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ABSTRACT

In this paper, we present a novel method for template sim-
plification, where the template is used to find interesting ob-
jects within an image. In this way, we improve computational
performance since less template points are matched using a
simplified template. Moreover, we increase the reliability of
the matching as we keep template points with focusing on the
main shape behavior (skeleton) of the template. The theoret-
ical background of the simplification is derived through the
centroidal Voronoi tessellation framework. The efficiency of
the proposed approach is demonstrated with detecting human
appearance in thermal images.

1. INTRODUCTION

Object detection and classification are challenging problems
in digital image analysis and computer vision. Usually, some
image features are extracted, and a matching procedure is ap-
plied afterwards to find occurrences of pre-defined templates.
In 2D, these templates can be primarily classified as contour-
or region-like objects. The matching of the templates can be
performed either directly (with considering all the pixels of
the template), or through the extraction of some shape de-
scriptors. In the case of direct pixel matching, it is a natural
motivation to gain faster computation via the simplification of
the description of the objects to be matched, by representing
them with less number of points.

In this paper, we propose a novel way to perform the
simplification of the object description to gain faster tem-
plate matching. Our approach, which is based on centroidal
Voronoi tessellation (CVT) framework [1, 2], can be applied
to any dimensions. With this work, we continue some former
investigations [3] focusing on contour-like templates. Using
a similar theoretical approach as in [3], we explain how we
can take advantage of CVT-based algorithms in representing
region-like objects with less number of points dedicated to
object matching purposes. Our main contribution here is to
define and apply weight functions that leads to such a simpli-
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fication, which preserves the main shape behavior of the tem-
plate represented by its skeleton. In this way, we can allow
larger difference between the boundary of the target object
and the template with still having a reliable matching.

The structure of the paper is as follows. In section 2 we
recall the necessary elements of the CVT framework. We
also explain our object matching method which is based on
a direct check through all the points of the template. Then,
section 3 describes how the objects to be matched can be sim-
plified using CVT algorithms accumulating the existence of
a shape-based weight function for point selection. Section 4
contains our experimental results regarding the proposed sim-
plification in a human silhouette matching scenario. We end
up with conclusions in section 5.

2. CENTROIDAL VORONOI TESSELLATIONS

The centroidal Voronoi tessellation framework [1] provides
the possibility to select a given number of points of a set
which are distributed according to some weight function (gen-
erally the uniform one). Now we give a brief theoretic and
algorithmic recall of the CVT framework to explain how a
specific weight function can be considered to perform object
simplification accordingly. The simplification problem can be
formulated in the following way:

Problem: Let A C B C R™, such that A is compact and
convex and B is bounded. Moreover, let K € N,and o : B —
R>(. Find the set of points A’ = {y, € A|i=1,...,K},
which minimizes

K
> / o(y)ly — yil*dy, )
i:lV

i(A”)
where {V;(A’)}X | denote the Voronoi tessellation of B gen-
erated by A’.

We note here that problem (1) is well investigated when
A = B. It has been shown that the optimal solution should
define a centroidal Voronoi tessellation on A [1], which means
that the generators of the Voronoi cells are also the mass cen-
ters (centroids) of them, respectively. This kind of distribution
of points can be achieved using CVT algorithms [1, 4, 5, 6].



The CVT approach together with the generating algorithms
were extended to the tessellation of surfaces by considering
constrained CVT [2]. Later, in [3], the CVT framework was
generalized to simplify sets also with a consideration to the
influence of a container region, that is, the A C B case. This
approach is called region-based CVT (RCVT), and the main
intention here was to simplify objects to achieve faster tem-
plate matching with a less number of template points. The
main scope of [3] was to simplify contour-like objects, though
the theory was given more generally, also for region-like ob-
jects. As it was shown, the general theory remains valid also
for non-uniform weight functions, however, their use was not
considered. To compute RCVT we may consider e.g. iterative
statistical methods based on random sampling [4, 7]. They are
initialized with a random selection of K points.

Random sampling algorithm for RCVT (see also [3])

Step 1: Choose a ¢ € N and constants a1, as, 51, 32, such
that ap, B2 > 0, a1 + as = (81 + P2 = 1; choose an initial
set of K points z1,...,Zx in A, e.g. by using a Monte Carlo
method; set j; = 1fori=1,..., K;

Step 2: Choose ¢ points yy, ...,y, in B at random, e.g. by a
Monte Carlo method, according to some probability density
function (in this description uniformly);

Step 3: For ¢+ = 1,..., K, gather together in the set IV; all
sampling points y,. closest to z; among z1, . ..,Zk, i.e. lying
in the Voronoi region of z; w.r.t. B; if the set W; is empty, do
nothing; otherwise, compute the u; average of the set W; and
set

o (a1ji + B1)zi + (i + B2)u;
Jit+1
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The new set of zy, ..., zx along with the unchanged z;’s (i.e.
when W; is empty), form the new set of points zq, ..., Zx;
Step 4: If for some 4, z; ¢ A then z; «— z, where d(z;,z) =
Iréi;ll{d(zi, y)}, i.e. z is the nearest point to z; in A.

y

Step 5: If the new points meet some convergence criterion,
terminate; otherwise, return to step 1.

As it is shown in Figure 1, as the a naive approach, we
can simplify the template uniformly. Here we can follow two
ways: we select object points according to a uniformity rule
with respect to pixel coordinates (e.g. both the coordinates
are equal to 0 modulo 4), or we consider a uniform weight
function g in the RCVT framework. We note that these repre-
sentations are pure simplifications with completely reflecting
the original shape behavior.

Our motivation is to introduce weight functions for which
the CVT/RCVT object simplification lead to natural improve-
ments in the case of region-like object matching.
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Fig. 1. The result of the RCVT algorithm in 2D; (a) the object
A to be simplified, (b) trivial uniform sampling according to
pixel coordinates, (c) uniform sampling based on RCVT.

3. SKELETON-BASED SIMPLIFICATION

To realize a more adaptive approach than the naive ones dis-
cussed above, it is also possible to focus more on some object
regions during its simplification, e.g. if we expect larger un-
certainty closer to the boundary of the object in the matching
procedure. In this case, we can define a weight function g
according to problem (1), which concentrates on the object
morphological skeleton [8]. Thus, for every x € B, let us
define: L

d(x, B¢)
d(x,sk(A)) + d(x, B¢)’

where sk(A) is the skeleton of A, B¢ is the complement of
B, and d is some common distance function. Note that for all
x € B,0 < p(x) < 1, such that g vanishes at the boundary of
B, then monotonously increases till reaching sk(A), where it
takes value 1. In this way, the weight for the points within B is
adjusted according to their relative distance from the “center”
of A and from B¢. Now, to derive a weight (density) function
over B, let:

o(x) = 3)

i7 forx € B. (@)
dy

In applications, this weight function can be easily derived
using the distance maps [9] of sk(A), and B¢ to approximate
d. Figure 2 depicts such an example, where A = B, the basic
CVT case is used. We also found the pruning (removal of
small branches) of the skeleton to be useful.

4. EXPERIMENTAL RESULTS

To be able to begin with the template matching, first we need
to extract the target object from the input image. In our cur-
rently developed system, one of the desired tasks is the detec-
tion of human (victim or firefighter) appearance within ther-
mal videos from a rescue scenario. To reach this aim, we con-
sidered a fuzzy segmentation technique [10], which is known
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Fig. 2. Simplification result of an object according to a weight
function concentrating on its skeleton; (a) target object A =
B (sk(A) is shown by dashed line), (b) result of simplification
in case of uniform weighting, (c) distance map of sk(A), (d)
distance map of B¢, (e) weight function ¢ (higher intensities
show larger weight values), (f) result of CVT simplification
using o derived from g.

to be robust also for medical (e.g. CT) images. The extracted
binary region usually needs some simple post-processing to
smoothen the boundary, eliminate gaps and holes, etc. These
minor refinements can be achieved by some classic elements
of mathematical morphology [8]. Some input test images to-
gether with the result of the fuzzy segmentation is shown in
Figure 3.

To create templates to be matched, we created simulated
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Fig. 3. The result of the fuzzy segmentation; (a) standing
human pose, (b) walking human pose.

(artificial) data using the realistic 3D human motion software
Poser ®) [11]. As itis not a crucial point in our present exper-
iments, we ignored all the geometric transformation issues on
how to align the target and template objects. As a guideline,
we recommend to consult with [12] to gather information on
a robust search of the affine parameter space.

To demonstrate the main idea of our approach, we show
the performance of such templates that do not completely fit
the target. With the skeleton-based simplification, in the case
of a regular human pose/motion (like standing/walking), we
can expect better matching for more template elements, since
the skeleton does not change drastically with the boundary
e.g. for close phases of the same motion. The goodness of fit
value of a template against the target object is calculated as
the percentage of the matching pixels of the template at the
best matching position. Figure 4 and 5 show the best match-
ing positions of a standing and walking template together with
their discussed simplifications, respectively. The skeleton of
the original template is also marked.

We can see that the skeleton-based simplification has bet-
ter performance than the uniform ones, since the main skele-
ton of the target objects and the templates did not differ that
much. The proper quantitative results are given in Table 1.

Simplification
No Unifom | Unifom | Weighted
(original) | (trivial) | (CVT) | (skeleton)
Standing | 80,9% 81,2% | 81,1% 94,0%
Walking 85,8% 86,2% | 86,2% 94,6%

Table 1. Goodness of fit of simplified templates given in
terms of the percentage of matching template points.

This analysis also validates the natural assumption that the
uniformly sampled template performs similarly to the original
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Fig. 4. Best matching position (shown in white) for standing
template using (a) original template (skeleton is marked), (b)
trivial uniform simplification, (¢) CVT-based uniform simpli-
fication, (d) skeleton-based simplification. Target object is
shown in gray.
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Fig. 5. Best matching position for walking template using (a)
original template, (b) trivial uniform simplification, (¢) CVT-
based uniform simplification, (d) skeleton-based simplifica-
tion.

5. CONCLUSION

In this paper, we proposed a novel simplification approach of
objects designated to region-based object matching purposes.
In this way, we gain computational improvement, since less
number of points are involved in the matching process. The
simplification can be done using centroidal Voronoi tessella-
tion framework with a weight function concentrating on the
skeleton of the object. We can expect to capture some reg-
ular motions with using less number of templates with the
computation time is also reduced by this simplification. To

demonstrate this feature, we presented some experimental re-
sults. The approach can be easily extended to higher dimen-
sion, and to weight functions for other tasks.
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