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Object Tracking in Satellite Videos by Improved
Correlation Filters With Motion Estimations

Shiyu Xuan, Shengyang Li , Mingfei Han , Xue Wan , and Gui-Song Xia , Senior Member, IEEE

Abstract— As a new method of Earth observation, video
satellite is capable of monitoring specific events on the Earth’s
surface continuously by providing high-temporal resolution
remote sensing images. The video observations enable a variety
of new satellite applications such as object tracking and road
traffic monitoring. In this article, we address the problem of fast
object tracking in satellite videos, by developing a novel tracking
algorithm based on correlation filters embedded with motion
estimations. Based on the kernelized correlation filter (KCF),
the proposed algorithm provides the following improvements:
1) proposing a novel motion estimation (ME) algorithm by
combining the Kalman filter and motion trajectory averaging
and mitigating the boundary effects of KCF by using this
ME algorithm and 2) solving the problem of tracking failure
when a moving object is partially or completely occluded. The
experimental results demonstrate that our algorithm can track
the moving object in satellite videos with 95% accuracy.

Index Terms— Correlation filter, motion estimation (ME),
object tracking, satellite videos.

I. INTRODUCTION

THE launch of video satellites has enabled us to observe
and measure moving objects on the Earth’s surface,

which provides rich information for monitoring rapid-changing
events, such as oil reserve detection, disaster monitoring, ocean
monitoring, ecosystem disturbance monitoring, and traffic
condition monitoring [1], [2]. For instance, the Jilin-1 satel-
lite constellation launched by China can continuously obtain
10–30 images/s of the same area and has played an important
role in the urban investigation of China [2]–[4].

Among the analysis of satellite videos, moving object
detection and tracking is highly demanded, which targets
to locate moving objects on the surface and compute their
trajectories [3]–[6]. The moving objects in satellite videos
mainly include motor vehicles, airplanes, and ships. In contrast
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Fig. 1. Some moving objects in satellite videos. (a) Object size in the image
is small about 10 × 10 pixels. (b) Object is partially occluded. (c) Small area
with similar densely packed objects.

with video surveillance on the ground, object tracking in
satellite videos is more difficult because of the following facts.

1) Due to the low spatial resolution, the size of the object
is often small and the background is usually blurred and
cluttered; therefore, many features that are suitable for
tracking objects in natural scenarios quickly lose their
efficiency for satellite videos.

2) Due to the bird’s view, many moving objects in satellite
videos are partially or completely occluded as shown
in Fig. 1(b), which often leads to losses of objects.

3) As many similar objects are densely packed in a small
area, the algorithm needs to have a very strong ability
to distinguish targets.

See Fig. 1 for an instance, these difficulties have brought to
light the need to study the tracking algorithm in order to
resolve these problems.

The correlation filter method, named kernelized correlation
filter (KCF) [7], has been reported promising results on
tracking objects without rapid deformation, and therefore, it is
among the best choices for tracking objects in satellite videos.
However, when being applied to satellite videos, the KCF
tracker still suffers from the following drawbacks: 1) when the
object is not in the center of the searching area, the boundary
effect often leads to decrease in the tracking accuracy and
2) object is often lost when it is completely occluded.

The moving objects in the satellite videos are vehicles,
planes, or ships. The acceleration of these objects is not
particularly large, which means that the motion state of these
objects does not change in a short period of time. Therefore,
the movement of objects in satellite video is usually regular.
Inspired by this observation, this article presents a tracking
algorithm based on the correlation filter with motion esti-
mation (CFME) by integrating the movement characteristics
of objects in the KCF tracker. More precisely, our work is
distinguished from others with the following contributions.

1) We propose a ME algorithm combining the Kalman
filtering and motion trajectory averaging (MTA).
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2) We propose an effective solution to mitigate the bound-
ary effect in the KCF tracker. Compared with other
methods, see [8]–[10] for mitigating the boundary effect,
our method utilizes the motion feature of moving objects
in satellite videos without sacrificing the computational
efficiency.

3) Our algorithm can track objects in satellite videos with
95% accuracy at approximately 120 frames/s (FPS),
which achieved the state-of-the-art performance. More-
over, it can well tackle the problem of tracking failure
when the object is completely occluded.

II. RELATED WORK

A. Moving Object Tracking

Algorithm of moving object tracking can be divided into two
categories, generative methods [11]–[18] and discriminative
methods [7]–[10], [19]–[35]. The generative method constructs
the object template by extracting the object features and uses
the search algorithm in the next frame to get the position with
the highest similarity to the object template. The generative
methods need to find an effective expression of the object
and an efficient search algorithm. The absence of background
information will lead to object drift when the object is sim-
ilar to the background. Another method, the discriminative
method, overcomes these shortcomings very well.

The biggest difference between discriminative methods and
generative methods is that discriminative methods train a
classifier to distinguish between the object and the background
instead of just focusing on the object itself. The addition of
more information, especially background information, makes
the discriminative methods more robust. The key part of
the discriminative method is the classifier, which needs to
correctly classify the object and the background. In object
tracking, the classifier is generally trained using the image
of the first frame. After that, many algorithms use the new
tracking results to expand the training set and uses the new
training set to update the classifier online to make the classifier
more robust.

One type of discriminative method uses the machine learn-
ing methods to train the classifier [19]–[25]. In recent years,
deep learning has also been used in the field of object
tracking [26], [27], [36]–[41]. The use of deep features
avoids complex feature design and achieves good results,
but deep learning tracking algorithm has difficulty in solving
the problem of online updating because of the computational
complexity. Tracking small size objects in satellite video using
deep learning is a problem worth studying.

The correlation filter is another type of discriminative
tracking methods [7]–[10], [26]–[33]. The correlation filter
algorithm uses a cyclic shift to generate training samples and
can be efficiently calculated in the Fourier domain, making the
algorithm very efficient. Its high efficiency and high accuracy
make it widely studied in the field of object tracking in recent
years. The correlation filter called the minimum output sum
of squared error (MOSSE) was applied to object tracking for
the first time in [28]. The circulant structure kernel (CSK)
tracker [32] used a cyclic shift to construct samples and
added the kernel trick. On the basis of CSK, the KCF

tracker [7] defined the connection method of multichannel
features, and the filter can use different kernel functions. The
scale adaptation of the correlation filter was added in [30]
and [33] by using scale pyramids. The deep features were used
in [26] and [38] to replace the handcraft features used by the
general correlation filter method and achieved good results.
The C-COT [31] used the interpolation to obtain a better
fusion of different features and improved the accuracy but the
efficiency was still low. The ECO [29] speeded up C-COT
and improved accuracy by using dimensionality reduction
and sample merging. The ECO is one of the best tracking
algorithms at present.

The boundary effect is one of the important reasons that
affect the performance of the correlation filtering algorithm.
The samples generated by cyclic shift do not really contain
background information. Therefore, the number of samples is
not enough to train a robust classifier leading to the overfitting
issue and the decrease in performance. When the moving
object is deformed or occluded, the accuracy of the classifier
will drop rapidly. In order to smooth the boundary of the
samples, the samples need to be multiplied by the window
function. When the object is not in the center of the search
area, part of the information will be lost, which also increases
the boundary effect.

The two commonly used methods for mitigating the bound-
ary effect have been proposed by Danelljan et al. [8] and
Galoogahi et al. [9]. A larger area for training was used, and
spatial regular terms to reduce sample weights away from the
target center were added in [8]. This method alleviates the
boundary effect, but the filter coefficient can only be solved
by iteration. It greatly increases the computational complexity,
and the FPS is only about 5. In [9], the boundary effect
was alleviated by adding real background information to the
training sample, but the computational complexity is still high.

Different from the above two method, CFME provides
another way to alleviate the boundary effect according to the
object feature of satellite video, using the ME method to keep
the object in the center of the search area. The increase in the
computational complexity of our method is very low, which
can retain the advantage of the high speed of the correlation
filter.

B. Object Tracking in Satellite Videos

Most current algorithms for object tracking in satellite video
are based on generative object tracking methods or moving
object detection methods. Based on the assumption that the
motion of a vehicle is linear in a short time, a method of
template matching by using the Hu matrix after preprocessing
with motion smoothing constraints was proposed in [3]. This
method performed well under the simple road conditions
but is not good under the complicated road conditions due
to the object drift issue. A robust automatic detection and
tracking method for video data of the UrtheCast Iris camera
installed on the Zvezda module of the International Space Sta-
tion (ISS) was proposed in [42]. This method uses background
subtraction and motion recognition technology to detect and
track motor vehicles and ships. This method requires high
accuracy of the background subtraction algorithm and may
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fail in the presence of strong background jitter. Both spectral
and spatial features were used to model ships and planes
in [6] and in the object matching procedure, the Bhattacharyya
distance, histogram intersection, and pixel count similarity
were combined in a novel regional operator design. This
method uses a worldview-2 multiangle time-series image to
track the object and achieves good results in tracking plane
objects; however, this method is not suitable for small vehicles.

Some algorithms use optical flow to tracking object in
satellite video. In [4], the optical flow was used to track
the vehicles and achieved vehicle speed estimation and traffic
density monitoring; however, the main purpose in that article
is to estimate the density of traffic and the tracking accuracy
is not high. In [43], the optical flow was fused with the HSV
color system and integral image, and the multiframe difference
method was also used to get a better tracking results. This
algorithm works very well when tracking the large size object.
The calculation of the optical flow has a high requirement of
video quality. Therefore, this algorithm is not effective when
the video quality is not high.

Some algorithms use more robust discriminative methods
and achieve very good performance. In [5], the correlation
filter was used, and the multiframe difference method was used
to assist the correlation filter. In [44], the optical flow was used
as features to train the correlation filter. These two algorithms
improve the correlation filter according to the object feature of
satellite video and achieve very good results. However, these
two algorithms do not solve the defects of the correlation filter
itself like the boundary effect and will lose the object when
the object is completely occluded. Different from these two
algorithms, our methods use a simple method to alleviate the
defects of the correlation filter itself.

As a new Earth observation technology, satellite video
has been used for moving object detection in most studies.
In the aspect of tracking, the methods perform well under
many simple conditions, but current algorithms still need to
be improved in terms of accuracy, robustness, and real-time
performance.

III. KERNEL CORRELATION FILTER TRACKER

Assuming that the data are x = [x1, x2, x3, . . . , xn], a cyclic
shift of data can be expressed as Px = [xn, x1, x2, . . . , xn−1].
All cyclic shifts of this data can be concatenated as data matrix
X = C(x) as shown in the following equation. This matrix is
called a circulant matrix:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x1 x2 x3 · · · xn

xn x1 x2 · · · xn−1
xn−1 xn x1 · · · xn−2

...
...

...
. . .

...

x2 x3 x4 · · · x1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (1)

All circulant matrices have the following property [45]:

X = F H diag(
√

n Fx)F (2)

where F is the discrete Fourier transform (DFT) matrix and
is used for transforming the data to the Fourier domain. F H

is the Hermitian transpose of F . diag means the diagonal

Fig. 2. Samples produced by cyclic shift and corresponding label functions.
(a) Original image of object. (b) Image with a vertical upward cyclic shift
of five pixels. (c) Image with a horizontal right cyclic shift of five pixels.
(d)–(f) Label functions corresponding to the upper sample. It can be observed
that because of the cyclic shift, a very sharp boundary appears in (b) and (c).
In order to alleviate this situation, the image needs to be multiplied by the
window function.

matrix. The solution of the linear regression can be simplified
by using the properties of a circulant matrix.

KCF uses the form of ridge regression to solve fil-
ter coefficients. Suppose the size of an image patch x is
M × N pixels. The training samples are the all circu-
lar shifts of the image patch xm,n , with (m, n) ∈ {0, 1,

. . . , M−1} × {0, 1, . . . , N−1}. The label function y =
exp{−((m−M/2)2 + (n−N/2)2/2σ 2)} is a Gaussian function
and (m, n) indicates the shifted positions along the horizontal
and vertical directions, and the value at the target center is
1 and decays to 0 as the distance from the target center
increasing. The samples and labels are shown in Fig. 2. The
objective function can be written as

min
ω

M×N
∑

i=1

( f (xi ) − yi )
2 + λkωk2 (3)

where f (x) = ωT x and λ > 0 is a regularization factor.
Then, ω can be calculated directly through

ω = (X T X + λI )−1 X T y. (4)

Using the properties of the Fourier transform and substituting
(2) into (4), we obtain

ω̂ = x̂⋆ ◦ ŷ

x̂⋆ ◦ x̂ + λ
(5)

where ω̂, x̂ , and ŷ are the DFT of ω, x , and y, respectively.
x̂⋆ is the complex conjugation of x̂ . The operator ◦ is the
Hadamard product of matrix. λ is the regularization factor
for ridge regression. By using the properties represented in
(2), KCF does not need to generate cyclic shift samples by
iteration. Using the Fourier transform of the original sample
and (5), we can get the same result as what cyclic shift
generates.
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The performance of the tracker can be improved by using
the kernel trick [7]. Suppose the kernel κ is κ(x, x 0) =
h�(x),�(x 0)i. f (x) can be written as

f (x) = ωT �(x) =
n

∑

i=1

αiκ
(

xi , x 0
i

)

. (6)

For most of the kernel functions, the properties of (2) still
hold. Then, α̂ can be solved by

α̂ = ŷ

k̂x x 0 + λ
. (7)

If a Gaussian kernel is used, kx x 0
can be written as (8),

where c represents the number of channels of the feature

kx x 0 =exp

{

− 1

σ 2

(

kxk2+kx 0k2−2F−1

(

∑

c

x̂⋆
c ◦ x̂ 0

c

))}

. (8)

In the tracking process, the algorithm crops an image patch
with 2.5 times the object size in the object center to obtain
features x . α̂ can be calculated in (7). In the next frame,
the features z are extracted from the image patch, which is
cropped at the center at the object center of the previous frame
with the size unchanged. The algorithm then calculates the
correlation response patch of this frame using

f (z) = F−1(k̂lz ◦ α̂) (9)

where l is the learned target template. The object position of
the current frame can be obtained by calculating the offset of
the maximum value position from the center of the response
patch.

In order to ensure that the filter can adapt to the changes
of the object, we need to update the filter by using (7) for
training the filter αnew with the samples xnew, which are
sampled from the new position. The new filter coefficients
are calculated as

{

α̂ = (1 − η) α̂t−1 + η α̂new

lt = (1 − η) lt−1 + η xnew
(10)

where η is the learning rate, αnew is calculated using new
samples, and lt is the new learned target template.

KCF has low computational complexity and can use multi-
channel features, e.g., histogram of oriented gradients (HOG)
and color naming. It is robust to illumination changes and has
high tracking accuracy for objects without rapid deformation.
It is very suitable for moving object tracking in satellite video.

IV. PROPOSED METHOD

In order to achieve high accuracy moving object tracking
in satellite videos, we propose a correlation filter with the
ME algorithm (CFME) (see Fig. 3). In this section, we first
introduce the ME algorithm, then introduce the use of ME
to mitigate the boundary effect of KCF and the problem of
tracking failure because of occlusion.

Algorithm 1 ME Algorithm w, Pnew_est imate ←
M E( f rames, n, Pold )

Input:

f rames: video stream;
n: number of processed frames;
Pold : the object position of previous frame;

Output:

w whether the motion estimation is work;
Pnew_est imate estimated new position;

if n == 1 then

/*do some initialization*/
Initialize the Kalman filter K alman;
kn ← 0;
flag ← FALSE;
Set tan(the number of frames used for motion trajectory
averaging);
return w ← FALSE, Pnew_est imate ← None

else if i < tan then

return w ← FALSE, Pnew_est imate ← None
else

if flag == FALSE then

Calculate Pest imate by using Equation (20)-(22) and
Pold ;
Pnew ← C F M E( f rames);
Use K alman and Pold get Pk_est imate;
if distance(Pk_est imate, Pnew) < 4 then

kn ← kn + 1;
if kn == 4 then

flag ← TRUE;
end if

else

kn ← 0;
end if

Pnew_est imate ← Pest imate;
return Pnew_est imate, w ← FALSE

else

Use K alman and Pold get Pk_est imate;
Pnew_est imate ← Pk_est imate;
return Pnew_est imate, w ← FALSE

end if

end if

A. Motion Estimation

1) Kalman Filter: In this article, we use the Kalman filter
(KF) [46] to estimate the position and the velocity of moving
objects. The state equation and observation equation of the
system can be written as

Xk = φx,k−1 Xk−1 + Wk−1 (11)

Yk = Hk Xk + Vk (12)

where Xk and Xk−1 are the state vectors of the system at
time k and k − 1, respectively. φx,k−1 is the state transition
matrix of the system, and Hk is the observation matrix of the
system. W and V are noise matrices following the Gaussian
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Fig. 3. Pipeline of the proposed CFME. First, we use the object position at a previous frame to estimate the position. Then, we crop image patch and extract
features at the estimated position. Third, we use the method mentioned in Section III to obtain the response. After that, we need to judge whether the object
is occluded. If the object is occluded the position predicted by correlation filter is inaccurate and the estimated position will be used as the output; otherwise,
the position predicted by the correlation filter will be used as the output.

distribution with covariance matrices Q and R. In this system,
we select the state vector as Xk = (xsk, ysk,�xk,�yk)

T

where xsk and ysk are the horizontal and vertical positions
of the object at time k, respectively, and �xk and �yk are
the horizontal and vertical speeds of the object at time k,
respectively.

Since the time between every two frames is short, it can be
assumed that the moving object such as the vehicle is moving
in a uniform linear motion; therefore, the state transition
matrix can be written as follows:

φk,k−1 =

⎛

⎜

⎜

⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

. (13)

The observation vector is Yk = (xwk, ywk)
T , which represents

the object position observed at time k. Hk can be expressed as

Hk =
(

1 0 0 0
0 1 0 0

)

. (14)

We then use the KF for ME as follows:

X̂k+1,k = φk+1,k X̂k (15)

X̂k+1 = X̂k+1,k + Kk+1(Yk+1 − Hk+1 X̂k+1,k) (16)

Kk+1 = P̂k+1,k H T
k+1

(

Hk+1 Pk+1,k H T
k+1 + Rk

)−1
(17)

Pk+1,k = φk+1,k Pkφ
T
k+1,k + Qk (18)

Pk+1 = (I − Kk+1 Hk+1)Pk+1,k (19)

where X̂k+1 is the optimal state estimate, K is the KF gain
matrix, and Q and R are the covariance matrices of noise,
which can be adjusted according to the actual situation. P0 is
generally initialized with the random data that are not 0. I is
the identity matrix.

The computation of the KF contains only matrix multipli-
cation for ten times, matrix additional for five times, and an
inverse of a 2 × 2 matrix. Compared with the computational
complexity of KCF, the increased computational complexity
is very little since the size of the biggest matrix in (15)–(19)
is 4 × 4.

The KF needs some amount of data to converge. Experi-
ments show that the KF can converge after 30–50 frames for
ME of moving the object in satellite video.

2) Motion Trajectory Averaging: The KF has high accuracy
in estimating object motion state, but KF is complex and the
filter cannot converge until some frames are used to update
the filter.

In order to estimate the object motion before the KF
converges, we propose a method called MTA.

Typical moving objects in satellite videos are motor vehi-
cles, planes, and ships. We can assume that in a short period of
time, the object is moving in a uniform straight line, even if the
object is in a state of turning, emergency stop or acceleration.
Based on this assumption, the speed of the object in the current
frame can be estimated by the average displacement of the
previous frames. The position of the object at the current frame
can be estimated using the speed and the position of the object
in the previous frame. Thus, the MTA can be described in the
following equations:

�xt−1 = 1

n

n
∑

i=1

(xt−i − xt−i−1) (20)

�yt−1 = 1

n

n
∑

i=1

(yt−i − yt−i−1) (21)

Pt = A St−1 (22)

where St−1 = (xt−1, yt−1,�xt−1,�yt−1)
T is the state vector

of the object at time t −1. Pt = (xt , yt )
T is the position vector

of the object at time t and A is a transfer matrix and can be
written in the form as

A =
(

1 0 1 0
0 1 0 1

)

. (23)

In (20) and (21), n is the number of frames used for MTA and
is determined by considering the FPS of the satellite video.
If n is too small, the MTA will be too sensitive to changes
in the object motion state. If n is too large, the assumption
mentioned above is not true. Therefore, the value needs to be
carefully selected.
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3) Motion Estimation Algorithm With MTA and KF: The KF
can converge only after a certain number of frames. Before the
KF converges, we use the result of MTA as the output of ME.
After the KF converges, we use the result of the KF as the
output of ME.

The results of the ME will be used as the center of the search
area of the KCF to determine the exact position of the object.
The algorithm will be described in detail in Section IV-B.
The exact position of the object obtained by the KCF will be
used as the observation vector to update the KF. In order to
determine whether the KF is convergent, the exact position
of the object obtained by KCF will be compared with the
estimated position of the KF. Considering that the KF is
random when it does not converge, the KF is considered
to be convergent only if the Euclidean distance between the
estimated position of the KF and the exact position of the
object obtained by KCF is less than four pixels in four
consecutive frames. The setting of the distance has little effect
on the experimental results as long as the distance is not set
too large. The pseudocode of the ME algorithm can be seen
in Algorithm 1.

B. Correlation Filter With Motion Estimation

1) Using Motion Estimation to Mitigate Boundary Effect:

As described in Section II-A, KCF has a boundary effect. The
method of [8]–[10] will greatly increase the computational
complexity of the algorithm. We use ME to mitigate the
boundary effect by placing the object being tracked in the
center of the search area. According to the description of
Section IV-A, the ME algorithm does not work with limited
frames at the beginning of a video. We use the original KCF
algorithm and use the center position of the object at the
previous frame as the center of the search area of the current
frame until the ME starts working. Then, we crop the image
patch 2.5 times the object size around the center that was
defined by the ME algorithm to extract features and then use
(9) to calculate the exact position of the object. Using this
method, the object being tracked can be kept at the center
of the search area. The results of the experiment show that
the accuracy of KCF has been greatly improved through this
method.

2) Tracking Method When the Object Is Occluded: Com-
pared to ordinary object tracking tasks, the situation where
the object is completely occluded is very common in satellite
videos. As shown in Fig. 4, when the vehicle passes the bottom
of the overpass, the vehicle will be completely occluded and
disappear from the image. Most trackers lose the object when
it is occluded and cannot relocate the object when it appears
again.

In order to track the object correctly when the object is
occluded, the following three subproblems need to be solved.

1) Occlusion Detection: The algorithm needs to detect the
occurrence of occlusion of the object.

2) Occlusion Processing: When the object is complete or
large-area occluded, processing is required to ensure that
the tracking algorithm does not lose the object.

3) End of Occlusion Detection: The algorithm needs to
detect the end of occlusion.

Algorithm 2 CFME Tracker Pnew ← C F M E( f rames)

Input:

f rames: video stream;

Output:

Pnew : the new position of object;

Set the occlusion threshold T ;
for i = 1; i <= len( f rames); i + + do

if i == 1 then

/*do some initialization in first frame*/
/*select the object to track*/
Pold ← the position of the tracked object
Initialize the KCF tracker K ;

else

w, Pest imate ← M E( f rames, i, Pold);
if w == FALSE then

Crop image patch from f rames[i ] to get feature(size
is 2.5 times object size and center is Pold );
Use feature and K calculate the position Pnew ;
return Pnew

else

Crop image patch from f rames[i ] to get feature(size
is 2.5 times object size and center is Pest imate);
Use feature and K calculate the position P and the
max value pv of the response map;
if pv > T then

/*no occlusion*/
Update the Kalman filter in M E and the KCF tracker
K ;
return Pnew ← P

else

/*the object is occluded*/
return Pnew ← Pest imate

end if

end if

end if

end for

Fig. 4. Object is surrounded by a rectangle. (a) Target is not occluded.
(b) Object is partly occluded. (c) Object is completely occluded and disappears
from the image.

To solve the above problems, the following steps are taken
in our algorithm.

1) As described in Section III, the higher the peak value
of the response patch calculated by the KCF tracker,
the more confidence the tracking result has. In general,
the rapid illumination variation, the rapid deformation of
object, the motion blur of the object, and the partial or
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complete occlusion of the object can lead to a low peak
value. In satellite video, the rapid illumination variation,
the motion blur of object, and the rapid deformation
of object are not obvious; Therefore, we can think that
the low peak value is related to the partial or complete
occlusion of object in most cases, and the peak value of
the response patch can be used to determine whether the
object is occluded. The object is occluded if the peak
value is less than a threshold. We will describe how to
choose a threshold in Section V-D.

2) When the target is occluded, the position calculated by
the KCF tracker will be inaccurate and the position
obtained by the KCF tracker needs to be discarded,
and the position estimated by the ME is used as the
position of the object. Compared with the KCF tracker,
the accuracy of the position obtained by ME is limited;
therefore, this position cannot be used to update the KF.
At the same time, the KCF tracker also stops updating
to prevent the filter from learning the occluded features.

3) When the peak value of the response patch obtained
by the KCF tracker is greater than the threshold again,
the object is considered to reappear and occlusion of the
object has ended.

By using this method, when the object is occluded,
the tracker can estimate the approximate position of the object.
When the object appears again, the algorithm can quickly
relocate the object to obtain the exact position of the object.

The pseudocode of the correlation filter with the ME algo-
rithm is shown in Algorithm 2.

V. EXPERIMENT AND ANALYSIS

A. Data Sets and Compared Algorithms

The experimental data come from the Jilin-1 satellite con-
stellation developed by China Changchun Satellite Technology
Co., Ltd. We used 11 videos for experimentation. The spatial
resolution of data is approximately 1 m, and the frame rate
is 10. Among the videos, there are two airports in Frankfurt,
Germany and Guizhou, China, and the moving objects are
plane. The number of objects is two, and the objects size is
about 50 × 40 pixels. The rest of the video observes traffic
conditions in Dubai, Hong Kong, and Boston. The moving
objects are motor vehicles and the number of objects is 11,
the size of objects is large as 23 × 8 pixels, with the smallest
object being 8 × 8 pixels.

We choose to use KCF [7], ECO [29], TLD [23], MIL [20],
BOOSTING [21], and MEDIANFLOW [47] to compare with
our CFME algorithm. KCF is the baseline of our algorithm.
MIL and BOOSTING are the classic discriminative tracking
algorithms. Both TLD and MEDIANFLOW use the optical
flow method, and TLD uses redetection method to prevent
the loss of object. ECO is one of the best correlation filter
algorithms in object tracking.

B. Details on the Setting of Parameters

The CFME algorithm is implemented in Python. The
TLD, MIL, BOOSTING, and MEDIANFLOW are imple-
mented by calling opencv API. The source code of KCF

is from http://www.robots.ox.ac.uk/ joao/circulant/index.html,
and the source code of ECO is from http://www.cvl.isy.
liu.se/research/objrec/visualtracking/ecotrack/index.html. All
algorithms are performed on the computer with a 2.4-GHz
intel Xeon E5 2620 v3 CPU. Both KCF and CFME use HOG
features. The cell size of the HOG is 4×4. The regularization
factor λ is set to 10−4. The learning rate η is set to 0.012. The
label function y is a 2-D Gaussian function, whose bandwidth
is

√
wh/16. The variables w and h are the width and height of

the tracked object, respectively. The size of the search area is
2.5 times the tracked object size. Considering the assumption
that the object is moving in a uniform linear motion for a short
period of time, n in (20) and (21) is set to 5 for a video whose
frame rate is 10 Hz and is set to 10 if the frame rate of the
video is 24 Hz.

C. Evaluation Metrics

There are two commonly used evaluation metrics center
location error (CLE) and overlap score to evaluate the
performance of tracker at each frame. CLE is the Euclidean
distance between the groundtruth center of the tracked object
and the predicted position. Given the predicted bounding box
rt and the groundtruth bounding box ra , the overlap score is
defined as

S = |rt

⋂

ra|
|rt

⋃

ra|
(24)

where
⋂

and
⋃

represent the intersection and union
of two regions and denote the number of pixels in the
region [48], [49].

Based on CLE and overlap score, in order to evaluate the
performance of tracker on the whole video, precision plot,
success plot, precision score, success score, and area under
curve (AUC) are used [48], [49]. The precision plot shows
the percentage of frames whose CLE is within the given
threshold distance. Considering that the size of the moving
object in satellite video is small, the tracking for a given
frame is regarded as successful if CLE is within 5 pixels
(20 pixels in [48] and [49]). The precision score for each
tracker is the percentage of successful tracking frames. The
success plot shows the percentage of frames whose overlap
score is larger than a given threshold. The tracking is regarded
as successful for a given frame if the overlap score is larger
than the threshold 0.5. The success score is the percentage of
successful tracking frames. We use the AUC of success plot
to rank the trackers.

To evaluate the speed of the tracker, the FPS is also
used. It is the number of frames that the tracker can process
per second.

D. Setting of the Threshold to Detect Occlusion

In order to correctly select the threshold for occlusion
detection in Algorithm 2, we used the peak value of the
response patch of all video sequences to plot their distribution
in Fig. 5. The distribution of the peak value is the bimodal.
As described in Section IV-B2, the low peak value is related
to the partial or complete occlusion of object in most cases.
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Fig. 5. Distribution of the peak value of the response function. We can see
the obvious bimodal distribution. Therefore, occlusion and nonocclusion can
be distinguished by threshold.

Fig. 6. Success plot on every threshold and the legend of the success plot
is the AUC of each threshold.

We can only use the peak value to determine whether the
object is occluded or not.

We used a grid search to select the best performing thresh-
old from [0.1, 0.2, 0.3, 0.4, 0.5]. The success plot on every
threshold is shown in Fig. 6. The AUC is highest when the
threshold is 0.3, therefore we choose 0.3 as the threshold.

The visualization of the tracking process in Fig. 7 explains
the relationship between the object state and the peak value.
The threshold 0.3 can distinguish whether the object is
occluded very well. The peak value is less than the threshold
only when the object is seriously occluded. In the videos that
the object is not occluded, the peak value is not less than the
threshold. In a few extreme cases, the peak value below the
threshold is not caused by the object being seriously occluded
but caused by rapid illumination variation or the motion blur of
the object. The duration of such extreme cases is very short
and will bring negligible error to the final tracking results.
Therefore, our improvement for occluded objects has little
effect on the objects without occlusion.

E. Experimental Analysis on Moving Vehicles Tracking

The results of moving vehicles tracking are shown
in Table I. The accuracy of our CFME algorithm greatly
exceeds the other algorithms. Compared with KCF, the CFME
improved the tracking accuracy and the AUC increased by
approximately 14%, the success score increased by approx-
imately 20% and the precision score increased by approx-
imately 17%. The TLD algorithm and the MEDIANFLOW

Fig. 7. Visualization of the tracking. As the peak value decreases, the more
the object is occluded. When the peak value is very low (lower than 0.3),
the object is seriously occluded almost disappears from the image.

algorithm fail in tracking vehicles. The possible reason is that
these two algorithms need to extract feature points to calculate
the optical flow, but the feature points of the low-resolution
vehicle are not obvious.

In order to evaluate the performance of our algorithm when
the object is occluded, we divided the satellite videos into
two parts: the object is occluded and the object is unoccluded.
The number of objects partially or completely occluded is four
and the number of objects unoccluded is seven. We experiment
with these two parts separately.

The results are shown in Fig. 8, Tables II and III. In the case
of no occlusion, the accuracy of ECO is not as good as that of
KCF, which may be caused by the scale adaptation of ECO.
Compared with KCF, the CFME improves AUC by 8.5%,
which proves the effectiveness of ME. In the case of occlusion,
the accuracy of ECO exceeds KCF. When the target is partially
occluded ECO can keep track of the object and show strong
robustness when compared with KCF. However, when the
object is completely occluded, all the algorithms except CFME
lose the object. The performance of CFME is better than the
other trackers for both occluded and unoccluded objects.

In terms of efficiency, although the CFME increases com-
putational complexity because of ME, CFME is only slightly
slower than KCF for about 7% and still faster than the other
trackers.

F. Experimental Analysis on Moving Plane Tracking

To test the adaptability of the algorithm to multiple types
of objects, we use the plane as the tracking object. Because
a plane at the airport will not be completely occluded,
the occlusion detection of CFME is not necessary. Therefore,
the threshold of occlusion detection is set to 0. The results are
shown in Table IV and Fig. 9. It is shown that for the planes
whose texture features and shape are clear, ECO performs best
with AUC 76%. MEDIANFLOW is the fastest tracker and has
an FPS of 155. The success score of MIL is 100%, but the
precision score is particularly low and only 17.2%. This shows
that although MIL can correctly track the object, the deviation
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TABLE I

RESULTS OF VEHICLE TRACKING. OUR TRACKER OUTPERFORMS THE OTHER TRACKERS IN ALL AUC, SUCCESS SCORE, AND PRECISION SCORE.
OUR TRACKER IS ONLY SLIGHTLY SLOWER THAN THE KCF TRACKER AND FASTER THAN THE OTHER TRACKERS. OUR TRACKER

IS VERY GOOD AT TRACKING SMALL OBJECT IN SATELLITE VIDEO

Fig. 8. Experimental results of moving vehicle tracking. (a), (c), and (e) Precision plots over all the sequences, object unoccluded sequences, and object
occluded sequences, respectively. The legend of the precision plot is the precision score for each tracker. (b), (d), and (f) Success plots over all the sequences,
object unoccluded sequences, and object occluded sequences, respectively. The legend of the success plot is the AUC for each tracker.
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TABLE II

RESULTS OF VEHICLE TRACKING ON OCCLUDED DATA. OUR TRACKER OUTPERFORMS THE OTHER TRACKERS IN ALL AUC, SUCCESS SCORE, AND

PRECISION SCORE. THE AUC OF OUR ALGORITHM IS ABOUT 20% HIGHER THAN THAT OF THE SECOND ONE. THE SUCCESS SCORE AND THE

PRECISION SCORE PROVE THAT OUR TRACKER WILL NOT LOSE THE OBJECT EVEN IF THE OBJECT IS COMPLETELY OCCLUDED

TABLE III

RESULTS OF VEHICLE TRACKING ON DATA WITHOUT OCCLUSION. OUR TRACKER OUTPERFORMS THE OTHER TRACKERS IN ALL AUC, SUCCESS

SCORE, AND PRECISION SCORE. OUR TRACKER IS ALSO GOOD AT TRACKING THE OBJECT WITHOUT OCCLUSION

TABLE IV

RESULTS OF PLANE TRACKING. THE ECO TRACKER IS THE BEST IN PLANE TRACKING. THE AUC OF OUR TRACKER RANKS SECOND

AND THE PRECISION SCORE RANKS THIRD. ALTHOUGH OUR TRACKER IS NOT THE BEST IN PLANE TRACKING, IT IS STILL

COMPETITIVE IN TERMS OF ACCURACY AND SPEED

Fig. 9. Experimental results of moving plane tracking. (a) Precision plots. The legend of the precision plot is the precision score for each tracker. (b) Success
plots. The legend of the success plot is the AUC for each tracker.

of the predicted position is large. The AUC of CFME is 69.3%
and ranked second among all the trackers. The precision score
is 66.2% ranked third. Although the success score is 69.2%
ranked fifth, it is very close to the other trackers. Compared
with KCF, the performance of CFME is better, which proves
that our improvement of KCF is also effective in tracking large
moving objects in satellite videos.

G. Qualitative Evaluation

Here, we provide a qualitative comparison of our approach
with other trackers in Fig. 10. In the Boston and Atlanta,
the object is completely occluded and disappears in the image.

Our tracker is the only tracker that does not lose the object.
When the object is completely occluded, the ME algorithm
of our tracker can estimate the position of the object. When
the object reappears, our tracker can relocate the object
immediately. Other trackers have no ability to estimate the
position of object when the object disappears. When the object
is occluded for a long time, the object will leave the searching
area of the trackers. Therefore, the trackers lose the object.
In the Frankfurt, the object is not occluded in the whole
video. Our tracker locates the object more accurately compared
with the KCF because our tracker alleviates the boundary
effect of KCF. In the Guizhou plane, the object is plane and
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Fig. 10. Visualization of the tracking results. The number in the top-left corner of each image is the number of current frames in the video.

its size is larger than the vehicles. Therefore, this object is
easier to track. The MEDIANFLOW, which does not work in
tracking vehicle, can track plane because the corners of the
plane are prominent. However, the ability of MEDIANFLOW
to locate the object is poor. The performance of the CFME,
KCF, and ECO is almost the same because the boundary effect
of such a large object is not strong. In the Frankfurt plane,
the object rotates in a wide range. This is the only video that
our tracker loses the object. The features used by CFME and
KCF are HOG. Our tracker and KCF lose the object since
the HOG has no rotation invariance. Our tracker alleviates the
boundary effect of the KCF. Therefore, our tracker is more
robust than the KCF and lost the object later than the KCF.
Besides HOG, the ECO also uses color names as its features.
It does not lose the plane but the performance is also poor.
Overall, the visual evaluation indicates that the effectiveness
of our method to alleviate the boundary effect of the KCF

and the ability of our tracker to track the completely occluded
object.

VI. CONCLUSION

This article proposes an effective tracker called CFME
based on the framework of the correlation filter. The CFME
algorithm improves over KCF by ME through combining the
MTA and the Kalman filtering. The CFME also mitigates the
boundary effect and the problem of tracking occluded object
under the premise of ensuring computational efficiency.

We conducted experiments on 11 satellite videos. For the
moving vehicles tracking, CFME has a better performance in
terms of speed and accuracy compared with the other trackers.
CFME is the only tracker capable of tracking completely
occluded objects. For tracking moving planes, the CFME
has slightly lower accuracy than ECO but still has good
performance in speed.
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Overall, the CFME algorithm is very effective for tracking
moving objects in satellite videos, especially small objects.
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