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Abstract

We investigate the problem of object referring (OR) i.e.

to localize a target object in a visual scene coming with

a language description. Humans perceive the world more

as continued video snippets than as static images, and de-

scribe objects not only by their appearance, but also by

their spatio-temporal context and motion features. Humans

also gaze at the object when they issue a referring expres-

sion. Existing works for OR mostly focus on static images

only, which fall short in providing many such cues. This

paper addresses OR in videos with language and human

gaze. To that end, we present a new video dataset for OR,

with 30, 000 objects over 5, 000 stereo video sequences an-

notated for their descriptions and gaze. We further pro-

pose a novel network model for OR in videos, by integrat-

ing appearance, motion, gaze, and spatio-temporal con-

text into one network. Experimental results show that our

method effectively utilizes motion cues, human gaze, and

spatio-temporal context. Our method outperforms previous

OR methods. For dataset and code, please refer https:

//people.ee.ethz.ch/˜arunv/ORGaze.html.

1. Introduction

In their daily communication, humans refer to objects all

the time. The speaker issues a referring expression and the

co-observers identify the object referred to. In reality, co-

observer also verifies by watching the gaze of the speaker.

Upcoming AI machines, such as cognitive robots and au-

tonomous cars, are expected to have the same capacities, in

order to interact with their users in a human-like manner.

This paper investigates the task of object referring (OR) in

videos with language and human gaze.

OR has received increasing attention in the last years.

Notable examples are interpreting referring expressions

[57, 34], phrase localization [39, 55], and grounding of tex-

tual phrases [44]. Thanks to these excellent works, OR

could be pushed to large-scale datasets [27, 34, 57] with so-

phisticated learning approaches [34, 23, 36, 39, 55]. How-

ever, previous OR methods are still limited to static images,

Figure 1: A human issuing a referring expression while gaz-

ing at the object in the scene. The system combines multi-

ple modalities such as appearance, motion and stereo depth

from the video, along with the expression and the gaze to

localize the object.

whereas humans are well aware of the world’s dynamic as-

pects. We describe objects not only by their appearance,

but also their spatial-temporal contexts and motion features,

such as ‘the car in front of us turning left’; ‘the boy running

fast under the tree there’. Static images fall short in provid-

ing many of such cues. Thus, there is a strong need to push

s-o-a OR to videos.

Another important cue that co-observers use to identify

the objects is Gaze of the speaker. While describing the ob-

ject, speakers gaze at the object to come out with an unique

expression. Gaze is another important cue for object local-

ization from the point of view of co-observer, along with

the language expression. For example, suppose a car occu-

pant instructs his/her autonomous car with expression ‘Park

under the yellow tree on the right’, it is highly likely that

he/she is gazing at that tree, or did so in the brief past. This

gaze cue can be a promising aid to the car to localize the

tree. In this work, we also investigate how gaze can be

useful in assisting the OR task. As shown in Fig. 1, we

use text language, gaze estimates, visual appearance, mo-

tion features and depth features to localize the object being

referred.

As shown several times in computer vision, large-scale

datasets can play a crucial role in advancing research, for in-

stance by enabling the deployment of more complex learn-

ing approaches and by benchmarking progress. This pa-

per presents a video dataset for OR, the first of its kind,
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with 30, 000 objects in 5, 000 stereo video sequences. The

dataset is annotated with the guidance of Gricean Max-

ims [16] for cooperative conversations between people.

That is, the descriptions need to be truthful, informative,

relevant, and brief for co-observers to find the target objects

easily and unambiguously. Later, human gazes are recorded

as videos while they look at the annotated objects.

We further propose a novel Temporal-Spatial Context

Recurrent ConvNet model, by integrating appearance, mo-

tion, gaze, and spatial-temporal context into one network.

See Fig. 2 for a diagram of our model. The model learns the

interactions between language expressions and object char-

acteristics in the ‘real’ 3D world, providing human users the

freedom to interact by speaking and gazing. Experimental

results show that our method effectively uses motion cues,

temporal-spatial context information, and human gazes.

Our main contributions are: 1) presenting a new video

dataset for object referring, featuring bounding-boxes, lan-

guage descriptions and human gazes; 2) developing a novel

OR approach to detect objects in videos by learning from

appearance, motion, gaze, and temporal-spatial context.

2. Related Work

Our work is relevant to the joint understanding of lan-

guage and visual data. It is especially relevant to referring

expression generation and language-based object detection.

The connection between language and visual data has

been extensively studied in the last three years. The main

topics include image captioning [25, 56, 13], visual ques-

tion answering (VQA) [42, 9, 8] and referring expres-

sions [20, 23]. Although the goals are different, these tasks

share many fundamental techniques. Two of the workhorses

are Multimodal Embedding [14, 25, 15] and Conditional

LSTM [24, 44, 57, 34]. Multimodal Embedding projects

textual data and visual data both to a common space, in

which similarity scores or ranking functions are learned.

Multimodal Embedding was initially explored for the task

of image captioning [14, 12, 25] and later reinforced in

VQA [42, 33, 15]. It is common practice to represent vi-

sual data with CNNs pre-trained for image recognition and

to represent textual data with word embeddings pre-trained

on large text corpora [38]. A Conditional LSTM is a gen-

erative model conditioned on visual input, and it is usually

trained to maximize the generative probability of language

descriptions [23, 34] or answers to questions [9, 42]. Our

model conditions LSTMs not only on images but also on

motion, depth and gaze.

Language-based Object Referring. Language-based ob-

ject referring (OR) has been tackled under different names.

Notable ones are referring expressions [57, 34], phrase lo-

calization [39, 55], grounding of textual phrases [44, 40,

10], language-based object retrieval [23] and segmenta-

tion [22]. Recent research foci of language based OR

can be put into 2 groups: 1) learning embedding func-

tions [15, 25, 54] for effective interaction between vision

and language; 2) modeling contextual information to better

understand a speaker’s intent, be it global context [34, 23],

or local among ‘similar’ objects [36, 57, 34]. Our work

extends [23] from static images to stereo videos to exploit

richer, more realistic temporal-spatial contextual informa-

tion along with gaze cues for the task of OR.

Object Referring Datasets. This section discusses rele-

vant OR datasets: Google Refexp [34], UNC Refexp [57],

ReferIt [27]. The Google Refexp dataset, which was col-

lected by Mao et al. [34], contains 104, 560 referring ex-

pressions annotated for 54, 822 objects from 26, 711 im-

ages from the MSCOCO dataset [32]. UNC Refexp was

collected in the same spirit as GoogleRef, but applying the

ReferIt game [27] on MSCOCO. While these datasets are

large-scale and of high quality, they contain only static im-

ages. This excludes useful information about the visual

scenes such as motion cues and 3D spatial configuration,

and also limits the descriptions to mere appearances and

2D spatial information. We build on the success of these

datasets and present a new object referring dataset for stereo

videos. Annotators were encouraged to use descriptions

about 3D configuration and motion cues when necessary.

Gaze Estimation. Gaze or eye tracking has been used in

computer vision tasks like object detection [26, 58] and

tracking [46], image captioning [50], image/video annota-

tion [46, 37, 49] and others. We focus on object referring.

There are some works [1, 3] which support that speakers

gaze reliably precedes his reference to an object and this

speaker’s referential gaze helps in listeners’ comprehension.

Common sense also tells us that we have to gaze at the ob-

ject before we refer them. Listeners use this gaze informa-

tion for a better object localization [3, 7, 2]. Misu et al. [35]

uses gaze and speech recorded inside a car to locate real

world landmark points. Vadivel et al. [46] uses eye tracking

over videos to extract salient objects as tracklets. The task

of [37] matches closely with us to detect objects using gaze.

Nonetheless, they use gaze to fasten the annotation for ob-

ject detection. [41] proposes to follow the gaze of people in

the scene to localize the place where they look. Krafka et

al. [29] build an mobile application to enable large scale

eye tracking annotation by crowdsourcing. Inspired from

[29], we create a web interface to record gaze via Amazon

Mechanical Turk (AMT) for object localization in videos.

3. Approach

Object referring (OR) is widely used in our daily com-

munication. Here, we follow the literature [23, 34] to for-

mulate the problem as an object detection task. Given a

video sequence of visual scene I = (I1, I2, ..., It) and a

video sequence of speaker’s gaze G = (G1, G2, ..., Gt),
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Figure 2: The illustrative diagram of our model for object referring in stereo videos with language expression and human

gaze. Given a referring expression S, our model scores all the M bounding box candidates by jointly considering local

appearance (Itbox), local motion (Ot
box), local depth (Dt

box), local human gaze (Gt
box), spatial configuration Xspatial, and the

global temporal-spatial contextual information (It, Dt and Ot).

where t is the current frame at which the referring expres-

sion S is issued, our goal is to identify the referred object

b̂t out of all object proposals {btm}Mm=1 at frame t. M is

the total number of object proposals considered. Note that

we assume that t is known a priori to simplify the task.

In real application, the exact t needs to be inferred from

speaker’s speech and the visual scene. The performance of

our method is also evaluated at frame t.

3.1. Network Architecture

Following [23] and the work on image captioning [24],

we choose to maximize the generative probability of the

expression for the target object. Our model is based on

the Spatial Context Recurrent ConvNet model developed in

[23] for OR in static images. The model in [23] unifies three

LSTMs [21] to integrate information from language expres-

sions, global visual context and local object content. It has

gained success in OR for static images. This work extends

it so that information from stereo videos and human gazes

can be incorporated, resulting in our model architecture as

shown in Fig. 2.

Let us denote the seven visual LSTM mod-

els by LSTMgaze, LSTMimage local, LSTMimage global,

LSTMdepth local, LSTMdepth global, LSTMmotion local and

LSTMmotion global, and their hidden states by h
gaze, h

image
local ,

h
image
global, ..., h

motion
global , respectively and denote the language

LSTM model by LSTMlanguage with hidden state h
language.

We concatenate the local and global features separately as

shown in Fig. 2. Successively, we have visual-language

LSTM models namely LSTMlocal and LSTMglobal which

take concatenated local and global features respectively

along with h
language as inputs. Let us denote their hidden

states as hlocal and hglobal respectively. A word prediction

layer is used on top of these two visual-language LSTMs

to predict the words in the expression S. Practically, our

model is trained to predict the conditional probability of

the next word wn+1 in S, given the local content of the

objects: Gt
box, Itbox, Dt

box and Ot
box, the corresponding

spatio-temporal contexts: It, Dt and Ot as detailed in

Sec. 3.3, and all the n previous words. The problem can be

formulated as:

p(wn+1|wn, ..., w1, I
t, Itbox, D

t, Dt
box, O

t, Ot
box, G

t
box)

= SoftMax(Wlocalhlocal(n) +Wglobalhglobal(n) + r) (1)

where Wlocal and Wglobal are the weight matrices for word

prediction from LSTMlocal and LSTMglobal, and r is a bias

vector.

At training time, the method maximizes the probability

of generating all the annotated expressions over the whole

dataset. Following [23], all the seven LSTM models have

1000 hidden states. At test time, given a video sequence

I, a gaze sequence G and M candidate bounding boxes

{btm}Mm=1 at frame t considered by the method proposed

in Sec. 3.2, our model computes the OR score for bm by
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computing the generative probability of S on btm(box):

si = p(S|It, Itbox, D
t, Dt

box, O
t, Ot

box, G
t

box)

=
∏

wn∈S

p(wn|wn−1, ..., w1, I
t, Itbox, D

t, Dt

box, O
t, Ot

box, G
t

box).

(2)

The candidate with the highest score is taken as the pre-

dicted target object. Below, we describe our object proposal

and feature encoding.

3.2. Object Proposals

In the spirit of object detection, we adopt the strategy of

proposing candidates efficiently and then verifying the can-

didates with a more complex model for the OR task. This

strategy has been used widely in the literature. For instance,

[23] uses EdgeBox [59] for the object proposals; [34] and

[25] use the faster RCNN (FRCNN) object detector [43],

Mask-RCNN [18] and Language based Object Proposals

(LOP) [52] and others to propose the candidates. [52] shows

that LOP performs significantly better than other techniques

when we propose expression-aware object candidates. For

the same reason, we use LOP [52] for the object proposals.

3.3. Feature Encoding

In order to better use the spatio-temporal information

provided by a stereo video, we augment It with the corre-

sponding depth map Dt and optical flow map Ot. In addi-

tion to these global contexts, for a bounding box bt, its local

features are used as well: Itbox for its appearance, Dt
box for

its depth characteristics, Ot
box for its motion cues and Gt

box

for the gaze. CNNs are used to encode the local and global

information from the three information sources. Itbox, Dt
box

and Ot
box can be computed on frame t alone or together with

multiple previous frames for long-range temporal interac-

tion. The same is applicable for It, Dt and Ot also. The

detailed evaluation can be found in Sec. 5.

Appearance. We use the fc7 feature of VGG-16 net [48]

and ResNet [19] pre-trained on ILSVRC-2015 [45] to rep-

resent Itbox and It, which are passed through LSTMimage local

and LSTMimage global respectively to yield features f
image
local

and f
image
global , respectively.

Depth. For depth, we convert depth maps to HHA im-

ages [17] and extract the CNN features with the RGB-

D network of [17] before passing to LSTMdepth local and

LSTMdepth global. This leads to depth features f
depth
local and

f
depth
global for Dt

box and Dt, respectively.

Optical Flow. Similarly, we employ the pre-trained two-

stream network [47] trained for video action recognition

to extract convolutional flow features. Again, the fc7 fea-

tures are used leading to 4096-dimensional features which

are given to LSTMmotion local and LSTMmotion global to get the

motion features fmotion
local and f

motion
global for Ot

box and Ot.

Language. The words in the expression S are represented

as one-hot vectors and embedded by word2vec [38] first and

later, the expression S is embedded by an LSTM model [21]

LSTMlanguage, leading to a language feature vector hlanguage

for S.

Human Gaze. We synchronize the video of human gaze

and the Cityscapes’s video, which was displayed on a lap-

top for gaze recording. On the extracted frames, we perform

face detection to crop out the face image and then conduct

facial landmark point detection using the work of [28]. Suc-

cessively, we detect the left eye and the right eye, and ex-

tract them as well. An example is shown in Fig. 2. Then,

we use GazeCapture model [29] which takes input of left

and right eye images along with the face image and outputs

the gaze estimates relative to the camera location on the de-

vice. We convert the estimate from camera coordinate sys-

tem to image coordinate system by applying a linear map-

ping function. The mapping function is device-specific and

defined by the relative position of the camera and the screen

of the laptop. More details of the mapping function can be

found in the supplementary material.

Finally, we plot a 2D Gaussian map around the estimated

gaze coordinates on the image to accommodate the errors in

gaze estimation by the GazeCapture model [29] as shown

in Fig. 4. Later, we compute gaze feature for an object in

a frame by region pooling (averaging) over the bounding

box region inside the Gaussian map. We concatenate these

features over all the frames of the video to yield a resultant

gaze feature f
gaze for an object i.e. Gt

box.

Feature Concatenation. Similar to [23], we concatenate

the language feature with each of the two concatenated

local and global features to obtain two meta-features:

{[hlanguage, f
image
local , f

depth
local , f

motion
local , fgaze, fspatial],

[hlanguage, f
image
global , f

motion
global , fmotion

global ]}. The meta-features are

then given as the input to two LSTM models LSTMlocal and

LSTMglobal respectively, to learn the interaction between

language and all the ‘visual’ domains, i.e. appearance,

motion, depth, gaze and their global contexts. fspatial

denotes the spatial configuration of the bounding box with

respect to the 2D video frame. Following [34, 23], this

8−dimensional feature is used:

fspatial = [xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox]
(3)

where wbox and hbox are the width and height of the box. See

Fig. 2 for all the interactions. Our method can be trained in

a full end-to-end fashion if enough data is provided.

4. Dataset Annotation

As discussed in Sec. 1 and Sec. 2, previous datasets do

not cater to the learning and evaluation of temporal, spa-

tial context, and gaze information. Thus, we collected a

new dataset. A video OR dataset should contain diverse
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Figure 3: Top: sample images from the Cityscape dataset

with objects marked in differently colored bounding boxes.

Bottom: corresponding referring expression annotations.

visual scenes and their objects should be annotated at the

frame (time) when the expression is issued. We acknowl-

edge that all modalities should be recorded/annotated at the

same time, ideally in the real human-to-robot communica-

tion scenarios. That, however, renders data collection very

labor-intensive and infeasible to crowd source.

In this work, we choose to use the existing stereo videos

from Cityscapes dataset [11], and annotate language ex-

pressions, object bounding boxes, and gaze recordings via

crowd sourcing. Cityscapes consists of 5, 000 high-quality

video sequences in total, captured with a car mounted stereo

camera system in 50 different European cities. The videos

contain diverse sets of traffic scenes such as car approach-

ing a signal stop, pedestrians crossing the road, trams run-

ning through the street, and bicycles are overtaken, and kids

crossing road lanes, etc. See Fig. 3 for some examples.

Crowdsourcing. We crowdsourced the annotation task of

OR in videos via AMT. Each Human Intelligence Task

(HIT) contains one video. The videos in the Cityscapes

dataset are all 2 seconds long, comprising 30 frames. An

AMT worker was asked to annotate bounding boxes for ob-

jects on the last frame of the video (i.e. the 30th frame).

The 30th frame is chosen mainly to make sure that anno-

tated objects come with sufficient temporal context. In the

annotation, workers are ‘forced’ to watch the video at least

once in order to annotate an object. Replaying the video is

highly encouraged if something is unclear.

Quality Control. To generate high quality annotations,

we ran the first round of HIT as a qualification task. We

qualified 20 workers based on their annotation of bound-

ing boxes and natural language descriptions who further an-

notated the entire dataset. Following the work of Li et al.

[31], we employed various quality control mechanisms for

the syntactic validation to ensure the high quality of sen-

tences. Some of the used validation checks are: number

of words in the description must be at least 5, words must

contain only ASCII characters, copy/paste operation is not

allowed in the field where workers typed the descriptions

and finally, we check for grammatical and spelling errors

using the HTML5 spellcheck attribute. We payed 0.075 US

dollar for each annotation of one bounding box, the name

of the object class, and a referring expression. In total, we

have collected 30, 000 annotated objects in 5, 000 videos.

Dataset Statistics. The average length of referring ex-

pressions of the objects is 15.59 words compared to 8.43
in Google Refexp and 3.61 in the UNC Refexp dataset,

which are popular referring expression datasets. There are

20 classes of objects in Cityscape. The average number

of referring expressions on objects annotated per image is

4.2 compared to 3.91 in Google Refexp. The distribution

of annotations is 53.99% referring expressions for ’car’,

22.97% for ’person’, 4.9% for ’vegetation’, 3.9% for ’bi-

cycle’, 3.46% for ’building’, 2.95% for ’rider’ and the rest

for the remaining categories.

Gaze Recording. As a separate annotation task, we record

human gaze for the objects which have been annotated al-

ready with referring expressions and bounding boxes. This

is inspired from Krafke et al. [29] where eye tracking

dataset is created via crowdsourcing by asking workers to

gaze at particular points on the device screen with their face

being recorded. Here, we collect the gaze recording on ob-

jects annotated in Cityscapes dataset as mentioned before-

hand in this section. We create a web interface where we

show the videos and asked the turk workers to gaze at the

object one after the other. We record the faces of workers

using the frontal camera of their laptops while they gaze at

the shown objects.

In our annotation interface, we instruct the workers to

adjust the window size such that the canvas where videos

are displayed, occupies a major amount of screen space for

a higher resolution of gaze estimation. With the start of the

annotation, workers are asked to watch the complete video

at first to put them into context. Once this is done, we show

the objects (in bounding boxes) with annotated bounding

boxes on the canvas. The workers are asked to click inside

the box which activates the running of the video. We direct

the workers to gaze at the same clicked object during the

stage of video streaming while we keep recording the gaze

of the worker throughout this period. Successively, we show

the next objects and record the gazes correspondingly. At

the end of the annotation of each video, we collect videos

for the gaze recording of every annotated object.
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We ensured the quality of recording by allowing only

qualified workers to participate in this task. We perform

the qualification same as in the earlier task except the crite-

ria being checked is gazing here. Workers perform the task

under different lighting conditions and at times, their vis-

ibility of their face goes down with its consequence being

that the face detection fails in those cases. Hence, we re-

recorded the gazes for all the videos where face detection

on the workers failed. Finally, we recorded gaze for all the

annotated objects of the Cityscapes.

5. Experiments

Given a video sequence of visual scene, gaze recording

sequence of the speaker and a referring expression, our task

is to yield bounding box location of the object. Our model

scores and ranks the object proposals (which we generate

using LOP [52]) based on the textual description, the spa-

tial and temporal contextual information from stereo videos

and gaze recording of the speaker. We first evaluate the per-

formance of multiple modalities namely, RGB image, depth

information and object motion. It is aimed to show the use-

fulness of depth and motion provided by stereo videos for

the task of Object Referring (OR). Later, we show how gaze

aids our model to improve the OR accuracy further.

5.1. Implementation Details

Our model is designed to incorporate gaze of the speaker,

temporal and depth cues of the objects as well as the con-

textual information. The main advantage of Cityscapes re-

ferring expression annotations over other referring expres-

sions datasets like GoogleRef, UNC Refexp and ReferIt is

that the Cityscapes consists of short video snippets and the

corresponding depth maps, suited for our task. For RGB im-

ages, we extract features from VGG16 [48] and ResNet [19]

as mentioned in Sec. 3. For depth, we generate HHA im-

ages from disparity maps following the work of Gupta et

al. [17]. Furthermore, we extract HHA features using the

RCNN network used by [17]. For motion, we compute

optical flow for all the frames using Fast Optical Flow by

Kroeger et al. [30]. We extract optical flow features using

the flow network of the two stream Convolutional network

implemented by Simonyan et al. [47] for action recognition

in videos. To compute object level features in all frames

of videos, we compute tracks of the objects using the an-

notated bounding box on the last frame of the videos(30th

frame in Cityscapes). We compute tracks for each object

using Correlation filter based tracking [51].

As to Gaze, we sample frames from the gaze video at

a frame rate greater than that of the Cityscapes video to

ensure one-to-one correspondence between the sequences.

Then, we extract the face from each frame with [53]. For

these face images, we use Deep Alignment Network [28]

to extract facial landmark points. Using the left and right

Methods Edgebox FRCNN LOP

V
G

G

SimModel [39] 4.5 18.431 35.556

MNLM [4] - 23.954 32.418

VSEM [6] - 24.833 32.961

MCB [15] - 26.445 33.366

NLOR [23](Ours(I)) 4.1 27.150 36.895

R
es

N
et

NLOR-ResNet (Ours(I)) 29.333 38.645

Ours (I,D) - 38.833 41.388

Ours (I,O) - 39.166 42.500

Ours (I,D,O) - 41.205 43.750

Ours (I,D,O,G) - 47.256 47.012

Table 1: Numbers denote Acc@1. The # of candidate pro-

posals M is 30. All evaluations are on Cityscapes. Abbre-

viations: I:RGB, D:Depth map, O:Optical Flow, G:Gaze.

Since Edgebox performs poorly in baseline:Ours(I), we

avoid further experiments.

Track length(in frames)

Methods 1 2 8

Ours (I) 38.645 - -

Ours (I,O) 42.500 42.418 42.320

Ours (I,D,O) 43.750 42.875 42.875

Table 2: Comparison of methods when longer term motion

is considered. Numbers denote Acc@1. Track length repre-

sents the number of past frames used for flow information.

The different methods are evaluated on Cityscape.

eye landmark points, we extract the left and right eye im-

age which we later give to GazeCapture model [29] along

with face information. GazeCapture model outputs the gaze

prediction in camera coordinates. We convert these camera

coordinates to image coordinates using the linear mapping

function as mentioned in Sec. 3. Then, we plot 2D Gaus-

sian plot around the gaze estimate in image coordinates with

σ = 100 pixels which is 10% of image dimension. This

helps in accommodating the prediction error of gaze coor-

dinates from the GazeCapture model as mentioned in [29].

See Fig. 4 for gaze prediction error distribution. Succes-

sively, we perform region pooling over the bounding box

location of Gaussian map to obtain the object feature. We

concatenate the features from each frame to get the gaze

feature for the entire recording. Finally, we train our model

by using the extracted features from RGB, HHA, Optical

Flow images and gaze features as shown in Fig. 2.

5.2. Evaluation

Out of the 30, 000 annotated objects in our Cityscape

dataset [11], we use 80% of videos for the training and 20%

for the evaluation of our model on the task of OR in videos.

Evaluation Metric We evaluate the performance of our lan-

guage based OR based on Accuracy@1 (Acc@K), follow-
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Methods Ours (I) Ours (I,O) Ours (I,D,O)

w/o Gaze 38.645 42.500 43.750

w/ Gaze +AvgPool 41.242 41.895 43.791

w/ Gaze 41.535 43.888 45.816

w/ Gaze +MaxPool 42.418 44.248 47.012

Table 3: Comparison of approaches w/ and w/o Gaze. Num-

bers denote Acc@1. # of candidate proposals M is 30. The

different methods are evaluated on Cityscape. 1st row has

overlap with Tab. 1

Figure 4: Gaze Estimation error distribution. We compute

the distance between the gaze estimation coordinates with

the groundtruth bounding box along X and Y axis(Centre

denotes zero error). Left side figure represents the error in

real valued scale and right side in log scale. We choose 2000

pixel distance to match with Cityscapes image dimensions.

ing [23, 34]. Acc@1 refers to the percentage of top scoring

candidates being a true detection. A candidate is regarded

as a true detection if the Intersection over Union (IoU) com-

puted between the predicted bounding box and ground truth

box is more than 0.5. In all our tables, we compute mean of

the Acc@1 metric over all the videos in the evaluation set.

Object Proposal We use object proposal methods, e.g.

Edgebox [59], FRCNN [43] and LOP [52] and compare

them in Tab. 1. Since LOP performs consistently better for

OR, we use the same for all later experiments.

Images vs. Stereo Videos. The performance of our

model using different modalities and their combinations

is reported in Tab. 1. We compare with better perform-

ing discriminative approaches (compared to CCA [5] as in

[4, 6]) like MNLM [4], VSEM [6], MCB [15] as in Tab. 1.

Surprisingly, the above approaches perform worse than

NLOR [23], which uses a simple generative model. This

could be because discriminative methods are more dataset-

dependent and harder to generalize to new datasets/tasks.

For instance, they expect ‘carefully-engineered’ negatives

selection and sometimes more structured language expres-

sions [5]. We choose [23] as baseline due to its simplicity

and it only requiring positives. The table shows that our

NLOR Ours(I,D,O) Ours(I,D,O,G)

a woman in front with a white cap is walking towards us on right side of the road along with others

a huge car is turning right side of the road near the building area

a woman in white dress in front is walking towards us on right side of road along with her family.

a car in front at a very far distance is moving on left side of the road

Figure 5: Some qualitative results from: NLOR (left col-

umn), Ours(I,D,O) (middle) and Ours(I,D,O,G) (right col-

umn). These results are obtained on the Cityscapes. Green:

ground truth box and Red: predicted box.

model can effectively utilize additional modalities such as

the depth and motion provided in stereo videos. For in-

stance, the Acc@1 is improved by 5.105% by using depth

and motion; that is the improvement of Ours (I,D,O) over

NLOR under LOP for 30 object proposals (I:RGB, D:Depth

map, O:Optical Flow, G:Gaze). We observe a similar im-

provement for FRCNN as object proposals. Since LOP is

consistent over all methods, we choose LOP as proposal

technique for Tab. 2 and Tab. 3. We observe that both depth

and motion can boost OR performance, on top of RGB

appearances alone. For example, depth improves the per-

formance by 2.743% and motion improves it by 3.855%.

The combination of all four (appearance, depth, motion and

gaze) yields the best results improving by 8.367%, indicat-

ing its usefulness for the OR task. Please see Fig. 5 for

some visual results and how the three additional modalities

(D,O,G) improve the detections over the original work [23].

Also according to the table, motion features are more

useful than depth in our case. This can be ascribed to the

fact that the convolutional network to extract motion was

trained with a larger dataset than for the depth network. A

better representation of depth than HHA images is a good

topic for further research. In Tab. 2, we included flow infor-

mation from the past by experimenting with different track

lengths. We see that longer tracks do not bring significant

improvement to OR accuracy. This may be because a) the

referring expressions are annotated for the last frame (refer-

ring expressions are likely to be valid only for a short time

as both camera and objects may be moving. e.g. the women

entering the door) and b) the length of Cityscapes videos is
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Figure 6: Overall results on Cityscapes. Input descriptions on the first row and input videoframe and gaze in the second row.

Middle row represents intermediate results where Gaze estimation is embedded along with object proposals while bottom

row represents the final OR results. Green: ground truth box and Red: proposals and the predicted boxes.

just 2 sec., too short to contain significant motion changes.

Gaze vs. w/o Gaze. Gaze features are given to our model

as additional local features along with depth and flow fea-

tures. Comparing our model with and without Gaze, Gaze

improves its performance significantly for all its variants

(Tab. 3). For instance, Gaze features under Max pooling im-

prove the performance by 3.773% for the image-only case

(Ours (I)); by 1.748% when image and motion are used

(Ours (I,O)); and by 3.262% when image, motion and depth

are used (Ours (I,D,O)). Human gaze consistently improves

OR performance, because humans do gaze at objects when

issuing referring expressions.

Given sampling rate differences between a Cityscapes

video and its gaze video, we experimented with gaze feature

extraction in 2 cases: a) timestamp matching between the

videos, b) # gaze frames > # frames in the Cityscapes video,

where we tried average and max pooling of object fea-

tures to ensure one-to-one correspondence between frames.

Tab. 3 shows that max pooling of object features performs

as good or better than other cases such as averaging pooling

because errors due to quickly changing gaze (outliers) can

be avoided by max-pooling the object features.

Qualitative Results. We provide qualitative results in

Fig. 6. The top row represents the inputs, incl. a Cityscapes

video, a gaze recording video and the referring expression.

Having overlaid the gaze estimate over object proposals

(middle row), we can also observe the proximity of the gaze

estimate to the referred objects. We show the predicted and

groundtruth boxes in the bottom row. We add some failure

cases in Fig. 6. From the above experiments, we infer that

using multi-modal inputs - depth, motion, and gaze, along

with RGB image features - improves OR performance.

6. Conclusions

In this work, we have proposed a solution for object re-

ferring (OR) in videos using language and speaker’s gaze.

The main contributions are: 1) a new video OR dataset

with 30, 000 objects annotated across 5, 000 different video

sequences; 2) a novel approach Temporal-Spatial Context

Recurrent ConvNet for OR in videos, which integrates ap-

pearance, motion, depth, human gaze and spatio-temporal

context that can be trained in an end-to-end fashion; and 3)

gaze recordings for all annotated objects and demonstration

of their effectiveness for OR. Experiments show that our

model can effectively utilize motion cues, gaze cues and

spatio-temporal context provided by stereo videos, outper-

forming image-based OR methods consistently. Training

and evaluating our method, especially the contribution of

the multiple modalities, in a real human-to-robot communi-

cation system are future works.
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