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Abstract

Object recognition in X-ray images is an interesting application of machine vision

that can help reduce the workload of human operators of X-ray scanners at security

checkpoints. In this paper, we first present a comprehensive evaluation of image clas-

sification and object detection in X-ray images using standard local features in a BoW

framework with (structural) SVMs. Then, we extend the features to utilize the extra

information available in dual energy X-ray images. Finally, we propose a multi-view

branch-and-bound algorithm for multi-view object detection. Through extensive exper-

iments on three object categories, we show that the classification and detection perfor-

mance substantially improves with the extended features and multiple views.

1 Introduction

X-ray imaging is a widely used technology at security checkpoints. X-ray images, obtained

from X-ray scans, are visually inspected by specially trained human screeners in real-time

to detect threat objects. This process is tiring, error prone and also controversial for privacy

concerns. Automatic inspection systems using machine vision techniques are not yet com-

monplace for generic threat detection in X-ray images. Moreover, this problem has not been

well explored by machine vision community. This is probably due to lack of publicly avail-

able X-ray image datasets, which in turn is due to copyright, security and privacy concerns.

In this paper, we address the problem of single view and multi-view object recognition in

dual energy X-ray images using local texture/color features and (structural) SVMs.

X-ray security scanners are available for various security applications. Here, we focus

on X-ray scanners for check-in and carry-on luggage inspection at airports. Figure 1 shows a

simplified model of a 4-view X-ray scanner. As a baggage goes through the scanner tunnel,

each X-ray source scans one slice of the baggage at two energy levels (referred to as low

energy and high energy), and the attenuated X-rays are collected by a bank of detectors.

Then, these slices are combined into a low energy and a high energy grayscale image for each

view separately; each slice corresponding to one row in the resultant 2D image. Therefore,

the image formation in the direction of belt motion (z) is linear (y on 2D image), while it is
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non-linear in the other direction (x on 2D image). The non-linearity as well as the motion of

the baggage may cause some distortions in the generated image. At the end of the scanning

process, we obtain a total of 8 grayscale energy images for 4 views. These energy images

are converted to pseudo-colored RGB images with the help of a look-up table obtained via

calibration and displayed to the scanner operators (screeners). The images have a constant

width for each view (e.g., 768, 832, 768, 704 pixels for 4 views respectively), but the height

is determined by the size of the scanned baggage.

Figure 1: Simplified model of a 4-view X-ray scanner. As the baggage goes through the

tunnel (in z direction), 4 X-ray generators scan one slice of the baggage (x− y plane) to

generate two energy images for each of the 4 views. The energy images are combined

through a look-up table to obtain the pseudo color RGB images for better viewing for the

machine operators. The pseudo colors encode the material information (e.g., blue: metals,

orange: organic). We make use of two main properties of these X-ray images to boost the

object recognition performance: (1) material information, (2) multiple views.

Due to the scanner geometry and imaging process, X-ray images have some peculiari-

ties, which must be considered in the design of automatic machine vision systems for better

performance.

Dual energy imaging. The aim of using two energy levels is to obtain both the density and

atomic number of the scanned materials. Therefore, the intensity values in energy images and

pseudo colors in the color image encode very valuable material information. We show that

utilizing this additional information improves object recognition performance significantly.

Multi-view imaging. Multi-view images can help improve the recognition performance. If

the object is not visible in one view, it may be visible in another view; this is the motivation

for multiple views for human screeners as well. We show that multi-view recognition indeed

improves recognition, especially when the single view detections are not very good, as also

demonstrated in [7].
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Transparency. Transparency may either help or interfere with object recognition; there is

no work investigating the effect of transparency on object recognition performance, and this

paper also does not address this problem explicitly.

Visual appearance, image content. X-ray images contain much less texture compared

to regular photographic images, with the implication of harder object recognition. X-ray

images may get extremely cluttered, with many overlapping, possibly high density objects,

making the inspection/recognition impossible even for the human screeners (in which case

manual inspection is required). Objects usually undergo in– and out-of-plane rotations,

which is another major difficulty for recognition. On the other hand, the problem of change

of object scale and illumination in regular images is not a big issue in X-ray images, since

the machine geometry and energy levels are fixed.

Related Work. The literature on object recognition in X-ray images is very limited. Early

works focused more on single view classification and detection/matching [2, 12, 17, 18, 19,

21]. Only recently, methods utilizing multiple views have been proposed [7, 13]. Franzel

et al. [7] developed an object detection approach for multi-view X-ray images. They used

HOG + linear SVM in a brute-force sliding&rotating windows manner in single views; then,

they fused the single view detections in 3D to reinforce the geometrically consistent detec-

tions while suppressing the false detections. They showed that the multi-view integration

improved performance significantly compared to single-view detection. In [6], various 3D

feature based approaches were compared and shown that simpler interest point descriptors

(density gradient histogram) outperform the complex ones (RIFT and SIFT).

Contributions of this paper. We have three main contributions in this paper. (1) We first

present results of extensive image classification and object detection on single view X-ray

images using standard local features and (structural) SVMs. (2) Then, we show that both

classification and detection performance can be substantially improved with straightforward

adaptation and extension of local features (point detectors + descriptors). (3) Finally, we

show that the performance can be further improved by utilizing the multiple views and pro-

pose a new multi-view branch&bound (B&B) search algorithm for multi-view object detec-

tion that uses the single view features directly.

2 Dataset and Feature Extraction

We used an X-ray image dataset from typical 4-view X-ray scanners, like the one in Figure 1.

The dataset includes the low energy, high energy and pseudo color images, as well as the

exact geometry of the scanners used to record the images. We selected three object classes

to perform experiments on: laptops, handguns and glass bottles.

Laptops. Laptops (and similar electronic boards) display a high amount of texture in X-ray

images, in contrast to many other objects which are textureless. They are large and have less

intra-class variation. These make the laptop recognition easy using standard object recogni-

tion algorithms with local features that encode texture information. Our laptop training set

has 863 bag scans (131 positive, 731 negative), and test set has 840 bags (119 positive, 721

negative).

Handguns. Handguns contain high density metallic parts as well as non-metallic parts,

have less texture compared to laptops, may have large intra-class variations and in– and

out-of-plane rotations. These make the handgun recognition difficult. Our handgun dataset

contains more than 20 types of handguns in different sizes, some having non-metallic parts,

some partly disassembled and some deliberately concealed in the bags. Therefore, it is a
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challenging dataset. The training set has 763 bag scans (347 positive, 416 negative), and test

set has 921 bags (322 positive, 599 negative).

Glass bottles. There is almost no texture in glass bottles; rotations and intra-class variations

complicate the problem even further. Therefore, the shape and material information are two

important cues for bottle recognition. Our glass bottle training set has 613 bag scans (88

positive, 525 negative), and test set has 1000 bags (92 positive, 907 negative).

2.1 Feature Extraction

We used local features (interest points, regions, edgels) in a regular bag of visual words

(BoW) framework.

Detectors. As local feature detectors, we experimented with both sparse interest points de-

tectors (Harris, Harris-Laplace, Harris-affine, Hessian-Laplace, Hessian-affine) [14, 15, 22]

and dense sampling. We used the executables at [14] to detect the sparse interest points, with

Hessian and Harris thresholds set to lower values than the defaults to detect more points on

textureless X-ray images.

Complementary to sparse interest points, we also experimented with two dense sampling

strategies, especially for textureless objects, like bottles: (1) Super pixels (super) as an alter-

native to the grid-based dense sampling, obtained using the SLIC super pixels algorithm [1].

(2) Dense edge sampling (hedge), a greedy graph-based clustering of color Canny edges [23]

using the color Harris [23] and color edge magnitudes to rank the edge pixels, so that edge

segments are clustered based on their curvature. After clustering, the point with the highest

score is selected as the representative point for the segment.

Descriptors. To represent the local texture content of the detected points/regions, we used

the well-known SIFT descriptor (size 128) and its derivatives (GLOH; CGLOH and CSIFT

for color images) [14, 16]. As we noted above, X-ray images contain much less texture

than regular images, but the intensity (in energy images) and color (in pseudo color images)

encode very valuable material information. We represent this information with the intensity

domain spin image descriptor (SPIN) [11], a 2D histogram of intensity values in the circular

neighborhood of a point. SPIN is rotation invariant. We observed that addition of color fea-

ture boosts the classification and detection performance. Therefore, we extend this intensity

domain descriptor to multiple channels/images for X-ray images, namely, ESPIN (Energy

SPIN) is the concatenation of SPIN descriptors from low and high energy images (ESPIN =
[LSPIN : HSPIN]), and CSPIN (Color SPIN) is the concatenation of SPIN descriptors from

RGB channels of the pseudo color images (CSPIN = [RSPIN : GSPIN : BSPIN]). We see

that ESPIN works better than SIFT and SPIN alone, and CSPIN is the best. We used the

executables at [14] to compute 50-dimensional SPIN descriptors from each image/channel

and concatenated them; hence, ESPIN has size 100 and CSPIN has size 150.

3 X-Ray Image Classification

Single view classification. We used the standard BoWs approach: feature detection, feature

description, dictionary learning, vector quantization and classification. We extracted the fea-

tures as described above from low/high energy and pseudo color images, used k-means to

construct a dictionary for each feature and for each object class separately (k = 1000) and

binary SVMs with various kernels (linear, RBF, histogram intersection, chi-square, jensen-
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shannon) [4] for classification. To use multiple features, we concatenated the BoW repre-

sentations of the individual BoW histograms of multiple features.

Multi-view classification. We get multiple images from each X-ray scan. To decide whether

an object is present in the scanned bag or not, we can simply classify each view separately

and return the best view with the maximum score (max), or decide based on the average of

the scores from all views (avg). Alternatively, we can compute the BoW features from the

whole scan, accumulating the contributions from each view and classify the bag as a whole

(bag).

3.1 Image Classification Results

The experimental results presented here all use the pseudo color X-ray images for interest

point detection, since the color images contain more information and texture compared to

low/high energy images (they are also more noisy). We performed lots of experiments but

could only present the most relevant results due to space limitation. Figure 2 shows the single

and multi view X-ray image classification results (binary SVM + histogram intersection

kernel). The performance substantially increases with multiple color and texture features,

the simpler color features usually performing better than the more complex texture features.

Among single descriptors, CSPIN performs the best, indicating the contribution of material

information. The classification performance is the highest for laptops and lowest for bottles,

as expected (Section 2).

4 Object Detection in X-Ray Images

We adapted the linear structural SVM (S-SVM) with branch-and-bound subwindow search

(or efficient subwindow search–ESS) framework of Blaschko and Lampert [3, 10], since it is

more efficient and shown to work better than classical sliding windows for object localization

in regular images.

S-SVM Training. As in [3], we used the n-slack formulation with margin-rescaling [9, 20],

n being the number of training images. We adapted our implementation from the publicly

available implementation of SVM-struct at [8] with some modifications to handle multiple

ground truth bounding boxes in the training (this might adversely affect the training when

there are many training images with multiple bounding boxes, especially when caching is

used). We also start with higher resolution (smaller ε = 4.0, instead of the default ε = 100.0)

with no loss in performance, and cache the most violating boxes to reduce the training time

significantly, from weeks to few hours or days. Finally, instead of the linear loss used in [3],

we used quadratic loss based on area overlap (for each ground truth bounding box in a

training image separately), since this worked better in our experiments.

Single view branch-and-bound search. The branch-and-bound subwindow search is used

to find the subwindow in an image maximizing a quality function. During S-SVM training, it

is used to find the most violated constraint in a training image (finding the misdetections with

high score using the current model). At test time, using the learned weights in the case of

linear S-SVM and with the help of an integral image, it finds the subwindow with the highest

score [3]. The authors in [3, 10] parametrize the upright bounding rectangles of objects using

by their top, bottom, left and right (t,b, l,r) coordinates, but other parametrizations are also

possible; for instance, to impose size constraints on the detected boxes at test time, it is more

convenient to use center (x,y), width, height (cx,cy,w,h) parametrization. We used (t,b, l,r)
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Figure 2: Single view and multi-view X-ray image classification results. The numbers in

[] and () are the BoW histogram size and the average precision, respectively. On the right

column, max, avg and bag indicate the multi-view classification approach, described in the

text.
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parametrization during S-SVM training, and (cx,cy,w,h) parametrization at test time. This

works better, since object sizes in X-ray images do not change much due to fixed machine

geometry and hence it is possible to impose size/shape constraints.

4.1 Multi-view branch-and-bound search

In single view detection, each view image of a scan is processed independently, although the

object locations are not independent but determined by the machine geometry. As shown in

Figure 1, the y coordinates of objects (and hence their heights) are the same (or roughly the

same, if some part of the object is not visible due to overlap), while x coordinates are deter-

mined by the machine geometry (perspective projection). Intuitively, the object localization

accuracy should be improved if the geometry information is utilized. Indeed, multi-view in-

tegration has already been shown to improve the detection significantly in [7], by combining

the single view detections in 3D. In this paper, instead of combining single view detections,

we propose to do the search directly in 3D using the raw features from multiple views. That

is, we assume a 3D bounding box around the object in the scanner tunnel (Figure 1), but use

features from the projected 2D boxes from the views.

Similar to single view detection, we can parametrize a 3D box with 6 parameters (top,

bottom, left, right, front, back). However, we have two problems: (1) when we project

axis-aligned bounding boxes onto the views we get larger bounding boxes (see Figure 1),

(2) with 6 parameters, the search space becomes huge and the B&B search algorithm does

not converge in reasonable time and it also requires too much memory. As a solution, we

use an approximation based on the observation that (1) object heights are roughly the same

in all views, (2) object widths are very close to each other in the close views (e.g., view 1,

view 2, view 3 in Figure 1). Then, we can use the following approximate parametrization

center (x,y,z), width, height (cx,cy,cz,w,h) for the 3 close views. Once the multi-view B&B

search converges with a rough object location and size (cx,cy,cz,w,h), we can (1) refine the

detections on the close views (by allowing e.g., 5-10% change in each parameter), (2) run a

single view B&B search on the remaining view image around (cx,cy,cz,h) and estimate w.

This way, we are able to obtain a solution with multiple views in reasonable time (seconds).

4.2 Object Detection Results

We used upright bounding box annotations for all object classes in training, and used the

same features in detection as in classification (from the pseudo color images). Figure 4

shows the precision-recall graphs for single/multi-view object detection using various fea-

tures, based on PASCAL’s 50% area overlap criterion for a correct detection [5]. From the

graphs, we conclude that single texture features perform rather poorly, especially for less

textured objects (e.g., bottles). As in classification, the performance improves significantly

with the addition of color features (material information). Furthermore, multi-view detec-

tion improves the performance considerably especially when the single view detections are

not good, as in handguns and bottles. The sample detections in Figure 3 also demonstrates

this point; using multiple views improves the localization accuracy, and hence the detection

performance.

Comparison. We compared our single view and multi-view detection approach to a recent

state-of-the-art approach [7] on handgun detection in multi-view X-ray images. The authors

in [7] first annotate their handgun dataset with bounding boxes aligned with the barrel of the

gun. Then, they use a HOG-based single view linear SVM detector and fuse the detections
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Figure 3: Sample single/multi-view object (handgun, laptop, glass bottle) detections. Green

box (thin): ground truth, purple box (medium thickness): single view detection, red box

(thick): multi-view detection.

in 3D to reinforce the geometrically consistent detections while suppressing the false detec-

tions. Finally, they back-project the detected object locations onto the view images, but lose

the concept of rectangular bounding boxes. Therefore, they cannot not use the PASCAL [5]

area overlap criterion for evaluation; instead, they define a distance-based criterion: if the

distance between the center of ground truth box and detected point is less than 1/3 of the

length of the ground truth box, it is counted as correct detection.

The training set has 514 bag scans (434 positive, 80 negative), and the test set has 255

(216 positive, 39 negative). The precision-recall graph in Figure 5 compares the two ap-

proaches. Our approach performs better in terms of both area and distance-based evaluation

on single and multi-view detection, although we use simpler, upright bounding box annota-

tions. Moreover, our multi-view algorithm does not lose the concept of rectangular bounding

boxes.
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Figure 4: Single/multi-view object detection results. The numbers in [] and () are the BoW

histogram size and the average precision, respectively.

Figure 5: Object detection comparison to [7]. BoW-SSVM is the single/multi-view detectors

presented in this paper (with feature ‘heslap-sift+cspin + harlap-sift+cspin + super-cspin

[5000]’). Inside parenthesis, ‘dist’ means distance-based evaluation, ‘area’ means PASCAL’s

area-based evaluation [5], the numbers are average precision. The single view detection

curves are re-generated from [7], while the multi-view detection curves and the distance-

based ground truth were kindly provided by the authors [7].
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