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Abstract

This paper proposes a novel model and dataset for 3D

scene flow estimation with an application to autonomous

driving. Taking advantage of the fact that outdoor scenes

often decompose into a small number of independently mov-

ing objects, we represent each element in the scene by

its rigid motion parameters and each superpixel by a 3D

plane as well as an index to the corresponding object. This

minimal representation increases robustness and leads to a

discrete-continuous CRF where the data term decomposes

into pairwise potentials between superpixels and objects.

Moreover, our model intrinsically segments the scene into

its constituting dynamic components. We demonstrate the

performance of our model on existing benchmarks as well

as a novel realistic dataset with scene flow ground truth.

We obtain this dataset by annotating 400 dynamic scenes

from the KITTI raw data collection using detailed 3D CAD

models for all vehicles in motion. Our experiments also re-

veal novel challenges which cannot be handled by existing

methods.

1. Introduction

“Most of the structures in the visual world are rigid or

at least nearly so.” David Marr [20]

The estimation of dense 3D motion fields, widely termed

scene flow, is currently gaining increasing attention. Dense

motion vectors yield insights into the geometric layout of

a scene as well as its decomposition into individually mov-

ing objects. Important applications include mobile robotics

and autonomous driving where 3D object motion is a funda-

mental input to high-level tasks such as scene understand-

ing, obstacle avoidance or path planning [5,7,10,28]. In this

paper, we are interested in 3D scene flow estimation with a

focus on autonomous driving. While a number of methods

have recently demonstrated impressive performance in this

context [25,35,37,39], none of them explicitly takes advan-

tage of the fact that such scenes can often be considered as a

small collection of independently moving 3D objects which

Figure 1: Scene Flow Results on the proposed Dataset.

Top-to-bottom: Estimated moving objects with background

object in transparent, flow results and flow ground truth.

include the background motion caused by the moving cam-

era itself. See Fig. 1 for an illustration. Furthermore, due to

the absence of realistic benchmarks with scene flow ground

truth, quantitative evaluations are restricted to synthetic im-

ages [18, 39] or static scenes such as the ones provided by

the Middlebury stereo benchmark [27] or the KITTI stereo

and optical flow evaluation [12].

The contribution of this paper is twofold: First, we pro-

pose a slanted-plane scene flow model that explicitly rea-

sons about objects while not relying on particular shape

models or pre-trained detectors. In contrast to [35, 37],

we model the 3D structure of the scene as a collection of

planar patches and the 3D motion of these patches by a

small number of rigidly moving objects which we optimize

jointly. This significantly reduces the parameter space and

constrains some of the problems in textureless or ambigu-

ous regions. Besides, our method also outputs a segmenta-

tion of the scene into independently moving objects. Sec-

ond, we present a novel and realistic dataset for quantita-

tive scene flow evaluation. Towards this goal, we collected

400 highly dynamic scenes from the KITTI raw dataset and



augmented them with semi-dense scene flow ground truth:

We extract disparity maps directly from the 3D informa-

tion in the laser scans and fit geometrically accurate CAD

models to moving 3D point clouds to obtain optical flow

ground truth. Furthermore, we provide a meaningful evalu-

ation metric that considers depth and motion jointly.

The performance of the proposed method and the impor-

tance of its individual components are demonstrated with

respect to a representative set of state-of-the-art baselines as

well as in various ablation studies, leveraging the proposed

dataset, the KITTI stereo and optical flow benchmark and

a synthetic sequence of a rotating sphere. Besides demon-

strating the value of our assumptions for this task, our exper-

iments also show that the proposed benchmark offers novel

challenges which are not handled by any existing scene flow

or optical flow algorithm. We make our code1 and dataset2

online available.

2. Related Work

In this section, we first review related work on scene flow

estimation followed by an overview over existing datasets

for benchmarking scene flow approaches.

Methods: Scene flow is commonly defined as a flow field

describing the 3D motion at every point in the scene. Fol-

lowing the seminal work by Vedula et al. [33, 34], the

problem is traditionally formulated in a variational set-

ting [1, 18, 23, 32, 36, 38] where optimization proceeds in

a coarse-to-fine manner and local regularizers are leveraged

to encourage smoothness in depth and motion. With the ad-

vent of RGB-D sensors like the Microsoft Kinect, depth in-

formation has also become available [15, 17, 24, 39]. While

the Kinect sensor works well for indoor scenes, in this pa-

per we are interested in outdoor scene flow estimation with

an application to autonomous driving [9, 25] and thus focus

on appearance-based methods.

Inspired by recent trends in optical flow [21, 30, 40, 41]

and stereo [2,3,42], Vogel et al. [35,37] proposed a slanted-

plane model which assigns each pixel to an image segment

and each segment to one of several rigidly moving 3D plane

proposals, thus casting the task as a discrete optimization

problem which can be solved using α-expansion and QPBO

[26]. Impressive performance has been demonstrated in

challenging street scenes3 as well as on the KITTI stereo

and optical flow benchmarks [12]. Our method (which we

termed “Object Scene Flow”) is related to this line of work,

but goes one step further: Following Occam’s razor, we

take advantage of the fact that many scenes decompose into

a small number of rigidly moving objects and the back-

ground. We jointly estimate this decomposition as well as

1http://www.cvlibs.net/projects/objectsceneflow
2http://www.cvlibs.net/datasets/kitti/
3http://hci.iwr.uni-heidelberg.de/Benchmarks/

the motion of the objects and the plane parameters of each

superpixel in the image. In contrast to [35, 37] where all

shape and motion proposals are fixed a-priori, we optimize

the continuous variables in our model jointly with the object

assignments. Besides obtaining a segmentation of the ob-

jects according to their motion, the scene flow in our model

is uniquely determined by only 4 parameters per superpixel

(3 for its geometry and 1 for the object index) as well as a

small number of parameters for each moving object.

Datasets: Quantitative evaluation of scene flow methods

suffers from a shortage of appropriate reference data. One

reason for this is that no sensor exists which is capable

of capturing optical flow ground truth in complex environ-

ments. Therefore, synthetic renderings of spheres [18, 32],

primitives [1, 6, 36] or simple street scenes [25, 38, 39] are

typically employed to measure quantitative performance.

Towards more realism, recent methods [8, 14, 24] report re-

sults on the Middlebury benchmark [27] by selecting a set

of rectified stereo pairs. Similarly, the more challenging

KITTI benchmark [12] has been leveraged for evaluation

in [35, 37]. Unfortunately, both benchmarks provide scene

flow ground truth only for rigid scenes without indepen-

dently moving objects. Furthermore, the scene flow evalu-

ations based on the Middlebury stereo dataset are restricted

to motions in x-direction of the image and evaluations on

KITTI treat the flow and stereo problem separately.

To the best of our knowledge, there currently does not

exist any realistic benchmark dataset providing dynamic ob-

jects and ground truth for the evaluation of scene flow or

optical flow approaches. In this paper, we take advantage

of the KITTI raw data [11] to create a realistic and chal-

lenging scene flow benchmark with independently moving

objects and annotated ground truth, comprising 200 training

and 200 test scenes in total. We hope that our data collection

will stimulate further research on this important topic.

The remainder of this paper is structured as follows: We

first introduce our “Object Scene Flow” approach in Sec-

tion 3, followed by details on the ground truth annotation

process for our dataset in Section 4. Finally, we show quan-

titative and qualitative results of our method and several

state-of-the-art baselines on three datasets in Section 5. We

conclude with an outlook on future work in Section 6.

3. Object Scene Flow

We focus on the classical scene flow setting where the

input is given by two consecutive stereo image pairs of a

calibrated camera and the task is to determine the 3D lo-

cation and 3D flow of each pixel in a reference frame. We

employ a slanted-plane model, i.e., we assume that the 3D

structure of the scene can be approximated by a set of piece-

wise planar superpixels [41]. Furthermore, we assume a fi-

nite number of ridigly moving objects in the scene. It is

http://www.cvlibs.net/projects/objectsceneflow
http://www.cvlibs.net/datasets/kitti/
http://hci.iwr.uni-heidelberg.de/Benchmarks/


Figure 2: Data Term. Each superpixel i in the reference

view is modeled as a rigidly moving 3D plane and warped

into each other image to calculate matching costs. Each of

the superpixels is associated with a 3D plane variable and a

pointer to an object hypothesis comprising its rigid motion.

important to note that the static elements in the scene (the

“background”) can be easily handled as yet another object

in our formulation as these elements move rigidly with re-

spect to the observer.

More formally, let S and O denote the set of superpixels

and objects, respectively. Each superpixel i ∈ S is associ-

ated with a region Ri in the image and a random variable

si = (ni, ki)
T where ni ∈ R

3 describes a plane in 3D

(nT
i x = 1 for x ∈ R

3 on the plane) and ki ∈ {1, . . . , |O|}
indexes the object which the superpixel is associated with.

Each object i ∈ O is associated with a random variable

oi ∈ SE(3) which describes its rigid body motion in 3D.

Note that each superpixel associated with object i inherits

its rigid motion parameters oi ∈ SE(3). In combination

with the plane parameters ni, this fully determines the 3D

scene flow at each pixel inside the superpixel.

Given the left and right input images of two consecu-

tive frames t0 and t1, our goal is to infer the 3D geometry

of each superpixel ni, the association to objects ki and the

rigid body motion of each object oi. We specify our CRF

in terms of the following energy function

E(s,o) =
∑

i∈S

ϕi(si,o)
︸ ︷︷ ︸

data

+
∑

i∼j

ψij(si, sj)
︸ ︷︷ ︸

smoothness

(1)

where s = {si|i ∈ S}, o = {oi|i ∈ O}, and i ∼ j denotes

the set of adjacent superpixels in S .

3.1. Data Term

The data term models the assumption that corresponding

points across the four images should be similar in appear-

ance. As ki determines the association of superpixel i to an

object, our data term decomposes into pairwise potentials

ϕi(si,o) =
∑

j∈O

[ki = j] ·Di(ni,oj) (2)

where [·] denotes the Iverson bracket and Di(n,o) repre-

sents the data term at superpixel i which depends on plane

parameters n and rigid body motion o. The data term itself

is composed of a stereo, flow and a cross term, calculated

between a reference view (left image at t0) and all other

images as illustrated in Fig. 2:

Di(n,o) = Dstereo
i (n,o) +Dflow

i (n,o) +Dcross
i (n,o)

Each of these terms is defined by summing the matching

costs of all pixels p inside superpixel i, where matching

costs are computed by warping each pixel according to the

homography induced by the associated object o:

Dx
i (n,o) =

∑

p∈Ri

Cx

(
p, K

(
Rx(o)− tx(o) · n

T
)
K−1

︸ ︷︷ ︸

3×3 homography

p
)

Here, x ∈ {stereo, flow, cross}, K ∈ R
3×3 denotes the

camera calibration matrix and [Rx(o)|tx(o)] ∈ R
3×4 maps

a 3D point in reference coordinates to a 3D point in another

camera coordinate system according to the extrinsic cam-

era calibration and the rigid motion o. The matching cost

Cx(p,q) returns a dissimilarity value between a pixel at lo-

cation p ∈ R
2 in the reference image and a pixel at location

q ∈ R
2 in the target image. In our model, we take advan-

tage of dense as well as sparsely matched image features

and define Cx(p,q) as a weighted sum of these two:

Cx(p,q) = θ1,x C
dense
x (p,q) + θ2,x C

sparse
x (p,q)

For Cdense
x (p,q) we leverage the Hamming distance of the

respective 5× 5 Census descriptors [43], truncated at Cmax.

We further use an outlier value of C = Cmax for q’s leaving

the image domain. The same parameter value Cmax is used

for stereo, flow and cross terms. Our sparse matching term

is defined as

Csparse
x (p,q) =

{

ρτ1 (‖πx(p)− q‖
2
) if p ∈ Πx

0 otherwise

where πx(p) denotes the warping of pixel p according to the

set of sparse feature correspondences, Πx is the set of pix-

els in the reference image for which correspondences have

been established, and ρτ (x) denotes the truncated l1 penalty

function ρτ (x) = min(|x|, τ). Details on the sparse feature

correspondences we use will be given in Section 5.

3.2. Smoothness Term

The smoothness term encourages coherence of adjacent

superpixels in terms of depth, orientation and motion. Our



smoothness potential ψij(si, sj) decomposes as:

ψij(si, sj) = θ3 ψ
depth
ij (ni,nj) + (3)

θ4 ψ
orient
ij (ni,nj) + θ5 ψ

motion
ij (si, sj)

with weights θ and

ψdepth
ij (ni,nj) =

∑

p∈Bij

ρτ2 (d(ni,p)− d(nj ,p))

ψorient
ij (ni,nj) = ρτ3

(
1− |nT

i nj |/(‖ni‖‖nj‖)
)

ψmotion
ij (si, sj) = w(ni,nj) · [ki 6= kj ]

Here, d(n,p) denotes the disparity of plane n at pixel p in

the reference image, Bij is the set of shared boundary pixels

between superpixel i and superpixel j, and ρ is the robust l1
penalty as defined above. The weight w(·, ·) is defined as

w(ni,nj) = exp



−
λ

|Bij |

∑

p∈Bij

(d(ni,p)− d(nj ,p))
2





× |nT
i nj |/(‖ni‖‖nj‖)

and encodes our belief that motion boundaries are more

likely to occur at 3D folds or discontinuities than within

smooth surfaces.

3.3. Inference

Optimization of the discrete-continuous CRF specified

in Eq. 1 with respect to all superpixels and objects is an

NP-hard problem and we leverage max-product particle be-

lief propagation (MP-PBP) [22, 31] using sequential tree-

reweighted message passing (TRW-S) [19] for the inner

loop to find an approximate solution. We use 30 shape par-

ticles per superpixel, five objects, ten motion particles per

object and 50 iterations of MP-PBP. All motion particles

and half of the shape particles are drawn from a normal

distribution centered at the MAP solution of the last iter-

ation. The remaining shape particles are proposed using the

plane parameters from spatially neighboring superpixels.

Both strategies complement each other and we found their

combination important for efficiently exploring the search

space. We initialize all superpixels and their shapes using

the StereoSLIC algorithm [41]. Rigid body motions are ini-

tialized by greedily extracting motion estimates from sparse

scene flow vectors [13] as follows: We iteratively estimate

rigid body motions using the 3-point RANSAC algorithm

and find subsets with a large number of inliers using non-

maxima suppression. For further details, we refer the reader

to the supplementary material4.

4. Scene Flow Dataset and Annotation

In absence of appropriate public datasets we annotated

400 dynamic scenes from the KITTI raw dataset with op-

4http://www.cvlibs.net/projects/objectsceneflow

3
D

P
o

in
ts

S
G

M
A

n
n

o
ta

ti
o

n
D

is
p

ar
it

y
M

ap

Before Optimization After Optimization

Figure 3: Annotation. This figure shows the subsampled

CAD model (green), the observations used for registering

the model (red), as well as the corresponding disparity map

(last row) before (left) and after (right) minimizing Eq. 4.

tical flow and disparity ground truth in two consecutive

frames. The process of ground truth generation is especially

challenging in the presence of individually moving objects

since they cannot be easily recovered from laser scanner

data alone due to the rolling shutter of the Velodyne and the

low framerate (10 fps). Our annotation work-flow consists

of two major steps: First, we recover the static background

of the scene by removing all dynamic objects and compen-

sating for the vehicle’s egomotion. Second, we re-insert the

dynamic objects by fitting detailed CAD models to the point

clouds in each frame.

4.1. Static Scene Elements

In order to derive a dense point cloud of the static scene

content the laser scans are first corrected for the rolling shut-

ter effect using the camera motion and the timestamps of

the individual laser measurements. We found that neither

the GPS/IMU system of the KITTI car nor ICP fitting of 3D

point clouds alone yields sufficiently accurate motion esti-

mates and thus combine both techniques using non-linear

least-squares optimization to retrieve a highly accurate and

consistent registration of the individual scans. Overall, we

accumulate 7 scans over time in a common coordinate sys-

http://www.cvlibs.net/projects/objectsceneflow


tem. We further remove all 3D points belonging to moving

objects using the 3D bounding box annotations provided on

the KITTI website5.

4.2. Moving Objects

As the dynamic elements in the scene cannot be recov-

ered from 3D laser measurements alone, we leverage de-

tailed 3D CAD models from Google 3D Warehouse6 for

this purpose. It is important to note that given the limited

measurement accuracy of stereo techniques our 3D CAD

models are not required to be millimeter-accurate, which

would be intractable considering the broad variety of ve-

hicles in KITTI. Instead, we select the most similar model

from a limited but diverse set of 16 vehicles which we il-

lustrate in the supplementary material. For each model, we

obtain a 3D point cloud by uniformly sampling ∼ 3, 000
points from all faces of the CAD model. We use this point

cloud for fitting the 3D CAD model to both frames of the

sequence using 2D and 3D measurements as illustrated in

Fig. 3.

More specifically, for each dynamic object in the scene,

we estimate a 3D similarity transformation defining the

pose and scale of the 3D model in the first frame as well

as the 3D rigid body motion of the object, yielding a 15-

dimensional parameter vector ξ ∈ R
15. We leverage three

different types of observations: First, we accumulate 3D

points belonging to a moving object over all frames using

the annotated 3D bounding boxes. Second, we incorpo-

rate disparity estimates computed by semi-global matching

(SGM) [16]. While SGM estimates are not always reliable,

we only optimize for a very small number of parameters

and found (by manual verification) that including this term

as a weak prior improves results. As a third observation, we

introduce manually annotated correspondences between ge-

ometrically meaningful parts of the 3D CAD model and the

corresponding image coordinates in both frames. We found

that including 5 to 10 such correspondences per object is

sufficient for obtaining accurate optical flow ground truth.

We obtain the transformation parameters ξ by minimiz-

ing the following energy function

E(ξ) =
∑

t∈{1,2}

E3D
t + ESGM

t + E2D
t (4)

where t is the frame index and Et are the energy terms

corresponding to each of the observations, see Fig. 3 for

an illustration. More specifically, E3D
t denotes the aver-

age truncated l2 distance between the 3D laser points inside

the object’s 3D bounding box and their nearest neighbors in

the CAD model, ESGM
t represents the truncated l1 distance

between the disparity map induced by the CAD model and

5http://www.cvlibs.net/datasets/kitti/raw data.php
6https://3dwarehouse.sketchup.com/

the SGM measurements and E2D
t is the quadratic 2D error

with respect to the selected 2D − 3D correspondences in

frame t. Our optimization scheme alternates between mini-

mizing Eq. 4 with respect to ξ using non-linear least-squares

and updating all nearest neighbor associations until conver-

gence. The weights of the terms are chosen to ensure a

dominating influence of the manual input.

For generating the final disparity and optical flow maps

we project a more densely sampled 3D CAD model into

all four images according to the estimated ξ. For resolving

intra- and inter-occlusions of objects we leverage OpenGL’s

z-buffer. Finally, non-rigidly moving objects like pedestri-

ans or bicyclists and erroneous regions in the laser scans are

manually masked. All resulting flow and disparity maps are

validated by visual inspection. In addition, critical cases are

identified and excluded by sparse, manually annotated con-

trol points. While we empirically found that for most parts

our ground truth is at least 3 pixels accurate, we observed

that very large motions at the image boundaries (up to 500
pixels) degrade the accuracy of the ground truth. We thus

design a scene flow evaluation metric which takes these er-

ror characteristics into account as discussed below.

5. Experimental Results

This section provides a thorough quantitative and qual-

itative analysis of our model on the proposed scene flow

dataset, the KITTI stereo/flow evaluation [12] as well as the

synthetic sphere sequence of Huguet et al. [18]. As input

to our method, we leverage sparse optical flow from feature

matches [13] and SGM disparity maps [16] for both recti-

fied frames. Sparse cross features are computed by combin-

ing the optical flow matches with valid disparities from the

SGM maps. We obtain superpixels using StereoSLIC [41]

and initialize the rigid motion parameters of all objects in

the scene by greedily extracting rigid body motion hypothe-

ses using the 3-point RANSAC algorithm implemented in

[13]. In order to obtain the model parameters {θ} and {τ},

we perform block coordinate descent on a subset of 30 ran-

domly selected training images. For details on the estimated

parameter values we refer the reader to the supplementary

material.

Evaluation Protocol: For our results on the KITTI

benchmark we follow the standard evaluation protocol and

provide stereo and optical flow outliers separately using an

error threshold of 3 pixels. For the proposed scene flow

dataset, we annotated a total of 200 training and 200 test

scenes from the KITTI raw dataset [11] using the method

described in Section 4 and evaluate both disparity errors

and the flow at each valid ground truth pixel in the reference

view. We only count errors if the disparity or flow exceeds

3 pixels and 5% of its true value. Empirically, we found

that this combination ensures an evaluation which is faith-

http://www.cvlibs.net/datasets/kitti/raw_data.php
https://3dwarehouse.sketchup.com/
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Figure 4: Performance. This figure shows the scene flow

errors of our method on the proposed dataset with respect

to the number of object proposals and MP-PBP iterations.

[32] [18] [39] [37] Ours

RMSE 2D Flow 0.63 0.69 0.77 0.63 0.55

RMSE Disparity 3.8 3.8 10.9 2.84 2.58

RMSE Scene Flow 1.76 2.51 2.55 1.73 0.75

Table 1: RMS Errors on the “Sphere” Sequence [18].

ful with respect to the annotation errors in the ground truth.

For methods which provide their second disparity estimate

directly in the second frame we leverage the estimated opti-

cal flow for mapping the disparity values to the correspond-

ing pixels in the first frame and apply background interpo-

lation [12] for all missing pixels. Thus at each pixel in the

reference view, we obtain four values which we evaluate

and which uniquely determine the 3D scene flow: two dis-

parity values (first and second frame) and the flow in u- and

v-direction. We also evaluate the combination of all three

measures in a single scene flow metric which considers only

pixels with correct disparities and flow as correct. We eval-

uate results by averaging errors over all image regions as

well as over all regions which do not leave the image do-

main.

Ablation Studies: We first assess the contribution of each

individual term in our energy formulation in Eq. 1 on the

proposed scene flow dataset. Table 2 (lower part) shows

the results when evaluating the whole image. Results for

non-occluded regions can be found in the supplementary

material. The columns show errors in terms of disparity

(“D1”, “D2”), flow (“Fl”) and scene flow (“SF”) using the

conventions specified above. For each modality we provide

results in terms of the background (“bg”), foreground (“fg”)

as well as the combination of both (“bg+fg”). The first row

of the table shows the results of our model when only in-

cluding the unary terms. The remaining rows show results

for different combinations of unary and pairwise terms with

the full model at the bottom. While Census proves to be

a stronger feature than sparse optical flow in combination

with SGM, their combination outperforms each of them in-

dividually in terms of scene flow error. The experiments

also reveal that the boundary term is the strongest pairwise

cue while again the combination of all pairwise terms yields

the overall best scene flow results.

Next, we investigate the performance of our full model

with respect to the size of the object set in Fig. 4 (left). To-

wards this goal, we decrease the number of allowed object

hypotheses in our model from 5 to 1. This plot affirms our

assumption that the outdoor scenes we consider can be well

described by a small number of rigidly moving objects. Fi-

nally, Fig. 4 (right) shows the performance of our method

with respect to the number of MP-PBP iterations. While we

use 50 iterations for all our experiments in practice, this plot

shows that 10 iterations are sufficient for achieving almost

optimal performance under our model.

Baseline Results: Table 2 (upper part) compares the re-

sults of our method (last line) to several baselines on our

novel scene flow dataset. We interpolate the results of

sparse and semi-dense methods using the KITTI stereo/flow

development kit to ensure a fair comparison. Besides the

classic variational approach of Huguet et al. [18], we also

compute results for the sparse scene flow method of Cech

et al. [6]. We further construct several baselines by com-

bining two state-of-the-art optical flow algorithms [4, 29]

with disparity estimates in both frames obtained using semi-

global matching (SGM) [16] which also serves as input to

our method. As a representative for RGB-D based algo-

rithms we show the results of Hornacek’s Sphere Flow [17]

which have been provided to us by the authors. To emulate

the required depth component we reproject all valid pixels

of SGM disparity maps into 3D. Finally, we also include

the results of Vogel’s piece-wise rigid scene flow (PRSF)

approach [37]. We note that the proposed approach strictly

outperforms all baselines with PRSF being the closest com-

petitor.

Qualitative Results: Fig. 5 provides qualitative results

for some of the scenes in the proposed dataset using similar

color mappings as in KITTI [12]. Note however, that the

percentage error is mapped so that inliers according to our

scene flow metric are depicted in blue shades. As evidenced

by the error images, our method is able to recover the cor-

rect disparity and flow in a variety of challenging scenes.

Even objects which are not perfectly rigid (and for which no

ground truth exists) such as the bicyclist in subfigure (2,2)

are robustly detected by our method. Some failure cases of

our method are illustrated below the horizontal line. Those

scenes are extremely challenging due to difficult lighting

conditions or quickly moving objects in the vicinity of the

observer and none of the algorithms in our evaluation was

able to cope with these challenges.

Results on the KITTI Benchmark: We also evaluated

our model on the static scenes of the KITTI stereo and opti-

cal flow benchmark [12] and rank amongst the top 5 meth-

ods in each category. Using the 3 pixels evaluation thresh-



D1 D2 Fl SF

bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg

Huguet [18] 27.31 21.71 26.38 59.51 44.92 57.08 50.06 47.57 49.64 67.69 64.03 67.08

GCSF [6] 11.64 27.11 14.21 32.94 35.76 33.41 47.38 45.07 47.00 52.92 59.11 53.95

SGM [16] + LDOF [4] 5.15 15.27 6.83 29.58 23.47 28.56 41.07 35.52 40.15 43.99 44.77 44.12

SGM [16] + Sun [29] 5.15 15.27 6.83 28.77 25.64 28.25 34.83 45.46 36.60 38.21 53.03 40.68

SGM [16] + Sphere Flow [17] 5.15 15.27 6.83 14.10 23.12 15.60 20.91 28.89 22.24 23.09 37.11 25.42

PRSF [37] 4.74 13.73 6.24 11.14 20.47 12.69 11.73 27.72 14.39 13.49 33.71 16.85

Unary (SGM+SpF) 5.26 14.40 6.78 6.48 28.67 10.17 8.25 37.03 13.04 10.15 42.58 15.54

Unary (Census) 6.89 19.22 8.95 8.01 25.35 10.90 7.71 26.63 10.86 9.69 35.34 13.96

Unary (All) 6.08 16.70 7.85 7.15 23.72 9.91 7.17 25.97 10.29 8.93 33.79 13.06

Unary (All) + Pair (Boundary) 4.58 10.60 5.58 5.58 19.34 7.87 5.88 23.90 8.88 7.28 30.00 11.06

Unary (All) + Pair (Normal) 5.70 16.01 7.42 6.77 23.42 9.54 6.86 25.68 9.99 8.54 33.47 12.69

Unary (All) + Pair (Object) 6.23 17.86 8.16 7.24 23.99 10.03 7.14 24.92 10.10 8.93 33.09 12.95

Unary (SGM+SpF) + Pair (All) 6.60 25.71 9.78 7.81 33.94 12.16 9.54 37.43 14.19 11.59 44.25 17.03

Unary (Census) + Pair (All) 4.67 12.37 5.95 5.58 19.74 7.94 5.66 22.57 8.47 7.09 29.37 10.79

Unary (All) + Pair (All) Fast 4.45 12.73 5.83 5.41 20.12 7.85 5.71 23.57 8.68 7.14 30.48 11.03

Unary (All) + Pair (All) 4.54 12.03 5.79 5.45 19.41 7.77 5.62 22.18 8.37 7.01 28.76 10.63

Table 2: Quantitative Results on the Proposed Scene Flow Dataset. This table shows the disparity (D1/D2), flow (Fl)

and scene flow (SF) errors averaged over all 200 test images. For each modality we separately provide the errors for the

background region (bg), all foreground objects (fg) as well as all pixels in the image (bg+fg).

old, we achieve 3.28 % errors for stereo and 3.47 % errors

for optical flow, comparing favorably with respect to PRSF.

All details and the full result tables are provided in the sup-

plementary material.

Results on the “Sphere” Dataset: For completeness we

provide results of our method on the synthetic “Sphere”

dataset by Huguet et al. [18]. As this dataset resembles

a random dot stereogram, appearance does not convey in-

formation about object boundaries. We thus modify the

StereoSLIC algorithm to consider dense optical flow instead

of disparity and provide the Horn-Schunck results of Sun

et al. [29] as input. As illustrated in Table 1 our method

performs surprisingly well despite the fact that we restrict

the scene to only 200 planar superpixels. Qualitative results

and error maps are shown in the supplementary material.

Runtime: Our non-optimized MATLAB implementation

with C++ wrappers requires on average 60 seconds for each

of the 50 MP-PBP iterations. This yields a total runtime of

50 minutes for processing one scene (4 images) on a single

i7 core running at 3.0 Ghz. By restricting the number of

shape and motion particles to 10 and 5, respectively, and by

setting the number of MP-PBP iterations to 10, we are able

to reduce the total runtime of our algorithm to 120 seconds.

The entry ’Fast’ in Table 2 shows that the modified version

performs only slightly worse than the full method presented

in the paper, but still compares favorably with respect to the

closest state-of-the-art competitor.

Supplementary Material: We encourage the reader to

have a look at the supplementary material7 which provides

an analysis of performance with respect to variation of pa-

rameters, and additional quantitative and qualitative results.

6. Conclusion

We have demonstrated the benefits of modeling dynamic

outdoor scenes as a collection of rigid objects. By reason-

ing jointly about this decomposition as well as the geome-

try and motion of a small number of objects in the scene the

proposed model is able to produce accurate dense 3D scene

flow estimates, comparing favorably with current state-of-

the-art on several datasets. We have further introduced the

first realistic and large-scale scene flow dataset with ground

truth annotations for all static and dynamic objects in the

scene. Compared to KITTI stereo/flow, our benchmark pro-

vides dynamic objects and a dedicated scene flow measure

as well as novel challenges to the community. In particular,

we found that none of the existing optical flow or scene flow

methods is able to cope with the extreme motions produced

by moving objects in some of our scenes. A second source

of failure are textureless and reflecting surfaces where of-

ten both, stereo matching and optical flow estimation fails.

We conjecture that more expressive priors are required to

overcome these challenges and believe that our dataset will

stimulate further research towards solving these problems.

7http://www.cvlibs.net/projects/objectsceneflow

http://www.cvlibs.net/projects/objectsceneflow
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Figure 5: Qualitiative Results. Each subfigure shows from top-to-bottom: disparity and optical flow ground truth in the

reference view, the disparity map (D1) and optical flow map (Fl) estimated by our algorithm, and the respective error images

using the color scheme depicted in the legend. The four scenes below the horizontal line are failure cases. See text for details.
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