 Overlapping or bad matches

Removal of bad and conflicting matches can be done based on the information acquired at the
time the amount of supporting edge length for a hypothesis was computed. If the amount of
supporting data is below a certain fraction 8 of the total edge length of the model, a hypothe-
sis is immediately rejected:

|[ONF; (M) || >81|1M|I = reject. (82)

After all hypotheses have been evaluated, possible conflicts are considered, as described by
equation (61). The amount of data supporting two hypotheses simultaneously should actually
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be computed by matching the two results, which is an operation as complicated as evaluating
a hypothesis. This is made more unattractive by the fact that the number of times this calcula-
tion has to be performed is in the order of the square of the number of hypotheses.

The section can be approximated however by simply adding the lengths of all the model fea-
tures for which a correspondence was found in both hypotheses. Although this is an overesti-
mate, it turns out to work satisfactory and the computational cost is much lower. Because it is
an overestimate, it could lead to more rejections, but no false detections are introduced. This
overlapping edge length is computed, and if it exceeds a threshold, one of the hypotheses
involved will be deleted from the list. If the threshold is &, times the total length of the
observed edges, this deletion happens when

|H; " Hj|| > 3,1 Oll = reject. (83)
Which hypothesis is deleted, depends on two factors: if one hypothesis is supported much bet-

ter than the other, the weaker one is deleted. However if the amounts of overlap are similar,
other information is used as described in the next subsection.

LAY et
M M) 2
15|l 14 e 84
] - 1 <=8, = reject i (34)
15 15| o .
-8, < ] - m < 83 =» use additional information
i j

5.7.2 Use of world information

Use of additional information of the recognition environment can make a significant improve-
ment on the matching performance. There are two such facts used in the recognition system:
the rigidity of both the objects and the table. Both will be described in this section.

The first fact indicates that no two objects can occupy the same position in space, and that
therefore two hypotheses that put objects at overlapping positions are conflicting. This is a
stronger requirement than the fact that no observed edge can belong to two objects as used
above. Evaluating it however requires matching to each other, all hypotheses that were ini-
tially accepted. Therefore, this requirement is more computationally expensive to verify then
the previous one.

Based on these considerations, the recognition algorithm uses this constraint only at its very
end, when all remaining hypotheses are matched against each other. If the relative overlap
between two hypotheses is more than 35, only the one with the most support is maintained in a
manner similar to the one described in 5.7.1.

The second additional piece of information about the environment is the rigidity of the table.
This makes it possible to rule out any hypotheses that suggest points below the table surface.
Furthermore, a hypothesis where some object points are at the table surface is considered
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more plausible than a hypothesis with the object hanging in the air. The system makes use of
this information as follows:

During the evaluation of a hypothesis, each model point is transformed to the observation
space, where its relative position to the table surface is calculated. This results in a height 4 for
that point. For the whole object, the lowest value of h, h,,;, is calculated. If A, is negative,
then the hypothesis is impossible. Taking a small margin for measurement errors, this require-
ment becomes

_'J'belowr < hmin’ (85)

where r and Wy, are parameters of the system. If the lowest point is too high above the
table, the hypothesis is rejected too, because it is very unlikely that the object will be on top of
another large object (we allow for small parts below the objects). This requirement can be
written as

hmin <Hapove” (86)

where Wgpove 1S another parameter.

The information about the table position is also used to calculate another score for the hypoth-
esis, which can be used if the scores of two conflicting hypotheses are too close for a decision.
This score is defined as:

ah?if (h<0)

Tt = 87)
tabl anpoim{ B2 if (h > 0)

where o and [ are parameters of the system, used to account for the difference in the situation
when the object is above the table (less likely) or below the table (impossible). As imple-
mented, this score is only compared to other table scores, so that only the ratio of the two
parameters matters.

5.7.3 Final removal of bad matches

After the initial removal of bad hypotheses, the pose estimations for the remaining hypotheses
are refined as described in the next section. This is done iteratively, after each iteration bad and
conflicting hypotheses can again be rejected. After this refinement, the final evaluation of con-
flicts using the rigidity constraint takes place. The hypotheses that remain then, are output as
accepted hypotheses.

5.8 Pose refinement

The initial hypotheses were based on four points, as shown in 5.3. During the matching proc-
ess, more information has become available from the matching features that were found for a
number of model features. For straight lines, this information consists of two points per
straight line found (see 5.5.2), whereas for circles the number of points found depends on the
approximation of the circle by straight lines (see 5.5.3). All these point pairs are collected, and
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using these the mapping is reestimated a few times, each time followed again by the removal
of bad or overlapping cases.

Although it cannot be proven that this procedure always converges towards a valid solution,
during the experiments described in this thesis no case has been observed where the procedure
did not converge. Occasionally, a wrong hypothesis, after the first iteration, will not yield the
four points necessary to continue, but otherwise the parameter estimate seems to converge.
After three iterations, the parameter estimate changes between two subsequent iterations usu-
ally becomes smaller than the accuracy, so the number of iterations is fixed at three (this
behaviour was observed consistently throughout the experiment described in chapter 6).

5.9 Parameters
5.9.1 Introduction

Systems of this complexity invariably have a large number of parameters, most of which for-
tunately are not very influential. In this section, most of those that influence the result are
listed, with a discussion of their effect. Common values are also supplied. Not listed in this
section are the parameters with the greatest influence on the speed of the system. These will be
discussed in section 5.11.

5.9.2 Scale

The most important parameter in the recognition system, and the only one involving scale, is
the radius r, used in nearly all evaluations. It should be set to a value corresponding to the size
of the errors that the recognitions system can be expected to produce. For the DIAC system, a
value of 4 mm could be chosen.

5.9.3 Start features

Three choices have to be made when choosing start features. The first is which start prefer-
ence functions are to be used. For straight lines, the choice is between s; and s5,. A reasonable
choice is to use s;, which is most restrictive, and only if that fails, to resort to 5. The choice
can also be made to include other features. For the DIAC problem, only single circles are used
(s3). Combinations of circles (s4), or circle and straight line (s5) are not used.

The second choice is the maximum relative difference in length of two edges that are assumed
similar, A;. A common choice here is 0.3. The third choice is only made when preference
function s7 is used: the maximum difference in angle between the two edges, As. This thresh-
old can be set at the arccosine of 0.2.

All these parameters in fact achieve a balance between speed and quality: if they are chosen
too restrictive, the result will be fast, but some objects will not be recognised. Trivially, with
the thresholds set to zero, no start features will be used, and with these thresholds set to a very
high value (>> 1), n (s;) or n? (s2) will be used, where # is the number of observed straight
lines. Generally, if these thresholds are set too liberal, too many hypotheses will be generated.
However, within an interval around the values listed here, they do not appear to be critical.
With these values, chosen at an early stage, the system performed satisfactory throughout the
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experiments described in chapter 6).
5.9.4 Matching straight lines
When matching straight lines, the following thresholds are imposed:

- The distance between straight line end points and the other straight line, in other words
the width of the cylinder in Fig. 5-5, is determined by the scale parameter r. This is for-
.mulatcd in equation (68).

- The displacement of the end points of one edge over the other is determined by param-
eters A and A, as defined in equations (69) and (70). These are usually set at 0.2 and
1.3, respectively. These parameters, that determine how much edges should overlap in
the direction of the model edge, are chosen to allow large displacements in case bro-
ken-up edges occur. However, as these usually have a low contribution to the support
of a match, these parameters are not critical.

5.9.5 Matching circles

Matching circles involves the scale parameter r again, but there also is a threshold on the rela-
tive difference of the circle radii involved. This threshold, £, which is not critical as it only
limits the contributions of badly corresponding circles, is set at 1.3.

5.9.6 Removing bad hypotheses
There are three parameters involved here:

- One determining the relative support below which a hypothesis is immediately
rejected. This parameter, 81, has a direct influence on the number of errors, and is the
one varied in the experiment in chapter 3. A typical value is 0.01, this means that
hypotheses are rarely rejected on this criterion.

- One determining the relative overlap between two hypotheses, above which they are
considered to be conflicting. This parameter, d,, is also of great influence. A typical
value is 0, which means that any overlap leads to rejection of hypotheses.

- A third parameter, 83, determines when the two hypotheses considered are too close to
decide which one is rejected without further information. This relative parameter,
which is not very critical, is set to 0.05.

5.9.7 Use of world information

The use of object rigidity requires no parameters other than the ones used above for removal
of bad hypotheses. The use of information about the supporting surface does use some param-
eters:

- A description of the supporting surface must be given. As implemented, this means the
specification of a z-value.

- Two factors, tpelgw and Hapove that describe how many times the scale factor the low-
est point in an object is allowed to be below or above the supporting surface, respec-
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tively. These can typically be set at 5 and 10 times the scale parameter, so that
inaccurately detected positions will only rarely lead to false rejections.

- Two factors, o and f, that specify the relative weight of positions below and above the
supporting surface, respectively, when using this information. These are typically set
at 0.1 and 0.01, respectively.

5.9.8 Summary

A table listing all the parameters described in this chapter is given as Table 5-1. Obviously, for
such a large number of parameters, it is impossible to do a simultaneous optimization. Fortu-
nately, most parameters are not critical, and only specify another criterion for rejection. These
Were just set to a reasonable value. Critical parameters were set on a trial and error basis over
a large number of images.

Table 5-1 Accuracy determining parameters.

Name Description ngﬁ:l

T Scale 4 mm
Set of start preference functions $1,52,53

A Relative length difference of edges 03

Ay Cosine of angle difference 02

I Lower edge displacement limit 0.3

) Upper edge displacement limit 1.2

z Relative radius difference of circles 1.3

o Hypothesis reject threshold 0.01

& Hypothesis overlap threshold 0

33 Reject criterion parameter 0.05

Ziable Height of supporting surface

Mbelow Lowest permissible point below the sur- | 5
face

Habove Lowest permissible point above the sur- 10
face

a Weight of point below the surface 0.1

b Weight of point above the surface 0.01

The scale parameter, also set in this way, is of course closely linked to the performance of the
stereo vision system. This means that the recognition system cannot be evaluated in isolation.
In chapter 6, a large experiment is described that allows an evaluation of the system perform-
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ance as a whole.
5.10 Example

The recognition system can be illustrated with the following example. Using the image pair
shown in Fig. 4-13, the recognition system was started with a set of 4 known models. Two of
these were the DIAC objects 10 and 11 as described in chapter 3, the remaining two a cylinder
and a block used with the robot. During 5 s of CPU time on a Sun 4/330 workstation, a total of
80 hypotheses were generated involving both DIAC objects. The edges of the highest object
on the side turned to the bottom left hand corner, and of the lowest object the edges on the
same side and on the bottom, were used as starting features.

In Fig. 5-11, the top row of images shows the 3-d edges output by the stereo vision system.
Two of the false hypotheses involving the highest part are shown in the middle row. Based on
two edges of one side, one hypothesis puts the image on the wrong side of the plane of that
side, while the other hypothesis has the object (which is close to square) rotated 90 degrees.
Similar wrong hypotheses were also generated involving the other part.

After the first removal of overlapping hypotheses, only two remained, which after refinement
are shown in the lower row, for both images of the stereo pair. The two objects were recog-
nised correctly.

5.11 Computational complexity/ improvements
5.11.1 Identification of bottlenecks

The speed of the recognition system depends on a few quantities that are under user control,
and should be carefully controlled in order to have adequate performance. These are:

- The quality of the observation. Edges and circles that are too small to be accurately
detected, and features that lie outside the area in which objects can be recognised,
should be avoided. This is mainly the task of the stereo vision system. The time used to
evaluate a hypothesis is on the order of the square of the number of features detected,
and more hypotheses may be generated by larger observations.

- The number of models should be kept as small as reasonably possible, and no irrele-
vant information should be included in them (like edges that are too small to detect).
The time used to evaluate a hypothesis is again on the order of the square of the
number of model edges. The number of hypotheses that can be expected to be gener-
ated is also on the order of the number of models. reducing model complexity is
mainly the task of the model generation system.

- When models and observation are given, the first factor to determine the performance
of the recognition system is the number of start features considered. The maximum
number of start features used is a parameter available to the operator. It is set to 10 for
the scenes described in this thesis. For very complex scenes it should be increased.

- The number of start features for which corresponding model features can be found is
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Fig.5-11 Some results of the recognition system. Top row: the input data from the stereo

vision system, seen from two different viewpoints. Middle row: two examples of wrong
hypotheses that were evaluated. Bottom row: the accepted hypotheses overlayed on the
original stereo vision input pair.

89



Matching wireframes Chapter 5

of course smaller than the maximum set previously. However, not all of them have to
be used, as some will correspond to the same object. A parameter is the number of start
features, for which corresponding features can be found, that are actually used. This
number is set to three for all scenes described in this thesis. Note that this number
imposes a maximum on the number of objects that can actually be found in one scene.

- Finally, the number of feature pairs, pairs of a start feature and a corresponding model
feature, is also limited. As each of these pairs generates a hypothesis, this parameter
imposes a hard limit on the number of hypotheses generated for each model, thus lim-
iting memory requirements as well. For all the scenes in this thesis, it is set to 1000 per
model, a value which is rarely reached (e.g. in the experiments described in chapter 6,
the mean number of feature pairs per model was about five, the highest observed value
was 120).

- A number of parameters that influence the qualitative performance of the system also
influence the speed. For instance, the constraints on hypothesis overlap, position with
respect to the table, and of course the scale parameter r have a significant impact on the
amount of hypotheses evaluated. Careful tuning is required, using a debugging mode
in which the system logs intermediate statistics and timing. No complete recipe can be
given for this.

5.11.2 Improvements

A major improvement on the speed of the system could be obtained using indexing, see
e.g.Clemens and Jacobs?3, Here, a table is compiled beforehand (off-line) of relevant features
of models, in such a way that for each start feature a list of relevant model features can be
found by a simple table lookup instead. This could be implemented by using the length of two
edges as well as their angle in a three dimensional table, and the radius of a circle in second,
one-dimensional one. This seems to correspond to the notion of perceptual grouping as sug-
gested by Clemens and Jacobs.

Another improvement can be obtained by exploiting the inherent parallelism in the algorithm:
both the steps of hypothesis generation and of hypothesis testing can be parallelised. In the
former case, this can be exploited by using a number of processors, each of which gets the task
of finding the feature pairs (and hence the hypotheses) corresponding to one or more models
(as illustrated in Fig. 5-12). In the latter case, each processor can get the task of evaluating one
or more hypotheses. All models must be known to each processor in advance. The master
processor must be able to request additional information about each hypothesis evaluation for
the removal of bad and conflicting hypotheses. This is illustrated in Fig. 5-13. Only the final
step of removing overlapping hypotheses cannot be parallelised completely, although it can to
some extent.

5.12 Conclusion

In this chapter, the recognition system has been described qualitatively. It is based on hypothe-
sis verification and testing, using careful pruning to reduce the computational complexity.
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observation
CPU
obse;vy Wheses
CPU CPU CPU
model model model

Fig. 5-12 Parallelising hypothesis generation. Each CPU deals with one or sev-
eral models. The master CPU transmits the observation to each CPU and receives
the corresponding hypotheses back.

Rotational symmetries, included in each model, are eliminated at an early stage of recogni-
tion. Knowledge about the rigidity of the object and the supporting surface is also exploited.

The meaning of the parameters has been explained, and their influence both on the recognition
result as well as the computation time. The operation of the system has been illustrated with
an example. In this case, two of the DIAC objects were recognised after five seconds of CPU
time (and 32 seconds for image processing and stereo vision). It has been shown that the sys-
tem lends itself well to parallelisation.
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observation
CPU
hypv w result
CPU CPU CPU
model model model

Fig. 5-13 Parallelising hypothesis testing. Each CPU has all models. The master
CPU transmits the hypotheses to each CPU and receives the corresponding
match result (score and, upon request, corresponding points) back.




6 An evaluation of the whole system

This chapter describes an evaluation of the complete system,
the combination of the stereo vision and the recognition algorithms. The
evaluation is performed using a standard data set, representative of the
DIAC parts, and focuses on the correctness of the detected objects. An
evaluation of the positional accuracy of the system has not been per-
formed.

6.1 Introduction

Although the stereo vision system could exist without the recognition system, the reverse is
not true: design and performance of the recognition algorithms are directly related to the algo-
rithms used to acquire data. In this system, an evaluation of the complete system, stereo vision
and recognition together, is attempted. The main question is: can correct recognition be
achieved?

As all systems described in the literature are applied to different problems, it is hard to give
results that are comparable to those of other researchers. In robot vision, there is no such thing
as a standard data set, or even a standard problem! The best one could do is set up a reproduc-
ible experiment and make the data available to other researchers, hoping that others will apply
their algorithms to it. The data set described in this chapter is preserved on magnetic tape,
including the relevant geometric data. This means that such an exchange could take place.

The following properties of the system are evaluated:

- Overall performance on a large set of images of DIAC objects.
- Efficiency of the use of symmetries.

- The influence of the acceptance threshold on the performance.
- The influence of the scale parameter on the performance.

Each experiment is described in a separate section of this chapter. Finally, some conclusions
and recommendations for further research are drawn.

The evaluation focuses on the correctness of the identity of the detected objects. Not evaluated
is the accuracy of the position and orientation of the objects found, or even the stable position
that is detected. Although some information about the actual location of the objects in the data
set is present, it would still require a large effort to make this knowledge explicit.

It should be pointed out that the recognition system as tested uses no knowledge about the
number of objects present in the scene. It allows for the presence of zero or several objects. In
the data set presented here, each scene contains eXactly one known object. An experiment to
evaluate the performance for more complex scenes has not been performed.

A consequence of this property of the recognition system is that in the experiment described
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in this chapter, the sum of the correct classifications, incorrect classifications and image pairs
with no objects detected is not equal to the total number of image pairs. The following defini-
tions will be used for each:

Correct - The correct object was among the accepted hypotheses. Note that the orientation and
stable position are not evaluated.

Incorrect - A hypothesis that was accepted belonged to the wrong model.
No detection - No hypotheses were accepted.

From these definitions it follows that a scene could cause zero or one correct classifications,
and zero or more incorrect classifications. No detection applies if neither a correct nor an
incorrect classification occurs.

6.2 Description of the data set

The full data set consists of 200 stereo image pairs, obtained using the stereo vision cameras
described in chapter 4. Most of the DIAC parts were used (some were not available at the
time), each of which in one, two or three different stable positions. The number of stable posi-
tions used depended on the shape of the object, such that only realistic positions were used.
For each object in each stable position, eight image pairs were obtained, where the object was
rotated around a fixed point over 45 degrees between each image pair. These rotations were
done by hand, using lines drawn on the supporting surface. The whole set is summarized in
Table 6-1. The left hand image of the first pair of each series of eight is shown in Fig. 6-1.

Table 6-1 Listing of the full image set

DIAC part I:t(;i)ﬁzf . No. Of‘ Images Details
no. positions image pairs

7 2 16 1-16 small

8 3 24 17-40
9 2 16 41-56

10 3 24 57-80

11 2 16 81-96

14 2 16 105-112, cylindrical,

177-184 transparent

16 1 8 113-120 small, cyl.
17 2 16 185-200 cylindrical
18 1 8 121-128 small, cyl.
24 2 16 145-160 cylindrical
27 1 8 97-104 small
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10,11, 11

27,14, 16

Fig.6-1 The left image of the first pair in each series of eight, showing all objects and the stable
poses considered. Shown to the right is the part number for each object. The order of the orig-
énal data is used, which was motivated by practical considerations (see also next page).
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18,28,28

24,24,29

29,14,17

Fig. 6-1 Continued.
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Table 6-1 Listing of the full image set

No. of
DIAC part stable . No. Of. Images Details
no. o image pairs
positions
28 2 16 129-144 cylindrical
29 2 16 161-176 cylindrical

An evaluation of the whole system

Of these 200 image pairs, 104 are of objects that are mostly prismatic, and 96 of cylindrical
objects. Forty are of objects that can be considered small. Two sets of 8 images are of part 14,
which is transparent. The images have been obtained using the prototype setup described in
chapter 4. Each image is 512 times 512 pixels in size, where one pixel is 8 bits (one byte). As
there are 400 images, the data set is in total 102,400 kB (100 Mb) in size. This data set is rep-
resentative for the total set of DIAC objects.

Some information is present about the position and orientation of the objects. All objects are
positioned at a fixed point, at eight fixed orientations per stable position. As the pencilled lines
used for positioning the objects show up well in the image set, their location and orientation
can be determined accurately. A person looking at the images and the models should be able to
determine the correct mappings for each case. However, as this is a cumbersome procedure, it
has not been done as part of this research. As a result of this, the evaluation can only consider
the identity of the objects found in the scene, and not the position, orientation or stable posi-
tion.

6.3 Overall performance
6.3.1 Summary of the result

All image pairs in the set were subjected to the recognition system, and the results are summa-

rized in the confusion matrix Table 6-2. This table lists for each of the models, how image
pairs corresponding to an object of that type is classified. The rightmost two columns list the
number of image pairs in which no object was found, and the total number of entries (correct,
incorrect, no detection) for that model. Note that there is no distinction between the stable
positions of each object, because the recognition system does not supply that information. As
the examples in Fig. 6-2 show, a number of parts were detected correctly.

. Table 6-2 Confusion matrix for the full data set.
(The number of times that in an image of object i, object j was detected).

AN [ 78| 9101141617 |18 24|27 (28|29 "0 |
S 1 11 |16
8 11 (3 R s T2
9 15 |1 T
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Fig. 6-2 Some examples of objects in the set that were detected correctly.

Table 6-2 Confusion matrix for the full data set.
(The number of times that in an image of object i, object j was detected).

iy 789|101 ]|14|16|17|18|24]27]28]|29 22 o
10 19 1 4 |24
11 15 1 16
141 |1 1 8 2 1 1 |5 |3 |23
16 |1 7 |8

17 |1 1 3 6 1 2 |4 |18
18 1 7 |8

24 |1 2 1 |1 1 3 4 7 |20
27 6 K

28 1 7 {1 |7 |16
29 1 |1 |1 7 6 [1 |17

From the set of 200 image pairs, in 99 cases the correct object was found. (49.5%). In 58
image pairs, no object was detected, whereas 57 times the wrong object was reported. In 12
cases, two objects were detected and in one case three. All of the multiple detections occurred
in images containing cylindrical objects, in half of the cases the transparent object 14 was
involved. This suggests that detections of extra objects result from cylindrical edges for which
the corresponding circle could not be found.

From the table it follows that objects 16 and 18 cannot be detected at all (these are small,
cylindrical parts) and objects 7 and 24 badly (below 25% correct), the former a small prismatic
object, the latter an elongated, medium-sized cylindrical part. A valid conclusion of this
research might be that these objects cannot be detected using this system. Apparently, an
object needs to be more then 40 pixels in size in order to be recognized by this system (the
failure for object 24 will be discussed below). For the DIAC cell, this means that either small
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parts have to be fed by special equipment or fixed on pallets (so that vision is not necessary),
or that the resolution has to be increased.

To account for this, a reduced data set has been set up, excluding the parts 7, 16, 18 and 24.
Using the reduced set, the results become 93 out of 152 correct (61.2%), with 43 wrong and
26 times no object found at all. Prismatic parts (75%) were detected much better than cylindri-
cal parts (42%). As these results are still unsatisfactory, a discussion on the causes of errors is
required. This is done in the next section.

6.3.2 Causes of errors
The following major causes of errors can be indicated:

- The view is too difficult. An example is shown in Fig. 6-3. The object shown (part 10)
has its most difficult side, the swallow’s tail (difficult because of the large number of
real edges as well as the shading) pointing towards the camera. Furthermore, the con-
tour of the object has corners that are very blunt, causing errors in the straight line
detection algorithm. As a result of this, no good hypotheses could be generated.

Fig. 6-3 An example of a view that prooved to difficult, with side and top views of the
straight lines found. The diagonal lines are false detections.

Solutions for this problem would be to change the position of the lighting and/ or the
camera. The former could make other edges show up in the image contour, which
could generate the right hypothesis. The latter, more expensive solution would allow
an active search for the best view.

- Another part fits the observed part. A good example is Fig. 6-4, where the cylindrical
part in the scene (part 29) is mistaken for the hollow cylinder in which it has to be
assembled (part 17). This may occur if the stereo vision system found few edges apart
from those on the fitting surfaces, and therefore only occurs if only a small number of
features can be detected (such as for some cylindrical parts, where only one circle may
be detected). This is one of the more common errors with part 29 (7 out of 16 image
pairs), as suggested by Table 6-2, but is more rare the other way around (twice in 16
image pairs). As fitting parts are (hopefully!) common in an assembly cell, this is a
serious problem, caused by the fact that the model does not have information about the
possible views of an object, and thus a circle on the inside is as likely to match as a cir-
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cle on the outside.

Fig. 6-4 An example of a case where the hypothesised object fits the object that is ac-
tually visible. Top left: left image (and detected model), top right: image with circle
found superimposed. Bottom row: side and top view of the straight lines found.

There are a number of solutions for this problem. First, in this particular case, the hol-
low cylinder has a bottom that, in the hypothesized position, must be slightly below the
supporting surface. Strengthening the constraint that aims to prevent this might solve
this case. A more general solution would be to include in the model information about
the likelihood of the visibility of an edge, in which case the model in which the edge is
exterior would be preferred over one in which it were interior. The most drastic step
would be to model all the different views of an object. This would be a fundamental
difference, and is discussed in the final section of this chapter.

- Circles were not detected correctly. A good example is shown in Fig. 6-5 (part 14). As
the performance on cylindrical parts (42% correct in the reduced set) shows, the ellipse
based stereo procedure in its present form is still too crude for reliable detection of the
diac parts. In Fig. 6-5, the problem is particularly difficult as the transparent part con-
tains a large number of similar circles. In this case, no circles were detected correctly
(one falsely), but some straight lines fitted to edge fragments actually caused a com-
pletely different object to be detected.

Related to this last point is the problem with part 24. This part (see Fig. 6-6) is cylindrical, yet
its largest dimension consists of straight lines. The most visible ones are not real edges, but are
caused by the round surface. As a result of this, straight lines are hard to detect. Furthermore,
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Fig. 6-5 One example where circles were not detected. Top left: left image of part 14,
top right: circle detected (a bad detection). Bottom row: side and top views of straight
lines detected. As the bottom row shows, the edges belonging to undetected ellipses
result in a lot of spuriously (and erroneously) detected straight lines.

the shape of the circles that constitute the ends of the cylinder is broken up in a number of

places, with only a few pixels distance. This means that detection of the circles is a difficult
problem too.

-

Fig. 6-6 Another example of a case where circles were not detected. From left to right:

image of part 24, side view and top view of straight lines found. No circles were deteci-
ed..

As already remarked in chapter 4, ellipse fitting is certainly not the best way of detecting
ellipses, although it is a fast one. As the present solution is not sufficiently robust, a better
method should be implemented. This would improve the performance on cylindrical objects.
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Objects like part 24 can also be recognised easier by means of an active search for more edges,
as described above.

6.3.3 Execution times

On a Sun IPX workstation, the execution times were measured over the whole set for stereo
vision and recognition separately. Image acquisition was from disk and was not included, nor
was the display of the results. Statistics about these times are listed in Table 6-3.

Table 6-3 Execution times in seconds for the full data set

N =200 objects Stereo vision Recognition
Minimum 16.0 0.06
Maximum 20.4 23.7
Total 3383 697
Mean 16.9 35
Standard deviation 1.2 43

As the table shows, the execution time for stereo vision was nearly constant over the entire set,
with the highest times occurring in the images where most ellipses were present, such as for
parts 14 and 17. The mean time was 16.9 s for the complete stereo vision process. It should be
pointed out that this execution time applies to the version of the system using interpreted TCL-
Image command files. A recent port to compiled C code should be faster, but no times have
been reported yet68.

The execution time for recognition shows a much more random behaviour, depending not just
on the contents of the image but much more on the number of hypotheses that could be gener-
ated. Although the mean time was only 3.5 s, in some cases almost seven times as long was
required.

The different behaviour of the execution times of stereo vision and recognition is illustrated in
Fig. 6-7. The distribution for stereo vision actually shows two peaks, one for objects with and
one for objects without large circles. Yet both peaks are narrow. The distribution for recogni-
tion shows only one peak as expected, but the curve only becomes flat for very high times This
behaviour is typical for recognition systems based on combinatorics.

6.4 Use of symmetries

The use of symmetries has been evaluated in a very simple way: by processing the fuil data set
with and without the use of symmetries. The execution times of the recognition system were
integrated and the results are shown in Fig. 6-8. Note that the execution times here are higher
than those mentioned earlier, as this experiment took place on a Sun Sparcstation 1+. In the
figure, the distance between the two curves gradually increases, suggesting that using sym-
metries offers an advantage for most of the objects concerned. In a few isolated cases the use
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Fig. 6-7 The execution times of the stereo vision (left) and recognition (right) algorithms
over the full data set.

of symmetries caused a slight decrease in speed, however the overall gain was 17%.

6.5 The reject threshold

The reject threshold 84 has a direct influence on the numbers of correctly and incorrectly rec-
ognized images. This has been evaluated by applying the recognition system a number of
times to the full and reduced data set for different values of the threshold in the range from O
to 0.2. The resulting numbers of correctly detected objects, incorrectly detected objects and
images without any objects detected (note that the sum of the first two is not equal to the third,
as explained earlier) are shown in Fig. 6-9.

These graphs show that as the threshold increases, the number of correct detections decreases
monotonically as could be expected. However, the expectation that the number of false detec-
tions should also decrease monotonically does not come true. Instead, there is a slight increase
in the number of incorrect detections, caused by extra detections in images where some
objects are already detected at threshold 0. This phenomenon can be explained as follows:

These new extra detections are probably caused by the order in which the constraints are
applied. Assume we have three hypotheses A, B and C, of which A and B are conflicting; A is
a smaller object than B. Hypothesis A has less support then B in an absolute sense, but a larger
support relative to its own size. Furthermore, hypothesis B violates the rigidity constraints
with respect to hypothesis C, a constraint which is evaluated at the end. C is the best supported
hypothesis.
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Fig. 6-8 Integrated execution times over the entire set for recognition with and without
use of symmetries. Use of symmetries offers an improvement of about 17 %.

If the reject threshold is low, then all hypotheses are accepted at first. Hypothesis B will sup-
press A, only to be removed afterwards by the rigidity constraint (as a result of C). In this case
no incorrect detection takes place. If the threshold is higher however, hypothesis B will be
removed and A will remain. In this case, an incorrect detection (A) is found. For an even
higher value of the reject threshold, A and B are both rejected and only C will remain.

This behaviour results from the order in which the constraints are applied, which was amongst
others based on efficiency considerations. After all, the rigidity constraint is expensive to com-
pute. Although this seems rather counter-intuitive behaviour, it results from mechanisms in
recognition that usually work well, and it has only a minor impact on the result. Therefore, this
is not considered a problem. However, as the number of correct classifications does not change
for low values of the threshold, depending on the exact weights assigned to incorrect classifi-
cations and no classifications, the choice of O for the threshold may be the best one.

6.6 The scale parameter

The scale parameter, 7, is the only parameter in the recognition algorithm that has a dimension.
It affects all geometrical thresholds in the recognition system. The performance of the system
for different values of r has been calculated for the full and reduced data sets and is illustrated
in Fig. 6-10. It follows from this figure that the value of 4 mm for 7, used by default (see Table
5-1) and found by tuning the system, is the value for which the system performs best on these
data set.
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The expected behaviour is that for low values of r, few features will be found similar and thus,
only a few correct and incorrect classifications will be found. For values of r that are too high,
the system will not be able to distinguish right hypotheses from wrong, and the number of cor-
rect classifications will drop.

Although these trends are confirmed by Fig. 6-10, the question remains why the number of
incorrect classifications also drops with increasing r. Apparently, besides the shift from cor-
rect to incorrect classification there is another, larger shift from incorrect to no classification.
This may be explained by the fact that more rejects are based on the rigidity constraints.

6.7 Conclusions
In brief, the conclusions of this chapter are the following:

- The whole system was able to recognize the prismatic objects in the reduced set with
75% success, and the cylindrical parts in the reduced set with 42% success. Objects
that are too small (less than 40 pixels) cannot be detected at all. Objects with certain
shapes can be difficult even when they are larger.

- Some views of objects are hard to recognize. Changes in lighting and/ or camera view-
point may improve this.

- Sometimes the inside of a model fits the outside of an observed part. This can be
resolved by extending the model with information about insides and outsets, or by
exploiting constraints to a larger extent.

- Ellipse-based stereo is not yet robust enough for this application. However, a better
ellipse detection algorithm is likely to solve that.

- The use of model symmetries, which is original in this work, offers a 17% speed gain
over the full set.

- The order in which constraints are applied may lead to acceptance of bad hypotheses in
some cases. Depending on the cost assigned to incorrect detections and no detections,
a different value for the reject threshold may have to be chosen. In particular, 0 may be
a good choice.

In one case though (a badly observed object is recognised as another, fitting object), the failure
of the vision system is caused by a fundamental design choice: viewpoint dependent informa-
tion is not included. If this information were computed during recognition, the recognition
process would slow down considerably. If it were computed beforehand, the size of the model
would grow considerably. Also, the problem of generating all possible views (or all relevant
views) of an object is a complex one, and general solutions do not yet exist 21 As a result of
this, it cannot be concluded that simply using viewpoint dependent information would be bet-
ter than not using it.

The question remains: are these results satisfactory? In an absolute sense: No, they are not.
Even a 75% success ratio is not enough to justify a vision system as complex as this. Oppo-
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nents of the use of complex vision systems (such as Miller54) will immediately argue that
mechanical solutions (like feeding all parts in fixed positions) can achieve much higher suc-
cess rates. However, there are still possibilities for improvements of this vision system, such
as those mentioned above. These should be exploited before discarding the idea of vision.

In a relative sense, it is unknown whether these results are satisfactory compared to those of
others in the field. Large-scale evaluations are not common in literature, and they are even less
comparable. The usual report in papers: “The correct operation of the algorithm is illustrated
with the following example...”, does not exclude the possibility that an algorithm has a success
rate much lower than those found in this chapter.

A third point is, are these results satisfactory for DIAC? In the DIAC cell, this system will be
used complemented by a fast verification system, see chapter 3. The recognition system will
only be applied to those cases that verification could not handle, and as the performance of the
verification system has not been evaluated yct”, it is not known what kind of cases these will
be. It may be that the data sets used in this chapter are not representative for these cases.

Also of importance for DIAC is the flexibility of the vision system, which has only partiaily
been exploited so far. The possibility to recover from unexpected situations using vision may
outweigh the cost of a vision system for unmanned operation. Perhaps this system’s possibility
to handle scenes with an unknown number of objects is of specific value here.

A possibility hitherto unmentioned is that in the DIAC application, the verification system can
be used to check the output of recognition for any incorrect detections, thus improving upon
the recognition results.
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7 Model generation

This chapter addresses the problem of generating the models for
recognition of a set of objects. The chapter has two main parts, describ-
ing different sources to obtain the modeis from. Each of the sources has
been studied.

In the case of DIAC, the recognition models should be derived
from CAD models, a field in which much research is being done cur-
rently. This procedure is described in the first part of this chapterT.

The second, and largest part of this chapter is dedicated to the
problem of generating these models from observationst. Parts of this
work were reported in 42 and 43,

7.1 Introduction

Model generation can be defined as the process of gathering explicit knowledge about objects,
to an amount that is at least sufficient for object recognition using a vision system. The com-
plexity of this problem varies with the application. In DIAC, where the objects have been
designed using a known CAD system, the models have to be extracted from that system. This
is considered an important problem in the literature®!. However, for DIAC the problem of
model generation is reduced to that of selecting the relevant features from the CAD database,
with only slight additional processing. This is caused by two facts:

- The information on the parts to be recognised is complete with respect to the geometry of the
objects, because we have all the information the designer supplied in order to manufacture the
parts. Additional information, about lighting conditions, reflectivity, or camera viewpoints,
does play a part in the stereo vision process described in chapter 4, but not in the recognition
process described in chapter 5. Therefore this additional information is not needed for model
generation.

- The recognition process, as described in chapter 5, does not make use of viewpoint depend-
ent information, for reasons explained in section 5.1. Therefore there is no need to extract the
different views from the models, as opposed to for instance the approach described in 12

As a result of this, for the DIAC recognition system model generation is fairly straightfor-
ward, and will be dealt with in section 7.2. There are however cases where model generation
is more complex then that. Two such cases are dealt with in this thesis:

- If a CAD database is not available, or the CAD database does not supply sufficient informa-

. The interface with the PDM described in this chapter was defined during discussions with DIAC-col-
leagues Peter Martens and Dave Bierhuizen.

. The author would like to acknowledge the important work done by Johan de Jong, and the use of his
Soma-puzzle.
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tion, models cannot be obtained from it. In such a case, it is possible to learn models using the
vision system. Sections 7.3 to 7.6 of this chapter are dedicated to this approach.

- If viewpoint dependent information is needed for the recognition algorithm, a set of different
views must be generated whenever new objects are introduced to the system. The problem of
which and how many views should be used is a common problem in Computer Vision.

7.2 Interface to the DIAC CAD database
7.2.1 The Product Data Model

For the standard DIAC application, model generation can be described using Fig. 7-1. The
models (even those of the nearly cylindrical parts) are represented as wireframes. The match-
ing algorithm is capable of comparing an observed wireframe with a set of model wireframes
and selecting the best match. It is the task of model generation to generate each of these wire-
frames. The CAD database contains a description of the objects using a large number of geo-
metric primitives, including parametric curves and surfaces. Although the description of the
geometry is complete, only little information about other optical properties is present.

The database connects to the object recognition system through the Product Data Model,
exhaustively described by Martens>!. This PDM, which is also used for the generation of
assembly plans, contains information about the geometry of parts, materials used etc., using a
restricted set of primitives. In particular, parametrisation of curves and surfaces is replaced by
an approximation with straight lines and planes, using a resolution specified by the operator.
This geometrical information is made available to other processes, like the vision systems.
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Fig. 7-1 Model generation in the recognition system.

The PDM data structure is defined in 71, It includes the following geometrical entities:

- shapes. A shape describes an entire part. A shape contains lists of surfaces, edges and
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points.

- surfaces. A surface describes one of the faces of a part as a list of profiles, the first of
which represents the boundary of the surface, and any others represent cut-outs.

- profiles. A profile is a list of edges, with such an ordering that the edges form a closed
chain.

- edges. An edge could be a straight line or a curve approximated by straight lines, and
is defined by a set of 3-d points.

- points. Points are specified in 3-d, with respect to a common origin for the part.

All these entities were extracted from the CAD system. The PDM extends this with a set of
circles present in the list of edges, by trying to fit a circle to each edge. As a result of this, each
circular edge is present twice in the PDM: once as an edge, using a large number of points to
approximate the curve by a polyline, and once as a circle (orientation and radius).

7.2.2 A model for recognition

At this point the model to be used for recognition must be defined. Some of the design deci-
sions of the recognition system are discussed later (in 5.1), so at this point is suffices to sum-
marise them:

- No viewpoint information is required to be available, instead we use a wireframe rep-
resentation as if the objects were transparent.

- Circle detection is a complex problem. Although circles themselves can be detected
well, endpoints of circular arcs are less easily detected. Therefore the recognition sys-
tem only uses entire circles, even where only partial edges are present.

- The system uses known rotation symmetries of objects to reduce the number of
hypotheses to be evaluated.

This leads to the following definition of a recognition model:

A recognition model is a triple consisting of a graph representing polyhedral features, a (pos-
sibly empty) set of circles and a (possibly empty) set of symmetries.

The graph representing polyhedral features is a tuple consisting of a list of nodes representing
3-d points and a list of arcs representing lines connecting those 3-d points.

The set of circles is a list of tuples, each consisting of a (3-d) location vector and an (3-d) ori-
entation vector. The latter vector is perpendicular to the plane of the circle and has as its length
the radius of the circle. Each tuple represents a 3-d circle, at least parts of which are present in
the object.

The set of symmetries is a list of transformations in a representation, described in 5.4.
7.2.3 Generating a recognition model from the PDM

For model generation, the following operations are necessary to transform each part descrip-
tion into a wire frame:
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- Extraction of the relevant shape description. Functions to extract the geometrical shape
of parts from the PDM were made available by Martens’! and used by Cruz Picao?*,

- Detection of circles. This step was incorporated in the PDM by Martens.

- Removal of polylines. Polylines are redundant information as they are used to
described curved features. As the only occurrences of curved features in the DIAC
objects are circles, the circle detection module allows for deletion of the remaining
polylines.

- Removal of features that are too small to be detected. The features only contribute
unnecessarily to the complexity of the recognition problem and hence to the execution
time.

- Detection of symmetries. A symmetry was defined in section 5.6.1 as a mapping of the
model onto itself, which is not the identity mapping. The set of all symmetries can be
found by applying the recognition program to the model and itself. In this case, strict
parameter settings (thresholds very low etc.) are used in order to obtain only exact
matches.

- Transformation of the remaining data into a relevant data file.

A set of programs that realise the remaining steps as mentioned above has been implemented,
using the recognition program to find the symmetries and the Unix ‘awk’ tool to do most of
the conversions.

The output of these programs is a set of models, suitable for the recognition program of chap-
ter 5. The remainder of this chapter describes an alternative approach: learning the models.

7.3 Learning object descriptions from a set of observations
7.3.1 Introduction

In 3-D computer vision, objects are generally recognized using a model that has been obtained
either from an operator or directly from a CAD database. In the first approach, measurements
have to be taken and entered into the system by hand. This can be a labour-intensive procedure
requiring a knowledgeable operator. In the second approach, the objects have to be designed
using CAD, and an interface to the CAD system has to be available. This is not always the
case. Therefore, there are situations where neither approach is feasible. In this case, models of
the objects can be acquired through learning, by putting the objects in front of the camera and
combining the features found in individual images.

However, there is another reason for learning models as well: CAD and operator models are
not sufficient to characterize the images obtained from these objects. The imaging process is
also influenced by lighting conditions and noise. Some attempts have been made to model
lighting conditions (for instance Sato et. al. 61y Noise however has only been described at the
pixel level, the noise in the various structural descriptions of objects generally remains unde-
scribed. Instead, a distance measure is usually applied to allow for small distortions of the
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structural description. Models obtained through learning however can include statistical data
obtained during the learning process, and can also model the conditions under which learning
took place. If these conditions are kept identical between the learning stage and the recogni-
tion stage, learned models may provide more information than models provided by CAD or
operators.

In the remainder of this chapter, a system is described for learning models of polyhedral
objects. Unlike the systems described by Lu and Wong 49 it does not require exact knowledge
about object poses. Instead, only some coarse requirements exist. The system obtains a 3-D
wireframe model of the object and also acquires statistical data. This is illustrated with a set of
objects taken from a Soma-puzzle26. The algorithm is described using the L-shaped object
shown in Fig. 7-2, while other parts of the puzzle are used in the experiment described in 7.6.

Fig. 7-2 The L-object, used in most of the examples in this chapter. The dimensions of
the object are 85 x 57 x 29 mm.

The architecture of the learning system is based on that of the recognition system described in
the other chapters of this thesis, and can be explained using Fig. 7-1. The stereo vision system
is identical to that described in chapter 4, only it does not use the ellipse-based part in order to
find circles in 3-d. Instead, it uses straight lines only. The CAD-based models have been
replaced by learned models, that are learned from observations of the stereo vision system.
Once models have been learned, they can be used to recognise observed objects using the
matcher described in chapter 5.

7.3.2 Outline of the method

The learning procedure described here allows an operator to let the system learn the model of
an object. We have used the stereo vision system described in this thesis and in 17 which
acquires a 3-D wireframe of the object, which is restricted to straight lines. Each wireframe is
represented as a graph, with nodes representing points in 3-dimensional space and arcs repre-
senting straight lines.

The procedure is specifically designed so that exact knowledge is not necessary about how the
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Fig. 7-3 Model generation by learning.

object is placed in front of the cameras, however, in order to reduce the complexity of the pro-
cedure some restrictions are imposed. This leads to a two-step procedure: in the first step a
number of models is acquired of the object in certain stable positions, and in the second stage
these models are combined in order to get a model of the whole object.

In both steps, graphs are merged creating larger graphs, starting with observed graphs at the
beginning of the first step, leading to graphs representing stable positions after the first step,
and finally to graphs representing the whole object. Both steps consist of a number of occa-
sions where two graphs are merged. Each merger follows the same paradigm as the recogni-
tion system: that of hypothesis generation and testing. A set of hypotheses is formed about
how the two graphs can be related using only a few features of each graph, then each hypothe-
sis is tested based on the two complete graphs. Finally, the best hypothesis is kept and refined
using the information obtained while testing

The procedure involves a few instructions for the operator. For a number of stable positions of
the object, the operator must:

- put the object in front of the cameras of the stereo vision system, and acquire a 3-D
wireframe;

- rotate the object in the clockwise direction;
- acquire another wireframe;
- repeat the last two steps until the object has rotated a full turn.

The rotation in the second step does not need to be exact, the only requirement is that it does
not exceed 180 degrees. If it would exceed a half-turn, some features of the object may not be
observed. Usually, smaller angles will be used in order to get better descriptions, a typical
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value is 45 degrees. Small translations at this stage are allowed and can be dealt with.

During this first stage, the learning system repeatedly tries to combine two observations of an
object in a stable position on a flat horizontal surface. This includes estimating the transforma-
tion between the two observations. The observations are made by moving the object and keep-
ing the cameras in the same position, so the transformation can be described by a rotation
around the vertical axis followed by a horizontal translation. This procedure consists of four
steps, which are described separately in subsections of 7.4:

- forming hypotheses about possible transformations (using the stable pose constraint),

- testing the hypotheses to get a score for every hypothesis, and selecting the hypothesis
with the best score,

- optimizing the best hypothesis,
- merging all the observations using the best hypothesis found.

In the second étage, graphs obtained from different stable positions without known relation
are combined. Once again, the steps of hypothesis generation, hypothesis testing, best hypoth-
esis selection and hypothesis optimization are followed. This time the stable pose constraint is
not available, however, the combined information of each stable position should provide suffi-
cient information for solving the correspondence problem. The second stage is also finished
by a merging procedure.

The next two sections are dedicated to the learning procedure, the first to the stage of learning
one stable position, the second to the stage of combining several stable positions into a single
model. The transformation estimation procedure is described, where it differs from the general
procedure of section 5.4. Also, for each stage, each of the steps of hypothesis forming, hypoth-
esis testing and hypothesis optimization are described. The step of best hypothesis selection is
trivial after the testing procedure has been described. A section is then dedicated to the merg-
ing step. Finally, an experiment is shown, illustrating the different steps.

7.4 Learning stable positions
7.4.1 Obtaining observations

As a first step in the procedure, some observations of stable positions of the object must be
obtained. For the L-object, used as an example throughout this chapter, some observations
may look like Fig. 7-4. The object has been put on one side, and has been observed four times,
while being rotated approximately a quarter turn in the clockwise direction between the obser-
vations. Shown in this figure, as well as in all similar figures in this chapter, is a 2-dimensional
parallel projection of the actual 3-d graph that has been obtained using the stereo vision sys-
tem. It can been seen that some edges are missing, while others have been observed with vari-
ous errors.

As clearly not all object edges are present at least a few times in the set of observations, the
procedure has to be repeated for a few other stable positions. The observations for those are
shown in Fig. 7-5 and Fig. 7-6. In Fig. 7-5, the object has been placed on four points at the far
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Fig. 7-4 Different observations of one stable position of the L-object (projections of
3-d data).

ends of the L, resulting in observations that are very incomplete. In Fig. 7-6, the object is put
on one side. Although the top side has been observed well, the sides and bottom are not
present everywhere.

In all these observations, it can be noted that:

- edges are often completely missing.

edges are sometimes partially found.

- some small edges are found, probably false detections.

- broken edges occur only rarely.

These errors are introduced by the stereo vision system, and explained in chapter 4.
7.4.2 Estimating transformations

As part of hypothesis generation as well as during the refinement step, the transformation
between two observations has to be estimated. In the usual 3-d case a transformation has six
degrees of freedom (three translations, three rotations), and an estimate can be based on three
point correspondences (which is achieved by two edge correspondences). However, in this
case there is a constraint: the observations are of the same stable position, and the transforma-
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Fig. 7-5 Different observations of another stable position of the L-object.
tion between them is only a rotation around the z-axis, followed by a translation in the x-y
plane. As a result of this, there are only three degrees of freedom and the transformation can
be estimated using only two point correspondences, or a single edge correspondence. (Use of
the z-axis and x-y plane assumes a perfectly horizontal table. However, as long as the table
position and orientation are known, there are only three degrees of freedom).

The latter transformation can be estimated using a modified version of the method described
by Faugeras and Hebert 2 (which is also used elsewhere in this thesis, see 5.4). This method
minimizes the sum of the squared distances between corresponding points in the two observa-
tions.The estimated transformation consists in general of a rotation around an axis through the
origin followed by a translation. In this method the rotation is described by a quaternion

q = (w, 5}, where

w = sin (g)v, (88)

= cos (g) (¢39)

v being the direction vector of the rotation axis, and 6 the angle of rotation. The result of the
method are a rotation and a translation which minimize
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Fig. 7-6 Different observations of the third stable position of the L-object.

Z |gx;q ++-x' (90)

i=1
where x; and x’; are corresponding points from the two observations.

For estimating a horizontal transformation (between two observations of the same stable posi-
tion), a modified version of the method was used. This is obtained by substituting the vertical
axis [ 0,0,1]7 for v in (88), so that 8 is the only unknown variable in the rotation. Similarly, the
z-component of the translation is put to 0. This allows the method to be simpliﬁed42. The
resulting method reliably estimates the three parameters.

7.4.3 Generating hypotheses

In case a horizontal transformation has to be estimated between two observed graphs, it is suf-
ficient to find edge pairs, consisting of an edge in one graph and a corresponding edge in the

other graph.The hypothesis generation step involves finding all possible edge pairs, and esti-
mating the transformation associated with each. If the transformation differs too much from
either a horizontal translation or a rotation around the z-axis, edge pairs are rejected. The
transformation is derived from the pairs of corresponding endpoints of the edges using the
method indicated in the previous section.
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7.4.4 Testing hypotheses

To test the quality of an hypothesis, the transformed observation and the other observation are
compared. The assumption made is that if two observed edges (one in each graph) correspond,
they were both generated by a real edge in the object. For every edge pair an estimate of the
real object edge is calculated (see Fig. 7-7). The estimate could be interpreted to lie on a line
between the average end points, and has a length corresponding to the part that the two edges
have in common.

\
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Fig. 7-7 Observation-observation matching using an estimate of the real object edge of
two observed edges.

If the edges are within a certain distance of the estimated object edge, the matching length is
calculated as shown in Fig. 7-7. The sum of the matching lengths of all matching edge pairs
for a certain hypothesis is used as the score for that hypothesis. Selecting the best hypothesis
then amounts to picking the one with the highest score.

7.4.5 Optimizing a hypothesis

Each original hypothesis was based on only one edge correspondence. However, during
hypothesis testing many more edge correspondences may be found. These can be used to re-
estimate the transformation between the graphs, leading to a more accurate estimate. This
requires corresponding points in the graphs to be indicated. For this the pairs of points (a,a’)
and (b,b") as indicated in Fig. 7-7 are used. These are already determined during the test of the
hypothesis, when the matching length is calculated. The contribution of these points is
weighted by the matching length of the connected edge to give a more accurate result.

7.4.6 Merging the Observations into one Graph

Using the estimated transformations between the observations, all observations are trans-
formed back to one position. All edges in the observations which result from the same object
edge are then in approximately the same position and orientation. Two approaches have been
tested to merge the set of positioned observation graphs into one graph. The first one is based
on clustering the endpoints of the edges, the second one on clustering the edges themselves.

The first approach (based of the clustering of the endpoints) is fairly straightforward. Points
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within a certain distance of each other are merged, until this is no longer possible. The results
for the three stable positions of the L-object are shown in Fig. 7-8. The point clusters are indi-
cated by numbers. The method immediately results in connected graphs. Although this
approach works, it seems to rely on the endpoints of edges, which are less reliable than the
edges themselves in the stereo vision process. Therefore another approach was developed.

The second approach (edge-based clustering) is based on the fact that the stereo vision system
detects edges. In the process, errors occur as observed in 7.4.1. As a result of this, an object
edge will show up in the set of observations as a cloud of edges, some of which only represent
part of the object edge. The learning process should try to find an “average” edge in the cloud.
where with the following properties:

- The distance of the observed edges to the average edge, perpendicular to it, should be
small.

- The average edge should have its end points at the extreme ends of the cloud.

Of course, it is not known in advance which observed edges belong to the same model edge.
Therefore, the clustering procedure should try to find clusters and average edges at the same
time.

———e i

{_\-\

Fig. 7-9 An object edge (fat) will show up in the set of observed edges as a
cloud of edges. These will have a small distance perpendicular to the ob-
served edge due to noise in the observations. However, they may not repre-
sent the full length of the model edge because part of the edge may not be
detected. The notion of an “average edge” is based on this.

The average of a set of edges is found using eigenvector analysis. All points of all £ edges con-
necting points gy and by in the set of edges are used to construct a matrix R, the covariance of
all the points x in the cluster. This matrix can be found by summing over all edges and inte-
grating over all points on each edge:

R= E{(-p @x-wmT}

i3

1)

Nl._.

—p) (x~p)Tdx

- c——,;gr

where [ is the total edge length,
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Fig.7-8 Creation of the stable position graphs using the point-based clustering method,
for the three stable positions of the L-object.
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The integrals over edges which occur in the construction of the covariance matrix can be elim-
inated. The eigenvector belonging to the largest eigenvalue of R is used as the direction of the
average line through the mean of the set of edges. By doing so the sum of the squared dis-
tances of all points of all edges to this line is minimised. The average edge is the smallest edge
containing all the projections of the edges in the set on the average line.

Using this average edge of a cluster, two constraints can be given to indicate whether a cluster
is good:

- The edges are close to the average edge, in a direction perpendicular to it.
- The gaps within the cluster are small in the direction of the average edge.

The implications of these two constraints are shown in Fig. 7-10. Using the average edge and
the two constraints, the edges can be clustered as follows:

— S

two examples of well-clustered edges
- -
two examples of bad clusterings

o e

—_——

\

clusterings violating each constraint

Fig. 7-10 Examples of good clustering, bad clustering and il-
legal clustering of edges.

The purpose of the clustering procedure is to find the groups of edges which result from the
same object edge. For this an agglomerative hierarchical clustering method (see Jain and

Dubes 40) is used. The distance between two clusters is expressed in the quality of the merged
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clusters, which is the weighted sum of two parts. The first part is the largest distance of the
endpoints of the edges in the merged cluster to the average edge of the merged cluster. This is
the radius of the cluster. The other part is the length of the average edge divided by the total
length of all the edges in the merged cluster, the reciprocal density of the cluster. Furthermore
two constraints are used during the clustering process. The first one constrains the radius of
the cluster to a maximum radius which is determined by the errors introduced by the stereovi-
sion system. Secondly the clusters should not contain a significant gap in the direction of the
average edge. The size of the allowed gap is object dependent. The two constraints serve as an
end criterion, and force the clustering process to the desired result.

The result of this edge-based clustering algorithm is shown in Fig. 7-11. Again, numbers are
used to indicate the clusters found. The resulting average edges are shown on the right. It can
be seen that the procedure does not yield a connected graph. In fact, because the average edge
has its end points at the extreme ends of a cluster rather than at some “mean” end point, the
end points of each edge are somewhat outside of the object.

The final step in the merging procedure is the restoration of the connectivity between the
edges in the new graph, in case the edge-based clustering method is used. For each couple of
edges, the shortest line connecting them is calculated. If this line is shorter than a threshold,
the two edges are connected at a point in the middle of the connecting line. This method is
insensitive to the fact that the end point is on the outside of the object, as can be seen in Fig. 7-
12. The full procedure is described in 42,

Fig.7-12 Restoration of the connectivity in a merged graph. The new end point lies
in the middle of the shortest line connecting the two edges. The grey lines indicate
the new positions of the edges.

The result of this step can be seen in Fig. 7-13. It is at this point possible to remove clusters
smaller than a certain size, as shown in this figure, in order to remove false detections. How-
ever, with small sets of observations (as in this example), this also removes a number of cor-
rect edges. Therefore, this has not been done in later experiments.

The above discussion suggests that edge-based clustering has advantages over point-based
clustering. However, the lack of speed of the implementation (see section 7.6.1) made a large-
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Fig. 7-11 Creation of stable position graphs using the line-based clustering method, be-
fore endpoint connection, for the three different stable positions of the L-object.
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Fig. 7-13 Stable position graphs for the three stable postions of the L-object using the
line-based clustering method, after endpoint connection. In the left column, the graphs
are shown with single occurrences included, in the right column the same graphs after
single occurrences have been removed.
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scale experiment infeasible. Therefore, this issue has not been fully investigated.
7.5 Learning a full model
7.5.1 Hypothesis generation

A full model has to be generated out of the graphs for individual stable positions described in
the previous section. Merging these requires hypotheses to be generated about their relations.
The transformation between two stable positions is a general 3-dimensional transformation,
that can be estimated using the method described in 5.4. An estimate of such a transformation
is based on at least three pairs of corresponding points. For this the four pairs of end points of
two edge pairs can be used. An edge pair is defined as a triple (A,B,P ), where A is an edge from
one observation, B is an edge from the other observation, and P is the parity of the edge pair
indicating which endpoints correspond to each other. All combinations of edge pairs contain-
ing edges of similar length can be used for a hypothesis.

7.5.2 Hypothesis testing

Testing these hypotheses can be done by transforming one of the observations, using the trans-
formation estimated. Then, for all pairs of edges an estimate of the actual object edge is again
calculated. It can be decided, based on this estimate, if the two edges can be accepted as corre-
sponding to the same object edge. The sum of the lengths of all matching edges is again used
as the score for the hypothesis, and the hypothesis with the highest score is accepted.

7.5.3 Merging of stable positions (clustering)

If best hypotheses can be found for all stable position graphs, a clustering procedure can once
again be applied to all. Both the point-based and the edge-based methods can again be applied.
In this case, only the edge-based method has been used. The result of applying this method to
the three stable positions of the L-object is shown in Fig. 7-14. Also shown there is the final
result, after restoring the connectivity. In this case, all the edges in the object can be found in
the model, although small errors in the point coordinates occur.

7.6 Experiments
7.6.1 Implementation

The algorithms described in the preceding chapters have been implemented using the Poplog
package, using the languages Prolog and Pop-11, and some external procedures in C. The
search algorithms were implemented in Prolog, because this language lends itself very well for
that. Pop-11 is the general purpose language in the Poplog package, that offers the similar
functionality to most popular languages. It also interfaces well to Prolog and C. The whole
system was running on a Sun 3/60. A consequence of the use of a slow language (Prolog) and
a slow computer was that the whole system ran very slowly. Typically, learning of the models
shown in this chapter required several hours. It could be expected though, that the use of a
modern computer and reimplementation of the system would each increase the speed by an
order of magnitude.
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Fig.7-14 The result of line-based clustering of the L-object, for all stable positions
together. Shown are: the clusters found, the resulting edges and the result after re-
storing the connectivity.

A number of objects have been submitted to the learning system described in this chapter.
First experiments showed that it was impossible to learn the objects that were present in the
DIAC database. Only objects with a much coarser structure could be learned. This is due to
the limited resources available to the program, both CPU time and memory, and the limited
resolution of the stereo vision system. Using these resources, only a few observations could be
merged, requiring every observation to be a good one and every cluster to be distinct from
others. If more resources were available, more observations could be used and the clusters
could be based more on statistics. If the resolution of the stereo vision system were higher,
clustering could be better based on small numbers of edges. However as a result of these limi-
tations, the objects used were not the Diac parts defined elsewhere in this thesis.
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Instead, five parts of a Soma-puzzle (attributed to the Danish mathematician Piet Hein26) were
used, the L-object that was introduced earlier, and four other parts shown in Fig. 7-15. The
puzzle itself consists of nine parts, that can be assembled into a cube. Solving the puzzle was
not part of the experiment.

Fig. 7-15 The remaining objects in this experiment. From left to right: T,Z,X, q.

7.6.2 Learning models

Applying the learning procedure to all five objects was not completely successful: the system
was not able to find a correct model for the X-object. The reason for this was the poor quality
of the observations of this object. Increasing the number of observations would probably have
solved this problem, but was computationally not feasible. Edge based clustering was used.
The model obtained for the L-object is shown in Fig. 7-14 and those for the remaining three
objects are shown in Fig. 7-16. Note that the Z-object has been found completely, with one
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false edge, the T-object has one small side missing, and the g-object has only been found par-
tially although with a shadow included (lower right hand corner). Nevertheless, all four mod-
els were used in the rest of the experiment.

7.6.3 Applying the models

After learning the models, a new set of 40 observations was obtained, ten of each object that
was successfully learned. The recognition system described in chapter 5 was applied to all
observations, using the learned models. The results are shown in Fig. 7-17, and a confusion
matrix summarising the result in Table 7-1

Fig. 7-16 The models found for the three other objects in the experiment for which the
procedure was succesful. The T-object (top left), the q-object (top-right) and the Z-ob-
Ject (bottom left) are shown. For the X-object, no model could be obtained during the
experiment.

From the table it may be clear that the models that are more complete are also the more suc-
cessful models. The Z-object was classified correctly all of the time, while the only case
where the L-object was misclassified (nr. 7), only one side of the object was clearly visible. As
the T-object has an identical side, confusion is easy. The T-object, where one side is missing
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Fig. 7-17 Recognition experiment for models learned with the algorithm described
in this chapter. Shown are 40 images, 10 per class, with the model recognised over-
layed in black lines. The original images are shown invertedly for clarity. In the
lower left hand corner of each image its sequence number and the object depicted
(Lz,t or q) is shown. In the lower right hand corner the model identified is shown.
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Fig. 7-17 continued.
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Table 7-1 Confusion matrix using learned models.

Model generation

object\ class L Z T q
L 9 0 1 0
4 0 10 0 0
T 3 1 5 1
q 5 2 0 3

completely in the model, was only classified correctly in half the cases. Most often it was con-
fused with the L-object, with which it has the largest side in common. The model for the g-
object was obviously very bad: only three times out of ten was the g-object classified cor-
rectly.

In this experiment, the reject threshold was very low. Because all the objects consist of edges
of only three different lengths, bad classifications could have scores that were in the same
ranges as good classifications. As a result of this, the threshold was not very effective.

7.6.4 Evaluation of the models

To illustrate that the quality of the learning system was tested here, the same 40 observations
were again classified, this time using operator-supplied models. These were obtained by meas-
uring the objects by hand. The results of these classifications are shown in Fig. 7-18 and sum-
marised in Table 7-2

Table 7-2 Confusion matrix for operator-supplied models

Object\class L z T q
L 10 0 0 0

Z 0 10 0 0

T 0 0 10 0

q 0 0 0 10

From this table it is clear that all objects were classified correctly. It should be noted though,
that nr. 7 (the L-object that was classified as a T) is classified correctly this time, but only
because the score for L is less then 1% higher than that for T. In fact, a minor change in the
parameters causes it to be classified as T. In this case, the observation is so difficult that the
success of the recognition system is unpredictable. The other 39 cases though, were easily
classified.

This near misclassification suggests that a second type of reject could be useful in the recogni-
tion system: one where a best hypothesis is also rejected if it is not significantly better than the
second best. However, this was never implemented.
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Fig. 7-18 The recognition experiment with manually generated models. All ob-
Jects are recognised correctly. Shown are the same 40 images, 10 per class,
again invertedly and with the recognised model overlayed in black. In the lower
left hand corner of each image its sequence number and the object depicted (L,
Z,T or q) is shown. In the lower right hand corner the model identified is shown.




Chapter 7

R
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Fig. 7-18 continued.
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7.6.5 Estimating the vision system’s precision.

In another experiment, the precision of the stereo vision system was estimated in a way simi-
lar to that in section 4.6. Of two different stable positions of the L-object, six and eight obser-
vations respectively were obtained. These were subsequently clustered using the edge-based
clustering method, and the average edges in each cluster were taken as estimates of object
edges. Fig. 7-19 shows histograms of the minimum and maximum distances of all edges to the
average edge in each cluster. As could be expected for most common distributions, the maxi-
mum value does not lie at radius 0. After all, these are distances perpendicular to lines, so they
are the square root of the sum of two squared stochastic variables. If these were for instance
normally distributed and independent, the resulting distribution would be x%.

These histograms suggest that 95% of all edges in this object can be observed within a mini-
mum (maximum) distance of 3.2 mm (5.6 mm) of their actual location. The latter figure is
slightly higher than the precision of 1 mm found in section 4.6, which could be explained by
the fact that the experiment described there took place with a later version of the stereo vision
system.

If such a procedure could be applied to all objects for which the vision system is to be used,
and for all stable positions, definitive statistics could be obtained about the stereo vision sys-
tem for this application in a semi-automatic way: the only requirement would be that an oper-
ator would go through the whole learning procedure. However, a representative subset of all
possibilities would be sufficient. An important condition would be that the circumstances at
the time of learning and at the time of actual use of the stereo vision system would be identi-
cal.

The performance of the current implementation restricted the experiment to the size indicated
above.

7.7 Conclusions

In this chapter, the origin of the models used for recognition has been addressed. Models
could originate from two sources: a model database, possibly derived from a CAD procedure,
or a learning procedure. For the DIAC problem, the first approach is used. An interface has
been defined between the Product Data Model and the recognition system. This allows auto-
matic generation of models when new parts are introduced in the system.

The second approach, learning the models, is a more complicated one. A procedure has been
described for learning models using the stereo vision system with only a few instructions for
the operator. The learning algorithm uses a set of observations from a few stable positions of
the object, first to create a model of each stable position and then to derive a model of the
object as a whole. The algorithm uses hypothesis generation and testing procedures similar to
the recognition system described in chapter 3.

A learning system, that was actually built, was able to acquire simple models that could be
used for recognition. However, the implementation limited its use to very simple problems. In
particular, the number of observations allowed was rather limited. In cases where the small
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Fig. 7-19 Distribution of the minimum and maximum distance (in mm) of edges to
the resulting edge of each cluster. The total number of edges is 60.

number of observations lead to a poor model, the results in recognition using the model were
also poor. In one case, no model could be found at all.

Another application of the learning procedure is the semi-automatic estimation of the preci-
sion of the stereo-vision system. A number of observations of a set of test objects can be
obtained, and the learning procedure can automatically find clusters of corresponding edges
and an average edge for each cluster. The deviations of the edges from the average edge can be
used to estimate the precision of the system. Such a procedure for an early version of the
DIAC stereo vision system showed results slightly worse than the ones described elsewhere in
this thesis.

Reimplementation of the learning system using faster technology would make it feasible to
apply it to larger learning sets, thus enabling the learning of more complex objects. Further-
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more, it could allow the inclusion of other primitives than straight lines, such as the circular

arcs already provided by the stereo vision system. Also, better statistics about the stereo vision
system could be obtained (for instance, precision as a function of size).
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8 Conclusions

This chapter summarises earlier conclusions, and relates them
to the goals outlined in the introduction.

8.1 Conclusions of earlier chapters.

- In chapter 3, a two stage system for object identification in DIAC was proposed. The first
stage (the verification system) tries to verify a hypothesis based on outside information and
common object positions. In case of insufficient result, the more general recognition system is
activated. Criteria have been found for switching from verification to recognition. Minimiza-
tion of an overall cost function leads to optimal thresholds for both verification and recogni-
tion.

The cooperation between the verification system and the recognition system as described in
this chapter has not been fully tested. However, its use was illustrated by an experimental
example which showed the feasibility of the concept. Using this two stage approach, it will be
possible to build a system that is capable of a fast performance (using verification), yet that is
sufficiently powerful to deal with a number of unexpected cases (using recognition).

- In chapter 4, a stereo vision system has been described using straight lines and ellipses in
images, representing straight lines and circles in 3-d. First, images are acquired and edge
detection is performed. Then, two different stereo vision algorithms are invoked.

The straight line based stereo vision algorithm is straightforward, mainly caused by the use of
strong constraints. A straight line fit is applied to edges and lines are checked for correspond-
ence. The best correspondence for each is kept, if it is better than a certain threshold. Although
the system is capable of finding well defined straight lines mostly with an accuracy of 2-3
mm, there are some outliers at certain orientations.

Ellipse based stereo vision is based on an algorithm to find ellipses or partial ellipses in gray
value images, and an algorithm to find the circle in 3-d corresponding to two ellipses. The
algorithms appear to be sufficiently fast and accurate for the detection of clear circles,
although the practical application of the system in chapter 6 suggested that the ellipse detec-
tion stage is not yet robust enough for the recognition of cylindrical industrial parts.

In chapter 5, the recognition system was described qualitatively. It is based on hypothesis ver-
ification and testing, using careful pruning to reduce the computational complexity. Rotational
symmetries, included in each model, are eliminated at an early stage of recognition. Knowl-
edge about the rigidity of the object and the supporting surface is also exploited. These result
in significant speedups of the system.

In chapter 6, the performance of the system as a whole was evaluated. It was concluded that
the overall recognition accuracy was still insufficient for immediate use. However, some of
the weak points could be identified (insufficient resolution for small objects, lack of robust-
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ness of the ellipse detection algorithm, impossibility to identify all objects from only two
views) and these can be improved upon.

In chapter 7, a description was given of two ways of obtaining the models for the recognition
system. These show one of the advantages of a flexible vision system: either the models can be
generated automatically from a CAD database of the parts to be recognised, or the models
could be learned by having an operator place the object in front of the cameras using a simple
procedure that does not require accurate positioning. The latter procedure however is only
suitable for models that are of a much coarser structure than those that can be obtained from a
CAD database.

8.2 Methodology

The stereo vision system reflects what in the introduction was called the engineering approach
to vision: stereo vision is done at a level that offers a large decrease in complexity (compared
to conventional stereo at the pixel level), by using adequate primitives for the recognition sys-
tem. As a result of this, an efficient vision system was realised without reference to a specific
perception model.

Some effort was put into realising a reproducible and comparable evaluation. As no standard
dataset was available, the dataset that was used to evaluate the system is still available along
with the relevant parameters. Researchers working on similar problems are invited to use the
data set for a comparable evaluation of their own systems.

8.3 Recommendations for further research
Further research is recommended on the following topics:

- As indicated in section 6.3.2, the system still has a few weak spots that should be
improved upon, in particular, the robustness of the ellipse detection algorithm.
Although the ellipse-based stereo vision system was shown to work for images of clear
circles, it proved to be insufficiently robust for the detection of the circles on cylindri-
cal parts. As more robust algorithms for ellipse detection exist (see section 4.3.3), it
should be investigated whether these would improve the performance.

- Once the implementation of the verification system has been completed, the behaviour
of the combined systems should be evaluated in a real environment.

- A comparison to similar systems should be performed. A complete dataset of 200
image pairs is available for evaluation of similar systems developed by other research-
ers. It is suggested to apply other vision systems to the same dataset in order to evalu-
ate the differences in performance.
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Summary

In this thesis, a system is described for recognition of parts in a flexible assembly cell. It will
be used in the Delft Intelligent Assembly Cell (DIAC). The system consists of a stereo vision
part and a recognition part. The main chapters of the thesis are summarised below.

In chapter 3, the DIAC project is described. The tasks to be performed by DIAC define the
demands on the recognition system. Parts have to be recognized and their position and orien-
tation determined in a data driven way. The parts consist of straight lines and circular arcs. A
two stage system for object identification in DIAC is proposed, of which the recognition sys-
tem described in this thesis will be the second stage. Criteria are described for switching
between the stages.

Chapter 4 describes the stereo vision part. After the images are acquired, edge detection is per-
formed. Following that, a simple stereo vision algorithm is applied for finding straight lines. A
straight line fit is applied to edges and left and right lines are checked for correspondence. The
best correspondence for each is kept, if it is better than a certain threshold. Ellipse based
stereo vision is also used, based on an algorithm to find ellipses or partial ellipses in images,
and an algorithm to find the circle in 3-d corresponding to two ellipses. The algorithms
appears to be sufficiently fast and accurate. The chapter ends with an evaluation of the calibra-
tion procedure.

In chapter 5, the recognition part is described qualitatively. It is based on hypothesis genera-
tion and testing, using careful pruning to reduce the computational complexity. Hypotheses
about the presence of an object in the scene are based on one or two observed features, and are
tested using the full scene description. Rotational symmetries, included in each model, are
eliminated at an early stage of recognition. Knowledge about the rigidity of the object and the
supporting surface is also exploited.

In chapter 6, the overall system (stereo vision and recognition) is evaluated, using a set of 200
test image pairs. Some of the limitations of the system are explored, and parameter settings
are validated. Although the performance of the system is not yet sufficient for direct industrial
application, it could be sufficient for DIAC. Some directions for improvement are indicated.

Chapter 7 addresses the origin of the models used for recognition. Models can originate from
two sources: a model database, possibly derived from Computer Aided Design (CAD), or a
learning procedure. For DIAC, the first approach is used. An interface has been defined
between the Product Data Model and the recognition system. This allows automatic genera-
tion of models when new parts are introduced in the system. For the second approach, a learn-
ing procedure has been implemented based on principles from earlier chapters. It learns wire
frame models of objects consisting of straight lines only, using a few observations of different
stable positions of the objects.
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Samenvatting

In dit proefschrift wordt een systeem beschreven voor herkenning van onderdelen in een flexi-
bele assemblage cel. Het zal worden toegepast in de Delftse Intelligente Assemblage Cel
(DIAC). Het systeem bestaat uit een stereo visie deel en een herkenningsdeel. De belangrijk-
ste hoofdstukken van het proefschrift worden hieronder samengevat.

In hoofdstuk 3 wordt het DIAC project beschreven. De taken die door de DIAC moeten wor-
den vervuld bepalen de eisen aan het herkenningssysteem. Onderdelen moeten worden her-
kend en hun positie en oriéntatie moeten datagestuurd worden bepaald. De onderdelen bestaan
uit rechte lijnen en cirkelbogen. Een tweetraps aanpak voor de objectherkenning in DIAC
wordt voorgesteld, waarvan het herkenningssysteem, zoals beschreven in dit proefschrift, de
tweede trap zal zijn. Criteria worden beschreven om over te schakelen tussen de trappen.

Hoofdstuk 4 beschrijft het stereo visie deel. Nadat de beelden zijn verkregen worden randen
gedetecteerd. Daarna wordt een simpel algoritme toegepast om rechte lijnen te vinden. Rechte
lijnen worden gepast aan de randen en de rechter- en linkerlijnen worden vervolgens gecon-
troleerd op correspondentie. De best passende combinatie voor elke lijn wordt bewaard, als hij
beter is dan een bepaalde drempel. Op ellipsen gebaseerde stereo visie wordt ook toegepast,
gebaseerd op een algoritme om gehele of gedeeltelijke ellipsen in te vinden, en een algoritme
om de cirkel te vinden in 3-d die correspondeert met twee ellipsen. Deze algoritmen lijken
voldoende snel en nauwkeurig te zijn. Het hoofdstuk eindigt met een evaluatie van de calibra-
tie.

In hoofdstuk 5 wordt het herkenningsdeel kwalitatief beschreven. Het is gebaseerd op hypo-
these-generatie en -toetsing. Hypothesen over de aanwezigheid van een object in de scene
worden gebaseerd op een of twee waargenomen kenmerken, en worden getoetst met de volle-
dige beschrijving van de scene. Rotatiesymmetrieén, die aan ieder model worden toegevoegd,
worden in een vroeg stadium van de herkenning geélimineerd. Kennis over de stijfheid van
het object en het ondersteunende vlak wordt ook uitgebuit.

In hoofdstuk 6 wordt het gehele systeem (stereo visie en herkenning) geévalueerd, met
gebruikmaking van 200 beeldparen. Enige beperkingen van het systeem worden verkend, en
de geldigheid van de parameterinstellingen wordt gecontroleerd. Hoewel de prestaties van het
systeem nog niet voldoende zijn voor een directe industriéle toepassing, kunnen ze wel goed
genoeg zijn voor DIAC. Enige richtingen voor verbeteringen worden aangegeven.

Hoofdstuk 7 bespreekt de oorsprong van de modellen die voor herkenning gebruikt worden.
Modellen kunnen van twee bronnen afkomstig zijn: van een modelgegevensbestand, mogelijk
afgeleid van een met behulp van de computer gemaakt ontwerp (CAD), of van een leerproce-
dure. Voor DIAC wordt de eerste aanpak gekozen. Een verbinding is gedefinieerd tussen het
Produkt Data Model en het herkenningssysteem. Dit staat automatische generatie van model-
len toe, wanneer nicuwe onderdelen in het systeem geintroduceerd worden. Voor de tweede




Samenvatting

aanpak is een leerprocedure geimplementeerd, gebaseerd op principes uit eerdere hoofdstuk-
ken. Deze leert draadmodellen van objecten die alleen uit rechte lijnen bestaan, met gebruik-
making van een paar observaties van verschillende stabiele posities van de objecten.
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“Is that it ?” said Eeyore.

“Yes,” said Christopher Robin.

“Ts that what we were looking for ?”

“Yes,” said Pooh.

“Oh!” said Eeyore. “Well, anyhow - it didn’t rain,”
he said.

A.A. Milne, Winnie-the-Pooh.







