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Abstract— The automatic extraction and analysis of visual
information is becoming generalised. The first step in this
processing chain is usually separating or segmenting the
captured visual scene in individual objects. Obtaining a
perceptually correct segmentation is however a cumber-
some task. Moreover, typical applications relying on object
segmentation, such as visual surveillance, introduce two
additional requirements: (1) it should represent only a small
fraction of the total amount of processing time and (2) real-
time overall processing. We propose a technique that tackles
these problems using a cascade of change detection tests,
including noise-induced, illumination variation and struc-
tural changes. An objective comparison of common pixel-
wise modelling methods is first done. A cost-based partition-
distance between segmentation masks is introduced and used
to evaluate the methods. Both the mixture of Gaussians and
the kernel density estimation are used as a base to detect
structural changes in the proposed algorithm. Experimental
results show that the cascade technique consistently outper-
forms the base methods, without additional post-processing
and without additional processing overheads.

Index Terms— foreground segmentation, object detection,
background modelling and subtraction, objective compari-
son of segmentations, cost-based partition-distance, cascaded
change detection, visual surveillance

I. INTRODUCTION

Automatic processing of large amounts of information
has been a recurrent research topic over the last years, and
important results have been achieved. Visual information
processing is not an exception and due to its much
improved capabilities, applications like search engines
based in visual terms are becoming widespread. A very
important initial step toward efficient processing is the
separation of a complex scene in its composing objects
or visual elements. Each object can then be separately
further analysed, identified, classified, etc. This separation
or segmentation is a very complex problem since, to attain
results comparable to human performed segmentations,
semantic or high-level a priori knowledge is required. For
typical real-time applications oriented to the analysis of
visual scenes in order to identify events and actions – such
as intelligent surveillance systems and human-machine
interface systems – simplifications are needed. For these,
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motion is a key factor aiding the segmentation process.
Objects that are moving or performing some action, often
called foreground objects, need to be separated from the
other elements in the scene, the background.

Probably due to its simplicity, the most common
approach for discriminating a moving object from the
background is background subtraction. The rationale is
the subtraction of the current image from a reference
image, which is somehow acquired in a step prior to
subtraction. Non-changing segments of the image are
considered as being part of the background, whereas the
foreground consists of the changing segments – including
moving and new objects. However, if the reference is
not modelled or updated adequately this technique can
be highly susceptible to environment conditions like illu-
mination changes. For example, a straightforward way of
acquiring a reference image would be using the previous
“history” by obtaining a background model based on the
statistical representation of the previous N frames, for
example a pixel-wise average image. After estimating
the reference image, the segmentation can be obtained
from an efficient thresholded subtraction operation. This
simple approach, although efficient, may not perform well
in real-world, non-controlled environments. Changes in
illumination conditions and dynamic behaviour in the
background may cause unacceptable rates of false posi-
tives. To achieve robust background modelling, techniques
that can better adapt to dynamic behaviour are needed.
Ideally, the performance should not depend on the camera
placement, nor should it be sensible to what happens in
its visual field or to lighting effects. It should also be
capable of dealing with movement through cluttered areas,
objects overlapping in the visual field, shadows, lighting
changes, effects of moving objects in the scene, slow-
moving objects and objects being introduced or removed
from the scene. However, it is also important to stress
that this operation is often required to perform as fast as
possible, since it is usually the first step in the processing
chain. Overly complex modelling schemes may reveal
themselves unfeasible despite performing at low error
rates.

A proposed classification of existing algorithms for
background modelling divides them in predictive and non-
predictive methods. Predictive methods model the scene
as a time series and develop a dynamic model to recover
the current input based on past observations. Usually
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Kalman filters [1] [2] are employed to update slow and
gradual changes in the background. In general, these
methods are mainly applicable to backgrounds consisting
of stationary objects. On the other hand, non-predictive
methods for background modelling do not consider the
order of input observations and build a probabilistic
representation (p.d.f.) of the observations at a particular
pixel. These are by far the most common methods and
many different proposals and adaptations can be found in
the literature. In [3] a unimodal distribution was proposed
– a Gaussian distribution is used to model the background.
If each pixel resulted from a particular surface under
particular lighting, a single Gaussian would be sufficient
to model the pixel value accounting for acquisition noise.
Moreover, if only lighting changed over time, a single,
adaptive Gaussian model per pixel would be sufficient.
In practice this does not happen and for that purpose
a model based in the mixture of a fixed number of
Gaussians distributions has been frequently used [4] [5].
In [6], a non-parametric model is proposed, where a
kernel-based function is used to represent each pixel’s
colour distribution. The kernel-based distribution is a
generalization of the mixture of Gaussians which does not
require parameter estimation. In [7], a similar approach
is followed, where the distribution of temporal variations
in colour at each pixel is used to model the background.
Motion-based adaptive kernel density estimation is also
proposed in [8]. More recent approaches to background
modelling include the principal features approximation [9]
that considers only the more relevant features to create a
model and the mean-shift method [10] [11], which was
also previously applied to image segmentation.

All of the previous methods are based in pixel-wise
background modelling. Other techniques combine tem-
poral and spatial modelling. In [12], a mixture model
(Gaussians or Laplacians) is used to represent the distri-
butions of background differences for static background
points. A Markov random field (MRF) model incorporates
the spatial coherence for robust foreground segmentation.
Another approach to detect moving objects is to extract
groups of motion, either by accumulating consistent flows
in terms of direction over successive frames [13] or by
using layered approaches to fit a collection of motion
models to the image data [14] [15]. Recently, an approach
that defines foreground objects as clusters of pixels salient
with respect to both motion and colour was presented
[16].

Additionally other authors propose a different approach
that employs information about the object’s structure to
segment them. In [17], the contour of moving objects
is estimated by fusing motion with colour segmentation
and edge detection. Active contours were employed in
[18] and, besides edge information, prior models on the
image intensity values inside and outside the contour
were also proposed [19]. These methods estimate the
object’s contour by minimizing a global cost function
and, although robust, the estimates are achieved at a
high computational cost. The main drawbacks are the

complexity and the need to generally assume some prior
knowledge in order to avoid ill-posed problems. However,
this knowledge is not always available. Moreover, the
priors assumed by the techniques can be unsuitable to
the problem in hands. More recent work in this line of
thought includes the use of layered models [20] and rigid
objects modelling [21].

This paper is organized as follows. In Section II an
overview of some background modelling and subtraction
algorithms is presented as well as an objective comparison
between them. The comparison between segmentations
produced by each of the algorithms is done using a metric
introduced also in this section. The metric is a gener-
alization of the distance between partitions. Section III
describes the cascaded change detection algorithm and
adapts it to two commonly used methods for background
modelling: mixture of Gaussians and kernel density esti-
mation. Experimental results are presented in Section IV.
Finally, conclusions are drawn in Section V.

II. BACKGROUND MODELLING AND SUBTRACTION
OVERVIEW AND COMPARISON

In this section we present a small overview of some of
background and modelling algorithms mentioned in the
previous section. A representative set of state of the art
techniques were implemented and tested. A comparison
was done and the conclusions are presented. The Running
Average background modelling algorithm is used as a
base performance index. To compare the segmentation
results of each technique, an objective metric is also
proposed.

A. Overview

1) Running Average (RAvg) – The background can
be modelled as the average of the previous frames but,
in order to avoid expensive memory requirements, this
average is approximated by an adaptive filter with a
learning rate α. Each background pixel value at position
(i, j) and time instant t is given by:

B(i,j)(t) = αI(i,j)(t) + (1− α)B(i,j)(t− 1)

Foreground is then estimated using a thresholded sub-
traction of the current frame and the estimated back-
ground. This technique is probably the most naive but
has a very simple and very fast implementation. The
results are therefore far from good in particular with
complex backgrounds. Since we are considering only a
static representation of the background to perform the
subtraction, whenever some kind of dynamic behaviour in
the background happens, it will be incorrectly classified
as foreground. Nevertheless, the running average should
represent the base performance for these types of algo-
rithms. All tests were performed with a threshold TRAvg
of 15.

2) Mixture of Gaussians (MoG) – Instead of estimating
the background representation directly, another and more
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effective approach is to estimate a background model that
can predict the behaviour in each pixel, using the pixel’s
“history”. By estimating the background probability den-
sity function (p.d.f.) we are able to do just that. Assuming
that any structural changes affecting the value of the
pixel are caused by several processes, each modelled by
a Gaussian, we can therefore define the probability of
observing its value as:

P (υt) =
K∑
k=1

P (Gk)P (υt|Gk) =
K∑
k=1

ωk · η(υt, µk, σk)

(1)
where Gk is the k-th Gaussian of K distributions, ωk,

µk and σk are, respectively, an estimate of the weight,
the mean value and the variance of the k-th Gaussian in
the mixture; η is the normal density function. Moreover,
it can be easily shown [5] that, given the current colour
vector υt in a pixel, the probability that the pixel belongs
to the background is:

P (B|υt) =
∑K
k=1 P (υt|Gk)P (Gk)P (B|Gk)∑K

k=1 P (υt|Gk)P (Gk)
(2)

If P (B|υt) > TMoG the pixel is estimated as being
part of the background. However, two density estima-
tion problems are left to resolve: firstly, estimating the
distribution of all observations, within a period of time,
at each pixel location using the Gaussian mixture in
equation (1), which provides estimates of both P (Gk)
and P (υt|Gk); and secondly, evaluating how likely each
Gaussian in the mixture represents the background, i.e.,
P (B|Gk). To accomplish the first estimation, in [4] an
online K-means approximation is proposed in order to
model pixel variation over time by a mixture of Gaussians,
as given by equation (2). It uses a fixed learning rate
to update each Gaussian’s parameters over time and a
Gaussian substitution algorithm whenever no match is
possible. However, using a fixed learning rate can often
result in slow convergence. Following the same rationale,
and in order to improve the convergence speed, in [5] it
is proposed an adaptive learning rate schedule for each
Gaussian defined by a parameter α; we will be using this
last approach. The estimation of P (B|Gk) is based on
application-specific heuristics [5].

The background image representation can be defined
as the expected value of the background process. Thus,
the background pixel at (i, j) and time t is defined by
E[υi,j,t|B] which is evaluated by a weighted average of
the Gaussian means.

E[υi,j,t|B] =
∑K
k=1 µkP (B|Gk)P (Gk)∑K
k=1 P (B|Gk)P (Gk)

(3)

The tests with MoG were done with the following
parameters: K = 3, α = 0.005 and TMoG = 0.05.

3) Kernel Density Estimation (KDE) – It is possible
to approximate each background’s pixel p.d.f. by the his-
togram of the most recent values classified as background.

This approach has however some problems namely, being
the histogram a step function, the p.d.f. modelling can
reveal itself erroneous. A non-parametric model based
on Kernel Density Estimation (KDE) is proposed in [6].
KDE guarantees a smoothed, continuous representation
of the histogram. The background p.d.f. is given as a
sum of Gaussian kernels centred in the most recent N
background values:

P (υt) =
1
N

N∑
k=1

η(υt − υk,Σk) (4)

Even if background values are not known, unclassified
sample data can be used instead. This inaccuracy will be
recovered along model updates. Given 4, the pixel with
the colour vector υt is classified as foreground if P (υt) <
TKDE , where T is a global threshold. An important issue
in KDE is the estimation of Σk – the kernel bandwidth.
In [6], it is considered a diagonal matrix for simplicity
and each variance is estimated in the time domain by
analysing the set of differences between two consecutive
values

Model update consists in selectively updating the vector
of the previous N background values. The model pro-
posed in [6] also considers the use of two concurrent
similar models, one for long-term and the other for short-
term memory. In addition, spatial correlation is taken
into consideration by the model. However, we will not
be considering both these modifications since we are
comparing pixel-wise modelling techniques. These types
of considerations are transversal to all algorithms we are
evaluating. The tests executed with this algorithm used
the following parameters: N = 50 and TKDE = 10−6.

4) Principal Features (PF) – More recently, other
approaches were proposed to estimate the background
p.d.f.. In [9], the background is represented at each pixel
by the most frequent features, or principal features.

The classification is done using a Bayesian framework,
and it is shown that a pixel represented by υ is classified
as belonging to the background if:

2P (υ|B)P (B) > P (υ) (5)

Otherwise, it is classified as belonging to the fore-
ground. We need however to know a priori or estimate
the probabilities P (υ|B), P (B) and P (υ). As stated
previously, one way to estimate these probabilities is to
use a histogram of features. The important contribution of
[9] is that it proposes that these probabilities can be esti-
mated using solely the most representative features in the
histogram, given that these can represent the background
effectively. Therefore, for a proper selection of features,
there would be a small value N of features (the principal
features) that can approximate well the background by∑N
k=1 P (υk|B).
The learning and update process is done using a table

of statistics for the possible principal features of the back-
ground. The update of estimated probabilities through
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time is done using a simple adaptive filter according to
the type of change that occurred (gradual or “once-off”).

Note also that the algorithm proposed in [9] uses
several types of features, namely: spectral, spatial and
temporal features. For this comparison we will be using
only the spectral features, i.e. colour information. Other-
wise, the results for this algorithm would be biased. The
tests executed with principal features used the following
parameters: α = β = 0.04 (rate for probability and
background learning, respectively), M = 50, N = 20
and M1 = 0.75 (for “once-off” detection).

5) Mean Shift (MS) – Finally, yet another way of
estimating the background p.d.f. is to use the mean-shift
[10] [11] which is an iterative gradient-ascent method
to detect modes of a multimodal distribution and their
covariance matrix. The only parameter needed is the
bandwidth range that is application-specific. The mean
shift algorithm states that, for a given set of points xi, i =
1, . . . , n, the mean shift vector in the one-dimensional
case can be expressed as:

m(x) =
∑n
i=1 xig

(
x−xi

h

)2∑n
i=1 g

(
x−xi

h

)2 − x
where x is an arbitrary point in the data space, h

is a positive value called the analysis bandwidth and
g(u) is a bounded support function, first derivative of
another bounded support function, k(u), or kernel profile.
It can be proven that, for a kernel with a convex and
monotonically decreasing profile, the iterative procedure
xl+1 = m(xl)+xl converges. In [11] some optimizations
are introduced in order to reduce processing time, namely
histogram-base mean shift computation – the mean shift
vector is calculated with respect to the number N of
histogram bins. This was the method implemented and
tested.

All points xi, i = 1, . . . , tu belonging to a mode will
converge to the same point, the mode centre, or mean µu.
Moreover, if we assume Gaussian modes, for each feature
– in this case the components of the colour vector υ – the
p.d.f consists of a weight sum of the U modes modelled
by a Gaussian distribution. A threshold test can simply
be applied to the estimated p.d.f:

U∑
u=1

F∏
f=1

ω(u,f)η(xf , µ(u,f), σ
2
(u,f)) < TMS

Note that we are assuming that the features f, f =
1, . . . , F are independent. The weights ω(u,f) also need
to be estimated, and are generally defined by heuristics
[11]. If the probability estimated for a given pixel value
υ is smaller than the threshold T , the pixel is classified
as foreground. The mean shift algorithm was tested with
the parameters: N = 50, h = 3 and TMS = 10−20.

B. Metric to compare foreground segmentations

When working with object-based spatial segmentation
of video, the major objective is to design an algorithm

that produces appropriate segmentation results for the
particular goals of the application being addressed. The
demonstration of the usefulness of a particular algorithm
entails necessarily a comparative analysis of the algo-
rithm against similar algorithms. And the fair assessment
requires suitable metrics providing a meaningful and
objective measure of performance.

A unifying model for the comparison of image segmen-
tations was proposed recently in the literature [22], [23].
Here, we recover the general framework and instantiate
a new metric, particularly adapted for the application at
hand. At the core of the framework is the intersection-
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Figure 1. Intersection-graph for two segmentations. The weights shown
correspond to the number of pixels in the intersection.

graph between two segmentations, defined as the bipartite
graph with one node for each region of the segmentations.
Two nodes are connected by an undirected, weighted
edge if and only if those two regions intersect each
other. Figure 1 exemplifies such setting. The intersection-
graph associated with two image segmentations can now
be used as a factory of indices of similarity between
partitions. The partition-distance [22] has been defined as
the problem of finding a maximum weighted matching
in the intersection-graph. The sum of the weights of
the unmatched edges on this matching process provides
the distance between both segmentations. And the pixels
corresponding to these unmatched edges constitute a
informative error mask.

The weight assigned to an edge should express the im-
portance of the corresponding intersection. The simplest
way is to assign the area of the intersection to the weight
of each edge. But this formulation is not necessarily the
one better capturing the perceived quality of a segmen-
tation. In particular, all pixels in the same intersection
of two regions are being equally weighted. However,
to accommodate human perception, the different error
contributions should be weighted according to their visual
relevance. Therefore, it is, arguably, more sensible that the
cost of erring a pixel increases with pixel distance to the
object border.

The foregoing argument motivates the introduction of
the cost-based partition-distance, dcsym, as a generaliza-
tion of the partition-distance. Start by computing the
distance of each pixel to the object border in both seg-
mentations, d1 and d2. Define a monotonically increasing
cost function on these two distances, C(d1, d2). Different
laws can be considered, such as linear, exponential or
logarithmic. A suitable strategy is to set C(d1, d2) =
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Figure 2. Evolution of dc
sym for the sequences SW, SH, OD and BR (from left to right) using different methods for background modelling – kernel

density estimation, mean-shift, mixture of gaussians, principal features and running average.

max(d1, d2) or C(d1, d2) = 2max(d1,d2). Finally, the
weight of an edge will be the mere sum of the individual
costs of the pixels in the intersection. Note that setting
C(d1, d2) = 1 results in edges weighted by the area of
the intersection. The cost-based partition-distance will be
the sum of the weights of the unmatched edges on the
matching process that follows. The cost-based partition-
distance will penalize thick discrepancies between two
segmentations, favouring thin, along the borders, differ-
ences. This metric can also be seen as generalization of
the perceptual spatial measure proposed in [24].

It is possible to confirm that the cost-based partition-
distance still enjoys of most of the useful properties
of the original partition-distance [22]. Most notably, the
cost-based partition-distance is still non-negative (being
zero iff the two partitions coincide), symmetric, and
transitive. It is, therefore, a metric. The transitive property
is especially significant in the context of comparing more
than two algorithms. It conveys the desirable behaviour
that if segmentation A is similar to segmentation B
and segmentation B is similar to segmentation C, then
segmentation A is similar to segmentation C.

C. Comparative test

A comparative study of background modelling tech-
niques was previously presented in [25], however this
study consists of a theoretical comparison of several
algorithms and no qualitative tests are presented. In order
to get a better understanding of the algorithms, we tested
them in several sequences. The results for some of the
test set sequences are presented next – refer to section
IV for more details on the test sequences. All tests were
executed using only colour vectors as features; the YUV
colour space was used.

Table I summarizes the results obtained for each algo-
rithm in each sequence; for each algorithm-sequence com-
bination the average distance to the “ground-truth” and
the throughput in frames per second (fps) are presented.
No post-processing was employed on each algorithm’s
output segmentations. Figure 2 shows the evolution of the
distance over time in the SW, SH, OD and BR sequences.
All algorithms were implemented by the authors and the
tests were performed in a Pentium 4 3.4GHz with 1GB
of RAM.

Results show that KDE perform better than the other
methods. The principal features and the mixture of Gaus-

TABLE I.
AVERAGE dc

sym AND FRAMES PER SECOND FOR EACH METHOD

OVER THE EVALUATED FRAMES OF EACH SEQUENCE.

SW SH OD BR FT
RAvg dc

sym 0.185 0.302 0.347 0.357 0.336
fps 134 152 156 571 526

MoG dc
sym 0.160 0.267 0.317 0.678 0.307
fps 6.7 6.1 6.7 31.5 29.2

KDE dc
sym 0.109 0.267 0.261 0.285 0.093
fps 1.3 1.1 1.4 5.6 7.5

PF dc
sym 0.150 0.318 0.276 0.362 0.126
fps 2.9 2.2 2.9 13.7 14.7

MS dc
sym 0.218 0.333 0.372 0.460 0.157
fps 0.04 0.04 0.05 0.2 0.2

sians modelling methods follow closely. Note that the re-
sults obtained with MoG in the BR sequence are severely
degraded by the initial state which includes foreground
objects. Since the analysed time window is not sufficient
for the model to recover, the results are continuously
affected by it. Also, note that the mean shift approach
processing time is extremely high, invalidating its use for
real-time applications. On the other hand the MoG method
has a considerably better processing frame rate than the
other methods and is therefore better suited for real-time
applications.

In summary, despite having the less average distance
to the “ground-truth”, KDE’s throughput makes it less
interesting than MoG, which has the best relation perfor-
mance/complexity. Moreover, the segmentations produced
by the MoG method are prone to be improved even further
since they are less fragmented than the ones produced by
the other methods – this will become more evident in
section IV.

III. CASCADED CHANGE DETECTION

Consider a typical visual surveillance scene being cap-
ture by a static camera; most of the background pixel
values change slowly in time and can be caused by
phenomena of different nature. If it is possible to model
these independently, better results can be achieved. Before
detailing the proposed algorithm let us first consider
the following: when no structural change occurs, the
difference between a pixel value, represented by a colour
vector υ, in the current frame Fc and a reference frame
Fr can essentially result from two factors – illumination
variation or noise. Illumination variation can be accounted
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by a positive multiplicative factor k which modulates the
signal, while noise can be accounted by a superimposed
vector υN , modelled by a Gaussian or Laplacian distri-
bution – Figure 3 represents this in a two-dimensional
space.

Fr

k Fr

Fc

Figure 3. Effects of illumination variation and noise over a reference
colour vector – the latter is modelled by a positive multiplicative
factor which modulates the signal, while the former is modelled by a
superimposed vector, modelled by a Gaussian or Laplacian distribution

Considering that the sophomore cause can be suc-
cessfully eliminated, we are left with the first. Hence,
when a pixel change results solely from illumination
variation, its colour vector is necessarily collinear with
the reference colour vector and a simple test can be
used to identify illumination variation-induced changes.
Therefore, we will first address how we can effectively
remove typical noise introduced by the capture process in
order to guarantee colour vector collinearity.

A. Identification of noise-induced changes

Assuming that we know the reference frame Fr, we
will first address how we can effectively remove typical
noise introduced by the capture process. For that purpose
we use a method proposed in [26] and previously used
for simple background subtraction [27]. It states that
it is possible to assess what is the probability that a
value at a given position, in a given image, is due to
noise instead of other causes when compared to another
image. It is assumed that the additive noise affecting each
image results from a Gaussian process with mean µN and
standard deviation σN . Also, noise affecting successive
images in the sequence is considered as uncorrelated.
The standard deviation σN can be obtained by computing
the statistics of the difference d(i,j) for each pixel (i, j)
between the reference image and the current image. Now,
consider a window Wn containing n pixels around the
pixel under evaluation with ∆2

(i,j) =
∑

(k,l)∈Wn
i,j
d2

(k,l). It
can be shown that the corresponding random variable ∆2

follows a χ2 distribution. Given the hypothesis H0 that
∆2

(i,j) results from noise and not from other factor, the
probability that hypothesis H0 is satisfied is given by:

P (∆2 > ∆2
(i,j)|H0) =

Γ(n2 ,
∆2

(i,j)

2σ2
c

)

Γ(n2 )
(6)

with σ2
c = 2σ2

N and where Γ(n/2) is the Gamma
function. The choice for the window size n must take into
consideration the trade-off between noise sensitivity and
foreground edge definition. Nevertheless, all experiments
were performed using a window size of n = 25. When

the estimated probability in equation (6) is smaller than a
threshold TN we consider that H0 is not satisfied at the
pixel position (i, j).

Whereas for pixels that validate the hypothesis H0 we
guarantee that changes were originated solely by camera
noise, for others we can safely assume that the any effect
of noise is negligible when compared to any other change.
In other words, if a pixel’s colour vector is being modified
by illumination variation and no structural change, we
have υFc ' kυFr .

This test defines a first set of pixels that can potentially
be part of the foreground because all pixels that satisfy H0

are necessarily part of the background and are marked as
such for the current frame; all others need further analysis.

B. Identification of illumination variation-induced
changes

After discarding noise-induced changes, a simple
collinearity test is performed. As previously stated, with
this test any modification introduced by illumination
variation is discarded. The test consists in evaluating the
angle between the current pixel colour vector υc and the
reference colour vector υr.

cos θ =
υc · υr

‖υc‖ ‖υr‖
(7)

If cos θ is smaller than a threshold TI very close to
1, the vectors are not considered to be collinear and the
test is not validated. In practice, this test can become
unstable and to overcome this problem we consider
a second threshold in the noise-identification test; the
second threshold usually is much smaller than TN . The
identification of illumination variation-induced changes is
therefore only applied only to pixels that fall between both
these thresholds.

The set of potential foreground pixels is refined by
marking as background the pixels that validate this second
test. Pixels that have a probability less than the second
threshold in the previous test are maintained as fore-
ground.

C. Identification of dynamic background behaviour

The final estimation of whether a pixel is part of the
background can be performed only in the pixels that do
not validate the statistical (6) nor the collinearity (7)
tests, resulting in a considerable reduction in execution
time of the algorithm. This is especially true for typical
surveillance streams where the relevant moving objects
occupy a small fraction of the entire field of view.
Another positive effect of the proposed modification is the
drastic reduction of small artefacts which often need to be
removed in typical modelling by applying morphological
filtering (e.g. connected operators).

To model and identify the dynamic background be-
haviour we will be using pixel-wise background estima-
tion approaches, namely the ones presented in section II.
The head-to-head comparison revealed that the Mixture of
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Gaussians (MoG) modelling approach had the best per-
formance/efficiency relation. We will therefore be using
mainly MoG to identify dynamic background behaviour.
In this case, if the probability defined by equation (2)
for a given pixel is larger than a threshold TS , the
pixel is considered to be part of the background. Also,
background representation defined by the MoG model
and described by (3) is used as the reference image
Fr. Figure 4(a) summarizes the algorithm in pseudo-
code, which until the end of the article will be called
as cascaded mixture of Gaussians (CMoG).

Input: , K, TN, TI and TS

begin

for t = 0, ...

        get current frame Fc

foreach pixel in Fc

            // classification

if (6) > TN

                classify pixel as background 

else if (6) > 10
-10
TN

if (7) > TI

                    classify pixel as background

else if (2) > TS

                    classify pixel as background

else

                    classify pixel as foreground

            // update background

            update k, k and K in (2)

            update reference using (3)

end foreach

    t = t + 1

    end for

end

(a) CMoG

Input: N, TN, TI and TS

begin

for t = 0, ...

        get current frame Fc

foreach pixel in Fc

            // classification

if (6) > TN

                classify pixel as background 

else if (6) > 10
-10

TN

if (7) > TI

                    classify pixel as background

else if (4) > TS

                    classify pixel as background

else

                    classify pixel as foreground

            // update background

            update reference using running average

            update previous background sample

end foreach

    t = t + 1

    end for

end

(b) CKDE

Figure 4. Proposed algorithm in pseudo-code. Both are very similar with
the exception of the way dynamic background behaviour is modelled.

Alongside MoG, cascaded kernel density estimation
(KDE) was also tested. For KDE, if the probability
defined by equation (4) for a given pixel is larger than a
threshold TS , that pixel is classified as background. The
background representation can be defined as the weighted
average of the N most recent background values. The
weights are defined, for each previous background and
for each pixel, by the probability in (4) when a sample
is tested against the other N − 1 previous backgrounds.
For efficiency reasons a simple running average of the
incoming frames was used to estimate a background
without significant errors in the final foreground estima-
tion. In accordance with CMoG, the KDE-based cascaded
algorithm will be named CKDE hereafter. Figure 4(b)
summarizes the CKDE algorithm.

D. Summary

The proposed algorithm can be seen as a series of
different techniques resulting in the refinement of the
segmentation provided by the previous as shown in Fig-
ure 5. First we use the statistical test (6) to determine
the set Sa of pixels that are identified as being changed
by any phenomenon other than noise – in our model a
structural change or illumination variation. Then, on that
set of pixels a simple collinearity test (7) is performed in
order to assert that the modification was not due to some
modification in illumination conditions, removing any
pixel that are, resulting in a new set Sb of candidate pixels.
Finally, the set is further refined eliminating any structural
change that resulted from repetitive dynamic behaviour of

the background using pixel-wise background estimation.
The result is the final set of pixels Sc which are labelled
as belonging to the foreground, i.e., any relevant moving
object. Although the different classification tests happen
in a cascade configuration, some interaction happens
between them. Namely, if the change results from camera
noise and not from other factor, the model is updated with
the current background value instead of the new frame
value. This way we effectively reduce model error by
only introducing modifications to the model when any
other phenomenon than noise changes the pixel value.

Estimate 

background 

representation

Identify noise-

induced changes

Identify illumination 

variation-induced 

changes

Identify dynamic 

background 

behaviour

Figure 5. Block representation of the proposed cascaded algorithm. The
modules are connected in cascade configuration with the exception of
the background estimation feedback.

E. Implementation

The proposed algorithm as well as the other back-
ground modelling and subtraction algorithms described
in section II were implemented in the MarsyasX frame-
work1. MarsyasX is an open-source cross-modal analysis
framework. It follows a dataflow architecture where com-
plex network of processing objects can be assembled to
form systems that can handle multiple and different types
of multimedia flows with expressiveness and efficiency.
Is is based in Marsyas [28] which originally was ded-
icated to audio analysis. The modularity and flexibility
of MarsyasX was an important factor to create the back-
ground modelling and subtraction testing framework2.

IV. RESULTS

The data set used to evaluate the proposed method per-
formance consists of 12 sequences which were manually
segmented in selected frames3. The first sequence, called
shopping (SH) shows a view of a shopping corridor and is
one of the test case scenarios made publicly available by
the EC Funded CAVIAR project/IST 2001 37540. The
scene consists of people walking, browsing the stores’
displays or waiting for others. It has stable illumination
conditions, except for a small portion in the right side of
the field of view. However, hard shadows and reflections
in the floor and in the display’s glass are present. The
second sequence, labelled outdoor (OD) shows an outdoor
scene with several people passing along the camera field
of view and is available in the MPEG-7 test set (results

1Information about MarsyasX can be found in http://telecom.
inescporto.pt/˜lfpt/MarsyasX

2Implementation and details are available in the BGMS page at
http://telecom.inescporto.pt/˜lfpt/BGMS

3Test set is available at the BGMS page.
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Figure 6. Evolution of dc
sym for the sequences OD, AP, BR and FT (from left to right). In the first row the results refer to MoG and CMoG

implementations, with and without post-processing; the second row KDE and CKDE are compared the same way.

are presented for stream A). The sequence has some noise
and although the illumination conditions are fairly stable,
the background presents significant vegetation swing. The
speedway (SW) sequence was captured from a bridge
over a speedway and is also available in the MPEG-
7 test set. It shows different sorts of vehicles moving
in both directions. Overall, it is the most stable stream
regarding background changes but some relevant shad-
ows are present. The following frames were manually
segmented by visual inspection: 350, 355,... and 400 in the
SH sequence; 880, 885,... and 930 in the OD sequence;
and 2510, 2515,... and 2560 in the SW sequence. Besides
these three sequences, the test set also includes nine
openly available segmented sequences, namely: meeting
room with moving curtain (MR), campus with wavering
tree branches (CAM), lobby in an office building with
switching on/off lights (LB), shopping centre (SC), hall of
an airport (AP), restaurant (BR), subway station (SS), wa-
ter surface (WS), and fountain (FT). All sequences from
this data set present challenging scenes with considerable
background activity – mainly in MR, CAM, WS and FT
– and sudden changes of illumination conditions are also
present – with special difficulty in LB. More details about
these sequences can be found in [9].

Results are presented next and a comparison is first
drawn between CMoG and MoG as well as CKDE and
KDE. An overall comparison between all is done last.
Also, note that all experiments used the YUV colour space
as input features.

A. CMoG

The CMoG configuration consisted of a MoG model
composed by a mixture of 3 Gaussians, a learning rate α
of 0.005 and a threshold TS of 0.05. For the statistical test
it was used a significance threshold TN of 10−4. Finally,
for the collinearity test it was used a threshold TI of
0.995. All thresholds were found through empirical testing

to be fairly stable and can be used without modification
for typical real-world scenes. The MoG algorithm was
tested with the same common parameters. Moreover,
to reduce the implementation complexity, for MoG im-
plementation, it was considered a diagonal covariance
matrix.

Figure 6 shows in the first row the evolution of the cost-
based partition distance (dcsym) for four sequences of the
test set, namely OD, AP, BR and FT. It is clear that the
proposed method outperforms the mixture of Gaussians
modelling method in all test sequences. Even without
post-processing the CMoG method performs significantly
better than the regular MoG with post-processing. In
fact, for the test set sequences, CMoG’s results with and
without post-processing do not differ much. In Table II the
overall results are presented for every sequence in the test
set. Note that for noisy and highly dynamic scenes, like
OD, the regular method without post-processing has the
worst results. Also note that for the AP and FT sequences
a noticeable difference between the segmentations and
the “ground-truth” occurs at some point in time. This
is due to sudden changes of global illumination, that
are not properly handled by pixel-wise estimation of the
background – in this case higher level input would be
needed in order to quickly adapt to the changes. Never-
theless, CMoG easily returns to the normal classification
performance. Additionally, the proposed method is faster
than the original MoG: for 176 × 144 sequences, MoG
performs at 26fps, while CMoG performs at 32fps; for
352×288 sequences, MoG performs at 7fps, while CMoG
performs at 9fps.

B. CKDE

CKDE was tested with the same significance threshold
TN and collinearity threshold TI as CMoG and a sample
size N of 50 and a threshold TS of 10−6. The KDE
algorithm was tested with the same common parameters.
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Figure 6 shows in the second row the evolution of dcsym
for the same four sequences as CMoG. CKDE performs
better than KDE but in general the gains are not as signif-
icant as compared to CMoG. Also, the difference between
the results obtained with and without post-processing is
small and, in some sequences, the results are worse with
post-processing. This is due to the fragmented masks
typically produced by KDE. Some isolated fragments,
if small enough, will be incorrectly removed by post-
processing. Speed-wise KDE is very slow compared to
MoG as already noted in Table I. Also, CKDE is faster
than KDE: for 176 × 144 sequences, KDE performs
at 5fps, while CKDE performs at 6fps; for 352 × 288
sequences, KDE performs at 1fps, while CKDE performs
at 2fps.

C. Overall

Figure 7 shows, from left to right, the segmentation
results for frames 365 and 415 of the SH sequence, frame
600 of the OD sequence and frame 2550 of the SW se-
quence. The top row shows the original frame, the second
row shows the results from the MoG implementation of
[5] and the third and fourth rows show the results obtained
with CMoG and CKDE, respectively.

Figure 7. Segmentation results. The top row shows the original frame.
The second row shows the results from the MoG implementation of [5].
The third row shows the results obtained with CMoG. Finally, the fourth
row shows the results with CKDE.

Table II shows the average distance for all the se-
quences in the data set and Figure 8 depicts the evolution
of dcsym in each sequence. Comparing CMoG and CKDE
as well as their respective base algorithms, it can observed
that the CMoG has the best performance with an overall
average distance of 0.162 compared to 0.331 for MoG,
0.182 for CKDE and 0.199 for KDE. Again, it is clear that
adapting KDE with a cascaded change detection config-
uration results is not as advantageous as adapting MoG.
For the former an approximate gain of 8.5% achieved

while for the latter the average distance between outputted
segmentations and the “ground-truth” is more than halved.

V. CONCLUSION

The extraction moving objects, or foreground object
segmentation, from a visual scene is an important first step
of processing chains usually assembled to acquire higher
level semantic knowledge. The objective of foreground
segmentation is to dissociate the regions containing the
relevant objects from regions composing the background.
Due to typical dynamical behaviour of the background
and variations in illumination conditions it is not always
a straightforward task.

An efficient method of extracting the foreground ob-
jects consists of modelling each background pixel evolu-
tion, by estimating a probability density function (p.d.f.).
Several methods to accomplish this have been proposed in
the past but no objective comparison of these methods has
been done before. This paper contributes with an objective
comparison of background modelling and subtraction
methods. For that purpose, a metric based on the partition-
distance between segmentations was introduced. It accom-
modates human perception by weighting pixels according
to their visual relevance – the cost of an incorrect classi-
fication increases with pixel distance to the object border.
The mixture of Gaussians, kernel density estimation,
principal features statistical modelling and mean shift
methods were tested and compared using this metric.
Kernel density estimation (KDE) had the best results for
the test set but mixture of Gaussians (MoG) modelling
proved to have the best performance/complexity relation.
The main advantage of MoG is its better throughput
compared to the other methods.

Taking in consideration that background changes are
caused by phenomena of different nature, a method that
models these independently was proposed. The method
consists of a cascaded evaluation of typical dynamic
elements that, although changing in time, are part of the
background. These elements include acquisition noise,
illumination variation and slow or repetitive structural
changes. The latter type of changes is classified using
the methods that estimate a p.d.f. to model the back-
ground. Also, a statistical test and a simple collinearity
test are used to classify changes originated by noise and
illumination changes, respectively. Two approaches were
tested: one based in MoG and named cascaded MoG
(CMoG), and another based in KDE named cascaded
KDE (CKDE). The proposed methods CMoG and CKDE
perform consistently better than the base methods. While
CMoG reduces the average distance to the “ground-truth”
by 51%, CKDE has an 8.5% reduction. Overall, the best
results are achieved by CMoG which, even without post-
processing, has similar or better performance than the
base method with post-processing. Moreover, typical illu-
mination variation changes, like shadows, are successfully
eliminated without the additional use of posterior complex
shadow detection and suppression techniques.
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TABLE II.
AVERAGE dc

sym OVER THE TEST SET SEQUENCES. CMOG HAS THE BEST PERFORMANCE WITH AN OVERALL AVERAGE DISTANCE OF 0.162
COMPARED TO 0.331 FOR MOG, 0.182 FOR CKDE AND 0.199 FOR KDE.

SW SH OD MR CAM LB SC AP BR SS WS FT
MoG w/o pp 0.160 0.267 0.938 0.808 0.782 0.453 0.355 0.691 0.678 1.117 0.223 0.307
[5] w/ pp 0.105 0.213 0.463 0.391 0.272 0.164 0.203 0.409 0.594 0.962 0.100 0.096

CMoG w/o pp 0.090 0.119 0.115 0.118 0.480 0.190 0.111 0.166 0.286 0.651 0.102 0.068
w/ pp 0.079 0.115 0.065 0.086 0.214 0.110 0.115 0.137 0.292 0.603 0.089 0.038

KDE w/o pp 0.109 0.267 0.261 0.325 0.080 0.064 0.133 0.221 0.285 0.226 0.322 0.093
[6] w/ pp 0.092 0.289 0.241 0.351 0.034 0.073 0.140 0.209 0.299 0.168 0.356 0.109

CKDE w/o pp 0.112 0.235 0.234 0.325 0.151 0.063 0.108 0.199 0.190 0.253 0.329 0.069
w/ pp 0.100 0.238 0.242 0.365 0.031 0.074 0.114 0.196 0.204 0.175 0.365 0.076
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Figure 8. Evolution of dc
sym for each sequence of the test set. Results are presented only with post-processing to avoid excessive graph cluttering.

From left to right and from top to bottom, the graphs are from the sequences SW, SH, OD, MR, CAM, LB, SC, AP, BR, SS, WS and FT.
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