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We propose a new algorithm for object tracking in crowded video scenes by exploiting the properties of undecimated wavelet
packet transform (UWPT) and interframe texture analysis. The algorithm is initialized by the user through specifying a region
around the object of interest at the reference frame. Then, coefficients of the UWPT of the region are used to construct a feature
vector (FV) for every pixel in that region. Optimal search for the best match is then performed by using the generated FVs inside
an adaptive search window. Adaptation of the search window is achieved by interframe texture analysis to find the direction and
speed of the object motion. This temporal texture analysis also assists in tracking of the object under partial or short-term full
occlusion. Moreover, the tracking algorithm is robust to Gaussian and quantization noise processes. Experimental results show
that the proposed algorithm has good performance for object tracking in crowded scenes on stairs, in airports, or at train stations
in the presence of object translation, rotation, small scaling, and occlusion.
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1. INTRODUCTION

Object tracking is one of the challenging problems in im-
age and video processing applications. With the emergence
of interactive multimedia systems, tracked objects in video
sequences can be used for many applications such as video
surveillance, visual navigation and monitoring, content-
based indexing and retrieval, object-based coding, traffic
monitoring, sports analysis for enhanced TV broadcasting,
and video postproduction.

Video object tracking techniques vary according to user
interaction, tracking features, motion-model assumption,
temporal object tracking, and update procedures. The tar-
get representation and observation models are also very im-
portant for the performance of any tracking algorithm. In
general, the temporal object tracking methods can be classi-
fied into four groups: region-based [1], contour/mesh-based
[2], model-based [3, 4], and feature-based methods [5, 6].
Two major components can be distinguished in all of the
tracking approaches; target representation/localization and
filtering/data association. The former is a bottom-up pro-
cess dealing with the changes in the appearance of the object,

while the latter is a top-down process dealing with the dy-
namics of the tracking [7]. Feature-based algorithms, along
with Kalman or particle filters, are widely used in many ob-
ject tracking systems [4, 7].

Color histogram is an example of a simple and good
feature-based method for object tracking in the spatial do-
main [7–12]. The color histogram techniques are robust to
noise and they are typically used to model the targets to
combat partial occlusion and nonrigidity of objects. How-
ever, color histogram only describes the global color distri-
bution and ignores spatiality or layout of the colors, and the
tracked objects are easily confused with a background having
similar colors. Moreover, it cannot deal easily with illumina-
tion changes and full occlusion. Therefore, feature descrip-
tion based on color histogram for target tracking, particu-
larly in the crowded scenes where similar small objects exist
(e.g., heads of the crowd), will most likely fail.

Mean-shift tracking algorithms that use color histogram
have been successfully applied in object tracking and proved
to be robust to appearance changes [7, 10, 13, 14]. How-
ever, these techniques need more sophisticated motion fil-
tering to handle occlusions in the crowded scenes. To the
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best of our knowledge, such a motion filter for tracking and
occlusion handling in the crowded scenes has not been re-
ported yet. More recently, color histogram with spatial in-
formation has been used by some researchers [15, 16]. Color
histogram has also been integrated into probabilistic frame-
works such as Bayesian and particle filters [9, 11, 17, 18]
or kernel-based models along with Kalman filters [7]. Com-
parative evaluation of different tracking algorithms shows
that among histogram-based techniques, the mean-shift ap-
proach [13] leads to the best results in absence of occlusions,
and probabilistic color histogram trackers are more robust
to partial or temporary occlusions over a few frames than the
other well-known techniques [12]. In addition, the kernel-
based histogram tracker performs better in longer sequences
[7]. A good discussion on the state-of-the-art object tracking
under occlusion can also be found in [19].

In recent years, feature-based techniques in the wavelet
domain have gained more attention in object tracking [20–
23]. In [20], an object in the current frame is modeled by
using the highest energy coefficients of Gabor wavelet trans-
form as local features, and the global placement of the feature
point is achieved by a 2D mesh structure around the feature
points. In order to find the objects in the next frame, the 2D
golden section algorithm is employed.

In [21], a wavelet subspace method for face tracking is
presented. At the initial stage, a Gabor wavelet representa-
tion for the face template is created. The video frames are
then projected into this subspace by wavelet filtering tech-
niques. Finally, the face tracking is achieved in the wavelet
subspace by exploiting the affine deformation property of
Gabor wavelet networks and minimization of Euclidean dis-
tance measure.

In [22], a particle filter algorithm for object tracking us-
ing multiple color and texture cues has been presented. The
texture features are determined using the coefficients of a
three-level conventional discrete wavelet transform expan-
sion of the region of interest. In addition, a Gaussian sum
particle filter based on a nonlinear model of color and tex-
ture cues is also presented.

In [23], a real-time multiple object tracking algorithm is
introduced. In their algorithm, instead of using the wavelet
coefficients as object features, the original frame is only pre-
processed using a two-level discrete wavelet transform to
suppress the fake background motions. The approximation
band of the wavelet transform is then used to compute the
difference image of successive frames. Then, the concept of
connected components is applied to the difference image to
identify the objects. The classified objects are then marked
by a bounding box in the original approximation image,
and some color and spatial features are extracted from the
bounding box. These features are then used to track the ob-
jects in successive frames.

Most of the previous work based on wavelet transform
has been evaluated on simple scenarios: either a talking head
with various movements or face expressions [20, 21] or walk-
ing people who might have been occluded by another person
in the reverse direction in a short period of time [22, 23]
and not for more complex scenes such as dense crowds of
very close and similar objects with short- or long-term occlu-

sions. The general drawback of these techniques is that simi-
lar nearby objects (e.g., heads in the crowd) with short- and
long-term occlusions may impair their reliability. Other chal-
lenging issues of the aforementioned methods are robustness
against noise and stability of the selected features in presence
of various object transformations and occlusions.

In this paper, we present a new algorithm for tracking
arbitrary user-defined regions that encompass the object of
interest in the crowded video scenes. It is based on feature
vectors generated via the coefficients of the undecimated
wavelet packet transform (UWPT) for target representa-
tion/localization and filtering/data association are achieved
through an adaptive search window by using an interframe
texture analysis scheme. The key advantage of UWPT is that
it is redundant and shift-invariant, and it gives a denser
approximation to continuous wavelet transform than that
provided by the orthonormal discrete wavelet transform
[24, 25].

The main contribution of this paper is the adaptation of
a feature vector generation and block matching algorithm
in the UWPT domain [26] for tracking objects [27, 28]
in crowded scenes in presence of occlusion [29] and noise
[30, 31]. In addition, it uses an interframe texture analysis
scheme [32] to update the search window location for the
successive frames. In contrast to the conventional methods
for solving the tracking problem that use spatial domain fea-
tures, it introduces a new transform domain feature-based
tracking algorithm that can handle object movements, lim-
ited zooming effects, and, to a good extent, occlusion. More-
over, we have shown that the feature vectors are robust to
various types of noise [30, 31].

Organization of the rest of this paper is as follows. After
presenting an overview of the UWPT in Section 2, the ele-
ments of the proposed algorithm are described in Section 3.
These elements include feature generation, temporal track-
ing, and search window updating mechanism. Performance
of the proposed algorithm under various test conditions is
evaluated in Section 4. Finally, Section 5 provides the con-
cluding remarks and the future work.

2. OVERVIEW OF THE UWPT

The process of feature selection in the proposed algorithm
relies on the multiresolution expansion of images. The idea
is to represent an image by a linear combination of elemen-
tary building blocks or atoms that exhibit some desirable
properties. Recently, there has been a growing interest in the
representation and processing of images by using dictionar-
ies of basis functions other than the traditional dictionary
of sinusoids such as discrete cosine transform (DCT). These
new sets of dictionaries include Gabor functions, chirplets,
warplets, wavelets, and wavelet packets [25, 33–35]. In con-
trast to DCT, the discrete wavelet transform (DWT) gives
good frequency selectivity at lower frequencies and good
time selectivity at higher frequencies. This tradeoff in the
time-frequency (TF) plane is well suited to the representa-
tion of many natural signals and images that exhibit short-
duration high-frequency and long-duration low-frequency
events. One well-known disadvantage of the DWT is the lack
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Figure 1: (a) Undecimated wavelet packet transform tree for one-dimensional signal x, where A stands for the approximation (lowpass)
signal and D for the detailed signal (highpass). (b) Sample bands of UWPT for the search area for the test clip of Figure 12 (L stands for
lowpass and H for highpass filtered images).

of shift invariance. The reason is that there are many legiti-
mate DWTs for different shifted versions of the same signal
[25].

Wavelet packets were introduced by Coifman and Meyer
as a library of orthogonal bases for L2(R) [24]. Implemen-
tation of a “best-basis” selection procedure for a signal
(or family of signals) requires introduction of an accept-
able “cost function,” which translates “best” into a mini-
mization process. The cost function can be simplified in an
additive nature when entropy [24] or rate distortion [36]
is used. The cost function selection is related to the spe-
cific nature of the application at hand. Entropy, for ex-
ample, may constitute a reasonable choice if signal clas-
sification, identification, and compression are the applica-
tions of interest. A major deficiency of decimated wavelet
packet is sensitivity to the signal location with respect to
the chosen time origin, that is, lack of shift-invariance prop-
erty.

The desired transform for object tracking application
should be linear and shift-invariant. The wavelet transform,
which is both linear and shift-invariant, is the undecimated
wavelet packet transform (UWPT) [25, 35]. Moreover, the
UWPT expansion is redundant and provides a denser ap-
proximation compared to the approximation provided by the
orthonormal discrete wavelet transform [24, 25].

From the implementation point of view in the context of
filter banks, in addition to the lowpass band, we repeat the
filtering on the highpass band without any downsampling
(decimation). The result is a complete undecimated wavelet
packet transform. A tree representation and sample bands of
UWPT are depicted in Figure 1.

The computational complexity of the UWPT is as follows
[25]:

NMUWPT(N ,L,M) =M
(

2L+1 − 1
)

N ,

NAUWPT(N ,L,M) =M
(

2L+1 − 1
)

N.
(1)
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In the above formulas, the length of the input signal is N, the
length of the quadrature mirror filter (QMF) for creating the
subbands is M, and the number of decomposition levels is
L such that L ≤ log 2N . NM and NA represent “number of
multiplications” and “number of additions” that are needed
to convolve the signal with both highpass and lowpass QMFs,
respectively. It is important to note that there are a number of
fast and real-time algorithms to compute DWT and UWPT
of natural signals and images [25].

3. THE PROPOSED ALGORITHM

3.1. Overview of the proposed algorithm

In our algorithm, object tracking is performed by temporal
tracking of a rectangle around the object at a reference frame.
The algorithm is semi-automatic in the sense that the user
draws a rectangle around the target object or specifies the
area around pixels along the boundary of the object in the
reference frame. A general block diagram of the algorithm is
shown in Figure 2.

Initially, the user specifies a rectangle around the bound-
ary of the object at the reference frame. Then, a Feature Vec-
tor (FV) for each pixel in the rectangle is constructed by using
the coefficients in the undecimated wavelet packet transform
(UWPT) domain. The final step before finding the object in a
new frame is the temporal tracking of the pixels in the rectan-
gle at the reference frame. The temporal tracking algorithm
uses the generated FVs to find the new location of the pixels
in an adaptive search window. The search window is updated
at each frame based on the interframe texture analysis.

The main advantages of this algorithm are as follows.

(1) It can track both rigid and nonrigid objects without
any preassumption, training, or object shape model.

(2) It can efficiently track the objects in the crowded video
sequences such as crowds on stairs, in airports, or at
train stations.

(3) It is robust to different object transformations such as
translation and rotation.

(4) It is robust to different types of noise processes such as
additive Gaussian noise and quantization noise.

(5) The algorithm can handle object deformation due to
perspective transform.

(6) Partial or short-term full occlusion of the object can be
successfully handled due to the robust transform do-
main FVs and temporal texture analysis.

3.2. The feature vector generation

In the first step, the wavelet packet tree for the desired object
in the reference frame is generated by the UWPT. As men-
tioned in the previous section, the UWPT has two properties
that make it suitable for generating invariant and robust fea-
tures in image processing applications [26–31].

(1) It has the shift-invariant property. Consequently, fea-
ture vectors that are based on the wavelet coefficients
in frame t can be found again in frame t + 1, even in
the presence of partial occlusion.

(2) All the subbands in the decomposition tree have the
same size equal to that of the input frame (no down-
sampling), which simplifies the feature extraction pro-
cess (see Figure 3).

Moreover, UWPT alleviates the problem of subband
aliasing associated with the decimated transforms such as
DWT.

As shown in Figure 1, there are many redundant repre-
sentations of a signal x, by using different combinations of
subbands. For example, x = (wA

1 ,wD
1 ), x = (wA

2 ,wD
2 ,wD

1 ),
and x = (wA

4 ,wD
4 ,wD

2 ,wD
1 ) are all representations of the same

signal.
The procedure for generating an FV for each pixel in the

region r (which contains the target object) at frame t can be
summarized in the following steps.

(1) Generate UWPT for region r (note that UWPT is con-
structed with zero padding when needed).

(2) Perform basis selection from the approximation and
detail subbands. Different pruning strategies can be
applied on the tree to generate the FV as follows.

(a) Apply entropy-based algorithms for the best ba-
sis selection [24, 36] and prune the wavelet
packet tree. The goal of this type of basis se-
lection is removing the inherent redundancy of
UWPT and providing a denser approximation of
the original signal. Entropy-based basis selection
algorithms have been mostly used in compres-
sion applications [36].

(b) Select leaves of the expansion tree for repre-
senting the signal. This signal representation in-
cludes the greatest number of subbands which
imposes an unwanted computational complex-
ity to solve our problem. For example, in
Figure 1, x = (wA

4 ,wD
4 ,wA

5 ,wD
5 ,wA

6 ,wD
6 ,wA

7 ,wD
7 ).

We should note that, in the presence of noise, this
set of redundant features may be used to enhance
the performance of the tracking algorithm.

(c) As the approximation subband provides an aver-
age of the signal based on the number of levels
at the UWPT tree, we prune the tree to have the
most coefficients from the approximation sub-
bands. This type of basis selection gives more
weight to the approximations which are useful
for our intended application. For example, in
Figure 1, we may let x = (wA

4 ,wD
4 ) or x = (wA

4 ).
For our application, this type of basis selection is
more reasonable, because the comparison in the
temporal tracking part of the algorithm is carried
out between two regions that are represented by
similar approximation and detail subbands.

The output of this step is an array of node index num-
bers of the UWPT tree that specifies the selected basis
for the successive frame manipulations.

(3) The FV for each pixel in region r can be simply created
by selecting the corresponding wavelet coefficients in
the selected basis nodes of step (2). Therefore, the
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Figure 2: A block diagram of the proposed algorithm.
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Figure 3: Feature vector selection: (a) a selected basis tree, (b) ordering of the subband coefficients to extract the feature vector, (c) FV
generation formula for pixel (x, y).

number of elements in the FV is the same as the num-
ber of selected basis nodes.

Consider a pruned UWPT tree and the 3D representa-
tion of the selected basis subbands in Figures 3(a) and 3(b),
respectively. In this case, FV for the pixel located at position
(x, y) can simply be generated as shown in Figure 3(c).

3.3. The temporal tracking

The aim of temporal tracking is to locate the object of interest
in the successive frames based on the information about the
object at the reference and current frames. As stated in the
previous section, we can construct a feature vector that cor-
responds to each pixel in the region around the object. These
FVs can be used to find the best matched region in succes-
sive frames; that is, pixels within region r are used to find the
correct location of the object in frame t + 1. The process of
matching region r in frame t to the corresponding region in
frame t + 1 is performed through the full search of the region
in a search window in frame t + 1, which is adaptively deter-

mined by the texture analysis approach that will be discussed
in Section 3.4 [32].

More specifically, every pixel in region r may undergo a
complex transformation within successive frames. In general,
it is hard to find each pixel using variable and sensitive spa-
tial domain features such as luminance, texture, and so forth.
Our approach to track r in frame t makes use of the afore-
mentioned FV of each pixel and Euclidean distances to find
the best matched regions as described below.

The procedure to match r in frame t to r + 1 in frame t +
1 is as follows.

(1) Generate an FV for pixels in both region r and the
search window by using the procedure presented in
Section 3.2.

(2) Sweep the search window with a search region that has
the same dimension as r.

(3) Find the best match for r in the search window by cal-
culating the minimum sum of the Euclidean distances
between the FVs of the pixels of search regions and FVs
of the pixels within region r (e.g., full search algorithm
in the search window).
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The procedure to search for the best matched region is
similar to the general block-matching algorithm, except that
it exploits the generated FV of a pixel rather than its lumi-
nance. Therefore, when some pixels of r do not appear in the
next frame (due to partial occlusion or some other changes),
our algorithm is still capable of finding the best matched re-
gion based on the above search procedure.

3.4. The search window updating mechanism

The change of object location requires an efficient and adap-
tive search window updating mechanism for the following
reasons.

(1) The proper search window location ensures that the
object always lies within the search area and thus pre-
vents loss of the object inside the search window.

(2) A location-adaptive fixed size search window decreases
computational complexity that results due to a large
and variable size search window [27].

(3) If a moving target is occluded by another object, use of
direction of motion may alleviate the occlusion prob-
lem.

To attain an efficient search window updating mecha-
nism, different approaches can be employed. Most of these
techniques use spatial and/or temporal features to guide the
search window and to find the best match for it with the least
amount of computation [32].

We have considered two different mechanisms for updat-
ing the location of the search window as follows.

(1) Updating the center of the search window based on the
center of the rectangle around the object at the cur-
rent frame. In this case, the center of search window
is not fixed and it is updated at each new frame to the
center of the matched rectangle at the previous frame.
This approach is simple, but loss of tracking propa-
gates through the frames [28]. In addition, when oc-
clusion occurs at the current frame, the object may not
be found correctly in the following frames.

(2) Another approach is to estimate the direction and the
speed of motion of the object to update the location of
the search window.

In this paper, we have selected the latter approach as our
updating strategy by using the interframe texture analysis
technique [32]. To find the direction and speed of the ob-
ject motion, we define the temporal difference histogram of
two successive frames. Coarseness and directionality of the
frame difference of the two successive frames can be derived
from the temporal difference histogram [32]. Finally, the di-
rection and speed of the motion are estimated through the
use of temporal difference histogram of coarseness and di-
rectionality.

3.4.1. Temporal difference histogram

The temporal difference histogram of two successive frames
is derived from absolute difference of gray-level values of cor-
responding pixels at the two frames.

δ8 δ1 δ2

δ3

δ4
δ5

δ6

δ7

Search window

Figure 4: Distance assignment in the different directions to find the
maximum inverse difference moment (IDM).

Consider the current search window SAt(x, y) at frame t
and a new search window SAt+1(x, y) determined by a dis-
placement value δ = (∆x,∆y) of the current search window
center in the next frame. We assume Nx and Ny are the width
and height of the search window, respectively. It should be
noted that the two search windows have the same size. We
define absolute temporal difference (ATDδ) of the two win-
dows as follows:

ATDδ(x, y) =
∣

∣SAt(x, y)− SAt+1(x + ∆x, y + ∆y)
∣

∣, (2)

Then, we calculate the histogram of the values of ATDδ . Note
that the histogram has M bins, where M is the number of
gray levels in each frame (256 for an 8-bit image).

Finally, the histogram values are normalized with respect
to the number of pixels in the search window (Nx×Ny) to ob-
tain the probability density function of each gray-level value
pδ(i), i = 0, . . . ,M − 1.

3.4.2. The search window direction

Assume that the search window is a rectangular block. Con-
sider eight different blocks at the various directions with dis-
tance δi from the center of search window at the current
frame (see Figure 4).

Then, calculate the temporal difference histogram, pδi ,
for each block with respect to the original block (search win-
dow). Now, we can easily compute the inverse difference mo-
ment, IDMi, corresponding to each block using (3). The in-
verse difference moment, IDM, is the measure of homogene-
ity and it is defined as

IDM =

M−1
∑

i=0

pδ(i)

i2 + 1
. (3)

In a homogeneous image, there are very few dominant
gray-level transitions. Hence, pδi has a few entries of large
magnitudes. Here, IDM contains information on the distri-
bution of the nonzero values of pδi , and it can be used to
identify the main texture direction. If a texture is directional,
it is coarser in one direction than in the others, then the de-
gree of the spread of the values in pδi should vary with the
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direction of δi, assuming that its magnitude is in the proper
range. Thus, texture directionality can be analyzed by com-
paring spread measures of pδi for various directions of δ.

To derive the motion direction from texture direction,
the direction that maximizes IDM should be found:

IDMmax = max
{

IDMi

}

, i = 1, 2, . . . , 8. (4)

The maximum value of IDM, IDMmax , indicates that the
frame difference is more homogenous in that direction than
in the others, implying that the corresponding blocks in the
successive frames are more correlated.

3.4.3. The search window displacement

The quantitative measure for coarseness of texture is the tem-
poral contrast which is defined as the moment of inertia of
pδ around the origin, and it is given by

TCON =

M−1
∑

i=0

i2pδ(i), (5)

where M is the number of gray-level values in each frame as
stated in Section 3.4.1.

The parameter TCON gives a quantitative measure for
the coarseness of the texture and its value depends on the
amount of local variations that are present in the region of
interest. The existence of high local variations in a frame im-
plies an object activity in the frame and this frame is called
active compared to the frames with small variations. Since
active frames of an image sequence exhibit a large amount
of local variations, the temporal contrast derived from the
frame difference signal is related to the picture activity. The
parameter TCON is normalized to local contrast (LCON) in
order to minimize the effect of size and texture of the search
window (SW). The parameter LCON which defines the pixel
variance within the search window is given by

LCON =
1

SW

∑

SW

[

g(x, y)− g
]2

, (6)

where g(x, y) is the gray-level value of the pixel located at po-
sition (x, y) and g is the average gray-level value of the pixels
in the search window. Based on the temporal and local con-
trasts, a good estimate of the average motion speed, S, within
a block can be defined as

S = k
TCON

LCON
, (7)

where k is a constant with empirically selected values. The
average motion speed, S, in (7) is not only independent of
the size of the moving objects but also invariant to the ori-
entation of their texture. The value of S approaches zero for
stationary parts of the picture such as background, indepen-
dent of their texture contents [32].

The displacement value of the search window for the next
frame is given by

R j−1 = S j−1 −Disp j−1,

Disp j =
⌊

S j + R j−1

⌋

.
(8)

In some future frames, the value of S might be less than 1.
Thus, the displacement of the search window will be equal to
zero. Parameter R j−1 denotes the displacement residue at the
previous frame. Assuming low-speed object movements, the
parameter R j−1 helps to sum up the values of displacements
that are less than one pixel away until they reach at least one
pixel displacement.

4. EXPERIMENTAL RESULTS

Throughout our experiments, we have assumed that there are
no scene cuts. Clearly, in case of a scene cut, the reference
frame and the target object should be updated and a new user
intervention is required.

Several objective evaluation measures have been sug-
gested in the literature [37, 38]. In this section, we have used
the ground truth information to objectively evaluate the per-
formance of our algorithm.

The experimental results of the proposed tracking algo-
rithm have been compared with the conventional wavelet
transform (WT) as well as the well-known color histogram-
based tracking algorithms with two different matching dis-
tance measures, that is, chi-squared and Bhattacharyya. In
the figures, color histogram-based tracking with the chi-
squared distance measure is denoted by CHC, the color
histogram-based tracking with Bhattacharya distance mea-
sure by CHB, wavelet transform by WT, and the proposed al-
gorithm by UWPT. We have used biorthogonal wavelet bases,
which are particularly useful for object detection and gen-
eration of the UWPT tree. In fact, the presence of spikes in
the biorthogonal wavelet bases makes them suitable for tar-
get tracking applications [39]. In all experiments, we have
used 3 levels of UWPT tree decomposition with the Bior2.2
wavelet [35]. In the color histogram-based algorithm imple-
mentation, the number of color bins was set to 32.

To evaluate the algorithms in a real-environment setting,
we have applied them to different real-time video clips of
Tehran Metro Stations in cooperation with the Tehran Metro
authorities as well as to a longer sequence extracted from the
dataset S7 of IEEE PETS 20061 workshop. These video clips
show the crowds at different parts of the metro such as get-
ting on/off the train and up/down the stairs. Moreover, they
include different conditions in crowded scenes such as partial
and complete occlusions, high and low speed, variable occlu-
sion duration, zooming in and out, object deformation, and
object rotation. In all the snapshots, solid rectangles corre-
spond to the rectangles around the objects, and the rectan-
gles with dashed lines represent the search window. Note the
difficulty in tracking heads in a crowded scene, as there are
several nearby similar objects.

In addition, for each tracking result, the corresponding
set of video clips is available through Internet2 for more
detailed subjective evaluation. Moreover, we have defined

1 Ninth IEEE International Workshop on Performance Evaluation of Track-
ing and Surveillance.

2 http://ce.sharif.edu/∼khansari/JASP/videoclips.html.
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Figure 5: Tracking the head of a man coming down the stairs in a crowded metro station. (a) Reference frame, (b) UWPT, (c) CHC, (d)
CHB, (e) WT, (f) objective evaluation: distance between the center of tracked bounding box and the expected center, for all methods.
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Figure 6: Tracking a man going up the stairs, in presence of partial occlusion and zooming out effects. (a) Reference frame, (b) UWPT, (c)
CHC, (d) CHB, (e) WT, (f) objective evaluation: distance between the center of tracked bounding box and the expected center, of all four
methods.
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Reference: frame no. 635
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CHB: frame no. 672 CHB: frame no. 678
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Figure 7: Tracking a man moving up the stairs, with full occlusion in some frames: (a) UWPT, (b) CHC, (c) CHB, (d) WT.

a measure for objective evaluation of tracking techniques
based on the Euclidian distance of the center of gravity of
the tracked and actual objects. Here, at the start of track-
ing, a bounding rectangle located at the center of the grav-
ity of the desired object is selected. In the following frames,
the bounding rectangle represents the tracked object, and its
distance with the center of the gravity of the actual object is
measured.

Figure 5 shows the snapshots of tracked head of a man,
shown in frame 245, coming down the stairs in a crowded
metro station. The size of the rectangle around the object was
set to 19 × 13 pixels, and the size of the search window was
57×51 pixels. Empirical parameters to find the direction and
speed of the motion for updating the search window were
set to d = 1 and k = 6. The object is stepping down the
stairs with a constant speed, small amount of zooming, and
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Reference: frame no. 35
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CHB: frame no. 77
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Figure 8: Tracking a man getting off the train in various kinds of partial and long-duration full occlusions and zooming in effects: UWPT,
CHC, and CHB.

some cross-movements. There is no partial or full occlusion
of the object in this case, but there are similar faces within
the search window that complicate the tracking process.

As the results show, the object of interest has been suc-
cessfully tracked by UWPT despite the presence of several
similar objects inside the search window (see Figure 5(b)).
The WT and color histogram-based algorithms (CHC and
CHB) have mistakenly tracked a wrong object in frame no.
309 (see Figures 5(c), 5(d), and 5(e)). For detailed analysis,
we present the result of our objective measure on a frame-
by-frame basis in Figure 5(f). For both CHC and CHB,
from frame no. 252, their Euclidian distance of the center
of gravity is well above the bounding rectangle size, im-
plying that the objects are totally miss-tracked. The color
histogram-based algorithms are able to find the objects in
a random manner, however in some cases their behavior
is unpredictable (for instance, see the CHB tracking re-
sults before and after frame no. 320 in Figure 5(f)). The
WT-based tracking has also miss-tracked the object after
frame 330, and its performance is worth than UWPT for
the previous frames. On the contrary, our proposed algo-

rithm is tracking the object in a consistent and stable man-
ner.

Figure 6 shows the result of tracking a person moving
up the stairs and away from the camera in a metro station.
Frame no. 97 was the reference frame (see Figure 6(a)), the
size of the rectangle around the object was 17×15 pixels, and
the size of the search window was 51 × 49 pixels. Empirical
parameters to find the direction and the speed of the motion
for updating the search window were set to d = 1 and k = 6.

The target object is stepping up the stairs with a constant
speed and its movement exhibits a small amount of zoom-
ing out, some degree of rotation of the head, and partial
occlusion. The WT and color histogram-based algorithms
(CHC and CHB) have mistakenly tracked a wrong object in
frame nos. 139 and 160 (see Figures 6(c), 6(d), and 6(e)).
As shown in Figure 6(f), after frame no. 124, both CHC and
CHB miss the target off and on randomly because of the par-
tial occlusion and zooming out effects. The WT algorithm
loses the track after frame no. 110 and never finds the tar-
get correctly. In all the sequences, our proposed algorithm
can successfully track the target object even in the presence
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Figure 9: A man is tracked in the crowd in the metro in the presence of partial and full occlusions and zooming effects (all figures are the
results of the proposed algorithm).

of object rotation and partial occlusion. The tracking re-
sults are available in separate video clips through the Internet
(http://ce.sharif.edu/∼khansari).

Figure 7 shows the result of tracking a person moving
up the stairs and away from the camera in a metro station.
Frame no. 635 was the reference frame (see Figure 7(a)), the
size of the rectangle around the object was 25 × 15, and the
search window size was 75 × 65 (±25 pixels). Empirical pa-
rameters to find the direction and speed of the motion for
updating the search window were set to d = 2 and k = 8. The
object is moving up with a constant speed, and in a number
of frames, it is fully occluded by the head of another per-
son. The partial occlusion has started in frame no. 656 and
turned into full occlusion in frame nos. 660–669. As shown
in Figure 7(b), our algorithm successfully handles partial and
full occlusions in this experiment. It has been observed that if
during occlusion the object is still in the search area, immedi-
ately after reappearing, our algorithm can successfully detect
it. The CHC, CHB, and WT fail to track the object because
of occlusion, as shown in Figures 7(c), 7(d), and 7(e).

There are two reasons for occlusion handling of UWPT
in Figure 7 and the following figures.

(1) The proposed FV is robust against the partial occlusion
compared to the spatial space feature vectors such as
those used in color histogram-based algorithms.

(2) Long-duration occlusion originates from the fact that
the object of interest and the occluding object both
move at the same direction. Since the algorithm uses
activity analysis to find the motion and direction of the
search window and hence updates the search window
location, it can predict the location of the object af-
ter occlusion [29, 32]. Therefore, our updating mech-
anism ensures that the object lies within the search
window in case of occlusion, and our robust FV al-
lows for successful tracking afterward. In case of short-
duration occlusion, motion directions of the object
and the occluding object are different. Therefore, for a
suitable search window size, the created FV can han-
dle the occlusion as soon as the object partially ap-
pears.
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Figure 10: Tracking a man stepping up the stairs in presence of partial occlusions, zooming out, and additive Gaussian white noise (PSNR =

20 dB). (a) Reference frame, (b) UWPT, (c) CHC, (d) CHB, (e) WT, (f) objective evaluation: distance between the center of tracked bounding
box and the expected center.
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Figure 11: Tracking a man going up the stairs, in presence of partial occlusions and zooming out effects in presence of quantization distortion
(bit rate of 0.22 bpp and PSNR of 31.95 dB). (a) Reference frame, (b) UWPT, (c) CHC, (d) CHB, (e) WT, (f) objective evaluation: distance
between the center of tracked bounding box and the expected center.
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Figure 12: Tracking a man with a long-term occlusion in a larger number of frames (dataset S7 (camera 1) from IEEE PETS 2006 workshop
(http://www.cvg.rdg.ac.uk/PETS2006)). (a) Reference frame, (b) UWPT, (c) objective evaluation: distance between the center of the tracked
bounding box and the expected center for WT and UWPT.
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Figure 8 shows the result of tracking where the crowd is
getting off the train. Frame no. 35 is the reference frame with
the bounding rectangle having the size of 42 × 22 and the
search window having the size of 84× 64. Empirical param-
eters to find the direction and speed of the motion for up-
dating the search window were set to d = 1 and k = 3. The
object is passing through the crowd and experiencing partial
occlusions, and some zooming is also present in a number
of frames. The partial occlusion begins from frame no. 62,
and then in frame no. 64 it turns almost into complete oc-
clusion that lasts for 10 frames. As demonstrated in Figure 8,
our algorithm can successfully handle partial occlusions even
in presence of zooming, due to the robustness of FVs and the
adaptability of the search window. Although in few frames
the algorithm cannot exactly find the object (e.g., frame nos.
85–89) due to the high movement of the object, lack of fea-
ture vector updating mechanism, and object blurring com-
pared to the reference frame, in contrast to the histogram-
based techniques it never loses object in the process of track-
ing.

Figure 9 shows the result of tracking a man where he
moves inside the crowd in the presence of repeated partial
and full occlusions and zooming. Frame no. 162 of the se-
quence was considered as the reference frame; the size of the
rectangle around the object and the search window size were
37×22 and 111×96 (±37 pixels), respectively. Updating pa-
rameters of the search window were chosen to be d = 1 and
k = 3. As the object (the man with the bright shirt) moves
in various directions, he is partially and fully occluded by
others at several successive frames. The object was occluded
completely in a number of frames, for example, frame nos.
176–178. It is important to note that when both complete oc-
clusion and zooming are present, it takes a number of frames
before the object can be tracked successfully (the last row of
Figure 9).

Figure 10 shows the result of tracking the sequence in
Figure 6 in the presence of additive white Gaussian noise with
a peak signal-to-noise ratio (PSNR) of 20 dB. This type of
noise is very common with low-light video, especially in un-
dergrounds. Again, the noisy reference frame is frame no.
97 (see Figure 10(a)). To highlight the resilience of the pro-
posed algorithm against noise [30, 31], we have used a larger
bounding box (23 × 16) and therefore a larger search area
(62 × 69). Empirical parameters to find the direction and
speed of the motion for updating the search window were
set to d = 1 and k = 3 in Figure 10.

The presence of noise has degraded the performance of
the color histogram-based algorithms tremendously with-
out having any effect on the wavelet-based methods (see
Figure 10(f)). However, the performance of WT is not con-
sistent and is worse than the UWPT algorithm.

Figure 11 shows the impact of quantization noise on
tracking objects, where the quantization distortion was set
for a 0.22 bit per pixel compression with a PSNR of 31.95 dB.
The directional motion search parameters were set to d = 1
and k = 6.

Again, the proposed algorithm outperforms the CHC,
CHB, and WT algorithms because of the robustness of
the proposed feature vector to object tracking in the noisy

crowded environments. It should be noted that in the last few
frames of this test clip, because of the larger bounding box
and search area, almost full occlusion of the target object, and
longer distance between the feature vectors of those frames
and the feature vectors of the reference frame, the tracking
results are not precise.

The proposed algorithm was also applied to longer-
duration sequences with complex contents. The test se-
quence shown in Figure 12 is the dataset S7 (camera 1) from
IEEE PETS 2006 workshop, which is one of the most diffi-
cult datasets with long duration. It contains a single person
with a suitcase who loiters before leaving his luggage unat-
tended. There is a long-term occlusion in the captured video
from camera 1 (the scene has been captured using 4 different
cameras from different locations).

The search window size should be large enough to han-
dle the occlusion and encompass the target object after the
occlusion. Therefore, for a bounding box of 56 × 21 pixels,
the search window size was 212 × 177 (±78 pixels). The di-
rectional motion search parameters were set to d = 4 and
k = 16. Since the previous results clearly demonstrate that
UWPT outperforms the other methods, we only objectively
compare the performances of WT and UWPT for this test
clip.

For the sake of clarity of the images, all of them (except
for the reference frame) are zoomed in to better show the
bounding box and search window status. Note that the size
of the bounding box is kept unchanged during the tracking,
and the object has a fast progressive zoom in effect. After 140
frames at the beginning of the clip, a full occlusion starts for
a rather long period of 200 frames. However, our search win-
dow updating mechanism acts very well in this occlusion pe-
riod and keeps the object in search area during and after the
occlusion. Moreover, the robustness of our FV enables the
proposed algorithm to find the object of interest after occlu-
sion as depicted in Figure 12(b).

As shown in Figure 12(c), there is an initial 18-pixel offset
between the gravity center of the bounding box and the per-
son for both WT and UWPT methods. This error is mainly
due to the large size of the bounding box. The WT tracker be-
haves inconsistently even at the starting frames, while UWPT
can track the bounding box consistently, with the exception
of few frames after the occlusion.

Because of the unusual movement of the target object, its
exact position at the start of tracking and after occlusion will
be too much different. In other words, due to the perspective
transformation as well as deformation, some pixels may dis-
appear or appear within the bounding box, and hence it is
not expected that in this situation any kind of object track-
ing algorithm will work properly. In addition, after frame no.
976, the object reappears with a completely different view
with respect to the original reference frame, and hence the
tracking is inconsistent.

In [26], it has been shown that the core of the pro-
posed algorithm can be implemented in real time for object
tracking. However, the experimental results of this section
have been implemented using MATLAB simulation environ-
ment. On a typical PC with 3 GHz Xeon processor, 1 GB of
RAM, and Linux operating system, the processing rate of the
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proposed algorithm is about 10–15 frames per second (FPS)
depending on the size of the bounding box, search area, and
specific I/O of the algorithm (on the screen, in JPEG or MAT-
LAB file). As an example, the processing rate for the setting in
Figure 5 is equal to 15 FPS. Therefore, by using an optimized
C code, real-time performance can be achieved.

5. CONCLUSIONS AND FUTURE WORK

A new object tracking algorithm for crowded scenes based
on pixel features in the wavelet domain and a novel adap-
tive search window updating mechanism based on texture
analysis have been proposed for object tracking in crowded
scenes. Based on the properties of UWPT, existence of in-
dividual robust FVs for each pixel, and the adaptive search
window, this method can tolerate complex object transfor-
mations including translation, small rotation, scaling, and
partial or complete occlusions in a reasonable number of suc-
cessive frames. Moreover, the algorithm is robust to different
types of noise processes such as additive Gaussian and quan-
tization noises, and it can be implemented in real time. We
have also shown that the performance of UWPT is signifi-
cantly better than that of the usual decimated wavelet trans-
form, and color histogram-based methods for object track-
ing.

In the current algorithm, the FVs are kept unchanged
during a tracking session. A memory-based FV updating
mechanism combined with Kalman filtering for search area
prediction can improve the performance of our algorithm in
presence of abrupt zooming in/out or object scaling. Particle
filters can also be integrated with the proposed FV genera-
tion to cope with the complex object movement and search
window updating.

Finally, we can use color components and combination
of spatial domain features such as edge and texture to further
improve the performance of our algorithm in color video
clips. In this case, additional information can weight the FV
and improve the searching mechanism.
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