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Object-Scale Adaptive Convolutional Neural

Networks for High-Spatial Resolution Remote

Sensing Image Classification
Jie Wang, Yalan Zheng, Min Wang , Qian Shen, and Jiru Huang

Abstract—Object-based image analysis (OBIA) is regarded as
an effective technology for high-spatial resolution (HSR) image
classification due to its clear and intuitive technical process. How-
ever, OBIA depends on the manual tuning of image classification
features, which is a tricky job. Deep learning (DL) technology
autolearns image features from massive images and obtains higher
image classification accuracy than traditional techniques. In this
article, a novel method called object-scale adaptive convolutional
neural network (OSA-CNN), which combines OBIA with CNN, is
proposed for HSR image classification. First, OSA-CNN collects
the image patches along the main axes of the object primitives
obtained through image segmentation; the size of the former is
automatically determined through the axis widths of the latter.
This step generates the input units required for the CNN clas-
sification. Second, the Squeeze-and-Excitation block is extracted
from the SE network into the network structure of GoogleNet,
which realizes the weighted fusion of the multiscale convolutional
features, enhances useful features, and suppresses useless ones. In
the classification stage, multiscale image segmentation and CNN
classification are fused using an object-scale adaptive mechanism.
Finally, object primitives are classified through majority voting on
the image patches. The network structure modifications, multiscale
classification fusion, and other improvements are verified by grad-
ually incorporating these steps into the original GoogleNet. The
experiments show that these improvements effectively enhance the
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image classification accuracy. This article presents an effective way
of combining OBIA and DL techniques to utilize the advantages of
both approaches and facilitate HSR image classification.

Index Terms—Convolutional neural network (CNN), deep
learning, high-spatial resolution remote sensing, image
classification, image segmentation, multiscale, object primitive,
object-based image analysis (OBIA).

I. INTRODUCTION

O
BJECT-BASED image analysis (OBIA) is an effective

technology for high-spatial resolution (HSR) image clas-

sification, which is conducted following the technical route

of “segment and then classify.” OBIA obtains homogeneous

segments through image segmentation, extracts features, and

then conducts information extraction, such as object recogni-

tion/classification in a multidimensional feature space. In such

a scenario, the segments in OBIA are called object primitives

because they replace pixels as fundamental units for the sub-

sequent feature extraction and image analysis [1]–[4]. OBIA

utilizes more abundant features than pixel-based image analysis,

improves the interpretability of the information extraction re-

sults, and facilitates information fusion between remote sensing

image processing and geographical information system. These

advantages make OBIA well-recognized and utilized in remote

sensing applications, especially when dealing with information

extraction from HSR images [5].

Despite its clear and intuitive technical process, OBIA re-

quires the manual tuning of image classification features, which

is sometimes tricky. Meanwhile, OBIA has the so-called scale

issue. The object scale in OBIA refers to the average size of

the segments. Given the variety and complexity of remote sens-

ing images, over- and under-segmentation errors coexist when

images are segmented at a single scale, which is not conducive

to the subsequent feature extraction and analysis. To address

the scale issue, many studies used multiscale analyses (MSA),

which involves multilevel segmentation from small scales to

large ones. Superpixel segmentation is commonly used to ob-

tain multiscale spectral–spatial features in HSR/hyperspectral

image classification [6]–[8]. Such studies confirmed that MSA

improves the classification accuracy.

Unlike OBIA, deep learning (DL) technology autolearns

image features from massive images, avoids manual feature

extraction, and obtains high accuracy in the image classification.

DL-based image classifications that utilize convolutional neural
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networks (CNNs) are research hotspots in the field of remote

sensing image processing [9]–[12]. The typical applications

include scene classification [13]–[18] and land use/land cover

classification [19]–[24]. CNN uses patch-based or pixel-to-pixel

schemes for image classification. The patch-based scheme con-

tains a full connection layer and uses sliding window [25] or

superpixel segmentation [11] to obtain image patches as net

inputs. The pixel-to-pixel scheme utilizes a full convolutional

network (FCN) with an encoder–decoder structure to realize

end-to-end learning [26]–[28]. This scheme achieves pixel-level

image classification (i.e., semantic segmentation) and shows a

strong capability in precise object delineation. However, pixel-

to-pixel scheme often requires tedious image annotation (i.e.,

accurate manual delineation of ground objects). Considering the

specific DL demands for sample quantity and sample balance,

the pixel-to-pixel scheme is more suitable for binary classifica-

tion problems (i.e., extracting targets from background) than for

multiclassification ones.

Combining OBIA and DL, which involves automatically seg-

menting images into object primitives and conducting CNN sam-

ple collection and classification based on the object primitives,

offers a convenient alternative for the HSR image classification.

CNN realizes the autolearning of classification features and

therefore avoids the manual tuning of OBIA features. Therefore,

object-based CNN classification is a promising OBIA scheme

for the HSR image classification. However, CNN requires fixed

image patches as net inputs, which does not match the OBIA’s

inputs of object primitives. Hence, a conversion between the

two input interfaces is necessary to fulfill object-based CNN

classification.

Superpixel segmentation approaches, such as simple linear it-

erative clustering [29], are commonly used in object-based CNN

classification [30], [31]. This kind of segmentation generates

averaged object primitives, which facilitates the conversion of

object primitives into image patches using the former’s boundary

boxes. However, over- and under-segmentation errors coexist

in the superpixel segmentation because the object primitive

sizes are averaged. Some studies obtained object primitives

using other segmentation methods, including multiresolution

segmentation [2], generated randomly positioned image patches

within the object primitives [32], mapped one object primitive

into many image patches, and conducted CNN classification.

In such a scenario, the image patches were shrunk and some-

times positioned close to the object primitive boundaries. Such

low-quality sampling lowered the classification quality.

In the previous studies [33]–[37], the hard-boundary-

constrained segmentation (HBC-SEG) method was proposed

and applied to OBIA. HBC-SEG is a hybrid segmentation

method wherein the image edges are embedded into a merging

region to obtain high segmentation accuracy. HBC-SEG was

used in this article as the segmentation module for the object-

based CNN classification. A novel object primitive/image patch

conversion scheme was designed to adapt to the more natural

segmentation configuration of HBC-SEG than superpixel seg-

mentation. MSA with a novel object-scale adaptive mechanism

was applied to flexibly fuse the multiscale classification re-

sults. CNN network structure modification and majority voting

Fig. 1. OSA-CNN technical process.

mechanism were also adopted to improve the method perfor-

mance. The experiments showed that the proposed method

called object-scale adaptive convolutional neural network

(OSA-CNN) effectively combined OBIA and DL technologies

and achieved good HSR image classification results.

The remainder of this article is organized as follows. Sec-

tion II introduces the methodology of OSA-CNN. Section III

presents the experimental analyses and discusses the method

characteristics. Section IV provides the conclusions and future

work directions.

II. METHODOLOGY

OSA-CNN is divided into two main modules (see Fig. 1). The

first one is the image segmentation and classification module.

The object primitives at a set of scales are obtained through

HBC-SEG. Then, the object primitives are mapped into image

patches using adaptive patch sampling along the object primitive

axes, and the results are classified using CNN. These processes

are conducted at all scales to obtain a set of classification results.

The second one is the multiscale classification fusion module.

Each image patch’s maximum classification probability scale

(MCPS) is determined according to the classification probability

comparisons at different scales, and the multiscale classifica-

tions are fused into one result. Finally, each object primitive is

classified through majority voting on the image patches’ classi-

fication results to obtain the entire image classification result.

The object primitive/image patch conversion, CNN network

modification, and multiscale classification fusion are the key

links for fulfilling the proposed method.

A. Object Primitive/Image Patch Conversion

The object primitive/image patch conversion involves two

steps: main object primitive axis extraction and adaptive image

patch sampling along the axes. The method proposed by [38] is

adopted and modified for the main axis extraction. As illustrated

in Fig. 2, the main skeletons of the object primitives are kept and

the burrs (short axes) are removed during the extraction. Axis
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Fig. 2. Extracted main axes of an object primitive and adaptive image patch sampling. After the main axis extraction, the main body (brown) is kept for sampling
and the redundant parts (blue) are discarded.

width is defined as the shortest distance from an axis point to the

object primitive’s boundary. After the axis extraction, the image

patches are sampled along the object primitive’s axes, and the

change in their position and widths is in accordance with that of

the axis. A suitable sampling interval is required to reduce the

image patch overlap and increase the sample representativeness,

reduce redundancy, and improve the efficiency. On this basis, the

following adaptive sampling scheme is designed.

Step 1: Position the first image patch sample at the widest axis

point and set the square width twice of the axis width.

Step 2: Excluding the axes covered by the sample generated

in Step 1, search for the second widest axis point from the

remaining axes and generate the candidate sample. Discard

the candidate if its overlap rate with the previous samples

exceeds 30%; otherwise, consider the candidate as a new

image patch sample.

Step 3: Repeat Step 2 until no axis point is available or the

number of samples reaches a certain threshold (e.g., maximum

of five samples).

The number of image patches is dependent on the size and

shape of the object primitives. One to two image patches are

often enough to cover simple object primitives in block shapes.

Complex object primitives with forks generally produce com-

plex axes and require more image patches than simple object

primitives. In such scenarios, the image patch number is limited

to five in maximum considering the method efficiency.

Fig. 2 shows a set of image patches generated using the above

sampling scheme. These image patches cover majority of the

parts of the object primitive, accurately represent the object

primitive’s configuration, and facilitate the succeeding CNN

training and classification.

B. Network Design

Previous studies verified that the CNN performance can be

improved not only by deepening the network by stacking layers,

but also by adopting a delicate net design, such as depthwise sep-

arable convolution [39], dense connectivity [40], and channel-

wise feature recalibration [41]. The object primitives obtained

through segmentation cover a small piece of the image, and

its features may disappear after several rounds of convolutions

in a deep CNN; deep CNNs do not necessarily yield accurate

classification in OBIA. An extremely shallow network limits its

capabilities in learning image features. Considering the above

factors, GoogleNet [42] is selected as the skeleton network in this

article. The squeeze-and-excitation (SE) block, which executes

the weighted fusion of the CNN channel features [41], is embed-

ded into GoogleNet to enhance the classification performance.

1) SE Block Extraction: The SE network [41] learns the

importance of the features in image classification. This network

suppresses the useless features and utilizes the useful ones.

SENet, which is originally based on ResNet, has a deep network

structure and a concise key component (i.e., SE block). To

control the network size, the SE block is extracted and embedded

into the inception module of GoogleNet to realize the weighted

fusion of the channel features.

The SE block is composed of three operations (see Fig. 3). The

first part is the squeeze operation. Given an input feature map u

with dimensions of H × W × C, a statistic z for the channels is

generated as

zc = Fsq (uc) =
1

H ×W

H∑

i=1

W∑

j=1

uc (i, j) . (1)

In (1), z represents the global spatial information distribution

obtained through global pooling and uc denotes the cth feature

map. The second is the excitation operation, in which the weight

s of the channels is obtained as

s = Fex (z,W ) = σ (g (z,W )) = σ (W2δ (W1z)) (2)

where δ is the ReLU function [43], W1 and W2 are two fully

connected layers, and σ is the sigmoid activation. The last is the
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Fig. 3. SE block.

Fig. 4. Inception-SE module.

scale operation, in which the features are reweighted as

x̃c = Fscale (uc, sc) = sc · uc. (3)

In (3), x̃ represents the output feature map after the weighted

fusion and Fscale is the channelwise multiplication.

SE block can be flexibly embedded into other networks to

improve the performance because its inputs can be any arbi-

trary convolution features with any number of channels. Global

pooling introduces a small amount of network parameters, which

facilitates network training. In this article, the SE block is applied

for the CNN channel weighting.

2) Network Structure: OSA-CNN embeds the SE block into

the inception module to form the inception-SE module (see

Fig. 5). All inception modules of GoogleNet are replaced with

inception-SE modules. For example, the details of the first

inception-SE structure are shown in Table I and Fig. 4.

Fig. 5. OSA-CNN network structure.

TABLE I
INCEPTION-SE ARCHITECTURE

The entire network structure of OSA-CNN is displayed in

Fig. 5. When object primitives are converted into image patches,

they are resized uniformly to 224 × 224 × 3 as the network

inputs. Subsequently, deep features are extracted using two con-

volution and two pooling layers. Each convolution is appended
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Fig. 6. Multiscale analysis for classification fusion.

by a ReLU activation. Normalization is performed after the first

pooling layer to ensure the uniform distribution of the input data

and generate a 28 × 28 × 192 feature map. This feature map is

then processed using nine inception-SE modules, followed by

a fully connected layer. A softmax classifier obtains the final

classification and finishes the entire process.

C. Multiscale Classification Fusion

1) Problem Description: A small segmentation scale in

OBIA can avoid undersegmentation errors and obtain pure ob-

ject primitives, which facilitates the succeeding classification.

However, DL requires sufficiently large image patches to capture

adequate features for classification. Meanwhile, object primi-

tives may be extremely fragmented in strong textured regions

(i.e., seriously oversegmented). The segmentation scale in such

areas must be increased to allow the CNN to capture the texture

patterns. An intuitive scheme increases the segmentation scale,

which results in large object primitives and subsequently yields

large image patches. However, increasing the segmentation scale

leads to undersegmentation errors, which produces impure ob-

ject primitives that cannot be classified correctly. An alternative

approach is to uniformly increase the image patch size. However,

such scheme lacks an objective criterion in determining the

appropriate image patch size. In highly heterogeneous areas,

directly increasing the image patch sizes might result in hybrid

image patches that cannot be classified accurately. Single-scale

analysis cannot appropriately handle the scale issue; thus, a novel

MSA scheme is designed and introduced to object-based CNN

classification.

2) Method Design: Fig. 6 illustrates the principles of MSA

for classification fusion. An oversegmented area in small scale,

which is possibly caused by the strong texture, is shown in

Fig. 6(a). The shadowed object primitive has the same category

“A” as its neighbors. Fig. 6(c) displays a large-scale segmentation

configuration, in which the object primitives in the same cate-

gory are merged into one and the corresponding image patch

width changes from w1 (small scale) to w2 (large scale). The

image patch at the large scale, which remains homogeneous and

covers abundant image features, is better than the image patch at

the small scale. The classification probability at the large scale

may increase compared with that at the small scale. In this case,

the MSA selects the classification result at the large scale.

Fig. 6(b) illustrates a correctly segmented area at the small

scale, where the shadowed object primitive’s categories are

different from those of its neighbors. In this scenario, increas-

ing the segmentation scale results in the overmerging of the

object primitive and induces undersegmentation errors. The

image patch at the large scale becomes heterogeneous and

less satisfactory than that at the small scale in terms of clas-

sification. Consequently, the classification probability in large

scale may decrease compared with that in small scale. In such

case, the MSA selects the classification result at the small

scale.

The design of the probability-based multiscale classification

fusion is explained as follows. Let {Q(s)sǫN} be a child-to-

parent object primitive hierarchy obtained through multiscale

segmentation, where s represents the segmentation scale and

Q(0) is the child object primitive at the smallest scale. A parent

object primitive is merged from small scales

Q (s) ⊆ Q (s+ 1) . (4)

P (Q, v) is an image patch of Q at position v, and the size of P

is determined by the axis width at v. Let {P (Q(s), v)sǫN} be

the image patch hierarchy of {Q(s)sǫN} at position v

P (Q (s) , v) ⊆ P (Q (s+ 1) , v) . (5)

Given an object primitive at a certain scale with an image

patch at position v, let cls(P (Q(•), v))be the image patch’s cate-

gory and prob(cls(P (•), v)) as the corresponding classification

probability. The classification probability of the image patch is

calculated by the CNN’s softmax layer, which is formulated as

follows:

p (xi) =
exi

∑K
k=1

exk

(6)

where xi represents the output of the fully connected layer for

class ‘i’, K is the total number of classification categories, and

p represents the corresponding classification probability. The

CNN classifier obtains the classification probability of each

category and takes the maximum classification probability and

corresponding category as the final outputs.

The MCPS of P (Q(•), v) is expressed as

s∗ = args max prob (cls (P (Q (s) , v))) . (7)

The multiscale classification fusion rules are defined to clas-

sify Q(0) (i.e., object primitive at the smallest scale)

Rule 1: If cls (P (Q (0) , v))

= cls (P (Q (s∗), v)) , output cls (P (Q(0) , v) . (8)
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Fig. 7. Multiscale classification processing.

Rule 2: else, if prob (cls (P (Q(0) , v))

≥ Tprob, output cls (Q (0) , v) . (9)

Rule 3: else, output cls (P (Q (s∗), v)) . (10)

In the above rules, Tprob denotes the classification probability

threshold.

Rule 1 suggests that the classification results are consistent

between the smallest scale 0 and the MCPS s∗. This rule also

indicates that as the scale increases, either the classification

results in this region remain stable or the classification certainty

decreases. The classification result of the smallest scale is se-

lected as the MSA output.

Rule 2 addresses the case when the classifications from the

small scales to the large ones are inconsistent and the small-

scale probability is larger than the threshold. Increasing the scale

may increase the heterogeneity of the object primitives; thus, the

small-scale classification result is selected regardless whether

the classification probabilities at large scales are higher than

that at small ones. This rule jointly considers the classification

probability and small scale priority.

Rule 3 holds when the classifications at small and large scales

are inconsistent and the small-scale classification probability is

low. As demonstrated in the strong textured regions, object prim-

itives at small scales may be fragmented and the classification

certainty maybe low. Therefore, the classification is reinvesti-

gated at large scales and the rule selects the classification result

at the MCPS.

Fig. 7 illustrates a typical decision process of the multiscale

classification fusion and majority voting for an object primitive.

At the small scale, four image patches (S1−S4) with small sizes

are collected along the object axes. At the large scale, the object is

merged with surrounding objects. Thus, four new image patches

(S1
′−S4

′) are collected around the centers of S1−S4 in which

Fig. 8. Experimental area 1.

S1
′−S3

′ are enlarged. All the eight image patches are resized to

224 × 224 × 3 and fed to the CNN to predict their categories.

At the multiscale classification fusion stage, the categories

of each image patch pair at the same location from the small

and large scale are compared. Assume cls(S1) and cls(S1
′) are

inconsistent and the prob(S1) is larger than the classification

probability threshold Tprob. In such case, rule 2 is activated and

the small scale classification result is selected as the multiscale

fusion result for image patch S1. The same rule is also applied

to image patch S2. The classification results of S3 and S3
′ are
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Fig. 9. Experimental area 2.

Fig. 10. Experimental area 3.

inconsistent, and the classification probability of S3 is less than

Tprob. Rule 3 is thus activated and the large scale classification

result is chosen as the multiscale fusion result of S3. S4 and

S4
′ are in the same class, so rule 1 is activated. In the end, three

“A” classes and one “C” class are obtained by this MSA module.

The object primitive is finally classified as “A” by the succeeding

majority voting module.

On the basis of the object primitive/image patch conversion

and MSA rules, the image patch sizes are automatically adjusted

TABLE II
INFORMATION OF THE THREE EXPERIMENTAL DATA

and selected in accordance to the object primitive axis widths and

multiscale classification probability comparison. Such schemes

organically integrate OBIA and CNN, utilize the advantage of

MSA, and improve the OBIA classification. To ensure the effi-

ciency, OSA-CNN selects two scales for probability comparison

and information fusion.

III. EXPERIMENTS

The OSA-CNN method was developed and integrated into the

RSFinder software developed by the research team using Visual

C++. Caffe, which was developed in C++ [44], was selected

as the DL platform to seamlessly integrate the proposed CNN

classification module into the RSFinder. The proposed method

was tested on a Windows 7 operation system using different

HSR aerial images. The central processing unit was Intel Core

i7-6850k, the graphics processing unit was NVIDIA GeForce

GTX1080Ti, the video RAM size was 11 GB, and the RAM

was 32 GB.

A. Experimental Scheme

1) Experimental Data: The experimental data consisted of

aerial images collected by the Ohio Statewide Imagery Program

and the unmanned aerial vehicle imagery located in Yangzhou

City, Jiangsu Province, China. The specific imaging parameters

are presented in Table II. The land cover types were divided into

six categories according to the ground feature distributions in the

experimental areas: water, grassland, bare land, forest, building,

and road.

2) Evaluation Scheme: A set of gradually enhanced methods

starting from GoogleNet (GN-CNN) was adopted to validate the

improvements induced by OSA-CNN. These methods evolved

to GNSE-CNN, GNSEM-CNN, and OSA-CNN, respectively.

GN-CNN is the object-based CNN classification that uses the

original GoogleNet. Each object primitive was classified using

a single image patch located at the object primitive’s center, and

the classification was conducted at a single scale without MSA.

GN-CNN is the most basic combination of OBIA and CNN clas-

sification. GNSE-CNN embedded the SE block into GN-CNN to

verify the effectiveness of the structure. GNSEM-CNN further

adopted MSA, in which each object primitive was classified

using a single image patch located at the object primitive’s

center without majority voting. OSA-CNN added image patch

sampling along the object primitive’s axes and majority voting
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TABLE III
EXPERIMENTAL SCHEME

to GNSEM-CNN, which is the final form of the improvements.

The details of the parameters are as listed in Table III.

A set of training samples were collected and uniformly used to

train the compared methods. Approximately 120–140 samples

were collected for each category, and 850–900 samples were

collected from each experimental area. For relatively small

training datasets, transfer learning was performed on the basis

of the ImageNet pretrained model. One thousand validation

points were randomly generated in each experimental area and

compared with the classification results to evaluate the accuracy

of the proposed method.

The CNN training parameters are elaborated as follows.

Stochastic gradient descent was used for the CNN model

training. The initial learning rate for GN-CNN was 0.001,

whereas those for configurations with SE blocks were set as

0.01, which provided fast convergence at the early training

stage. The batch size was 32 and the number of iterations was

3000.

3) Accuracy Evaluation Measures: A confusion matrix was

established to evaluate the accuracy of the compared methods.

The accuracy measures used in this article include user accu-

racy (UA), producer accuracy (PA), overall accuracy (OA), and

kappa

UA (a) =
Xaa∑n
i=1

Xai

(11)

PA (a) =
Xaa∑n
i=1

Xia

(12)

OA =

∑n
i=1

Xii

N
(13)

Kappa =
N

∑n
a=1

Xaa −
∑n

a=1
(
∑n

i=1
Xai ×

∑n
i=1

Xia)

N2 −
∑n

a=1
(
∑n

i=1
Xai ×

∑n
i=1

Xia)
(14)

where n represents the number of classes, N denotes the to-

tal number of test samples, and Xai represents the number

of samples whose actual and predicted classes are a and i,

respectively.

B. Experimental Analysis

The influences of the parameters of the two most important

inputs, namely, image segmentation scale and classification

probability threshold (Tprob), on the method performance were

Fig. 11. OA curves with the changed scales.

investigated. Comparative analyses of the four classification

schemes were conducted to validate the features and advantages

of OSA-CNN.

1) Parameter Influence:

a) Segmentation scale: The influence of segmentation

scales on the overall accuracy was investigated by varying the

segmentation scale from small to large. Fig. 11 show the OA

of OSA-CNN at seven segmentation scales in the three experi-

mental areas. Within a scale range of 30–80, the OA curve in the

first experimental area was flat, whereas those in the second and

third experimental areas rose. At a segmentation scale range

of 80–250, the OA of the three experimental areas showed a

decreasing trend. Increasing the segmentation scale beyond 80

included the neighbor objects in the object primitives, which

reduced the classification quality. The OAs of three experimental

areas reached the peak at a scale value of 80, which implies

that this scale is appropriate for segmenting the selected HSR

images. The influence of the scale on the performances of the

compared methods is the same. Therefore, a scale value of 80

was used as the optimal threshold for the subsequent analyses.

GNSEM-CNN and OSA-CNN required two scales for MSA.

A scale value of 150 was selected as the large scale because

the strong textured regions were fully merged without obvious

undersegmentation errors in the other regions.

b) Classification probability threshold: The influence of

the classification probability threshold on OA is presented

in Fig. 12. The influence was minimal and had a maximum
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Fig. 12. Classification probability threshold.

Fig. 13. OA curves with the changed sample sizes.

difference of less than 2% when the threshold changed from

0.5 to 0.99. This threshold signifies the trust on small-scale

segmentation. Low or high threshold makes OSA-CNN tend

to small- or large-scale classification results, respectively. The

OA curves in the three experimental areas reached their peaks

(0.827, 0.889, and 0.877) at a threshold of approximately 0.9.

Therefore, 0.9 was selected as the optimal parameter for the

succeeding analyses.

c) Influence of the sample size: Inaccurate segmentation

and inappropriate sampling position influence the quality of

image patches generated along the object axes, and thus affect

the model training. Thus, image patch samples for model train-

ing are manually collected at suitable image positions through

visual interpretation of the experimental areas. The CNN models

training and classification were then conducted for method

accuracy evaluation. Sample sizes were balanced, i.e., evenly

distributed, among the classes. The influence of sample size on

measure OA is presented in Fig. 13. OA increased obviously

before the sample size reached 150, and remained even after that.

The peaks of the OA curves were 0.814, 0.875, and 0.846 with

the sample sizes of 180, 180, and 150 in the three experimental

areas, respectively. Thus, in our experiments, 150–180 training

samples were collected for every class for the transfer learning

of the CNN pretrained models.

Fig. 14. PA and UA statistics with different categories.

TABLE IV
OA AND KAPPA STATISTICS OF THE DIFFERENT METHODS

2) Accuracy Evaluation: The four classification schemes

were compared and analyzed with the optimal parameters.

OSA-CNN obtained the highest UA and PA among the four.

However, it demonstrated minimal lag in PA in bare land and

in UA in building and road (see Fig. 14). The SE block, MSA,

and majority voting gradually improved the OA (see Table IV).

OSA-CNN achieved the highest OA (0.839, 0.902, and 0.894)

and kappa (0.788, 0.872, and 0.865) in the three experimental

areas. As compared with GN-CNN, the OA was increased by

more than 4%, 4%, and 5% and kappa was by more than

5%, 5%, and 6% for the three experimental areas, respectively.

These findings showed that the applied improvements effectively

improved the method accuracy.

3) Visual Interpretation: The visual interpretation results are

consistent with the quantitative analyses of the classification

findings (see Figs. 15 –20). In experimental area 1, several small

grassland object primitives were misclassified as building object

primitives by GN-CNN at spot A (see Fig. 16). At spots B and

C, many grassland and forest object primitives were misclas-

sified as road and building object primitives. The GNSE-CNN

reduced the misclassifications but the small object primitives

still induced classification errors. GNSEM-CNN further reduced

the misclassifications through MSA, which corrected most of



292 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 15. Classification results in Area 1. The black boxes mark some remarkably changed spots (A, B, and C) and the method enhancements.

the misclassified small object primitives. Similarly, OSA-CNN

corrected most of the misclassifications and obtained the best

classification results among the four methods.

GN-CNN displayed obvious misclassifications between

buildings and roads in experimental area 2, which might be

because of their closed spectral features (see Fig. 17 and spot A

in Fig. 18). Some forests were misclassified by GN-SNN as bare

lands in spot B, whereas in spot C, obvious misclassifications

for building areas were committed by GN-CNN. GNSE-CNN

remarkably reduced the misclassifications of the roads, build-

ings, and bare lands as shown in the three spots. Similarly, the

MSA of GNSEM-CNN further reduced these errors. OSA-CNN,

which adopted the majority voting mechanism, exhibited the

most satisfactory performance among the compared methods as

it removed most of the misclassifications caused by small object

primitives and spectral confusion.

GN-CNN misclassified roads, bare lands, and buildings in

experimental area 3 (see Figs. 19 and 20). For instance, part of

the forest was misclassified as water in spot C. As illustrated

in the fourth row of Fig. 20, GNSE-CNN partially solved these

misclassification errors and GNSEM-CNN reduced the errors

through MSA. OSA-CNN solved most of the classification

deficiencies, and thus demonstrated a superior result over its

counterparts (fifth row of Fig. 20).

On the basis of the results of the comparative analyses, the

object primitive/image patch conversion, CNN structure en-

hancement, MSA, and majority voting strategies can effectively

improve the object-based CNN classification accuracy.
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Fig. 16. Some spots in Area 1. The black dashed boxes mark some classification deficiencies, which are solved by the succeeding methods.
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Fig. 17. Classification results in Area 2.

4) Discussion: Routine OBIA requires users to explicitly

specify image features and limits the classification performance.

DL autonomously learns image features from training data,

avoids artificial feature selection, and facilitates classification

processes. Therefore, introducing DL (e.g., CNN) as an OBIA

classifier can eliminate the manual feature tuning. However, the

conversion between object primitives and image patches must

be carefully addressed because of its substantial influence on

image classification accuracy. The results of this article show

that the adaptive image patch sample collection along the object

primitive axes produces appropriate inputs for the CNN classi-

fication.

Image classification can also be conducted using the FCN-

based semantic segmentation. However, semantic segmentation

requires manual object boundary delineation for the annota-

tion collection for model training, which is tedious and time-

consuming. Considering the workload of image annotation and

the sample balance among the classes, semantic segmentation

is suitable for two-class classification problems (i.e., separat-

ing targets from the surrounding background). Through image

segmentation, OSA-CNN collects annotation by single clicking

the object primitives, which improves the sample collection

efficiency and facilitates CNN applications.

The segmentation in OSA-CNN significantly influences the

succeeding classification quality. Segmentation errors will re-

flect in the classification if the object primitives are formed in-

accurately, which is an inherent deficiency of OBIA. Multiscale

classification fusion can alleviate several classification errors,
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Fig. 18. Some spots in Area 2.
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Fig. 19. Classification results in Area 3.

but it cannot resolve the segmentation ones. However, shape

and category errors can be possibly fixed by an additional object

primitive refinement process, which will be investigated in the

future work.

The introduction of image segmentation, object primi-

tive/image patch conversion, and MSA in OSA-CNN increases

the additional run time compared with routine patch-based CNN

classification. As shown in Table V, image segmentation and

image patch generation occupy large parts of the run time.

Meanwhile, the run time of the segmentation is affected by the

image complexity, which is indicated by the relationship of run

time and segment number in the three experimental areas.

From the viewpoint of method utilization, adding multiscale

mechanism into the object-based CNN increases method com-

plexity to some degree, as users need to conduct several (usu-

ally two) rounds of image segmentation. On the other hand,

TABLE V
TIME CONSUMING OF OSA-CNN

CNN training and classification in the proposed method are

not different with other common CNN-based methods. In total,

the proposed method can be easily applied for the HSR image

classification. Meanwhile, the classification process does not

involve global feature extraction. Thus, image partitioning and
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Fig. 20. Some spots in Area 3.

parallel processing can be easily applied to further improve the

method efficiency on classifying large images.

IV. CONCLUSION

The combination of OBIA and DL techniques exhibits great

potential in the HSR image classification. However, many

problems still need to be addressed. OSA-CNN solves two is-

sues of object-based CNN, namely, the interface transformation

between object primitive (inputs for OBIA) and image patch

(inputs for CNN) and the fusion of multiscale classification

information. The features of the proposed method include an

adaptive image patch sample generation based on object primi-

tive axes, a feature-weighted network structure, and a multiscale
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OBIA classification scheme based on the probability fusion. The

experiments show that the proposed technical route is feasible

and achieves high accuracy in the HSR image classification.

In addition, OSA-CNN adopts the traditional OBIA technical

framework of “segment and then classify.” Once an image is

segmented, the object primitives are fixed and difficult to modify

during the feature extraction and classification, which limits

the OBIA performance. This limitation can be addressed by

introducing a flexible interaction mechanism between the seg-

mentation and classification within the OBIA framework. More-

over, the algorithm efficiency should be improved by introducing

some optimization methods, such as parallel computation.
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