
Object Region Mining with Adversarial Erasing: A Simple Classification to

Semantic Segmentation Approach

Yunchao Wei1 Jiashi Feng1 Xiaodan Liang2 Ming-Ming Cheng3 Yao Zhao 4 Shuicheng Yan1,5

1 National University of Singapore 2 CMU 3 Naikai University 4 Beijing Jiaotong University 5 360 AI Institute

{eleweiyv, elefjia}@nus.edu.sg xiaodan1@cs.cmu.edu cmm@nankai.edu.cn yzhao@bjtu.edu.cn yanshuicheng@360.cn

Abstract

We investigate a principle way to progressively mine dis-

criminative object regions using classification networks to

address the weakly-supervised semantic segmentation prob-

lems. Classification networks are only responsive to small

and sparse discriminative regions from the object of inter-

est, which deviates from the requirement of the segmenta-

tion task that needs to localize dense, interior and integral

regions for pixel-wise inference. To mitigate this gap, we

propose a new adversarial erasing approach for localizing

and expanding object regions progressively. Starting with

a single small object region, our proposed approach drives

the classification network to sequentially discover new and

complement object regions by erasing the current mined re-

gions in an adversarial manner. These localized regions

eventually constitute a dense and complete object region

for learning semantic segmentation. To further enhance the

quality of the discovered regions by adversarial erasing, an

online prohibitive segmentation learning approach is devel-

oped to collaborate with adversarial erasing by providing

auxiliary segmentation supervision modulated by the more

reliable classification scores. Despite its apparent simplici-

ty, the proposed approach achieves 55.0% and 55.7% mean

Intersection-over-Union (mIoU) scores on PASCAL VOC

2012 val and test sets, which are the new state-of-the-arts.

1. Introduction
Deep neural networks (DNNs) have achieved remark-

able success on semantic segmentation tasks [2, 13, 15, 33],

arguably benefiting from available resources of pixel-level

annotated masks. However, collecting a large amount of ac-

curate pixel-level annotation for training semantic segmen-

tation networks on new image sets is labor intensive and

inevitably requires substantial financial investments. To re-

lieve the demand for the expensive pixel-level image an-

notations, weakly-supervised approaches [10,12,14,16–20,

22–24, 28, 29] provide some promising solutions.

Among various levels of weak supervision information,

the simplest and most efficient one that can be collected for
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Figure 1. (a) Illustration of the proposed AE approach. With AE,

a classification network first mines the most discriminative region

for image category label “dog”. Then, AE erases the mined region

(head) from the image and the classification network is re-trained

to discover a new object region (body) for performing classifica-

tion without performance drop. We repeat such adversarial eras-

ing process for multiple times and merge the erased regions into

an integral foreground segmentation mask. (b) Examples of the

discriminative object regions mined by AE at different steps and

the obtained foreground segmentation masks in the end.

training semantic segmentation models is the image-level

annotation [30, 32]. However, to train a well-performing

semantic segmentation model given only such image-level

annotation is rather challenging – one obstacle is how to

accurately assign image-level labels to corresponding pix-

els of training images such that DNN-based approaches

can learn to segment images end-to-end. To establish the

desired label-pixel correspondence, some approaches are

developed that can be categorized as proposal-based and

classification-based. The proposal-based methods [20, 28]

often exhaustedly examine each proposal to generate pixel-

wise masks, which are quite time-consuming. In contrast,
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the classification-based methods [10, 16–19, 24] provide

much more efficient alternatives. Those methods employ a

classification model to select the regions that are most dis-

criminative for the classification target and employ the re-

gions as pixel-level supervision for semantic segmentation

learning. However, object classification models usually i-

dentify and rely on a small and sparse discriminative region

(as highlighted in the heatmaps produced by the classifica-

tion network shown in Figure 1 (a)) from the object of inter-

est. It deviates from requirement of the segmentation task

that needs to localize dense, interior and integral regions

for pixel-wise inference. Such deviation makes the main

obstacle to adapting classification models for solving seg-

mentation problems and harms the segmentation results. To

address this issue, we propose a novel adversarial erasing

(AE) approach that is able to drive a classification network

to learn integral object regions progressively. The AE ap-

proach can be viewed as establishing a line of competitors,

trying to challenge the classification networks to discover

some evidence of a specific category until no supportable

evidence is left.

Concretely, we first train an image classification network

using the image-level weak supervision information, i.e. the

object category annotation. The classification network is

applied to localize the most discriminative region within an

image for inferring the object category. We then erase the

discovered region from the image to breakdown the perfor-

mance of the classification network. To remedy the per-

formance drop, the classification network needs to localize

another discriminative region for classifying the image cor-

rectly. With such repetitive adversarial erasing operation,

the classification network is able to mine other discrimina-

tive regions belonging to the object of interest. The process

is illustrated by an example in Figure 1 (a), in which head

is the most discriminative part for classifying the “dog” im-

age. After erasing head and re-training the classification

network, another discriminative part body would pop out.

Repeating such adversarial erasing can localize increasing-

ly discriminative regions diagnostic for image category until

no more informative region left. Finally, the erased region-

s are merged to form a pixel-level semantic segmentation

mask that can be used for training a segmentation model.

More visualization examples are shown in Figure 1 (b).

However, the AE approach may miss some object-

related regions and introduce some noise due to less atten-

tion on boundaries. To exploit those ignored object-related

regions as well as alleviate noise, we further propose a com-

plementary online prohibitive segmentation learning (PSL)

approach to work with AE together to discover more com-

plete object regions and learn better semantic segmenta-

tion models. In particular, PSL uses the predicted image-

level classification confidences to modulate the correspond-

ing category-specific response maps and form them into an

auxiliary segmentation mask, which can be updated in an

online manner. Those category-specific segmentation maps

with low classification confidences are prohibited for con-

tributing to the formed supervision mask, thus noise can be

reduced effectively.

To sum up, our main contributions are three-fold:

• We propose a new AE approach to effectively adapt an

image classification network to continuously mining

and expanding target object regions, and it eventually

produces contiguous object segmentation masks that

are usable for training segmentation models.

• We propose an online PSL method to utilize image-

level classification confidences to reduce noise within

the supervision mask and achieve better training of the

segmentation network, collaborating with AE.

• Our work achieves the mIoU 55.0% and 55.7% on val

and test of the PASCAL VOC segmentation bench-

mark respectively, which are the new state-of-the-arts.

2. Related Work

To reduce the burden of pixel-level annotation, various

weakly-supervised methods have been proposed for learn-

ing to perform semantic segmentation with coarser annota-

tions. For example, Papandreou et al. [16] and Dai et al. [3]

proposed to estimate segmentation using annotated bound-

ing boxes. More recently, Lin et al. [12] employed scribbles

as supervision for semantic segmentation. In [22], the re-

quired supervised information is further relaxed to instance

points. All these annotations can be considered much sim-

pler than pixel-level annotation.

Some works [16–19, 27, 31] propose to train the seg-

mentation models by only using image-level labels, which

is the simplest supervision for training semantic segmen-

tation models. Among those works, Pinheiro et al. [19]

and Pathak et al. [18] proposed to utilize multiple instance

learning (MIL) to train the models for segmentation. Pathak

et al. [17] introduced a constrained CNN model to address

this problem. Papandreou et al. [16] adopted an alternative

training procedure based on the Expectation-Maximization

algorithm to dynamically predict semantic foreground and

background pixels. However, the performance of those

methods is not satisfactory. Recently, some new approach-

es [10,20,23,24,28,29] are proposed to further improve the

performance of this challenging task. In particular, Wei et

al. [29] presented a simple to complex learning method, in

which an initial segmentation model is trained with sim-

ple images using saliency maps for supervision. Then,

samples of increasing complexity are progressively includ-

ed to further enhance the ability of the segmentation mod-

el. In [10], three kinds of loss functions, i.e. seeding, ex-

pansion and constrain-to-boundary, are proposed and inte-

grated into a unified framework to train the segmentation
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Figure 2. Overview of the proposed adversarial erasing approach. At the step t, we first train the classification network with the current

processed image It; then a classification activation method (e.g. CAM [34]) is employed to produce the class-specific response heatmap

(Ht). Applying hard thresholding on the heatmap Ht reveals the discriminative region Ft. The proposed approach then erases Ft from It

and produces It+1. This image is then fed into the classification network for learning to localize a new discriminative region. The learned

heatmaps and corresponding proceeded training images with erasing are shown in the bottom. The mined regions from multiple steps

together constitute the predicted object regions as output, which is used for training the segmentation network later.

network. Both [10] and our work propose to localize ob-

ject cues according to classification networks. However,

Kolesnikov et al. [10] can only obtain small and sparse

object-related seeds for supervision. In contrast, the pro-

posed AE approach is able to mine dense object-related

regions, which can provide richer supervised information

for learning to perform semantic segmentation. In addition,

Qi et al. [20] proposed an augmented feedback method, in

which GrabCut [21] and object proposals are employed to

generate pixel-level annotations for supervision. To the best

of our knowledge, Qi et al. [20] achieved the state-of-the-

art mIoU scores using Selective Search [26] (52.7%) and

MCG [1] (55.5%) segmentation proposals on the PASCAL

VOC benchmark. However, note that MCG has been trained

from PASCAL train images with pixel-level annotations,

and thus the corresponding results of [20] are obtained by

using stronger supervision inherently.

3. Classification to Semantic Segmentation

The proposed classification to semantic segmentation ap-

proach includes two novel components, i.e. object region

mining with AE and online PSL for semantic segmentation.

3.1. Object Region Mining with AE

To address the problem that classification networks are

only responsive to small and sparse discriminative region-

s, we propose the AE approach for localizing and expand-

ing object regions progressively. As shown in Figure 2, the

AE iteratively performs two operations: learning a classi-

fication network for localizing the object discriminative re-

gions and adversarially erasing the discovered regions. In

particular, the classification network is initialized based on

the DeepLab-CRF-LargeFOV [2] model. Global average

pooling is applied on conv7 and the generated representa-

tions pass through a fully-connected layer for predicting

classification. In the first operation, we train the classifi-

cation network by minimizing squared label prediction loss

as suggested by [30]. In the second operation of perform-

ing erasing, we first produce the heatmap for each image-

level label using the classification activation maps (CAM)

method [34]. Then, the discriminative object regions are

obtained by applying a hard threshold to the heatmap. We

erase the mined region from training images by replacing its

internal pixels by the mean pixel values of all the training

images. The processed image with erased regions is then

fed into the next classification learning iteration. As the dis-

criminative regions have been removed and no longer con-

tribute to the classification prediction, the classification net-

work is naturally driven to discover new object discrimina-

tive regions for maintaining its classification accuracy level.

We repeat the classification learning and the AE process for

several times until the network cannot well converge on the

produced training images, i.e. no more discriminative re-

gions left for performing reasonably good classification.

We now explain the AE process more formally. Sup-

pose the training set I = {(Ii,Oi)}
N
i=1 includes N images

and F = {Fi}
N
i=1 represents the mined object regions by

AE. We iteratively produce the object regions Fi,t for each

training image Ii,t with the classification model Mt at the

tth learning step. Denote C as the set of object categories
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Algorithm 1 Object Regions Mining with AE

Input: Training data I = {(Ii,Oi)}
N
i=1, threshold δ.

Initialize: Fi = ∅(i = 1, · · · , N), t = 1.

1: while (training of classification is success) do

2: Train the classification network Mt with I.

3: for Ii in I do

4: Set Fi,t = ∅.

5: for c in Oi do

6: Calculate Hc
i,t by CAM(Ii,t,Mt, c) [34].

7: Extract regions R whose corresponding pixel

values in Hc
i,t are larger than δ.

8: Update the mined regions F c
i,t = F c

i,t ∪R.

9: end for

10: Update the mined regions Fi = Fi ∪ Fi,t.

11: Erase the mined regions from training image

Ii,t+1 = Ii,t\Fi,t.

12: end for

13: t = t+ 1.

14: end while

Output: F = {Fi}
N
i=1

and CAM(·) as the operation of heatmap generation. Thus,

the cth heatmap Hc
i,t of Ii,t, in which c ∈ Oi and Oi ⊆ C

is the image-level label set of Ii,t, can be obtained accord-

ing to CAM(Ii,t,Mt, c). To enforce the classification net-

work to expand object regions from Ii,t, we erase the pixels

whose values on Hc
i,t are larger than δ. Then, F is obtained

through the procedure summarized in Algorithm 1.

Beyond mining foreground object regions, finding back-

ground localization cues is also crucial for training the seg-

mentation network. Motivated by [10, 29], we use the

saliency detection technology [9] to produce the saliency

maps of training images. Based on the generated saliency

maps, the regions whose pixels are with low saliency values

are selected as background. Suppose Bi denotes the select-

ed background regions of Ii. We can obtain the segmenta-

tion masks S = {Si}
N
i=1, where Si = Fi ∪ Bi. We ignore

three kinds of pixels for producing S: 1) those erased fore-

ground regions of different categories which are in conflict;

2) those low-saliency pixels which lie within the object re-

gions identified by AE; 3) those pixels that are not assigned

semantic labels. One example of the segmentation mask

generation process is demonstrated in Figure 3 (a). “black”

and “purple” regions refer to the background and the object,

respectively.

3.2. Online PSL for Semantic Segmentation

The proposed AE approach provides the initial segmen-

tation mask for each training image that can be used for

training segmentation networks. However, some object-

related or background-related pixels may be missed (as

those “blue” pixels on the AE outputs shown in Figure 3
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Figure 3. (a) The process of segmentation mask generation. (b)

The proposed online PSL approach for semantic segmentation.

The classification scores are used to weight “Segmentation Score

Maps” to produce “Weighted Maps” in an online manner. Those

classes with low classification confidences are prohibited for pro-

ducing the segmentation mask. Then, both the mined mask and

the online produced mask are used to optimize the network.

(a)). In addition, semantic labels of some labeled pixels may

be noisy due to the limitation of AE on capturing boundary

details. To exploit those pixels unlabeled by AE for training

and gain robustness to falsely labeled pixels, we propose an

online Prohibitive Segmentation Learning (PSL) approach

to further learn to perform semantic segmentation upon the

masks provided by AE. The online PSL exploits image clas-

sification results to identify reliable category-wise segmen-

tation maps and form them into a less noisy auxiliary super-

vision map, offering auxiliary information to the AE out-

put. PSL updates the produced auxiliary segmentation map

along with training of the segmentation networks in an on-

line manner and produces increasingly more reliable auxil-

iary supervision. As shown in Figure 3 (b), the proposed

PSL builds a framework that includes two branches, one

for classification and the other for semantic segmentation.

In particular, PSL uses the squared loss as the optimization

objective for the classification branch, whose produced clas-

sification confidences are used by PSL to weight the corre-

sponding category-specific segmentation score maps. With

the help of classification results, the online PSL is able to

integrate the multi-category segmentation maps into an aux-

iliary segmentation mask and provides supervision in addi-

tion to the AE output. With PSL, those segmentation maps

corresponding to categories with low classification confi-

dences are prohibited from contributing to the auxiliary seg-

mentation map. Thus, noise from those irrelevant categories

can be effectively alleviated.

Formally, denote the set of semantic labels for segmenta-

tion task as Cseg and the image-specific label set for a given
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image I as Oseg , in which background category is includ-

ed. During each training epoch, we denote the image-level

prediction from the classification branch as v. Suppose S

is the segmentation mask produced by AE. The online PSL

exploits the image prediction over Cseg to train a segmen-

tation network f(I; θ) parameterized by θ, which predicts

the pixel-wise probability of each label c ∈ Cseg at every

location u of the image plane fu,c(I, θ). To produce the

additional segmentation mask Ŝ for training the segmen-

tation network, PSL uses v to weight foreground category

segmentation score maps as shown in Figure 3 (b). With

this prohibitive operation, large response values from neg-

ative score maps can be suppressed by multiplying a small

classification category score. Meanwhile, the score maps

of dominant categories (i.e. the corresponding objects that

occupy a large area of the image) can also be enhanced. De-

note the weighting operator as ⊗, and Ŝ is then produced by

Ŝ = max{[1,v]⊗ f(I; θ)}.
Here the appended element 1 is for weighting the back-

ground category. Suppose Sc and Ŝc represent the pixels

annotated with category c. The cross-entropy loss used for

noise-prohibitive semantic segmentation is formulated as

min
θ

∑

I∈I

J(f(I; θ), S) + J(f(I; θ), Ŝ)

where

J(f(I; θ), S) = −
1∑

c∈Oseg

|Sc|

∑

c∈Oseg

∑

u∈Sc

log fu,c(I; θ),

and

J(f(I; θ), Ŝ) = −
1

∑
c∈Oseg

|Ŝc|

∑

c∈Oseg

∑

u∈Ŝc

log fu,c(I; θ).

With online training, the segmentation ablity of the network

is progressively improved, which can produce increasingly

more accurate Ŝ for supervising the later training process.

During the testing process, we take a more strict po-

hibitive policy for those categories with low classification

confidences. In particular, we set those classification confi-

dences that are smaller than p to zero and keep others un-

changed, and apply them to weight the predicted segmenta-

tion score maps and produce the final segmentation result.

4. Experiments

4.1. Dataset and Experiment Settings

Dataset and Evaluation Metrics We evaluate our proposed

approach on the PASCAL VOC 2012 segmentation bench-

mark dataset [5], which has 20 object categories and one

background category. This dataset is split into three subset-

s: training (train, 1,464 images), validation (val, 1,449 im-

ages) and testing (test, 1,456 images). Following the com-

mon practice [2, 6, 19], we increase the number of training

images to 10,582 by image augmentation. In our experi-

ments, only image-level labels are utilized for training. The

performance is evaluated in terms of pixel IoU averaged on

21 categories. Experimental analysis of the proposed ap-

proach is conducted on the val set. We compare our method

with other state-of-the-arts on both val and test sets. The

result on the test set is obtained by submitting the predicted

results to the official PASCAL VOC evaluation server.

Training/Testing Settings We adopt DeepLab-CRF-

LargeFOV from [2] as the basic network for the classifi-

cation network and segmentation network in AE and PSL,

whose parameters are initialized by the VGG-16 [25] pre-

trained on ImageNet [4]. We use a mini-batch size of 30

images where patches of 321 × 321 pixels are random-

ly cropped from images for training the network. We fol-

low the training procedure in [2] at this stage. The initial

learning rate is 0.001 (0.01 for the last layer) and decreased

by a factor of 10 after 6 epochs. Training terminates af-

ter 15 epochs. Both two networks are trained on NVIDI-

A GeForce TITAN X GPU with 12GB memory. We use

DeepLab code [2] in our experiments, which is implement-

ed based on the publicly available Caffe framework [8].

For each step of AE, those pixels belonging to top 20%

of the largest value (a fraction suggested by [10, 34]) in

the heatmap are erased, which are then considered as fore-

ground object regions. We use saliency maps from [9] to

produce the background localization cues. For those images

belonging to indoor scenes (e.g. sofa or table), we adopt the

normalized saliency value 0.06 as the threshold to obtain

background localization cues (i.e. pixels whose saliency

values are smaller than 0.06 are considered as background)

in case some objects were wrongly assigned to background.

For the images from other categories, the threshold is set

as 0.12. For the testing phase of semantic segmentation, the

prohibited threshold p is empirically set as 0.1 and CRF [11]

is utilized for post processing.

4.2. Comparisons with State-of-the-arts

We make extensive comparisons with state-of-the-art

weakly-supervised semantic segmentation solutions with d-

ifferent levels of annotations, including scribbles, bounding

boxes, spots and image-level labels. Results of those meth-

ods as well as ours on PASCAL VOC val are summarized

in Table 1. Among the baselines, MIL-* [19], STC [29] and

TransferNet [7] use more images (700K, 50K and 70K) for

training. All the other methods are based on 10K training

images and built on top of the VGG16 [25] model.

From the result, we can observe that our proposed ap-

proach outperforms all the other works using image-level

labels and point annotation for weak supervision. In partic-

ular, AF-MCG [20] achieves the second best performance

among the baselines only using image-level labels. Howev-

er, the MCG generator is trained in a fully-supervised way

on PASCAL VOC, thus the corresponding result, i.e. AF-

MCG [20], implicitly makes use of stronger supervision.
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Table 1. Comparison of weakly-supervised semantic segmentation

methods on VOC 2012 val set.

Methods Training Set mIoU

Supervision: Scribbles

Scribblesup (CVPR 2016) [12] 10K 63.1

Supervision: Box

WSSL (ICCV 2015) [16] 10K 60.6

BoxSup (ICCV 2015) 10K 62.0

Supervision: Spot

1 Point (ECCV 2016) [22] 10K 46.1

Scribblesup (CVPR 2016) [12] 10K 51.6

Supervision: Image-level Labels

(* indicates methods implicitly use pixel-level supervision)

SN B* (PR 2016) [28] 10K 41.9

MIL-seg* (CVPR 2015) [19] 700K 42.0

TransferNet* (CVPR 2016) [7] 70K 52.1

AF-MCG* (ECCV 2016) [20] 10K 54.3

Supervision: Image-level Labels

MIL-FCN (ICLR 2015) [18] 10K 25.7

CCNN (ICCV 2015) [17] 10K 35.3

MIL-sppxl (CVPR 2015) [19] 700K 36.6

MIL-bb (CVPR 2015) [19] 700K 37.8

EM-Adapt (ICCV 2015) [16] 10K 38.2

DCSM (ECCV 2016) [24] 10K 44.1

BFBP (ECCV 2016) [23] 10K 46.6

STC (PAMI 2016) [29] 50K 49.8

SEC (ECCV 2016) [10] 10K 50.7

AF-SS (ECCV 2016) [20] 10K 52.6

Supervision: Image-level Labels

AE-PSL (ours) 10K 55.0

Thus, with the Selective Search segments, the performance

of AF-SS [20] drops by 1.7%. Furthermore, GrabCut [21]

is also employed by AF-* [20] to refine the segmentation

masks for supervision, which is usually time consuming for

training. In contrast, the proposed AE approach is very sim-

ple and convenient to carry out for object region mining.

In addition, the online PSL is also effective and efficient

for training the semantic segmentation network. Compared

with those methods using image-level labels for supervi-

sion, the proposed AE-PSL improves upon the best perfor-

mance by over 2.4%. Besides, our approach also outper-

forms those methods that implicitly use pixel-level super-

vision by over 0.7%. Additional comparison among these

approaches on PASCAL VOC test is shown in Table 2. It

can be seen that our method achieves the new state-of-the-

art for this challenging task on a competitive benchmark.

Figure 4 shows some successful segmentations, indicat-

ing that our method can produce accurate results even for

some complex images. One typical failure case is given

in the bottom row of Figure 4. This case may be well ad-

dressed with a better erasing strategy such as using low level

visual features (e.g. color and texture) to refine and extend

erasing regions.

Table 2. Comparison of weakly-supervised semantic segmentation

methods on VOC 2012 test set.

Methods Training Set mIoU

Supervision: Box

WSSL (ICCV 2015) [16] 10K 62.2

BoxSup (ICCV 2015) [3] 10K 64.2

Supervision: Image-level Labels

(* indicates methods implicitly use pixel-level supervision)

MIL-seg* (CVPR 2015) [19] 700K 40.6

SN B* (PR 2016) [28] 10K 43.2

TransferNet* (CVPR 2016) [7] 70K 51.2

AF-MCG* (ECCV 2016) [20] 10K 55.5

Supervision: Image-level Labels

MIL-FCN (ICLR 2015) [18] 10K 24.9

CCNN (ICCV 2015) [17] 10K 35.6

MIL-sppxl (CVPR 2015) [19] 700K 35.8

MIL-bb (CVPR 2015) [19] 700K 37.0

EM-Adapt (ICCV 2015) [16] 10K 39.6

DCSM (ECCV 2016) [24] 10K 45.1

BFBP (ECCV 2016) [23] 10K 48.0

STC (PAMI 2016) [29] 50K 51.2

SEC (ECCV 2016) [10] 10K 51.7

AF-SS (ECCV 2016) [20] 10K 52.7

Supervision: Image-level Labels

AE-PSL (ours) 10K 55.7

Iŵage PrediĐtioŶ GrouŶd Truth

Figure 4. Qualitative segmentation results on the VOC 2012 val

set. One failure case is shown in the last row.

4.3. Ablation Analysis

4.3.1 Object Region Mining with AE

With the AE approach, discriminative object regions are ad-

versarially erased step by step. Therefore, it is expected that

the loss values of the classification networks at the conver-

gence of training across different AE steps would progres-
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Table 3. Comparison of segmentation mIoU scores using object regions from different AE steps on VOC 2012 val set.

AE Steps bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU

AE-step1 82.6 63.0 27.5 45.9 38.3 43.6 61.3 29.2 60.0 13.6 52.0 32.6 52.4 49.8 47.9 43.7 32.6 61.4 29.4 35.1 41.9 44.9

AE-step2 82.2 69.3 29.7 60.9 40.8 52.4 59.3 44.2 65.3 13.0 58.9 32.2 60.0 56.6 49.1 43.0 34.2 69.7 32.1 42.8 43.2 49.5

AE-step3 78.5 71.8 29.2 64.1 39.9 57.8 58.5 54.5 63.0 10.3 60.5 36.0 61.6 56.1 62.6 42.9 36.5 64.5 31.5 49.5 38.7 50.9

AE-step4 74.4 65.5 28.2 59.7 38.5 57.8 57.5 59.0 57.2 9.6 54.9 39.2 56.5 52.6 65.0 43.2 34.9 55.9 30.4 47.9 36.8 48.8
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Figure 5. (a) Loss curves of classification network against varying

numbers of training epochs, for different AE steps. (b) Failure

cases of over erasing samples with four AE steps.

sively increase as more discriminative regions are absent for

training the classification networks. Figure 5 (a) shows the

comparison of the classification training loss curves for d-

ifferent AE steps. It can be observed that the loss value

at convergence of training with original images is around

0.05. By performing the AE for multiple steps, the con-

verged loss value slightly increases (AE-step2: ∼0.08, AE-

step3: ∼0.1) compared with that of the AE-step1. This

demonstrates that AE removes regions with a descending

discriminative ability. By continuing to perform the AE for

more steps to remove more regions, the classification net-

work only converges to one that provides a training loss as

large as ∼0.15. This demonstrates no more useful regions

are left for obtaining a good classification network, due to

over erasing. over erasing may introduce many true neg-

ative regions into the mined foreground object regions and

hampers learning segmentation. Some failure cases caused

by over erasing are shown in Figure 5 (b). In the case where

most object regions are removed from the training images,

the classification network has to rely on some contextual

regions to recognize the categories. These regions are true

negative ones and detrimental for the segmentation network

training. To prevent contamination from negative regions,

we only integrate those discriminative regions mined from

the first three steps into the final segmentation masks.

For quantitatively understanding the contribution of each

AE step, Table 3 shows the comparison of mIoU scores

using foreground regions merged from varying k (k =
1, 2, 3, 4) AE steps for training the segmentation network

based on DeepLab-CRF-LargeFOV. We can observe that

the performance indeed increases as more foreground ob-

ject regions are added since the segmentation network get-

s denser supervision. However, after performing four AE

steps, the performance drops by 2.1% due to the over eras-

ing as explained above. Some visualization examples are

shown in Figure 6, including training images (top row),

heatmaps produced by different AE steps and the finally

erased regions (bottom row). We can observe that the AE

approach effectively drives the classification network to lo-

calize different discriminative object regions. For exam-

ple, regions covering the body of the right-most instance

of “cow” shown in the last column are first localized. By

erasing this instance, another two instances on the left side

are then discovered. We also conduct experiments on VOC

2012 test set using object regions merged from the first three

AE steps. The mIoU score is 52.8%, which outperforms all

those methods (as indicated in Table 2) only using image-

level labels for supervision.

4.3.2 Online PSL for Semantic Segmentation

We now proceed to evaluate the online PSL and investigate

how it benefits the AE approach by discovering auxiliary

information. We report the performance of online PSL in

Table 4, where “w/o PSL” and “w/ PSL” denote the result

of vanilla DeepLab-CRF-LargeFOV and the proposed PSL

method for training, respectively. We can observe that P-

SL improves the performance by 3.2% compared with “w/o

PSL”, , demonstrating the significant effectiveness of PSL

providing additional useful segmentation supervision.

Besides, we perform one more iterative training step on

PSL to improve the segmentation results. In particular, we

first employ the trained segmentation model from AE and P-

SL to segment training images. Then, the predicted segmen-

tation masks are used as supervision for training the seg-

mentation network for another round. As shown in Table 4,

the performance provided by this extra training (denoted

as w/ PSL++) is further improved from 54.1% to 55.0%.

The improvement benefits from the operation of perform-

ing CRF on the predicted segmentation masks of training

images. After one round training on top of CRF results,

the segmentation network has been trained well. We do not

observe further performance increase by performing addi-
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Table 4. Comparison of segmentation mIoU scores in terms of different training strategies on VOC 2012 val set.

Methods bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU

w/o PSL 78.5 71.8 29.2 64.1 39.9 57.8 58.5 54.5 63.0 10.3 60.5 36.0 61.6 56.1 62.6 42.9 36.5 64.5 31.5 49.5 38.7 50.9

w/ PSL 83.3 70.0 31.6 69.7 40.8 54.2 63.2 58.4 69.9 18.1 65.5 33.5 69.8 60.7 60.5 50.5 38.1 69.4 31.4 57.3 39.7 54.1

w/ PSL++ 83.4 71.1 30.5 72.9 41.6 55.9 63.1 60.2 74.0 18.0 66.5 32.4 71.7 56.3 64.8 52.4 37.4 69.1 31.4 58.9 43.9 55.0

w/ PSL+GT 83.6 71.0 30.6 73.0 42.7 56.1 63.6 61.7 75.2 22.2 67.6 33.4 74.6 57.8 65.6 53.6 37.7 71.6 33.2 59.0 45.1 56.1

Iŵage

AE-Stepϭ

AE-StepϮ

AE-Stepϯ

Erased
RegioŶs

Figure 6. Examples of mined object regions produced by the proposed adversarial erasing approach. The second to fourth rows show the

produced heatmaps, where the discriminative regions are highlighted. The images with erased regions are shown in the last row in gray.

tional training, as no new supervision information is fed in.

Furthermore, we also examine the effectiveness of our

testing strategy where the prohibited threshold is empirical-

ly set as 0.1. We utilize ground-truth image-level labels as

classification confidences to weight the predicted segmen-

tation score maps (note this is different from the prohibitive

information imposed in the training stage). The result is

56.1% (“w/ PSL + GT”), which is only 1.1% better than

“w/ PSL ++”. Note that “w/ PSL + GT” actually provides

an upper bound on the achievable performance as the score

maps are filtered by the ground-truth category annotations

and “w/ PSL ++” performs very closely to this upper bound.

PSL adopts the on-the-fly output of the classification

network to re-weight segmentation score maps. Another

choice for such classification information is the ground-

truth annotation. We also consider the case of using ground-

truth image-level labels for prohibiting during the train-

ing stage and evaluate the performance. However, us-

ing ground-truth information leads to performance drop of

0.6% compared with our proposed PSL design. This is be-

cause PSL effectively exploits the information about objec-

t scale that is beneficial for generating more accurate seg-

mentation masks (i.e. categories of large objects are pre-

ferred with high classification scores compared with those

of small objects). Simply using 0-1 ground-truth annotation

ignores the scale and performs worse. We also investigate

how PSL performs without using image-level classification

confidences and find that the performance drops 1%. This

clearly validates the effectiveness of the proposed online P-

SL approach using image-level classification information.

5. Conclusion

We proposed an adversarial erasing approach to effec-

tively adapt a classification network to progressively dis-

covering and expanding object discriminative regions. The

discovered regions are used as pixel-level supervision for

training the segmentation network. This approach provides

a simple and effective solution to the weakly-supervised

segmentation problems. Moreover, we proposed an online

prohibitive segmentation learning method, which shows to

be effective for mining auxiliary information to AE. Indeed,

the PSL method can aid any other weakly-supervised meth-

ods. This work paves a new direction of adversarial erasing

for achieving weakly-supervised semantic segmentation. In

the future, we plan to develop more effective strategies for

improving adversarial erasing, such as erasing each training

image with adaptive steps or integrating adversarial erasing

and PSL into a more unified framework.
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