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ABSTRACT

 

An object model for computer graphics applications should contain 
two aspects of information: shape and reflectance properties of the 
object. A number of techniques have been developed for modeling 
object shapes by observing real objects. In contrast, attempts to 
model reflectance properties of real objects have been rather limited. 
In most cases, modeled reflectance properties are too simple or too 
complicated to be used for synthesizing realistic images of the 
object.

In this paper, we propose a new method for modeling object reflec-
tance properties, as well as object shapes, by observing real objects. 
First, an object surface shape is reconstructed by merging multiple 
range images of the object. By using the reconstructed object shape 
and a sequence of color images of the object, parameters of a reflec-
tion model are estimated in a robust manner. The key point of the 
proposed method is that, first, the diffuse and specular reflection 
components are separated from the color image sequence, and then, 
reflectance parameters of each reflection component are estimated 
separately. This approach enables estimation of reflectance proper-
ties of real objects whose surfaces show specularity as well as dif-
fusely reflected lights. The recovered object shape and reflectance 
properties are then used for synthesizing object images with realistic 
shading effects under arbitrary illumination conditions.
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1 INTRODUCTION

 

As a result of significant advancement of graphics hardware 
and image rendering algorithms, the 3D computer graphics capabil-
ity has become available even on low-end computers. In addition, the 
rapid spread of the internet technology has caused a significant 

increase in the demand for 3D computer graphics. For instance, a 
new format for 3D computer graphics on the internet, called VRML, 
is becoming an industrial standard format, and the number of appli-
cations using the format is increasing quickly.

However, it is often the case that 3D object models are created 
manually by users. That input process is normally time-consuming 
and can be a bottleneck for realistic image synthesis. Therefore, 
techniques to obtain object model data automatically by observing 
real objects could have great significance in practical applications.

An object model for computer graphics applications should 
contain two aspects of information: shape and reflectance properties 
of the object. A number of techniques have been developed for mod-
eling object shapes by observing real objects. Those techniques use 
a wide variety of approaches which includes range image merging, 
shape from motion, shape from shading, and photometric stereo. In 
contrast, attempts to model reflectance properties of real objects 
have been rather limited. In most cases, modeled reflectance proper-
ties are too simple or too complicated to be used for synthesizing 
realistic images of the object. For example, if only observed color 
texture or diffuse texture of a real object surface is used (e.g., texture 
mapping), correct shading effects such as highlights cannot be repro-
duced correctly in synthesized images. If highlights on the object 
surface are observed in original color images, the highlights are 
treated as diffuse texture on the object surface and, therefore, remain 
on the object surface permanently regardless of illuminating and 
viewing conditions. On the other hand, object reflectance properties 
can be represented accurately by a bidirectional reflectance distribu-
tion function (BRDF). If a BRDF is available for the object surface, 
shading effects can be, in principle, reproduced correctly in synthe-
sized images. However, the use of BRDF is not practical because 
measurement of BRDF is usually very expensive and time-consum-
ing. In practice, we cannot obtain a BRDF for real objects with vari-
ous reflectance properties.

Recently, several techniques to obtain object surface shapes 
and reflectance properties only from intensity images have been 
developed. Sato and Ikeuchi [15] introduced a method to analyze a 
sequence of color images taken under a moving light source. They 
successfully estimated reflectance function parameters, as well as 
object shape, by explicitly separating the diffuse and specular reflec-
tion components. Lu and Little [11] developed a method to estimate 
a reflectance function from a sequence of black and white images of 
a rotating smooth object, and the object shape was successfully 
recovered using the estimated reflectance function. Since the reflec-
tance function is measured directly from the input image sequence, 
the method does not assume a particular reflection model such as the 
Lambertian model which is commonly used in computer vision. 
However, their algorithm can be applied to object surfaces with uni-
form reflectance properties, and it cannot be easily extended to over-
come this limitation.

Another interesting attempt for measuring a reflectance func-
tion from intensity images has been reported by Ward [20]. Ward 
designed a special device with a half-silvered hemisphere and a CCD 
video camera, which can measure a BRDF of anisotropic reflection. 
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The main advantage of the device is that it takes significantly less 
time to measure a BRDF than a conventional gonioreflectometer. A 
BRDF of a real object surface has been measured by the device and 
highly realistic images have been synthesized. However, this 
approach cannot be easily extended for modeling real objects with 
various reflectance properties. This approach still requires a small 
piece of test material for measuring the material’s BRDF.

Techniques to measure object surface shape and reflectance 
properties simultaneously by using both range images and black 
and white intensity images have been studied by other researchers. 
Ikeuchi and Sato [7] originally developed a method to measure 
object shapes and reflection function parameters from a range 
image and intensity image pair. In their attempt, the surface shape 
is recovered from the range image at first, and then surface normals 
of the recovered object surface are used for reflectance parameter 
estimation. The main drawback of the method is that it assumes 
uniform reflectance properties over the object surface. Additionally, 
only partial object shape was recovered because only one range 
image was used.

Baribeau, Rioux, and Godin [1] measured three reflectance 
parameters that they call the diffuse reflectance of the body mate-
rial, the Fresnel reflectance of the air-media interface, and the slope 
surface roughness of the interface, by using their polychromatic 
laser range sensor which can produce a pair of range and color 
images. Their method could estimate more detailed reflectance 
properties than the one developed by Ikeuchi and Sato [7]. How-
ever, their method still required uniform reflectance properties over 
each object surface, and only partial object shape was recovered.

Kay and Caelli [9] introduced another method to use a range 
image and 4 or 8 intensity images taken under different illumina-
tion conditions. By increasing the number of intensity images, they 
estimated reflection function parameters locally for each image 
pixel. Unlike the algorithm proposed by Sato and Ikeuchi, the 
method can handle object surfaces with varying reflectance proper-
ties. However, it is reported that parameter estimation can be unsta-
ble, especially when the specular reflection component is not 
observed strongly.

More recently, Sato and Ikeuchi developed a method to mea-
sure object surface shape and reflectance properties from a 
sequence of range and color images [16]. The method has an advan-
tage over other methods in that it can handle objects with non-uni-
form reflectance properties. However, the method relies on region 
segmentation on object surfaces, and each of the segmented regions 
must have uniform reflectance properties. Therefore, the method 
cannot be applied to highly textured objects.

In this paper, we propose a new method for modeling object 
reflectance properties, as well as object shapes, from multiple range 
and color images of real objects. Unlike previously proposed meth-
ods, our method can create complete object models, i.e., not partial 
object shape, with non-uniform reflectance properties. First, the 
object surface shape is reconstructed by merging multiple range 
images of the object. By using the reconstructed object shape and a 
sequence of color images of the object, parameters of a reflection 
model are estimated in a robust manner. The key point of the pro-
posed method is that, first, the diffuse reflection components and 
the specular reflection component are separated from the color 
image sequence, and then, reflectance parameters of each reflection 
component are estimated separately. Unlike previously reported 
methods, this approach enables reliable estimation of surface 
reflectance properties which are not uniform over the object sur-
face, and which include specularity as well as diffusely reflected 

lights. We demonstrate the capability of our object modeling tech-
nique by synthesizing object images with realistic shading effects 
under arbitrary illumination conditions.

This paper is organized as follows: Section 2 describes our 
image acquisition system for obtaining a sequence of range and 
color images of the object. Section 3 explains reconstruction of the 
object surface shape from the range image sequence. Section 4 
describes our method for estimating reflectance properties of the 
object using the reconstructed object shape and the color image 
sequence. Object images synthesized using the recovered object 
shape and reflectance properties are shown in Section 5. Conclud-
ing remarks are presented in Section 6.

 

2 IMAGE ACQUISITION SYSTEM

 

The experimental setup for the image acquisition system 
used in our experiments is illustrated in Figure 1. The object whose 
shape and reflectance information is to be recovered is mounted on 
the end of a robotic arm. The object used in our experiment is a 
ceramic mug whose height is about . Using the system, a 
sequence of range and color images of the object is obtained as the 
object is rotated at a fixed angle step. Twelve range images and 120 
color images were used in our experiment shown in this paper.

A range image is obtained using a light-stripe range finder 
with a liquid crystal shutter and a color CCD video camera [14]. 3D 
locations of points in the scene are computed at each image pixel 
using optical triangulation. Each range-image pixel represents an 

 location of a corresponding point on an object surface. 
The same color camera is used for acquiring range images and 
color images. Therefore, pixels of the range images and the color 
images directly correspond.

The range finder is calibrated to produce a  projection 
matrix  which represents the projection transformation between 
the world coordinate system and the image coordinate system. The 
location of the PUMA 560 manipulator with respect to the world 
coordinate system is also found via calibration. Therefore, the 
object location is given as a  transformation matrix  for 
each digitized image.

A single incandescent lamp is used as a point light source. In 
our experiments, the light source direction and the light source 
color are measured by calibration. The gain and offset of outputs 
from the video camera are adjusted so that the light source color 
becomes .

Figure 1   
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Figure 2   

 

Shape reconstruction by merging range images: (a) Input surface patches (4 out of 12 patches are shown), (b) Result of alignment, 
(c) Obtained volumetric data (two cross sections are shown), (d) Generated triangular mesh of the object shape (3782 triangles)

 

3 SURFACE SHAPE MODELING

 

A sequence of range images of the object is used to construct 
the object shape as a triangular mesh. Then, the number of triangles 
used for the object shape model is reduced by simplifying the 
object shape without losing its details for efficient storage and ren-
dering of the object.

One disadvantage of using the simplified object model is that 
a polygonal normal computed from the simplified triangular mesh 
model does not accurately approximate the real surface normal 
even though the object shape is preserved reasonably well. Thus, 
rather than using polygonal normals, we compute surface normals 
at dense grid points within each triangle of the object surface mesh 
by using the lowest level input, i.e., 3D points measured in range 
images.

In Section 3.1, we describe reconstruction of a triangular 
mesh model of the object from a sequence of range images. Estima-
tion of dense surface normals is explained in Section 3.2.

 

3.1 Shape modeling from range image 
merging

 

For reconstructing object shapes as a triangular mesh model 
from multiple range images, we used the volumetric method devel-
oped by Wheeler, Sato, and Ikeuchi [21]. The method consists of 
the following four steps, each of which is briefly described in this 
section.

1. Surface acquisition from each range image

The range finder in our image acquisition system cannot 
measure the object surface itself. In other words, the range finder 
can produce only images of 3D points on the object surface. 
Because of this limitation, we need to somehow convert the mea-
sured 3D points into a triangular mesh which represents the object 
surface shape. This is done by connecting two neighboring range 
image pixels based on the assumption that those points are con-
nected by a locally smooth surface. If those two points are closer in 
a 3D distance than some threshold, then we consider them to be 
connected on the object surface. 

In Figure 2 (a), 4 out of 12 input range images of the mug are 
shown as triangular meshes.

2. Alignment of all range images

All of the range images are measured in the coordinate sys-
tem fixed with respect to the range finder system, and they are not 
aligned to each other initially. Therefore, after we obtain the trian-
gular surface meshes from the range images, we need to transform 
all of the meshes into a unique object coordinate system.

To align the range images, we use a transformation matrix  
which represents the object location for each range image (Section 
2). Suppose we select one of the range images as a key range image 
to which all other range images are aligned. We refer to the trans-
formation matrix for the key range image as . Then, all 
other range images can be transformed into the key range image’s 
coordinate system by transforming all 3D points 

as  where  is a 
range image frame number.

3. Merging based on a volumetric representation

After all of the range images are converted into triangular 
patches and aligned to a unique coordinate system, we merge them 
using a volumetric representation. First, we consider imaginary 3D 
volume grids around the aligned triangular patches. Then, in each 
voxel,
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 we store the value, , of the signed distance from the 
center point of the voxel, , to the closest point on the object sur-
face. The sign indicates whether the point is outside, , or 
inside, , the object surface, while  indicates that 

 lies on the surface of the object. 

This technique has been applied to surface extraction by sev-
eral researchers [5], [3], [4]. The novel part of our technique is the 
robust computation of the signed distance. Our technique computes 
the signed distance by using a new algorithm called 

 

the consensus 
surface algorithm

 

 [21]. In the consensus surface algorithm, a quo-
rum of consensus of locally coherent observation of the object sur-
face is used to compute the signed distance correctly, which 
eliminates many of the troublesome effects of noise and extraneous 
surface observations in the input range images, for which previ-
ously developed methods are susceptible.

One drawback of using a volume grid for merging range 
images is the amount of memory required for the volume grid, 
which is  and therefore quickly becomes prohibitively large 
as the resolution  increases. Curless and Levoy’s method [3] used 

 

3.

 

voxel:

 

 volume element

(a) range image acquisition (b) alignment (c) merging (d) isosurface extraction

T

Tmerge

P X Y Z 1, , ,( )= P′ TmergeT f
1–
P= f 1…n=

f x( )
x

f x( ) 0>
f x( ) 0< f x( ) 0=

x

O n
3( )

n



 

a run-length encoding to overcome this problem. In our technique, 
an oct-tree structure [8] is used, and the required memory was 
reduced to % for several examples reported in [21]. Further 
study is needed to determine whether the use of oct-trees as in our 
technique is more or less efficient than the run-length encoding in 
Curless and Levoy’s method.

Figure 2 (c) shows two cross sections of the volumetric data 
constructed from the input range images of the mug. A darker color 
represents a shorter distance to the object surface, and a brighter 
color represents a longer distance.

4. Isosurface extraction from volumetric grid

The volumetric data is then used to construct the object sur-
face as a triangular mesh. The marching cubes algorithm [10] con-
structs a triangular mesh by traversing zero crossings of the implicit 
surface, , in the volume grid. Here, the marching cube 
algorithm was modified so that it handles holes and missing data 
correctly [21].

Figure 2 (d) shows the result of triangular mesh reconstruc-
tion. In this example,  triangles were generated from the 
volumetric data.

The marching cube algorithm generally produces a large 
number of triangles whose sizes vary significantly. Thus, it is desir-
able to simplify the reconstructed object surface shape by reducing 
the number of triangles. We used the mesh simplification method 
developed by Hoppe et al. [6] for this purpose. In our experiment, 
the total number of triangles was reduced from  to (Fig-
ure 3).

 

Figure 3   Simplified shape model: The object shape model was 
simplified from 3782 to 488 triangles.

 

3.2 Surface normal estimation

 

Polygonal normals computed from a triangular surface mesh 
model can approximate real surface normals fairly well when the 
object surface is relatively smooth and does not have high curvature 
points. However, accuracy of polygonal normals becomes poor 
when the object surface has high curvature points and the resolution 
of the triangular surface mesh model is low, i.e., a smaller number 
of triangles to represent the object shape.

This becomes a problem especially for the task of reflectance 
parameter estimation. For estimating reflectance parameters at a 
surface point, we need to know three directions at the surface point: 
the viewing direction, the light source direction, and the surface 
normal. As a result, with incorrectly estimated surface normals, 
small highlights observed within each triangle cannot be analyzed 
accurately, and therefore they cannot be reproduced in synthesized 
images. For this reason, we compute surface normals at regular grid 
points (  points in our experiment) within each triangle 

using the 3D points from the range images. The resolution of regu-
lar grid points should be changed depending on the size of each tri-
angle, so that the density of grid points becomes more or less 
uniform over the object surface. The adaptive resolution of grid 
points is yet to be implemented in our object modeling system.

 

Figure 4   Dense surface normal estimation

 

The surface normal at a grid point  is determined from a 
least squares best fitting plane to all neighboring 3D points whose 
distances to the point  are shorter than some threshold. This sur-
face normal estimation method has been used by other researchers 
for other applications. Cromwell [2] used a similar method for 
choosing the best direction for viewing a cloud of small particles, 
e.g., molecules, in computer graphics. Hoppe et al. [5] used the sur-
face normal estimation method for surface reconstruction from a 
cloud of 3D points.

The surface normal is computed as an eigen vector of the 
covariance matrix of the neighboring 3D points; specifically, the 
eigen vector associated with the eigenvalue of smallest magnitude 
(Figure 5). The covariance matrix of  3D points , 
with centroid , is defined as

 

. (1)

 

The surface normals computed at regular grid points within 
each triangle are then stored as a three-band surface normal image 
which is later used for mapping dense surface normals to the trian-
gular mesh of the object shape. The mapped surface normals are 
used both for reflectance parameter estimation and for rendering 
color images of the object.

Figure 5   

 

Surface normal estimation from input 3D points

 

4 SURFACE REFLECTANCE MODELING

 

After the object shape is reconstructed, we measure reflec-
tance properties of the object surface using the reconstructed shape 
and the input color images. First, the two fundamental reflection 
components (i.e., the diffuse and specular reflection components) 
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are separated from the input color images. Then, the parameters for 
the two reflection components are estimated separately. Separation 
of the two reflection components enables us to obtain a reliable esti-
mation of the specular reflection parameters. Also, the specular 
reflection component (i.e., highlight) in the color images does not 
affect estimated diffuse reflection parameters of the object surface. 

In Section 4.1 we introduce the reflection model used in this 
analysis. Then, in Section 4.2 we describe how to determine an 
observed color sequence for a 3D point on the object surface from 
the input color images. Using the observed color sequence, the 
algorithm for separating the diffuse and specular reflection compo-
nents is explained in Section 4.3. We explain the measurement of 
the diffuse reflection parameters in Section 4.4. Finally, we 
describe the estimation of the specular reflection parameters in Sec-
tion 4.5.

 

4.1 Reflection model

 

A general reflection model is described in terms of three 
reflection components, namely the diffuse lobe, the specular lobe, 
and the specular spike [12]. In many computer vision and computer 
graphics applications, reflection models are represented by linear 
combinations of two of those reflection components: the diffuse 
lobe component and the specular lobe component. The specular 
spike component can be observed only from mirror-like smooth 
surfaces where reflected light rays of the specular spike component 
are concentrated in a specular direction. It is thus difficult to 
observe the specular spike component from a coarsely sampled set 
of viewing directions.

The diffuse lobe component and the specular lobe component 
are normally called the diffuse reflection component and the 
specular reflection component, respectively. This reflection model 
was formally introduced by Shafer as the dichromatic reflection 
model [17]. 

In our analysis, the Torrance-Sparrow model [19] is used for 
representing the diffuse and specular reflection components. As 
Figure 1 illustrates, the illumination and viewing directions are 
fixed with respect to the world coordinate system. The reflection 
model used in our analysis is given as

 

(2)

 

where  is the angle between the surface normal and the light 
source direction,  is the angle between the surface normal and 
the viewing direction,  is the angle between the surface normal 
and the bisector of the light source direction and the viewing direc-
tion,  and  are constants for the diffuse and specular 
reflection components, and  is the standard deviation of a facet 
slope of the Torrance-Sparrow model.

This reflection model represents reflections which bounce 
only once from the light source. Therefore, the reflection model is 
valid only for convex objects, and it cannot represent 
interreflections on concave object surfaces. However, we empiri-
cally determined that interreflection did not affect our analysis sig-
nificantly.

In this paper, we refer to , , and  as the dif-
fuse reflection parameters, and , , , and  as the 
specular reflection parameters.

 

4.2 Mapping color images onto object 
surface shape

 

For separating the diffuse and specular reflection components 
and for estimating parameters of each reflection component, we 
need to know a sequence of observed colors at each point on the 
object surface as the object is rotated. In this section, we describe 
how to obtain an observed color sequence of a surface point 
(X,Y,Z) from the input color image sequence.

We represent world coordinates and image coordinates using 
homogeneous coordinates. A point on the object surface with 
Euclidean coordinates  is expressed by a column vector 

. An image pixel location  is represented 
by . As described in Section 2, the camera projec-
tion transformation is represented by a  matrix , and the 
object location is given by a  object transformation matrix . 
We denote the object transformation matrix for the input color 
image frame  by  ( ). Thus, using the projection 
matrix  and the transformation matrix  for the key range 
image (Section 3.1), the projection of a 3D point on the object sur-
face in the color image frame  is given as

 

(3)

 

where the last component of  has to be normalized to give the 
projected image location . 

The observed color of the 3D point in the color image frame 
 is given as the  color intensity at the pixel location 

. If the 3D point is not visible in the color image (i.e., the 
point is facing away from the camera, or it is occluded), the 
observed color for the 3D point is set to . By 
repeating this procedure for all frames of the input color image 
sequence, we get an observed color sequence for the 3D point on 
the object surface.

Figure 6 shows the result of mapping the input color images 
onto the reconstructed object surface shape.

 

4.3 Reflection component separation 
from color image sequence

 

We now describe the algorithm for separating the two reflec-
tion components. This separation algorithm was originally intro-
duced for the case of a moving light source by Sato and Ikeuchi 
[15]. In this paper, a similar algorithm is applied for the case of a 
moving object.

Using three color bands, red, green, and blue, the coefficients 
 and , in Equation (2), generalize to two linearly inde-

pendent vectors,
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unless the colors of the two reflection components are accidentally 
the same.

Im KD m, θicos KS m,
1

θrcos
--------------e

α2
2σ2⁄–

+= m R G B, ,=

θi
θr

α

KD m, KS m,
σ

KD R, KD G, KD B,
KS R, KS G, KS B, σ

X Y Z, ,( )
P X Y Z 1, , ,[ ] T

= x y,( )
p x y 1, ,[ ] T

=
3 4× Π

4 4× T

f T f  
f 1…n=

Π Tmerge

f

pf ΠT f Tmerge 
1–

P= f 1…n=( )

pf
x y,( )

f R G B, ,( )
x y,( )

R G B, ,( ) 0 0 0, ,( )=

KD m, KS m,

K
˜ D KD R, KD G, KD B,

T
= K

˜ S KS R, KS G, KS B,
T

=



Figure 6   Color image mapping result: 6 out of 120 color images are shown here.

First, the color intensities in the R, G, and B channels from  
input images of the object are measured for each point on the object 
surface as described in Section 4.2. The three sequences of inten-
sity values are stored in the columns of an  matrix . Con-
sidering the reflectance model (Equation (2)) and two color vectors 
in Equation (4), the intensity values in the R, G, and B channels can 
be represented as

(5)

where , and the two vectors 
 and  represent the intensity values of the diffuse and 

specular reflection components with respect to the illuminating/
viewing directions , , and . The vectors  and  repre-
sent the diffuse and the specular reflection color vectors, respec-
tively.

Suppose we have an estimate of the matrix . Then, the two 
reflection components represented by the matrix  are obtained by 
projecting the observed reflection stored in  onto the two color 
vectors  and  as

(6)

where  is the  pseudoinverse matrix of the color matrix 
.

The derivation shown above is based on the assumption that 
the matrix  is known. In our experiments, the specular reflection 
color vector  is directly measured as the light source color by a 
calibration procedure. Therefore, only the diffuse color vector  
is unknown and needs to be determined.

From Equation (2), it can be seen that the distribution of the 
specular reflection component is limited to a fixed angle, depending 

on . Thus, if the angle  is sufficiently large at a point on the 
object surface, an observed color at the point should represent the 
color of the diffuse reflection component. The angles , , and 

 are computed using the object transformation matrix  
( ) and the camera projection matrix  as follows. The 
light source location is acquired via calibration, and the camera 
projection center can be computed from the projection matrix . 
Also, the surface normal at the surface point of the object model for 
the color image frame  can be computed by rotating the surface 
normal at the surface point by the object transformation matrix . 
Using the light source direction, the viewing direction and the sur-
face normal, , , and  are computed. 

Once we get the matrix , the matrix  can be calculated 
from Equation (6). Each of the diffuse and specular reflection com-
ponents is given as

. (7)

Figure 7 (a) illustrates a typical observed color sequence with 
specularity. The separation algorithm was applied to the observed 
color sequence, and the separation result is shown in Figure 7 (b).

Figure 7   (a) observed color sequence and (b) separation result

Another technique for separating the diffuse and specular 
reflection components is the use of polarization filters [13] [22]. 
The technique could be used for separating reflection components 
instead of the one described in this section. However, the use of 
polarization generally requires more samplings of images by using 
a more complex image acquisition system. Thus, we have not 
explored this direction in our study.

4.4 Diffuse reflection parameter estimation

Using the diffuse reflection component separated from the 
observed color sequence, we now can estimate the diffuse reflec-
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tion parameters ( , , and ) without undesirable 
effects from the specular reflection component (i.e., highlights). 
Using the angle  computed as stated in the previous section, the 
diffuse reflection parameters are estimated by fitting the reflection 
model (the first term of Equation (2)) to the separated diffuse reflec-
tion component. Hence, the estimated diffuse reflection parameters 
are not affected by the particular shadings in the observed images, 
e.g., the effect of the light source can be factored out. In other 
words, the diffuse reflection parameters can be estimated correctly 
even if the object appears dark or bright in the color images.

The diffuse reflection parameters are estimated at regular grid 
points within each triangle just as the surface normals in Section 
3.2 are estimated. The resolution of the grid of points is  in 
our experiment, while it is  for the surface normal estima-
tion. The higher resolution is necessary to capture details of the dif-
fuse reflection texture on the object surface. The resolution for the 
diffuse reflection parameter estimation should be determined by the 
average number of pixels which fall onto one triangle of the object 
shape model in the observed color images. Resolution higher than 
the average number does not capture any more information than 
that in the observed color images, but it increases the required stor-
age for the diffuse reflection parameters unnecessarily. Figure 8 
shows the result of the diffuse reflection parameter estimation 
where the estimated parameters are visualized as surface texture on 
the mug.

Figure 8   Estimated diffuse reflection parameters

4.5 Specular reflection parameter estimation

As in the diffuse reflection parameter estimation, the specular 
reflection parameters ( , , , and ) are also com-
puted using the angle  and the angle . However, there is a sig-
nificant difference between estimation of the diffuse and specular 
reflection parameters. The diffuse reflection parameters can be esti-
mated as long as the object surface is illuminated and viewed from 
the camera. On the other hand, the specular reflection component is 
usually observed only from a limited range of viewing directions. 
For a finite set of views, the specular reflection component will only 
be observed over a small portion of the object surface in the input 
color image sequence. For much of the object surface, we cannot 
estimate the specular reflection parameters. Even if the specular 
reflection component is observed, the parameter estimation can 
become unreliable if the specular reflection component is not 
observed strongly, or if the separation of the two reflection compo-
nents is not performed well.

For the above reasons, we decided to use a slightly different 
strategy for estimating the specular reflection parameters. Since the 
specular reflection parameters may only be estimated sparsely over 
the object surface, we use interpolation to infer the specular reflec-
tion parameters over the entire surface.

In Section 4.5.1, we describe how to select object surface 
points which are suitable for estimating the specular reflection 
parameters. Interpolation of the estimated specular reflection 
parameters on the object surface is explained in Section 4.5.2.

4.5.1 Selection of Surface Points for Parameter 
Estimation

For the specular refection parameters to be estimated reliably, 
the following three conditions are necessary at a point on the object 
surface. All of the three conditions contribute to reliable separation 
of the diffuse and specular reflection components.

1. The two reflection components must be reliably separated. 
Because the diffuse and specular reflection components are 
separated using the difference of the colors of the two compo-
nents (Section 4.3), these color vectors should differ as much 
as possible. This can be examined by saturation of the diffuse 
color (Figure 9). Since the light source color is generally 
close to white (saturation = 0), if the diffuse color has a high 
saturation value, the diffuse and specular reflection colors will 
be different.

Figure 9   Diffuse saturation shown in the RGB color space

2. The magnitude of the specular reflection component is as 
large as possible.

3. The magnitude of the diffuse reflection component is as large 
as possible. Although this condition might seem to be unnec-
essary, we empirically found that the specular reflection 
parameters can be obtained more reliably if this condition is 
satisfied.

Figure 10   Selected vertices for specular parameter estimation: 
100 out of 266 vertices were selected.

An evaluation measure: v = diffuse saturation * max specular 
intensity * max diffuse intensity is used to represent how well these 
three conditions are satisfied. In our experiments, we used the ver-
tices of the triangular surface mesh as candidates for parameter 
estimation. Then,  vertices with the largest values were chosen 
according to our evaluation measurement . Figure 10 illustrates 
100 selected vertices for specular parameter estimation out of 266 
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vertices. Note that the use of the triangular vertices as initial candi-
dates for specular parameter estimation is not essential in our 
method. In practice, we found that this choice was sufficient to find 
suitable points for specular parameter estimation.

4.5.2 Interpolation of Estimated Specular Parameters

In our experiment, the camera output is calibrated so that the 
specular reflection color (i.e., the light source color) has the same 
value from the three color channels (Section 2). For instance, the 
separated specular reflection component shown in Figure 7 (b) has 
more or less the same output from the three color channels. There-
fore, only one color band was used to estimate the specular reflec-
tion parameters (  and ) in our experiment.

After the specular reflection parameters  and  were esti-
mated at the 100 selected vertices, the estimated values were lin-
early interpolated based on a distance on the object surface, so that 
the specular reflection parameters were obtained at regular grid 
points within each triangle of the object surface mesh. The resolu-
tion of the grid points was  in our experiment, while the 
resolution was  for the diffuse reflection parameter estima-
tion. In general, specular reflectance does not change so rapidly as 
diffuse reflectance, i.e., diffuse texture on the object surface. There-
fore, the resolution of  was enough to capture the specular 
reflectance of the mug.

Interpolated values of the two specular reflection parameters 
are shown in Figure 11. The obtained specular reflection parame-
ters were then stored in two specular reflection parameter images (a 

 image and a  image) just as estimated surface normals were 
stored in the surface normal image.

Figure 11   Interpolated  and 

5 IMAGE SYNTHESIS

Using the reconstructed object shape (Section 3.1), the sur-
face normal image (Section 3.2), the diffuse reflection parameter 
image (Section 4.4), the specular reflection parameter image (Sec-
tion 4.5), and the reflection model (Equation (2)), we can synthe-
size color object images under arbitrary illumination/viewing 
conditions.

Figure 12 shows synthesized images of the object with two 
point light sources. Note that the images represent highlights on the 
object surface naturally. For comparing synthesized images with 
the input color images of the object, the object model was rendered 
using the same illumination and viewing directions as some of the 
input color images. Figure 13 shows two frames of the input color 
image sequence as well as two synthesized images that were gener-
ated using the same illuminating/viewing condition as the input 
color images. It can be seen that the synthesized images closely 
resemble the corresponding real images. In particular, highlights, 

which generally are a very important cue of surface material, 
appear on the side and the handle of the mug naturally in the syn-
thesized images.

However, we can see that the synthesized images are slightly 
more blurred than the original color images, e.g., the eye of the 
painted fish in frame 50. That comes from slight error in the mea-
sured object transformation matrix  (Section 2) due to imperfect 
calibration of the robotic arm. Because of the error in the measured 
transformation matrix , the projected input color images (Section 
4.2) were not perfectly aligned on the reconstructed object surface. 
As a result, the estimated diffuse reflection parameters were 
slightly blurred. This blurring effect can be avoided if, after a color 
image is projected onto the object surface, the color image is 
aligned with previously projected images by a local search on the 
surface. However, we have not yet tested this idea in our implemen-
tation.

6 CONCLUSION

We have explored automatic generation of photorealistic 
object models from observation. Achieving photorealism in synthe-
sized object images requires accurate modeling of shape and reflec-
tance properties of the object. In this paper, we have presented a 
new paradigm for acquiring object shape and reflectance parame-
ters from range and color images.

The object surface shape is reconstructed by merging multi-
ple range images of the object. By using the reconstructed object 
shape and multiple color images of the object, parameters of the 
Torrance-Sparrow reflection model are estimated. For estimating 
reflectance parameters of the object robustly, our method is based 
on separation of the diffuse and specular reflection components 
from a color image sequence. Using separated reflection compo-
nents, reflection model parameters for each of the two components 
were estimated separately. In particular, the specular reflection 
parameters were successfully obtained by identifying suitable sur-
face points for estimation and by interpolating estimated parame-
ters over the object surface. 

Our experiments have shown that our object modeling 
method can be effectively used for synthesizing realistic object 
images under arbitrary illumination and viewing conditions.
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