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Abstract

One fundamental problem in object retrieval with the

bag-of-visual words (BoW) model is its lack of spatial in-

formation. Although various approaches are proposed to

incorporate spatial constraints into the BoW model, most

of them are either too strict or too loose so that they are

only effective in limited cases. We propose a new spatially-

constrained similarity measure (SCSM) to handle object ro-

tation, scaling, view point change and appearance deforma-

tion. The similarity measure can be efficiently calculated by

a voting-based method using inverted files. Object retrieval

and localization are then simultaneously achieved without

post-processing. Furthermore, we introduce a novel and ro-

bust re-ranking method with the k-nearest neighbors of the

query for automatically refining the initial search results.

Extensive performance evaluations on six public dataset-

s show that SCSM significantly outperforms other spatial

models, while k-NN re-ranking outperforms most state-of-

the-art approaches using query expansion.

1. Introduction

Most state-of-the-art image and visual object retrieval

approaches adopt the standard bag-of-words model initially

introduced in [23]. While this model works generally well,

it suffers from two main problems: 1) the loss of spatial

information when representing the images as histograms of

quantized features; and 2) the deficiency of feature’s dis-

criminative power, either because of the degradation caused

by feature quantization, or due to feature’s intrinsic limita-

tion to tolerate large variation of object appearance.

In this paper, we address both of these issues by propos-

ing a novel spatially-constrained similarity measure (SC-

SM), a voting-based approach to efficiently compute the

measure, and a re-ranking method with the query’s k-

Figure 1. An example search result of our approach on a real-

world database with thousands of personal images with mixtures

of buildings, people, pets, animals, faces, flowers, party, sports,

etc. Left is the query image with the rectangle. The top 20 re-

trieval and localization results are shown on the right.

nearest neighbors. In SCSM, only the matched visual word

pairs with spatial consistency (i.e., roughly coincident fea-

ture locations under some similarity transformation) are

considered. In other words, the similarity measure is de-

signed to handle object rotation, translation and scaling, and

performs well with moderate object deformation.

Based on that, a voting-based approach is further pro-

posed to efficiently calculate the similarity with low extra

memory and search time, which is inspired by the gener-

alized Hough transform method[13, 11]. Our method can

simultaneously localize the object with high accuracy in

each retrieved image in the initial search step, which is

rarely done by previous retrieval methods. To the best of

our knowledge, only [12] and [10] try to localize the ob-

ject by sub-image search, which is relatively slow when

the database is large. Moreover, our approach can robust-

ly retrieve and localize non-rigid objects such as faces or

human bodies while previous RANSAC-based localization

method (as post-processing) cannot due to non-rigidity of

object categories. See Fig.1 for an example.

Meanwhile, since we have already accurately localized



the object in the retrieved images, we can further use

such information to refine our results. We observe that, a

database image is similar to the query image if it is also

similar to the nearest neighbors of the query. An image that

contains the query object may not be visually close to the

query due to feature variations caused by view point change,

occlusion or deformation. However, some of query’s neigh-

bors, which can be considered as variations of the query

object, may share the same features with that image.

Therefore, we propose a re-ranking method with the k-

nearest neighbors (k-NN) of the query. After the initial

search, localized objects in the top-k retrieved images are

also used as queries to perform search. A database im-

age will have different ranks when using those neighbors as

queries. Accordingly a new score of each database image is

collaboratively determined by those ranks, and re-ranking is

performed using the new scores. Unlike previous query ex-

pansion and re-ranking methods, our method is rank-order

based, which discards the features and their distances when

measuring the score. Therefore, it can successfully retrieve

the objects with large variations, while avoiding degradation

when there are irrelevant objects in the k-nearest neighbors.

Experimental results show it achieves higher and more ro-

bust performance than query expansion.

The contributions of this paper are three-fold:

1. A spatially-constrained similarity measure, which sig-

nificantly outperforms the bag-of-words model, and

existing methods with spatial constraints.

2. A voting-based approach to to evaluate the similarity

measure that simultaneously, and very efficiently, re-

trieves and localizes the object in the database images.

3. A re-ranking method with the k-nearest neighbors of

the query. Using SCSM and k-NN reranking, we meet

or exceed state-of-the-art retrieval performance on s-

tandard datasets.

2. Related Work

In this section, we briefly introduce the methods de-

signed to handle the above mentioned two problems of the

bag-of-words model, i.e., incorporation of spatial informa-

tion, and query expansion.

In [19], spatial information is used in a post-verification

step after initial search using RANSAC. However it comes

with high computational cost, and can consequently on-

ly verify a limited number of top-ranked images. There-

fore, various approaches are proposed to encode relative-

ly weak spatial constraints in the initial search step with-

out sacrificing much retrieval efficiency. Feature location-

s are probably the most frequently used spatial informa-

tion as they can be easily integrated into the inverted file

representation[26, 12, 27, 1]. They are used to check the

matching order consistency as in bundled features [26], to

project the features to different bins to form an ordered spa-

tial bag-of-features model[1], or to search the object in local

sub-regions[12]. Visual phrases are also proposed[27], by

calculating the location offset of two matched features. Oth-

er ways of encoding spatial information include local affine

frames for each feature[18], angle and scale parameters[6]

and feature spatial distances[4]. However, these spatial

constraints are either too restrictive so that only translation

can be handled[26, 12, 27], or too loose to capture enough

information[1, 6].

To alleviate the information loss in feature quantization,

soft assignment on visual words is adopted in [20], while

contextual weighting on the vocabulary is introduced in

[25]. The probabilistic relationships between the visual

words is learned in [14]. Feature metrics are also learned

either to increase the feature discriminative power[9, 21] or

to reduce the descriptor dimensionality[8].

Another way to compensate the deficiency in feature

matching is to automatically expand the query[5, 3]. It

tends to improve the retrieval performance especially when

the appearance of the object has large variation. However,

the performance of query expansion tends to be degraded

by false positive search results. Therefore it requires ac-

curate spatial verification which needs high computational

cost. Though a faster method is proposed recently[24], the

re-ranking is still performed only on the top-ranked images.

In [22], a close set (i.e. the images likely containing the

same object) of database images is pre-constructed before

searching. A similar idea was proposed in [17] where pair-

wise feature distances between images are updated using

k-nearest neighbors. However constructing such pair-wise

data structure is computationally too expensive with large

dataset. Different from these methods, we propose a spa-

tially constrained similarity measure and a k-NN re-ranking

method without sacrificing much efficiency.

3. Object similarity ranking and localization

3.1. Spatially constrained similarity measure

Given a query image with a specified object, the spa-

tial information of the object can be represented by a rect-

angle B = {xc, yc, w, h, θ}, as shown in Fig.2(a), where

(xc, yc) is the coordinate of the rectangle center, w and

h are the width and height of the rectangle respectively,

and θ is the rotated angle of the rectangle (θ = 0 for the

query rectangle). We would like to find the same object

with certain similarity transformation T in a database im-

age. T can be decomposed into three parameters T =
{R(α), s, t}, where α is the rotated angle of the objec-

t and R(α) =

[

cosα − sinα
sinα cosα

]

, s is the scale change,

and t = (xt, yt) is the translation. Accordingly, the trans-

formed object rectangle in the database image would be



B′ = T(B) = {xc + xt, yc + yt, s · w, s · h, θ = α} 1,

as shown in Fig.2(b).

By the above definition, our task becomes (1) evaluating

the similarity between the query object and a database im-

age by finding a (transformed) sub-rectangle in the database

image which matches best to the query object; and (2) sort-

ing the database images based on the similarity.

To achieve this, we first define our spatially constrained

similarity measure (SCSM). Denote the object rectangle

in the query by Q, and the features extracted from Q by

{f1, f2, · · · , fm}. Similarly, denote the database image by

D, and the features in D by {g1, g2, · · · , gn}. Given a trans-

formation T, the similarity between Q and D is defined as:

S(Q,D|T) =
N
∑

k=1

∑

(fi,gj)
fi∈Q,gj∈D

w(fi)=w(gj)=k

||T(L(fi))−L(gj)||<ε

idf2(k)

tfQ(k) · tfD(k)
(1)

where k denotes the k-th visual word in the vocabulary, and

N is the vocabulary size. w(fi) = w(gj) = k means fi and

gj are both assigned to visual word k. L(f) = (xf , yf ) is

the 2D image location of f , and T(L(f)) is its location in D

after the transformation. The spatial constraint ||T(L(fi))−
L(gj)|| < ε means that after transformation, the locations

of two matched features should be sufficiently close.

In Eqn.1, idf(k) is the inverse document frequency of vi-

sual word k, and tfQ(k) is the term frequency (i.e. number

of occurrence) of visual word k in Q. Similarly, tfD(k) is

the term frequency of visual word k in D. This is a nor-

malization term to penalize those visual words repeatedly

appearing in the same image. When repeated patterns (e.g.

building facades, windows and water waves) exist in an im-

age, many features tend to be assigned to the same visual

word. Such “burstiness” of visual words violates the as-

sumption in the bag-of-words model that visual words are

emitted independently in the image, and therefore could

corrupt the similarity measure. This phenomenon is also

investigated in [7, 2]. For example, if m features in Q and

n features in D are quantized to visual word k respectively,

there will be m ·n matched pairs between two images, some

of which may also satisfy our spatial constraint, as they tend

to appear in a local neighborhood. However, if features are

directly matched without quantization, there should be at

most min(m,n) matched pairs. In other words, most of

these m · n pairs are invalid correspondences and would

largely bias our similarity measure if no normalization is

applied.

For each database image, the goal is to find the transfor-

1We keep the aspect ratio of the object fixed but our similarity measure

can handle a large range of object deformation and viewpoint changes.

f f g

(xc, yc)

f1 f2

f

=0
h

(xc+xt, yc+yt)

h

=

g1

g2

g3

w Q

f3

f4f5 s·w

D

s·hg5

( ) (b)

g4

(a) (b)

(xc, yc)

f1

f2

g1

g2

g

sR·Q

f3
f4

f5

s·w
s·h

=

Voting Map

g3

g4
g5Q

(c) (d)

Figure 2. Illustration on SCSM. (a) Query image Q with specified

object in the blue rectangle. (b) A database image D containing

the same object with a certain transformation. (c) The object in

Q is transformed to a different scale and rotation angle. (d) The

voting map is generated according to the relative positions of the

matched features with respect to the rectangle center. The trans-

formation with the highest voting score are chosen as the best.

mation with the highest similarity, i.e.:

T∗ = {R(α∗), s∗, t∗} = argmax
T

S(Q,D|T) (2)

As a result, S∗(Q,D) = S(Q,D|T∗) can serve as the sim-

ilarity between Q and D. All the database images are then

ranked according to S∗(Q,D).
Fig.2(a) and (b) illustrates our similarity measure where

w(fi) = w(gi), but only {(fi, gi)(i = 1, 2, 3)} are spatially

consistent with the transformation. (f5, g5) is considered as

a false match. As for (f4, g4), it depends on the selection of

tolerance parameter ε in Eqn.1. If we allow relatively large

object deformation and set ε higher, (f4, g4) is considered

as inliners, otherwise it is also excluded.

3.2. Optimization of the similarity measure

In order to evaluate S∗(Q,D) we need to find the trans-

formation T ∗ that maximizes the similarity score. In lieu of

a practical method to search for the true optimum, we pro-

pose an approximation based on discretizing the transfor-

mation space, which is decomposed into rotation, scaling

and translation. We first quantize the rotation angle space

to nR values between 0 ∼ 2π (Typically nR = 4 or 8).

Similarly, the scale space is also discretized to ns values

(typically ns = 8) in a range from 1/2 to 2, which gener-

ally covers most cases. These discretizations yield a set of

possible transformation hypotheses (up to translation). The

query object is then transformed based on each hypothesis,

while keeping the location of the rectangle center the same

(i.e., no translation). Fig.2(c) shows an example of such



Figure 3. Example of voting maps and localized objects.

transformation hypothesis. To perform the transformation,

we only need to re-calculate the relative locations of all the

query features with respect to the center.

After the query rectangle is transformed to a particular

quantized rotation angle and scale, we then use a voting

scheme to find the best translation. Consider a matched

pair (f, g) between Q and D. Denote by V (f) the rel-

ative location vector from the rotated and scaled location

of f to the rectangle center cQ. (f, g) can determine a

translation based on their locations, and this translation en-

forces the possible location of the rectangle center in D to

be L(cD) = L(g)−V (f). Therefore, given a matched pair,

we can find the location of rectangle center in D, and vote

a score for that location. If w(f) = w(g) = k, the voting

score for the pair (f, g) is defined as:

Score(k) =
idf2(k)

tfQ(k) · tfD(k)
(3)

Apparently if some matched feature pairs are spatially

consistent, the center locations they are voting should be

similar. See Fig.2(d) for an example.

The cumulative votes of matched features (f, g) gener-

ate a voting map, in which each location represents a possi-

ble new object center associated with a certain translation t.

When we cast votes using Eqn.3, the accumulated score at

each location is exactly the similarity measure S(Q,D|T)
in Eqn.1. We choose the best translation t∗ by simply se-

lecting the mode in the voting map.

Remember before voting, we have transformed our

query to nR rotation angles and ns scales. Therefore there

are nR ·ns voting maps in total. The best transformation T∗

is achieved by finding the location with the highest score in

all voting maps. Meanwhile the best score naturally serves

as the similarity between the query and the database image,

which is subsequently used for ranking. This scheme allows

us to simultaneously achieve object retrieval and localiza-

tion without sub-window search or post-processing, which

is rarely done in previous work.

In practice, when the objects are mostly upright, we can

switch off rotation. When generating the voting map, we

can maintain a map with much smaller size compared to the

images, by quantizing the map to nx × ny grids. To avoid

quantization errors and allow object deformation, instead

of voting on one grid, we vote on a 5 × 5 window around

the estimated center grid for each matched pair. The voting

score of each grid is the initial Score(k) in Eqn.3 multiplied

by a Gaussian weight exp(−d/σ2), where d is the distance

of the grid to the center. This has the effect of spatially

smoothing the votes and is equivalent to generating a single

vote and smoothing with a Gaussian filter afterwards.

Fig.3 shows an example of generated voting maps and

corresponding localized objects. Given the query object in

the left, the voting maps generated for three database im-

ages are shown in the first row. Each voting map has a sin-

gle peak as most feature pairs in the same object cast their

votes on the same location. The approach robustly local-

izes the object even if there is dramatic scale and view point

change, or severe occlusion.

3.3. Similarity evaluation using inverted files

To calculate our spatially-constrained similarity measure

and determine the best transformation, the locations (X- and

Y-coordinates) of the features are stored in the inverted files.

When calculating the voting map, we follow the gener-

al retrieval framework, i.e., for each word k in the query,

retrieve the image IDs and locations of k in these images

through the inverted files. Object center locations and s-

cores are then determined by Eqn.3, and votes are cast on

corresponding voting maps.

There are two ways to consider rotation and scale change

in the search process. One way is to allocate nR · ns voting

maps at each search round. When traversing the inverted

files, we vote on all those maps. Therefore we only have to

traverse the inverted files once. Another way is to sequen-

tially generate voting maps for each quantized rotation and

scale value. Therefore only one voting map is maintained

for each database image. However, we need to retrieve

nR ·ns times. To make a trade-off between search time and

memory, in practice we perform search for each quantized

rotation step, and generate ns voting maps with different s-

cales in each search process. In that case, we maintain ns

voting maps for each image, and perform search nR times.

4. k-NN re-ranking

Since we have localized the object in each retrieved

database image, we can further use the top-k retrieved ob-

ject to refine our retrieval results.

Given a query image, the rank of a database image ac-

cording to S∗ is denoted by R(Q,D). Let Ni be the query’s

i-th retrieved image. Obviously R(Q,Ni) = i. According-

ly Nq = {Ni}{i=1,...,k} are the query’s k-nearest neigh-

bors, as shown in Fig.4.
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Figure 4. Illustration of k-NN re-ranking. The final rank of a

database image is determined by its ranks in the retrieval results

of the query and query’s k-NN.

Figure 5. Example of k-NN re-ranking. The 4-th nearest neigh-

bor is an irrelevant image. However, its nearest neighbors in the

dashes box will not receive high scores from other images. On

the contrary, the images with red and orange boxes are close to a

majority of the query’s nearest neighbors and will have high ranks.

In most cases, the majority of these k-nearest neighbors

contain the same object as in the query image, while there

are also some false alarms. See Fig.5 for example. As the

features are variant to view point change, occlusion or ob-

ject deformation, some images with the same object are not

visually close to the query, and are ranked very low. How-

ever, they may be visually similar to certain images in Nq .

To utilize such information, we also use each localized

object in Nq as a query and perform search. The rank of a

database image D when using Ni as the query is R(Ni, D),
as shown in Fig.4. According to the rank, we assign a score

1/R(Ni, D) to each database image. The final scores of the

database images are then collaboratively determined as:

S̄(Q,D) =
w0

R(Q,D)
+

k∑

i=1

wi

R(Ni, D)
(4)

where wi is the weight, which is determined by the
rank of Ni in the initial search. We set w0 = 1 and
wi = 1/(R(Q,Ni) + 1) = 1/(i + 1). Query itself can
be regarded as the 0-th nearest neighbor, and Eqn.4 is ac-

cordingly rewritten as:

S̄(Q,D) =

k∑

i=0

wi

R(Ni, D)
=

k∑

i=0

1

(i+ 1)R(Ni, D)
(5)

We also consider the rank of the query in each of its n-

earest neighbors’ retrieval results, i.e., R(Ni, Q). Here, the

rank is a unidirectional measure. Query Q and its nearest

neighbor Ni are close only if R(Q,Ni) and R(Ni, Q) are

both high. Hence we modify the weight wi to be wi =
1/(R(Q,Ni) + R(Ni, Q) + 1)) = 1/(i + R(Ni, Q) + 1),
and the final scores of database images are determined by:

S̄(Q,D) =

k∑

i=0

1

(i+R(Ni, Q) + 1)R(Ni, D)
(6)

Images are then re-ranked based on S̄(Q,D).

After re-ranking, we can further use the new top-k re-

trieved images to perform re-ranking iteratively. In most

cases, the first iteration brings significant performance im-

provement.

The proposed k-NN re-ranking approach takes advan-

tage of the localized objects in the retrieved images by SC-

SM, as we can ignore those irrelevant features outside the

objects. Furthermore, as a rank-based approach, our re-

ranking method is robust to false retrieval results in Nq .

Unlike query expansion[5, 3], in our method, the score is in-

versely related to the ranking, and the feature information of

all the k-NN images is intentionally discarded. A database

image will not be re-ranked very highly unless it is close to

the query and the majority of those k-NN images. Consid-

er Fig.5 as an example, the irrelevant image in Nq assigns

scores to its top-retrieved results. However, the weight cor-

responding to this outlier is relatively small as the rank itself

in the query’s retrieval list is not high. Furthermore, the im-

ages in the dashed box will not receive scores from other

images in Nq and accordingly their scores for re-ranking is

still low. On the contrary, a relevant image such as the one

with red bounding box or orange box is close to several im-

ages in Nq and will have a high score. Experimental results

indicate our method is not sensitive to the selection of n-

earest neighbor number k. Even if k is large and there are

many outliers in Nq , the retrieval accuracy is still very high.

Since our method is robust to outliers, no spatial verification

is needed. Also, re-ranking can be efficiently performed on

the entire database.

5. Experiments

5.1. Datasets and implementation details

We have implemented our own retrieval system

with SIFT descriptors[13] and fast approximate k-means

clustering[15]. We evaluate our approach on four public



datasets: Oxford building2, Paris3, INRIA Holidays4, and

University of Kentucky5. 100,000 and 1M Flickr images

downloaded with random tags are also added to Oxford as

distractors to form the Oxford105k and Oxford 1M dataset.

In Oxford and Paris, each query has a specified object rect-

angle, while no such rectangles are specified in INRIA and

Kentucky. So we use the entire frames as our query rectan-

gles for these two datasets. 1M vocabularies are trained for

Oxford and Paris, A 200k vocabulary is trained for INRIA

as in [6]. The vocabulary size for Kentucky is set to 500k as

there are only 7M features.

In the implementation of the voting-based method, we

switch off rotation in Oxford and Paris as most of these

query objects are upright. k-NN re-ranking is performed

on all the datasets except INRIA Holidays, as there are only

one or two relevant images for most queries in this dataset.

In evaluation, as in most of previous methods, the re-

trieval accuracy on the first three datasets and their exten-

sions is measured with the mean average precision (mAP),

while the performance measure on the Kentucky dataset is

the top-4 score, i.e., the average number of relevant images

in the query’s top 4 retrieved images as in [16].

5.2. Results of SCSM

Parameters: We first evaluate the performance of our

approach given different settings of parameters. There are

two main parameters in our method: the grid size (the num-

ber of grid cells) of the voting map6, and σ2 in the Gaussian

weights exp(−d/σ2).
The mAP on Oxford5k with different map sizes is shown

in Fig.6(a). As we can see, when the grid number is larger

than 16, the mAP remains flat. Therefore a 16 × 16 voting

map is already large enough, which allows us to encode the

feature location in a 1-byte integer. The performance with

different σ2 in voting is shown in Fig.6(b). σ2 = 0 mean-

s there is no Gaussian voting, i,e, each matched pair only

vote on one grid corresponding to its estimated object cen-

ter. The results show that voting on a window with Gaussian

weighting is noticeably better than voting on one grid. It is

easy to understand as such a Gaussian voting allows object

deformation and also reduces quantization errors. Howev-

er, once the Gaussian voting is adopted, the mAP does not

change much with different values of σ, which indicates

that our method is not sensitive to this parameter. When

σ2 = 2.5, our method achieves the highest mAP. This pa-

rameter is fixed at 2.5 in all subsequent experiments.

Comparisons: We compared SCSM with the baseline

bag-of-words model. The results are shown in Table 1. We

2http://www.robots.ox.ac.uk/˜vgg/data/oxbuildings.
3http://www.robots.ox.ac.uk/˜vgg/data/parisbuildings.
4http://lear.inrialpes.fr/˜jegou/data.php.
5http://www.vis.uky.edu/˜stewe/ukbench.
6The grid spacing is then determined by the maximum of image size

divided by the grid size.
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Figure 6. mAP on Oxford5k with different parameters. (a) Voting

map size, (b) Gaussian weight. It shows that SCSM is not sensitive

to wide range of grid numbers and Gaussian weights.

Datasets BoW SCSM SCSM+Re-ranking

Oxford5k 0.649 0.752 0.884

Oxford105k 0.568 0.729 0.864

Oxford 1M 0.535 0.685 0.841

Paris 0.630 0.741 0.911

INRIA 0.462 0.762 -

Kentucky 3.35 3.52 3.56

Table 1. The performance of our method on public datasets.

Datasets SCSM [27] [12] [1] [6]

Oxford5k 0.752 0.713 0.647 0.651 0.547

Oxford105k 0.729 0.604 - - -

Oxford 1M 0.685 0.532 - 0.550 -

Paris 0.741 - - 0.632 -

INRIA 0.762 - - - 0.751

Kentucky 3.52 3.26 3.29 - -

Table 2. Comparisons of SCSM with other spatial models.

can see SCSM significantly outperforms the bag-of-words

model on all the datasets. Furthermore, in Oxford105k

and Oxford 1M, when distractors are added, the mAP of

the baseline method decreases from 0.649 to 0.568 and

0.535 respectively, while our method is only slightly af-

fected (from 0.753 to 0.729 and 0.685 respectively). This

indicates SCSM is more scalable to larger databases. We

also compared our approach to other methods with spatial

models, as listed in Table 2. Our approach outperforms all

those methods on all the datasets. Some examples of object

retrieval and localization are provided in Fig.7.

5.3. Results of kNN reranking

Parameters: There is only one parameter in our k-

NN re-ranking method, the number of nearest neighbors k.

Fig.8 shows the performance on Oxford5k when we change

k (only single iteration is used). Even with only 5 nearest

neighbors, the mAP is already improved to 0.822. When

the k-NN set Nq becomes larger, the mAP keeps increasing.

Although, there are many irrelevant images in Nq when k
is large (some of the queries only have less than 10 relevant

images). Our approach can still achieve very high accuracy

in that case, which demonstrates the robustness of this rank-



Figure 7. Examples of object localization by SCSM.The images in

the first column are the queries, while the localized results on the

top-4 ranked images are presented.

based method to outliers. When we use two iterations, i.e.

performing re-ranking again with the newly retrieved top-k
images, the mAP is further improved to 0.884 when k is 30.

Similar phenomena are observed on Oxford105k, Ox-

ford1M and Paris, in which the numbers of relevant images

are similar with those in Oxford5k. We use the same set-

ting (k = 30 with two iterations) in all these datasets. The

queries in Kentucky has only 3 other relevant images. As

a result, we observed that k = 1, 2, 3 yield similar perfor-

mance on Kentucky. Considering computational efficien-

cy, we choose k = 1 with one iteration for this dataset.

Comparisons: The performance of k-NN re-ranking is

shown in Table 1. It further significantly improves the re-

trieval performance. The mAP of re-ranking on Oxford105k

and Oxford 1M achieves 0.864 and 0.841 respectively, indi-

cating that our method is very robust to distractors.

Table 3 shows the comparisons of our method with

other state-of-the-art approaches. Most of these method-

s use query expansion. Some of them employ addition-

al techniques such as post-verification and soft assignmen-

t (which are not used but could be further incorporated in

our method). The results of our approach are among the

best on Oxford5k and Oxford105k, and significantly better

than previously best-achieved results on Paris (from 0.824

to 0.911). The assumption of SCSM is frequently violated

in the Kentucky dataset, while there are only 3 other relevant
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Figure 8. mAP on Oxford5k using different numbers of nearest

neighbors in re-ranking. Our method gets better when k becomes

larger, indicating it is robust to outliers.

images for each query. Nevertheless, our method performs

reasonably well even under such an unfavorable condition.

5.4. Complexity and Scalability

Compared to the bag-of-words model, the additional

memory cost of our method includes the feature locations

in the inverted files, and the voting maps in object local-

ization. Since we use 16 × 16 voting maps, the X- and Y-

coordinates of the features can be quantized to 0, 1, ..., 15
and further encoded as a 8-bit integer lf = 16 · yf + xf .

Therefore we only need 1 more byte storage for each fea-

ture. Suppose we have 500 features in an image, the addi-

tional memory for a 1 million dataset is 500 MB which is

much smaller than the size of the inverted file.

A voting map is a 16 × 16 matrix with floating values,

which therefore needs 1024 byte memory storage. We allo-

cate ns = 8 maps for an image, and the additional memory

cost for each image is 8K. However, the voting maps are

only assigned for those database images having common

visual words with the query. The number of these relevant

images is much smaller than the size of the dataset.

In the search process, additional time is needed when

we generate the voting maps. Given a visual word k, sup-

pose it has m occurrences in the query and n occurrences

in a database image, there would be m ·n possible matched

pairs. Therefore we need to vote m · n times, while in the

bag-of-words model the calculation is only carried once.

However, when the vocabulary is large, m and n are 1 in

most cases. Meanwhile, when m and n is large, the vot-

ing score in Eqn. 3 is very small. Therefore in practice we

do not perform voting when m · n is larger than 10, which

speeds up the search process. With 3G Duo CPU, the av-

erage search time for the bag-of-words model is 0.084s in

Oxford5k, while SCSM takes 0.089s in average. k-NN re-

ranking with single iteration needs k additional search, but

it can be processed in parallel when the database is large.

6. Conclusions

Unlike previous image retrieval methods that focus on

image ranking, we achieves simultaneous object retrieval

and localization by employing a new spatially-constrained

similarity measure (SCSM), with a voting-based method.



Datasets SCSM SCSM+Re-ranking [19] [22] [7] [3] [14] [18] [2] [21]

Oxford5k 0.752 0.884 0.647 0.814 0.685 0.827 0.849 0.901 - 0.707

Oxford105k 0.729 0.864 0.541 0.767 0.628 0.767 0.795 0.856 0.864 0.615

Oxford 1M 0.685 0.841 0.465 - - - - - - 0.689

Paris 0.741 0.911 - 0.803 - 0.805 0.824 - - -

INRIA 0.762 - - - 0.848 - 0.758 0.736 - -

Kentucky 3.52 3.56 3.45 3.67 3.64 - - - - -

Table 3. Comparisons with other state-of-the-art methods.

Our SCSM significantly outperforms other spatial models

in object retrieval. Meanwhile, the objects are accurately

localized in relevant images. Based on the retrieved images

and localized objects, a k-NN re-ranking method is fur-

ther proposed to improve the retrieval performance. Exten-

sive evaluation on several datasets demonstrates our method

achieves the state-of-the-art performance. Our method can

be integrated in a retrieval system with other components

such as soft assignment[20] in feature quantization, and

learned vocabulary[14] to better serve object and image re-

trieval. Meanwhile, the localized objects in retrieved im-

ages can be adopted for other vision tasks such as image

tagging and object detection, which merits further study.
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