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Object Tracking in the Presence of Occlusions Using Multiple
Cameras: A Sensor Network Approach

ALI O. ERCAN, Özyeğin University
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This article describes a sensor network approach to tracking a single object in the presence of static and
moving occluders using a network of cameras. To conserve communication bandwidth and energy, we combine
a task-driven approach with camera subset selection. In the task-driven approach, each camera first performs
simple local processing to detect the horizontal position of the object in the image. This information is then
sent to a cluster head to track the object. We assume the locations of the static occluders to be known,
but only prior statistics on the positions of the moving occluders are available. A noisy perspective camera
measurement model is introduced, where occlusions are captured through occlusion indicator functions. An
auxiliary particle filter that incorporates the occluder information is used to track the object. The camera
subset selection algorithm uses the minimum mean square error of the best linear estimate of the object
position as a metric, and tracking is performed using only the selected subset of cameras.

Using simulations and preselected subsets of cameras, we investigate (i) the dependency of the tracker
performance on the accuracy of the moving occluder priors, (ii) the trade-off between the number of cameras
and the occluder prior accuracy required to achieve a prescribed tracker performance, and (iii) the importance
of having occluder priors to the tracker performance as the number of occluders increases. We find that
computing moving occluder priors may not be worthwhile, unless it can be obtained cheaply and to high
accuracy. We also investigate the effect of dynamically selecting the subset of camera nodes used in tracking
on the tracking performance. We show through simulations that a greedy selection algorithm performs
close to the brute-force method and outperforms other heuristics, and the performance achieved by greedily
selecting a small fraction of the cameras is close to that of using all the cameras.
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16:2 A. O. Ercan et al.

1. INTRODUCTION

There is a growing need to develop lowcost wireless networks of cameras with auto-
mated detection capabilities [Bhanu et al. 2011]. The main challenge in building such
networks is the high data rate of video cameras. On the one hand, sending all the
data (even after performing standard compression) is very costly in transmission en-
ergy; on the other hand, performing sophisticated vision processing at each node to
substantially reduce transmission rate requires high processing energy.

To address these challenges, a task-driven approach, in which simple local processing
is performed at each node to extract the essential information needed for the network
to collaboratively perform the task, has been proposed and demonstrated [Zhao and
Guibas 2004]. Only this essential information is communicated over the network, re-
ducing the energy expended for communication without the need for complicated local
processing. Further reduction in communication bandwidth and energy can be achieved
by dynamically selecting the subset of camera nodes used [Zhao and Guibas 2004; Wang
et al. 2004; Niu et al. 2011]. Thus, only a small subset of the nodes actively sense, pro-
cess, and send data, while the rest are in sleep mode. In this article, we combine a
task-driven approach with subset selection for tracking of a single object, for example,
a suspect, in a structured environment, like an airport or a mall, in the presence of
static and moving occluders via a network of cameras. Preliminary versions of this
work have been presented in [Ercan et al. 2007, 2006].

Most previous work on tracking with multiple cameras has focused on tracking all
the objects and does not deal directly with static occluders, which are often present in
structured environments (see brief survey in Section 2). Tracking all the objects clearly
provides a solution to our problem but may be infeasible to implement in a wireless
camera network due to its high computational cost. Instead, our approach is to track
only the target object, treating all other objects as occluders. We assume complete
knowledge of the static occluder (e.g., partitions, large pieces of furniture) locations
and some prior statistics on the positions of the moving occluders (e.g., people) which
are updated in time. Each camera node performs local processing whereby each image is
reduced to a single number indicating the horizontal position of the object in the image.
If the camera sees the object, it provides a measurement of its position to the cluster
head; otherwise, it reports that it cannot see the object. A noisy perspective camera
measurement model is presented where occlusions are captured through occlusion
indicator functions. Given the camera measurements and the occluder position priors,
an auxiliary particle filter [Ristic et al. 2004] is used at the cluster head to track
the object. The occluder information is incorporated into the measurement likelihood,
which is used in the weighting of the particles.

Node subset selection is well suited for use in a camera network because mea-
surements from close-by cameras can be highly correlated. Moreover, measurements
from cameras that are far away from the target provide little useful information.
Hence, by judiciously selecting the most appropriate subset of cameras, significant
saving in energy can be achieved with little performance degradation relative to us-
ing all the cameras. Dynamic subset selection also helps avoid the occlusions in the
scene and makes scaling of the network to a large number of nodes possible. The
selection problem involves minimizing a utility metric over camera subsets of a pre-
determined size [Zhao and Guibas 2004]. We use the minimum mean square error
(MSE) of the best linear estimator of the object location that incorporates the occlu-
sions as the metric for selection. We describe the computation of the MSE metric
using both the perspective camera model that we use in the tracking algorithm and
a simpler weak perspective model which makes the computation of the MSE metric
cheaper.
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Using simulations with preselected subsets of cameras, we investigate the trade-off
between the tracker performance, the moving occluder prior information, the number
of cameras used, and the number of occluders present. Even if one wishes to track only
one object, treating other moving objects as occluders, a certain amount of information
about the positions of the occluders may be needed to achieve high tracking accuracy.
Since obtaining more accurate occluder priors would require expending more process-
ing and/or communication energy, it is important to understand the trade-off between
the accuracy of the occluder information and that of tracking. Do we need any prior
occluder information? If so, how much accuracy is sufficient?

We also investigate using simulations the effect of dynamically selecting the subsets
of camera nodes used in tracking on the tracking performance. Every few time steps, the
camera subset that minimizes the MSE is first selected and tracking is performed using
this subset. The optimization needed to find the best camera subset of a certain size is
in general combinatorial, and the complexity of brute-force search grows exponentially
in the chosen subset size. This can be too costly in a wireless camera network setting.
We show that a greedy selection algorithm performs close to the brute-force search and
outperforms other heuristics, such as using a preselected or randomly selected subset
of cameras. We also show that the performance of the greedy and brute-force heuristics
are similar for both the perspective and weak perspective camera models and that the
performance achieved by greedily selecting a small fraction of the cameras is close to
that of using all the cameras.

The rest of the article is organized as follows. A brief survey of previous work on
tracking using multiple cameras and node subset selection is provided in the next
section. In Section 3, we describe our setup and introduce the camera measurement
model used in tracking. The tracking algorithm is described in Section 4. Section 5
describes the computation of the MSE metric with the two camera models and the
proposed selection algorithm. Simulations and experimental results are presented in
Section 6 and 7, respectively.

2. PREVIOUS WORK

2.1. Tracking

Tracking has been a popular topic in sensor network research (e.g., [Li et al. 2002; Kim
et al. 2005; Taylor et al. 2006; Shrivastava et al. 2006]). Most of this work, however, as-
sumes low data rate range sensors, such as binary or acoustic sensors. By comparison,
our work assumes cameras which are bearing sensors and have high data rate. Most of
the previous work related to ours is by Pahalawatta et al. [2003], Funiak et al. [2006],
del Blanco et al. [2008], and Sankaranarayanan et al. [2008, 2011]. Pahawalatta
et al. [2003] use a camera network to track and classify multiple objects on the ground
plane. This is done by detecting feature points on the objects and using a Kalman
filter for tracking. By comparison, we use a particle filter, which is more suitable for
nonlinear camera measurements, and track only a single object, treating others as
occluders. Funiak et al. [2006] use a Gaussian model obtained by reparametrizing the
camera coordinates together with a Kalman Filter. This method is fully distributed and
requires less computational power than a particle filter. However, because the main
goal of the system is camera calibration and not tracking, occlusions are not considered.
In del Blanco et al. [2008], volumes occupied by moving objects in 3D are tracked using
a particle filter. Although the setup and approach are similar to our work, it is assumed
that measurements from different cameras are independent, which is not the case in
general. An important contribution of our article is taking inter-camera measurement
dependence into consideration while computing the likelihood. Another important
difference between our work and that of del Blanco et al. is in the way occluders are
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considered. del Blanco et al. assume a fixed static occluder probability and do not
consider moving occluders. As will be seen, we treat occluders in a more general way.
Sankaranarayanan et al. [2008; 2011] focus on object detection, tracking, and recogni-
tion in visual sensor networks. They exploit planar world assumption and homography
between cameras to come up with a computationally efficient tracker. However, this
work does not consider occlusions, and our work does not rely on homography.

Tracking has also been a popular topic in computer vision [Khan et al. 2001; Yilmaz
et al. 2004; Zajdel et al. 2004]. Most of the work, however, has focused on tracking
objects in a single camera video sequence [Yilmaz et al. 2004]. Tracking using multiple
camera video streams has also been considered [Khan et al. 2001; Zajdel et al. 2004].
Individual tracking is performed for each video stream and the objects appearing in
the different streams are associated. More recently, there has been work on tracking
multiple objects in world coordinates using multiple cameras [Utsumi et al. 1998;
Otsuka and Mukawa 2004; Dockstander and Tekalp 2001]. Utsumi et al. [1998] extract
feature points on the objects and use a Kalman filter to track the objects. They perform
camera selection to avoid occlusions. By comparison, in our work, occlusion information
is treated as part of the tracker and the selection metric. Otsuka and Mukawa [2004]
describe a double loop filter to track multiple objects, where objects can occlude each
other. One of the loops is a particle filter (PF) that updates the states of the objects in
time using the object dynamics, the likelihood of the measurements, and the occlusion
hypotheses. The other loop is responsible for generating these hypotheses and testing
them using the object states generated by the first loop, the measurements, and a
number of geometric constraints. Although this method also performs a single object
tracking in the presence of moving occluders, the hypothesis generation and testing
is computationally prohibitive for a sensor network implementation. The work also
does not consider static occlusions that could be present in structured environments.
Dockstader and Tekalp [2001] describe a method for tracking multiple people using
multiple cameras. Feature points are extracted from images locally and corrected
using the 3D estimates of the feature point positions that are fed back from the
central processor to the local processor. These corrected features are sent to the central
processor where a Bayesian network is employed to deduce a first estimate of the 3D
positions of these features. A Kalman filter follows the Bayesian network to maintain
temporal continuity. This approach requires that each object is seen by some cameras
at all times. This is not required in our approach. Also, performing motion vector
computation at each node is computationally costly in a wireless sensor network.

We would like to emphasize that our work is focused on tracking a single object in
the presence of static and moving occluders in a wireless sensor network setting. When
there are no occluders, one could adopt a less computationally intensive approach,
similar to that of Funiak et al. [2006] or Sankaranarayanan et al. [2008, 2011]. When
all the objects need to be tracked simultaneously, the previously mentioned methods
[Otsuka and Mukawa 2004; Dockstander and Tekalp 2001] or a filter with joint-state
for all the objects [Doucet et al. 2002; Vihola 2007] can be used.

2.2. Selection

Selection has been studied in wireless sensor networks with the goal of decreasing
energy cost and increasing scalability. Chu et al. [2002] develop a technique referred
to as “information driven sensor querying” to select the next best sensor node to query
in a sensor network. The technique is distributed and uses a utility measure based on
the expected posterior distribution. However, expected posterior distribution is expen-
sive to compute because it involves integrating over all possible measurements. Ertin
et al. [2003] use the mutual information metric to select sensors. This is shown to
be equivalent to minimizing the expected posterior uncertainty but with significantly
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less computation. Wang et al. [2004] expands on Ertin et al. [2003] and shows how to
select the sensor with the highest information gain. An entropy-based heuristic that
approximates the mutual information and is computationally cheaper is used. In com-
parison to these works, we use the minimum mean square object localization error as
the selection metric. Also, we consider the occlusion phenomenon, which is unique to
camera sensors compared to other sensing modalities.

Sensor selection has also been studied for camera sensors. Wong et al. [1999] and
Vazquez et al. [2001] define a metric for the next best view based on most faces seen
(given a 3D geometric model of the scene), most voxels seen, or overall coverage. The
solution requires searching through all camera positions to find the highest scoring
viewpoints. Yang et al. [2004] and Isler and Bajcsy [2005] deal with sensing modalities
where the measurements can be interpreted as polygonal subsets of the ground plane,
such as the visual hull, and use geometric quantities such as the area of these subsets
as the selection metric. Yang et al. [2004] present a greedy search to minimize the
selection metric. Isler and Bajcsy [2005] prove that, for their setting, an exhaustive
search for at most six sensors yields a performance within a factor two of the optimal
selection. In Tessens et al. [2008], the visual hull metric is augmented with measures
such as the ability to detect faces and the object speed and visibility. These works use
numerical techniques or heuristics to compute the viewpoint scores. We investigate a
simpler problem and use the mean square error (MSE) of the object location as our
metric for selection.

In principle, Niu et al. [2011] is the closest work to our article. The authors first
describe in Zuo et al. [2011] the computation of the conditional posterior Cramér-Rao
Lower Bound (CRLB) in a nonlinear sequential Bayesian estimation framework. The
CRLB is a lower bound on the variance of any unbiased estimator. The Conditional
Posterior CRLB (CPCRLB) is the lower bound on the variance of the recursive estima-
tor that updates the estimate with a new measurement, given the past measurements.
Niu et al. use the CPCRLB as a metric for sensor selection in a particle filter tracker.
Similar to our work, the selection algorithm uses the output of the particle filter
tracker (i.e., the particle distributions) to compute the selection metric; however; our
work extends the sensing modality to camera sensors. The camera model we use is
similar to the bearing model in Niu et al. [2011]; however, we model occlusions and
take inter-camera measurement dependence into consideration. We provide extensive
simulations to explore the trade-offs previously mentioned. Also, we use the minimum
mean square error (MSE) of the best linear estimator of the object location as the
camera selection metric instead of the CPCRLB.

3. SETUP, MODEL, AND ASSUMPTIONS

We consider a cluster of camera nodes, each capable of locally processing their captured
images and communicating the locally processed data wirelessly to a cluster head,
where tracking and selection are performed. The cluster head can be selected among
the regular camera nodes or it can be a more powerful pre-assigned node. Cluster
formation and cluster head selection [Heinzelman et al. 2002] are not the focus of this
article and are assumed to be performed a priori.

Our problem setup is illustrated in Figure 1, in which N cameras are aimed roughly
horizontally around a room. Although an overhead camera (i.e., mounted on the ceiling
and aimed directly downward) would have a less occluded view than a horizontally
placed one, it generally has a more limited view of the scene and may be impractical
to deploy. Additionally, targets may be easier to identify in a horizontal view. The
camera network’s task is to track an object on the ground plane in the presence of
static occluders and other moving objects.
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Fig. 1. Illustration of the problem setup.

The cameras are assumed to be fixed and their calibration information is assumed
to be known to some accuracy to the cluster head. We assume that the roll angle
(rotation around the optical axis) of the cameras is zero. As previously mentioned,
we also assume that the cameras are aimed roughly horizontally; therefore, the pitch
angle (vertical tilt) is also close to zero. For example, in the experimental setup (see
Section 7), the cameras are mounted on the walls slightly above an average human’s
height and are tilted slightly downward. If these assumptions are not valid, one can use
a more complete camera model (in Section 3.1) assuming nonzero roll and pitch angles.
We did not consider this extension for simplicity. Given these assumptions and since
the object is tracked on the 2D ground plane, the calibration information for camera i
consists of its coordinates on the ground plane and its yaw angle (i.e., rotation around
the vertical axis. In Figure 1, θi is π plus the yaw angle of camera i.).

We assume the object to track to be a point object, since it may be detected by some
specific point features [Shi and Tomasi 1994]. We assume there are M other moving
objects, each modeled as a cylinder of diameter D. The position of each object is assumed
to be the center of its cylinder. From now on, we shall refer to the object to track as the
“object” and the other moving objects as “moving occluders.” We further assume that
the camera nodes can distinguish between the object and the occluders. This can be
done again using feature detection (e.g., [Shi and Tomasi 1994]).

For each image frame captured, background subtraction is performed locally at each
camera node to detect the moving objects. Then if the object to track is in the field
of view of the camera and not occluded by a static or moving occluder, its horizontal
position in the image plane is estimated and sent to the cluster head. Note that the
amount of data transferred per image is very small compared to the image data size.

We acknowledge the fact that point object assumption is not completely realistic,
since it cannot model self occlusions of the point features by the object. Also, recogniz-
ing the object and distinguishing it from the moving occluders is a very challenging
task [Sankaranarayanan et al. 2008]. On the one hand, with some additions to our
work, this task can be simplified. For example, the estimated location of the object
from the previous time step can be fed back to the cameras to limit the region where
feature detection is performed. However, recognizing the object or performing more
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Fig. 2. Noisy perspective camera measurement model with unoccluded object at x.

complex local image processing is not the focus of this article. These topics have been
the subject of extensive research [Yang et al. 2002; Zhao et al. 2003] and the refer-
ences therein. In this article, we focus on a sensor network approach to the data fusion
problem in camera networks.

We also acknowledge the fact that perfect object detection is not a realistic assump-
tion and that mis-detections and false positives will occur. However, these can be han-
dled within our probabilistic tracking framework, as explained in the last paragraph
of Section 4.3.

The positions and the shapes of the static occluders in the room are assumed to
be completely known in advance. This is not unreasonable since this information can
be easily provided to the cluster head. On the other hand, only some prior statis-
tics of the moving occluder positions are known at each time step. How to obtain
these priors is not the focus of this article, however, in Section 4.4, we discuss some
preliminary ideas on how these priors may be obtained. Note that the moving oc-
cluder priors are not required for the tracking algorithm; however, they increase the
tracking accuracy. In Section 6.1, we describe how the tracker formulation is mod-
ified for the case of no moving occluder information and we explore the trade-off
between the moving occluder prior accuracy and that of the tracker. The selection
algorithm also can be implemented without the moving occluder priors, using the same
modification.

We assume that the number of moving occluders in the room (i.e., M) is known. One
can obtain this number from the number of moving occluder priors. If the priors are
not available, one can utilize algorithms such as those described in Yang et al. [2003]
in parallel to tracking to estimate this number.

We assume that the camera nodes are synchronized. The tightness of the syn-
chronization depends on the speed of motion of the tracked object. For example,
in the experimental setup in Section 7, synchronization was achieved by starting
the cameras at the same time, and no further synchronization constraint was im-
posed. This means the synchronization was of the order time elapsed between two
consecutive frames (1/7.5 sec−1), which is reasonable for average human walking
speeds.
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3.1. Camera Measurement Model

If camera i ∈ {1, 2, . . . , N}, “sees” the object, we assume a noisy perspective camera
measurement model (see Figure 2), and the horizontal position of the object in the
image plane is given by

zi = fi
hi(x)
di(x)

+ vi, (1)

where x is the location of the object, fi is the focal length for camera i, and hi(x) and
di(x) are the distances defined in the figure. The camera measurement noise vi is due
to its readout noise and calibration inaccuracies. Assuming the readout noise and the
camera position and orientation (yaw angle) calibration inaccuracies to be zero mean
with variances σ 2

read, σ 2
pos, and σ 2

θ , respectively, it can be shown that given x, vi has zero
mean and conditional variance (see Appendix B for details):

σ 2
vi |x = f 2

i

(
1 + h2

i (x)
d2

i (x)

)2

σ 2
θ + f 2

i

(
h2

i (x) + d2
i (x)

d4
i (x)

)
σ 2

pos + σ 2
read. (2)

We assume that v1, v2, . . . , vN are conditionally independent Gaussian random vari-
ables, given x. If the camera cannot see the object because of occlusions or limited field
of view, it reports a “not-a-number” (NaN, using MATLAB syntax) to the cluster head.

We can combine the preceding two camera measurement models into a single model
by introducing, for each camera i, the following occlusion indicator function:

ηi :=
{

1, if camera i sees the object,
0, otherwise.

(3)

Note that the ηi random variables are not in general mutually independent. Using
these indicator functions, the camera measurement model including occlusions can be
expressed as

zi =
{

fi hi (x)
di (x) + vi, if ηi = 1,

NaN, if ηi = 0.
(4)

4. THE TRACKER

Since the measurements from the cameras of Equation (4) are nonlinear in the object
position, using a linear filter (such as a Kalman filter (KF)) for tracking would yield
poor results. As discussed in Bar-Shalom et al. [2001], using an extended kalman
filter (EKF) with measurements from bearing sensors, which are similar to cam-
eras with the aforementioned local processing, is not very successful. Although the
use of an unscented Kalman filter (UKF) is more promising, its performance de-
grades quickly when the static occluders and limited field of view constraints are
considered. Because of the discreteness of the occlusions and fields of views and
the fact that UKF uses only a few points from the prior of the object state, most of
these points may get discarded. We also experimented with a maximum a-posteriori
(MAP) estimator combined with a Kalman filter, which is similar to the approach
in Taylor et al. [2006]. This approach, however, failed at the optimization stage of
the MAP estimator, as the feasible set is highly disconnected due to the static oc-
cluders. Given these considerations, we decided to use a particle filter (PF) tracker
[Ristic et al. 2004; Caron et al. 2007].

We denote by u(t) the state of the object at time t, which includes its position x(t)
and other relevant information, such as its intended destination and its speed (see
Section 4.1 for details). The positions of the moving occluders j ∈ {1, . . . , M}, xj(t) are
assumed to be Gaussian with mean μ j(t) and covariance matrix � j(t). These priors are

ACM Transactions on Sensor Networks, Vol. 9, No. 2, Article 16, Publication date: March 2013.



Object Tracking in the Presence of Occlusions Using Multiple Cameras 16:9

ALGORITHM 1: ASIR – One Step of the Auxiliary Sampling Importance Resampling Filter

Input: Particle - weight tuples: {u�(t − 1), w�(t − 1)}L
�=1; moving occluder priors: {μ j(t), � j(t)}M

j=1;
measurements: Z(t) = [z1(t), . . . , zN(t)]T ; struct room (camera fields of views, positions
and orientations; room’s shape and sizes; static occluder information).

Output: Particle - weight tuples: {u�(t), w�(t)}L
�=1.

for (� = 1, . . . , L) do
κ� := E(u(t)|u�(t − 1));
w̃�(t) ∝ w�(t − 1) f (Z(t)|κ�); /*Section 4.2*/

end
{w�(t)}L

�=1 = normalize({w̃�(t)}L
�=1);

{κ̆�, w̆�, π
�}L

�=1 = resample({κ�, w�(t)}L
�=1);

for (� = 1, . . . , L) do
u�(t) ∼ f (u(t)|uπ� (t − 1)); /*Section 4.1*/

w̃�(t) = f (Z(t)|u�(t))
f (Z(t)|κ

π� ) ;

end
{w�(t)}L

�=1 = normalize({w̃�(t)}L
�=1);

available to the tracker. The state of the object and positions of moving occluders are as-
sumed to be mutually independent. If the objects move in groups, one can still apply the
following tracker formulation by defining a “super-object” for each group and assuming
that the super-objects move independently. Also, in reality, people avoid colliding with
each other, which violates the independence assumption when two objects come closer.
We ignored this fact in the design of the tracker for simplicity. However, the objects do
avoid collisions in the simulations (Section 6) and in the experiments (Section 7).

The tracker maintains the probability density function (pdf) of the object state u(t)
and updates it at each time step using the new measurements. Given the measurements
from all cameras up to time t − 1, {Z(t′)}t−1

t′=1, the particle filter approximates the pdf of
u(t − 1) by a set of L weighted particles as follows:

f (u(t − 1)|{Z(t′)}t−1
t′=1) ≈

L∑
�=1

w�(t − 1)δ
(
u(t − 1) − u�(t − 1)

)
,

where δ(·) is the Dirac delta function, u�(t) and w�(t) are the state and weight of particle
� at time t, respectively. At each time step, given these L weighted particles, the cam-
era measurements Z(t) = [z1(t), . . . , zN(t)]T , the moving occluder priors {μ j(t), � j(t)},
j ∈ {1, . . . , M}, information about the static occluder positions, and the camera fields of
view, the tracker incorporates the new information obtained from the measurements
at time t to update the particles and their associated weights.

We use the Auxiliary Sampling Importance Resampling (ASIR) filter [Ristic et al.
2004]. The outline of one step of our implementation of this filter is given in Algorithm 1.
In the algorithm, E(·) is the expectation operator, and the procedure normalize scales
the weights so that they sum to one. The procedure resample takes L particle-weight
pairs and produces L equally weighted particles (w� = 1/L), while preserving the
original distribution [Ristic et al. 2004]. The third output of the procedure (π�) refers
to the index of particle �’s parent before resampling, while the first two outputs are
not used in the rest of the algorithm. The ASIR algorithm approximates the optimal
importance density function f (u(t)|u�(t − 1), Z(t)), which is not feasible to compute in
general [Ristic et al. 2004].

In the following, we explain the implementation of the importance density function
f (u(t)|u�(t − 1)) and the likelihood f (Z(t)|u�(t)).
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4.1. Importance Density Function

The particles are advanced in time by drawing new samples u�(t) from the importance
density function: u�(t) ∼ f (u(t)|u�(t − 1)), � ∈ {1, . . . , L}. This is similar to the time
update step in a Kalman filter. After all L new particles are drawn, the distribution
of the state is forwarded one time step. Therefore, the dynamics of the system should
be reflected as accurately as possible in the importance density function. In a Kalman
filter, a constant velocity assumption with a large variance on the velocity is assumed
to account for direction changes. Although assuming that objects moving at constant
velocity is not a realistic assumption, especially when an object changes its direction of
motion drastically (e.g., when the object changes its intended destination), the linearity
constraint of the Kalman filter forces this choice. In the PF implementation, we do not
have to choose linear dynamics. We use the random waypoints model [Bettstetter et al.
2002], in which the objects choose a destination that they want to reach and try to
move toward it with constant speed plus noise until they reach the destination. When
they reach it, they choose a new destination.

We implemented a modified version of this model in which the state u�(t) of particle �
consists of its current position x�(t), destination τ�(t), speed s�(t), and regime r�(t). Note
that the time step here is 1, and thus s�(t) represents the distance traveled in a unit
time. The regime can be one of the following.

(1) Move Toward Destination (MTD). A particle in this regime tries to move toward its
destination with constant speed plus noise,

x�(t) = x�(t − 1) + s�(t − 1)
τ�(t − 1) − x�(t − 1)

‖τ�(t − 1) − x�(t − 1)‖2
+ ν(t), (5)

where ν(t) is zero mean Gaussian white noise with covariance �ν = σ 2
ν I, I de-

notes the identity matrix, and σν is assumed to be known. The interpretation
of Equation (5) is as follows: a unit vector toward the particle’s destination is
multiplied by its speed and added to the previous position, together with a zero
mean Gaussian noise vector. The speed of the particle is also updated according to
s�(t) = (1 − φ)s�(t − 1) + φ‖x�(t) − x�(t − 1)‖2. Updating the speed this way smooths
out the variations due to added noise. We arbitrarily chose φ = 0.7 for our imple-
mentation. The destination τ�(t) is left unchanged.

(2) Change Destination (CD). A particle in this regime first chooses a new destination
uniformly randomly in the room and performs an MTD step.

(3) Wait (W). A particle in this regime does nothing.

Drawing a new particle from the importance density function involves the following.
First, each particle chooses a regime according to its current position and destination.
If a particle does not reach its destination, it chooses the regime according to

r�(t) =
⎧⎨
⎩

MTD, with probability β1,

CD, with probability λ1,

W, with probability (1 − β1 − λ1).

If a particle reaches its destination, the probabilities β1 and λ1 are replaced by β2 and
λ2, respectively. The destination is assumed reached when the distance to it is less than
the particle’s speed. We arbitrarily chose β1 = 0.9, λ1 = 0.05, β2 = 0.05, λ2 = 0.9.

4.2. Likelihood

Updating the weights in the ASIR algorithm requires the computation of the likelihood
of a given set of measurements obtained from the cameras, that is, f (Z(t)|u�(t)). Here we
implicitly assume that the measurement noise vi(t) in Equation (4) is white Gaussian
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noise given x�(t). Although the readout noise component in Equation (2) can be modeled
as white Gaussian noise, the calibration inaccuracies are fixed over time. Therefore,
vi(t) given x�(t) is not independent of previous noise samples. This can be dealt with by
including the camera calibration errors in the state u(t). For such an approach to be
scalable, a fully distributed implementation whereby each camera estimates its own
calibration errors is essential, since otherwise the tracker state would grow with the
number of cameras. An alternative approach is to estimate the calibration errors of the
cameras at an initialization phase. Both approaches result in having just the readout
noise component, which is white. To simplify the analysis, however, we assume that
vi(t) given x�(t) is white Gaussian noise.

For brevity, we shall drop the time index from now on. We can use the chain rule for
probabilities to decompose the likelihood and obtain

f (Z|u�) = f (Z,η|u�) = p(η|u�) f (Z|η, u�), (6)

where η := [η1, . . . , ηN]T are the occlusion indicator variables. In the first equality, we
use the fact that η can be derived from a given Z, since zi = NaN if and only if ηi = 0.

Given x�, which is part of u�, and η, z1, . . . , zN are independent Gaussian random
variables and the second term in Equation (6) is

f (Z|η, u�) =
∏

i∈{ j: η j=1}
N

{
zi; fi

hi(x�)
di(x�)

, σ 2
vi |x�

}
,

where N {r; ξ, ρ2} denotes a univariate Gaussian function of r with mean ξ and variance
ρ2, σ 2

vi |x�
is given in Equation (2) and di(x) and hi(x) are defined in Figure 2. This term

by itself does not exploit any information from the occlusions, while there might be
valuable information there. To see this, consider the following example. Suppose that
there are no dynamic occluders and just one static occluder (e.g., a pillar) in the room.
Also assume there is only one camera and it reports NaN. This means the object must
be behind the pillar. So even with one occlusion measurement, one can deduce quite a
lot about the object’s whereabouts. Such information is incorporated by the first term
(i.e., p(η|u�)) in the likelihood. However unlike the second term, p(η|u�) cannot simply
be expressed as a product, as the occlusions are not independent given u�. This can
be explained via the following simple example. Suppose two cameras are close to each
other. Once we know that one of these cameras cannot see the object, it is more likely
that the other one also cannot see it. Hence, the two ηs are dependent given u�. Luckily,
we can approximate this term using recursion, which is described next.

First, we ignore the static occluders and the limited field of view constraints and only
consider the effect of the moving occluders. The effects of static occluders and limited
field of view will be incorporated in Section 4.3. Define the indicator functions ηi, j for
i = 1, . . . , N and j = 1, . . . , M such that ηi, j = 1 if occluder j does not occlude camera
i, and 0, otherwise. Thus

{ηi = 1} =
M⋂

j=1

{ηi, j = 1}.

Define qmv
i, j (x) to be the probability that occluder j occludes camera i given u, where the

superscript “mv” signifies that only moving occluders are taken into account.

qmv
i, j (x) := P

{
ηi, j = 0|u}

=
∫

R2
f (xj |u)P

{
ηi, j = 0|u, xj

}
dxj

(a)=
∫

R2
f (xj)P

{
ηi, j = 0|x, xj

}
dxj,
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Camera i

θi,j(x)

Prior of object j

x

Ai(x)

μj

Origin

D

σj

σj/
√

αj

Fig. 3. Computing qmv
i, j (x). Without loss of generality, the camera is assumed at the origin and everything is

rotated such that the major axis of occluder j’s prior is horizontal. Occluder j occludes point x at camera i if
its center is inside the rectangle Ai(x).

where x is the position part of the state vector u, R
2 denotes the 2D real plane, and step

(a) uses the fact that xj is independent of uand ηi, j is a deterministic function of x and xj .
To compute qmv

i, j (x), refer to Figure 3. Without loss of generality, we assume that
camera i is placed at the origin and everything is rotated such that the major axis of
occluder j’s prior is horizontal. Occluder j occludes point x at camera i if its center is
inside the rectangle Ai(x). This means P

{
ηi, j = 0|x, xj

} = 1 if xj ∈ Ai(x), and it is zero
everywhere else.

qmv
i, j (x) =

∫
Ai (x)

1
2π

√|� j |
e− 1

2 (xj−μ j )T �−1
j (xj−μ j ) dxj

(b)≈ 1
4

[
erf

(√
α j

‖g′
1‖

(
D
2

− ϕ

))
+ erf

(√
α j

‖g′
1‖

(
D
2

+ ϕ

))]
(7)[

erf
(‖x‖‖g1‖2 − μ j

T o1

‖g′
1‖

)
+ erf

(
μ j

T o1

‖g′
1‖

)]
,

where oT
1 = [cos(θi, j(x)) α j sin(θi, j(x))], gT

1 = [cos(θi, j(x)) √
α j sin(θi, j(x))], θi, j(x) is defined

in the figure, g′
1 = √

2σ j g1, ϕ = [− sin(θi, j(x)) cos(θi, j(x))]μ j , and σ 2
j and σ 2

j /α j (α j ≥ 1)
are the eigenvalues of the covariance matrix � j of the prior of occluder j. Step (b)
follows the assumption that the moving occluder diameter D is small compared to the
occluder standard deviations. See Appendix C for the derivation of this formula.

To compute p(η|u), first define pmv
Q (x) to be the probability of all ηs of the cameras in

a subset Q, given u, to be equal to 1.

pmv
Q (x) := P

⎛
⎝⋂

i∈Q

{ηi = 1}
∣∣∣∣u
⎞
⎠ = P

⎛
⎝⋂

i∈Q

M⋂
j=1

{ηi, j = 1}
∣∣∣∣u
⎞
⎠

= P

⎛
⎝ M⋂

j=1

⋂
i∈Q

{ηi, j = 1}
∣∣∣∣u
⎞
⎠ (c)=

M∏
j=1

P

⎛
⎝⋂

i∈Q

{ηi, j = 1}
∣∣∣∣u
⎞
⎠
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=
M∏

j=1

⎛
⎝1 − P

⎛
⎝⋃

i∈Q

{ηi, j = 0}
∣∣∣∣u
⎞
⎠
⎞
⎠ (d)≈

M∏
j=1

⎛
⎝1 −

∑
i∈Q

P
{
ηi, j = 0|u}

⎞
⎠

=
M∏

j=1

⎛
⎝1 −

∑
i∈Q

qmv
i, j (x)

⎞
⎠ , (8)

where (c) follows by the assumption that the occluder positions are independent, and
(d) follows from the assumption of small D and the reasonable assumption that the
overlap between Ai(x), i ∈ Q, is negligible. Note that cameras that satisfy this con-
dition can still have significantly overlapping fields of views, since the fields of views
are expected to be significantly larger than Ai(x). Therefore, this condition does not
contradict the argument that occlusion indicator variables ηi are dependent given u�.

Now we can compute pmv(η|u) using Equation (8) and recursion as follows. Choose
any n such that ηn = 0 and define η−n := [η1, . . . , ηn−1, ηn+1, . . . , ηN]T and ηn̄ :=
[η1, . . . , ηn−1, 1, ηn+1, . . . , ηN]T . Then,

pmv(η|u) = pmv(η−n|u) − pmv(ηn̄|u). (9)

Both terms in the right-handside of Equation (9) are one step closer to pmv
Q (u) (with

different Q), because one less element is zero in both η−n and ηn̄. This means that any
pmv(η|u) can be reduced recursively to terms consisting of pmv

Q (x), using Equation (9).
Let us illustrate this with the following example. Assume we have N = 3 cameras

and η = {1, 0, 0}. Then,

pmv(η|u) = P ({η1 = 1} ∩ {η2 = 0} ∩ {η3 = 0}|u)
= P ({η1 = 1} ∩ {η2 = 0}|u) − P ({η1 = 1} ∩ {η2 = 0} ∩ {η3 = 1}|u)
= P ({η1 = 1}|u) − P ({η1 = 1} ∩ {η2 = 1}|u) −

P ({η1 = 1} ∩ {η3 = 1}|u) + P ({η1 = 1} ∩ {η2 = 1} ∩ {η3 = 1}|u)
= pmv

{1} (x) − pmv
{1,2}(x) − pmv

{1,3}(x) + pmv
{1,2,3}(x),

where we used the preceding trick twice to obtain four terms of the form pmv
Q (x). Note

that the computational load of this recursion is exponential in the number of zeros in
η. As we illustrate in the next section, this is not a problem in practice.

4.3. Incorporating the Effects of the Static Occluders and Limited Camera Field of View

Incorporating the effects of the static occluders and limited camera field of view to
the procedure previously described involves a geometric partitioning of the particles.
Each partition is assigned a set of cameras. Only the ηs of the assigned cameras are
considered for the particles in that partition. This is explained using the example
in Figure 4. In this example, we have two cameras and a single static occluder. As
denoted by the dashed line in the figure, we have two partitions. Let η1 = 0 and
η2 = γ2 ∈ {0, 1}. Let us consider a particle belonging to the upper partition, namely
particle �1 at x�1 . If the object is at x�1 , the static occluder makes η1 = 0, independent
of where the moving occluders are. So, only Cam2 is assigned to this partition, and
the first term in the likelihood is given by P

({η1 = 0} ∩ {η2 = γ2}|u�1

) = pmv(η2|u�1 ).
Similarly, P

({η1 = 1} ∩ {η2 = γ2}|u�1

) = 0, because if the object is at x�1 , η1 = 0, and
P ({η1 = γ1} ∩{η2 = γ2}|u�2

) = pmv(η1, η2|u�2 ), because the static occluder and limited
field of view do not occlude particle �2. If a particle u� is out of the fields of views of all
cameras, P ({η1 = 0} ∩ {η2 = 0}∩ · · · ∩ {ηN = 0}|u�) = 1, and the likelihood of any other
combination is 0.
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Cam2

Cam1

x 1

x 2

Fig. 4. Geometric partitioning to add the effects of static occluders and limited field of view into the like-
lihood. If η1 = 1, the object cannot be at x�1 . If η1 = 0, only Cam2 needs to be considered for computing
p(η|u�1 ). Both cameras need to be considered for computing p(η|u�2 ).

Note that the number of cameras assigned to a partition is not likely to be large in
practice. This is because in practical installations, the cameras are spread out to moni-
tor the area of interest, and because of their limited fields of views and the existence of
static occluders, any given point can be seen only by a subset of cameras. This results
in significant reduction in computational complexity of the likelihood computation.

We mentioned in Section 3 that the camera nodes can distinguish between the object
and the occluders. To address non-perfect target distinction, one can introduce another
random variable that indicates the event of detecting and recognizing the object and
include its probability in the likelihood. We have not implemented this modification,
however.

4.4. Obtaining Occluder Priors

Our tracker assumes the availability of priors for the moving occluder positions. In this
section, we discuss some preliminary ideas on how these priors may be obtained. In
Section 6.1, we investigate the trade-off between the accuracy of such priors and that
of tracking.

Clearly, one could run a separate particle filter for each object and then fit Gaussians
to the resulting particle distributions. This requires solving the data association
problem, which in general requires substantial local and centralized processing.
Another approach is to treat the states of all objects as a joint state and track
them jointly [Doucet et al. 2002; Vihola 2007]. This approach, however, becomes
computationally prohibitive for a large number of objects.

Another approach to obtaining the priors is to use a hybrid sensor network combining,
for example, acoustic sensors in addition to cameras. As these sensors use less energy
than cameras, they could be used to generate the priors for the moving occluders. An
example of this approach can be found in Sheng and Hu [2005].

Yet another approach to obtaining the occluder priors involves reasoning about occu-
pancy using the visual hull, as described in [Yang 2005]. The visual hull is obtained as
follows. Locally at each camera, background subtracted images are vertically summed
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and thresholded to obtain a scan line. These scan lines are sent to the cluster head.
The cluster head then computes the visual hull by back-projecting the blobs in the
scan lines to cones in the room. The cones from the multiple cameras are intersected to
compute the total visual hull. Since the resulting polygons are larger than the occupied
areas and since phantom polygons that do not contain any objects may be present, the
visual hull provides an upper bound on occupancy. The computation of the visual hull
is relatively light-weight and does not require solving the data association problem.
The visual hull can then be used to compute occluder priors by fitting ellipses to the
polygons and using them as Gaussian priors. Alternatively, the priors can be assumed
to be uniform distributions over these polygons. In this case, the computation of qmv

i, j (x)
in (8) would need to be modified.

Although the visual hull approach to computing occluder priors is quite appealing for
a wireless sensor network implementation, several problems remain to be addressed,
such as phantom removal [Yang 2005], which is necessary because their existence can
cause the killing of many good particles.

5. SELECTION ALGORITHM

To conserve energy and make the tracking algorithm scalable, we perform camera node
subset selection with tracking. Given the prior pdf of the position of the tracked object
(which is obtained as particle-weight tuples from the tracker), the moving occluder
priors, the positions and shapes of the static occluders, the camera fields of views and
the camera noise parameters, we use the minimum mean square error (MSE) of the
best linear estimate of the object position as a metric for selection. The best camera
node subset is defined as the subset that minimizes the MSE metric. Every T time
steps, a new subset of k cameras is selected, and the selected cameras are queried for
measurements while the cameras that are not selected are put to sleep to conserve
energy. Increasing T reduces the overhead of selection and increases energy efficiency
by putting the camera nodes in sleep for longer periods. However a smaller T would
result in a more up-to-date set of cameras to track the object, hence a better tracking
performance.

Note that any selection metric has to be computed for a subset of cameras before
the actual measurements are available; since if all the measurements were readily
available, there wouldn’t be any need for selection. The MSE of the best linear estimate
of the object position is the expected squared error of localization, and it is computable
locally at the cluster head with the available information (such as object and occluder
statistics) but without the actual measurements. Therefore its computation does not
require any communication to or from the camera nodes. In Section 6, we use the
RMS error of the particle filter (PF) tracker as a measure of tracking performance.
This metric, on the other hand, is computed after the measurements from the selected
cameras are incorporated in the PF tracker. Unlike the best linear estimator, the PF
is a nonlinear estimator. Due to these reasons, the MSE metric we use for selection is
not exactly equal to the square of the tracker RMSE, however they are closely related.

To compute the MSE metric, the particle-weight tuples that are available from the
tracker are advanced in time by one step before they are used as a prior for the selection
step. This is done by passing them through an importance sampling step, as described
in Section 4.1. Next, we describe the computation of the MSE metric.

The mean square error (MSE) of the object location x is given by Tr(�x −�T
Zx�

−1
Z �Zx)

[Kailath et al. 1999], where Z = [z1 z2 . . . zN]T is the vector of measurements from
all cameras, �Z is the covariance of the measurements Z, �x is the prior covariance
of the object location x, and �Zx is the cross-covariance between Z and x. The MSE
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formula can be interpreted as follows. The prior uncertainty in the object location (�x)
is reduced by the expected information from the measurements (�T

Zx�
−1
Z �Zx).

To compute the MSE, we assume the noisy perspective camera measurement model
including occlusions presented in Section 3.1. To reduce computation, we also consider
a weak perspective model [Trucco and Verri 1998]. The results using the two models
are compared in simulations in Section 6.2. As we shall see, the results from the
two models are very close. Hence, we use only the weak perspective model in the
experiments (Section 7).

5.1. Perspective Camera Model

The MSE cannot be computed for the measurement model in Equation (4) as is because
of the NaN. Also remember that the cameras that are occluded cannot be excluded from
selection, since the cameras can be queried only after selection is performed. Therefore,
for the computation of the selection metric only, we modify this model slightly: we
assume that if a camera cannot see the object, the cluster head assumes the expected
value of its measurement instead of an NaN. Let us denote this modified perspective
measurement for camera i by z̆i.

z̆i =
{

fi hi (x)
di (x) + vi, if ηi = 1,

E(z̆i), if ηi = 0,
(10)

where E(·) represents the expectation operator.
As indicated before, no communication is needed to or from the camera nodes to

compute the MSE metric. Therefore, z̆i is not actually received from camera i. It is just
the model that the cluster head uses to compute the MSE metric. Once the selection
is performed, actual measurements from the selected cameras are as in the original
perspective model of Equation (4).

It can be shown that the expected value of z̆i is

E(z̆i) = fiEx

(
hi(x)
di(x)

)
, (11)

and that the covariances in the MSE metric for the perspective camera model in
Equation (10) can be computed as follows.

�Zx(i, :) = P{ηi = 1} fiEx

(
hi(x)
di(x)

x̃T
)

, (12)

�Z(i, j) = P{ηi = 1, η j = 1}
[

fi f jEx

(
hi(x)hj(x)
di(x)dj(x)

)
− E(z̆i)E(z̆ j) +

{
σ 2

vi
, i = j

0, i �= j

}]
, (13)

where �Zx(i, :) denotes the ith row of �Zx, x̃ := x − μx, hi(x), di(x) and fi are defined
in Figure 2, P{ηi = 1, η j = 1} = Eu(P{ηi = 1, η j = 1|u}), and σ 2

vi
= Ex(σ 2

vi |x). See
Appendix D.1 for the derivation of Equations (11)–(13). All expectations over u or x are
approximated by the weighted average over the particle distributions. For example,

P{ηi = 1, η j = 1} = Eu
(
P{ηi = 1, η j = 1|u}) ≈

L∑
�=1

w�P{ηi = 1, η j = 1|u�},

where P{ηi = 1, η j = 1|u�} is computed as described in Sections 4.2 and 4.3.

5.2. Weak Perspective Model

The computation of the MSE can be simplified by using a weak perspective camera
model [Trucco and Verri 1998], which is an affine approximation to the perspective
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model, and it is valid when the object is far away from the camera. Note that the
tracking is performed with the actual measurements that conform to the perspective
model of Equation (4), regardless of the model used for selection.

Using the weak perspective assumption, we assume that the object’s distance to the
camera along its principal axis (i.e., di(x) in Figure 2) is much greater than

√
Tr(�x)

(i.e., much greater than a measure of the width of the object location prior distribution).
We further assume that di(x) is much greater than the object’s distance to its projection
on the principal axis (i.e., hi(x) in Figure 2). Therefore, di(x) can be approximated by
d̄i := di(μx), where μx is the mean of the object’s prior. Note that μx is available to the
cluster head through the tracker. Thus, d̄i is known and one can scale the measurements
in the perspective camera model in Equation (10) by d̄i

fi
without changing its information

content. Denote these scaled measurements by

d̄i

fi
z̆i := z̃i =

{
aT

i x + ṽi, if ηi = 1,

E(z̃i), if ηi = 0,
(14)

where E(z̃i) = aT
i μx (see Appendix D.2 for the derivation), aT

i = [sin(θi) − cos(θi)], and
ṽi = d̄i/ fivi. Here, we ignore a constant term involving the inner product of ai with the
position vector of camera i. This does not affect the MSE metric, however. To compute
the variance of ṽi, consider the conditional variance in Equation (2).

σ 2
vi |x = f 2

i

(
1 + h2

i (x)
d2

i (x)

)2

σ 2
θ + f 2

i

(
h2

i (x) + d2
i (x)

d4
i (x)

)
σ 2

pos + σ 2
read

≈ f 2
i σ 2

θ + f 2
i

d̄2
i

σ 2
pos + σ 2

read,

where we used the assumption that di(x) ≈ d̄i � hi(x). Note that with the weak
perspective approximation, σ 2

vi |x is not a function of x, and σ 2
vi |x = σ 2

vi
. As such, the

variance of ṽi is given by

σ 2
ṽi

= d̄2
i

f 2
i

σ 2
vi

≈
(

σ 2
θ + σ 2

read

f 2
i

)
d̄2

i + σ 2
pos.

Thus, under the weak perspective model, we can assume that ṽ1, ṽ2, . . . , ṽN are inde-
pendent, zero mean Gaussian random variables.

Under the weak perspective model, the covariance matrices in the MSE metric
change to the following (see Appendix D.2 for the derivation).

�Zx(i, :) = P{ηi = 1}aT
i �x, (15)

�Z(i, j) = P{ηi = 1, η j = 1}
[
aT

i �xaj +
{

σ 2
ṽi
, i = j

0, i �= j

}]
. (16)

Note that the complexity of computing an element of �Z or �Zx is O(LM) for both per-
spective and weak perspective models, where L is the number of particles and M is the
number of moving occluders. This can be explained as follows. The complexity of com-
puting P{ηi = 1} or P{ηi = 1, η j = 1} is O(LM). This term is common to both models and
dominates the complexity. However, computing the MSE using the weak perspective
model is still cheaper. To see this, compare Equations (13) and (16). The complexity of
computing the expectation in Equation (13) is O(L), while the complexity of the matrix
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ALGORITHM 2: Greedy Selection – The Greedy Camera Node Selection Algorithm

Input: Object’s prior (particle - weight tuples): {u�, w�}L
�=1; dynamic occluders’ priors:

{μ j, � j}M
j=1; number of camera nodes to select: k; struct room (camera fields of views,

positions and orientations; room’s shape and sizes; static occluder information).
Output: Selected subset: S.
S := ∅;
for (counter = 1 . . . k) do

lowest := ∞;
for (i = 1 . . . N) do

if (i /∈ S) then
S := S ∪ {i};
e := MSE(S);
if (e < lowest) then

lowest := e;
sel := i;

end
S := S\{i};

end
end
S := S ∪ {sel};

end

multiplication in Equation (16) is O(1), assuming that �x is precomputed.1 If the com-
puted P{ηi = 1, η j = 1|u�} values can be stored and reused in the tracking algorithm,
the computational savings previously described becomes even more significant.

The selection problem involves minimizing MSE(S) subject to |S| = k. Here, MSE(S)
denotes the MSE computed using the cameras in subset S ⊂ {1, 2, . . . , N}. A brute-
force search to find the optimal solution to this problem requires O(Nk) trials. This
can be too costly in a wireless camera network setting. Instead, we use the greedy
selection algorithm given in Algorithm 2. The computational complexity of the greedy
algorithm is O(k2MNL + k4N), where k is the subset size, M is the number of moving
occluders, N is the number of cameras, and L is the number of particles. This can be
explained as follows. Line 7 of Algorithm 2 requires the computation of the MSE of the
subset S. This amounts to computing O(k) new elements in the covariance matrices
(O(kLM) computations) and a matrix inversion and two matrix multiplications (O(k3)
computations). Therefore, the complexity of line 7 is O(kLM+k3). There are two for loops
of size kand N surrounding this line; therefore, the total complexity is O(k2LMN+k4N).

6. SIMULATION RESULTS

In a practical tracking setting, one is given the room structure (including information
about the static occluders), the range of the number of moving occluders and their
motion model, and the required object tracking accuracy. Based on this information,
one needs to decide on the number of cameras to use in the room and the amount of
prior information about the moving occluder positions needed and how to best obtain
this information. Making these decisions involves several trade-offs, for example, be-
tween the occluder prior accuracy and the tracker performance, between the number
of cameras used and the required occluder prior accuracy, and between the number of
occluders present and the tracking performance. In this section we assume preselected

1Precomputing the other costly terms in Equation (13) requires O(LN2) computations. In practice, the total
number of cameras N can be a lot larger than the selected number of cameras k. To achieve linear complexity
on N on the overall selection algorithm, only �x is assumed to be precomputed.
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ALGORITHM 3: Top – Top-Level Algorithm Used in Simulations
Input: Struct room (camera fields of views, positions and orientations; room’s shape and sizes;

static occluder information); number of cameras to use: k.
Output: Estimated object track: x̂(t).
{u�(0), w�(0)}L

�=1 = init particles(room);
obj Pos(0) = init objects(room);
for (t = 1, . . . , Tmax) do

obj Pos(t) = move objects(obj Pos(t − 1)), room);
{μ j(t), � j(t)}M

j=1 = obtain priors(obj Pos(t)); /* Section 6.1 */

if t == 1 mod(T ) /* Selection is performed every T steps, see Section 5 */ then
for � = 1, . . . , L do

ũ�(t − 1) ∼ f (u|u�(t − 1)); /* Section 4.1 */
end
S = selection({ũ�(t − 1), w�(t − 1)}L

�=1, {μ j(t), � j(t)}M
j=1, k,room);

end
Z(t) = get measurements(S, obj Pos(t), room);
{u�(t), w�(t)}L

�=1 = ASIR({u�(t − 1), w�(t − 1)}L
�=1, {μ j(t), � j(t)}M

j=1, Z(t), room);
x̂(t) = ∑L

�=1 w�(t)x�(t);
end

subsets of cameras and explore these trade-offs in tracking simulations. We also inves-
tigate the effect of dynamically selecting the subsets of camera nodes on the tracking
performance.

Algorithm 3 describes the top-level algorithm that we use in the simulations. In
the algorithm, μ j denotes the mean and � j denotes the covariance of the prior for
occluder j. The procedures init particles and init objects initializes the particles’
and the objects’ states. The procedure obtain priors obtains the moving occluder prior
statistics from virtual measurements, as will be explained later in Section 6.1. The
procedure selection uses a fixed subset of camera nodes in Section 6.1 and the Greedy
Selection algorithm (Algorithm 2) or other heuristics in Section 6.2. The procedure
get measurements obtains measurements from the cameras in subset S according to
the perspective model of Equation (4). Procedure ASIR is given in Algorithm 1.

The procedure move objects moves the objects in the room. We assume that the
objects move according to random waypoints model. This is similar to the way we draw
new particles from the importance density function, as discussed in Section 4.1 with
the following differences.

—The objects are only in regimes MTD (move toward destination) or CD (change
destination). There is no W (wait) regime.

—The objects choose their regimes deterministically, not randomly. If an object reaches
its destination or is heading toward the inside of a static occluder or outside the room
boundaries, it transitions to the CD regime.

—Objects go around each other instead of colliding.

The average speed of the objects is set to 1 unit per time step. The standard deviation
of the noise added to the motion each time step is 0.33 units.

6.1. Tracking Simulations Using Pre-Selected Subsets of Cameras

In this section, we assume a square room of size 100 × 100 units and eight cam-
eras placed around its periphery (see Figure 5). We explore the trade-offs previ-
ously mentioned in tracking simulations using preselected subsets of cameras. That
is, the procedure selection in Algorithm 3 always returns the first k elements of
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Fig. 5. The setup used in tracking simulations with preselected subsets of cameras.

{1, 7, 5, 3, 2, 4, 6, 8}, where k is the number of cameras to select. The cameras on the
vertices are selected before the ones on the edges, because their fields of views have
better coverage of the room. For two cameras, cameras that are placed orthogonally
are used for better triangulation of the object position [Ercan et al. 2006].

The black rectangle in Figure 5 depicts a static occluder. Note, however, that in some
of the simulations, we assume no static occluders. The cameras’ fields of views are
assumed to be 90◦. The standard deviation of the camera position error is σpos = 1
unit, that of camera angle error is σθ = 0.01 radians, and the read noise standard
deviation is σread = 2 pixels. The diameter of each moving occluder is assumed to be
D = 3.33 units. Figure 5 also shows a snapshot of the objects for M = 40 occluders.
In the PF tracker, we use L = 1,000 particles and they are independently initialized
according to a uniform distribution over the room. In each simulation, the object and the
occluders move according to the random waypoints model for Tmax = 4,000 time steps.

To investigate trade-offs involving moving occluder prior accuracy, we need a measure
for the accuracy of the occluder prior. To develop such a measure, we assume that the
priors are obtained using a Kalman filter run on virtual measurements of the moving
occluder positions of the form yj(t) = xj(t) + ψ j(t), j = 1, 2, . . . , M, where xj(t) is the
true occluder position, ψ j(t) is white Gaussian noise with covariance σ 2

ψ I, and yj(t) is
the virtual measurement. The occluder position distributions estimated by the Kalman
filter are used as occluder priors for the tracking algorithm (Algorithm 3, line 5), and
the average RMSE of the Kalman filter (RMSEocc) is used as a measure of occluder
prior accuracy. Lower RMSEocc means higher accuracy sensors or more computation is
used to obtain the priors, which results in more energy consumption in the network.
At the extremes, RMSEocc = 0 (when σψ = 0) corresponds to complete knowledge of
the moving occluder positions, and RMSEocc = RMSEmax (when σψ → ∞) corresponds
to no knowledge of the moving occluder positions. Note that the worst case RMSEmax
is finite because when there are no measurements about the occluder positions, one
can simply assume that they are located at the center of the room. This corresponds to
RMSEmax = 24.4 units for the setup in Figure 5.

To implement the tracker for these two extreme cases, we modify the computation
of the likelihood of the occlusion indicator functions as follows. We assign 0 or 1 to
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Fig. 6. Tracker RMSE versus the number of cameras for M = 40 moving occluders and one static occluder.
The solid lines denote the averages and the error bars denote one standard deviation of the RMSE. The
dotted line is the worst case average RMSE when no tracking is performed and the object is assumed to be
at the center of the room.

p(η|u) depending on the consistency of η with our knowledge about the occluders. For
RMSEocc = 0, that is, when we have complete information about the moving occluder
positions, the moving occluders are treated as static occluders. On the other hand, for
RMSEocc = RMSEmax, that is, when there is no information about the moving occluder
positions, we check the consistency with only the static occluder and the limited field
of view information to assign zero probabilities to some particles. For the example
in Figure 4, we set P

({η1 = 1} ∩ {η2 = γ2}|u�1

) = 0, because if cam1 sees the object,
the object cannot be at x�1 . Any other occlusion indicator variable likelihood that is
nonzero is set to 1. Note that for these two extreme cases, we no longer need the
recursion discussed in Section 4.2 to compute the likelihood. Hence, the computational
complexity is lighter compared to using Gaussian priors.

First in Figure 6 we plot the RMSE of the tracker (RMSEtr) over five simulation
runs for the two extreme cases of RMSEocc = 0 and RMSEocc = RMSEmax and for
RMSEocc = 6.67 (obtained by setting σψ = 8) versus the number of cameras. The solid
lines denote the averages and the error bars denote one standard deviation of the
RMSEtr. The dotted line represents the worst case average RMSE (RMSEmax) when
there are no measurements and the object is assumed to be in the center of the room.

We then investigate the dependency of the tracker accuracy on the accuracy of the
moving occluder priors. Figure 7 plots the RMSE for the tracker over five simulation
runs versus RMSEocc for N = 4 cameras. In order to include the effect of moving oc-
cluder priors only, we used no static occluders in these simulations. RMSEmax reduces
to 21.4 units for this case. Note that there is around a factor of 2.34 times increase in
average RMSEtr from the case of perfect occluder information (RMSEocc = 0) to the
case of no occluder information (RMSEocc = RMSEmax). Moreover, it is not realistic
to assume that the occluder prior accuracy would be better than that of the tracker.
With this consideration, the improvement reduces to around 1.94 times (this is ob-
tained by noting that average RMSEtr = RMSEocc at around 3.72). The variation in
the tracking accuracy, measured by the standard deviation of RMSEtr, also improves
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Fig. 7. Dependency of the tracker RMSE on the accuracy of the occluder priors for N = 4 cameras, M = 40
moving occluder, and no static occluders. The solid line denotes the averages and the error bars denote one
standard deviation of RMSEtr. The dotted line is for RMSEtr = RMSEocc.
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Fig. 8. Trade-off between the number of cameras and moving occluder prior accuracy for a target tracker
average RMSE = 3 units for M = 40 moving occluders and no static occluders.

by about 3.4 times for these points. These observations suggest that obtaining prior
information may not be worthwhile in practice, unless it can be obtained cheaply and
to a reasonable accuracy.

The trade-off between RMSEocc and the number of cameras needed to achieve average
RMSEtr = 3 is plotted in Figure 8. As expected, there is a trade-off between the number
of cameras and the accuracy of the moving occluder priors, as measured by RMSEocc.
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Fig. 9. Tracker RMSE versus the number of moving occluders for the two extreme cases, RMSEocc = 0 and
RMSEocc = RMSEmax. The solid lines denote the averages and the error bars denote one standard deviation
of RMSE. Here there are N = 4 cameras and no static occluders.

As more cameras are used, the accuracy of the prior information needed decreases. The
plot suggests that if a large enough number of cameras is used, no prior information
would be needed at all. Of course, having more cameras means more communications
and processing cost. So, in the design of a tracking system, one needs to compare the
cost of deploying more cameras to that of obtaining better occluder priors.

Next, we explore the question of how the needed moving occluder prior accuracy
depends on the number of occluders present. To do so, in Figure 9 we plot the RMSEtr
versus the number of moving occluders for the two extreme cases, RMSEocc = 0 and
RMSEocc = RMSEmax. The solid lines denote the averages and the error bars denote
one standard deviation of RMSEtr. Note that the difference between the RMSEtr for
the two cases is the potential improvement in the tracking performance achieved by
having occluder prior information. When there are very few moving occluders, prior
information does not help (because the object is not occluded most of the time). As the
number of occluder increases, prior information becomes more useful. But the difference
in RMSEtr between the two extreme cases decreases when too many occluders are
present (because the object becomes occluded most of the time).

It is also notable in Figures 6–9 that the variations of RMSEtr, measured by the
standard deviations, also increase as RMSEocc increases (i.e., moving occluder prior
accuracy decreases).

In Section 4.3, we mentioned that the complexity of computing the likelihood given
u� is exponential in the number of occluded cameras among the ones assigned to the
partition that particle � belongs to. We proposed that in practice, the complexity is
significantly lower than that of the exponential in N because the number of assigned
cameras to a partition is a fraction of N. To verify this, in Figure 10 we plot the
average CPU time (per time step) used to compute the likelihood relative to that of
the RMSEocc = RMSEmax case for two cameras versus the total number of cameras
in the room. The simulations were performed on a 3 GHz Intel Xeon Processor. Note
that the rate of increase of the CPU time using priors is significantly lower than 2N,
where N is the number of cameras used, and it is close to the rate of increase of the
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Fig. 10. Average CPU time for computing the likelihoods relative to that for the case of two cameras and no
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Fig. 11. The setup used in simulations to test the effect of dynamically selecting subsets of camera nodes
used in tracking on the tracking performance.

RMSEocc = RMSEmax case. In fact, the rate of increase for this particular example is
close to linear in N.

6.2. Effect of Selection Algorithms on Tracking Performance

In this section, we explore the effect of dynamically selecting the subset of camera
nodes used in tracking on the tracking performance. An ‘L’ shaped room (see Figure 11)
is used in order to emphasize the effect of selection. We use Algorithm 3 with the
procedure selection employing different selection methods to compare their tracking
performance. We assume M = 40 moving occluders and no static occluders. The moving
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Fig. 12. The tracker RMSE versus the number of cameras for M = 40. The solid lines denote the averages
and the error bars denote one standard deviation of the RMSE. The dotted line is the average tracker RMSE
achieved by using all 12 cameras. The worst case average RMSE (RMSEmax) when no tracking is performed
and the object is assumed to be at the center of the room is 47.9 units (not shown). The occluder prior accuracy
(RMSEocc) is 11.5 units.

occluder prior accuracy is RMSEocc = 11.5. The selection is performed every T = 5 time
steps. All other parameters are the same as in Section 6.1.

We compare the greedy selection algorithm (Algorithm 2) to the brute-force method,
in which an exhaustive search is performed to find the subset that minimizes the
localization MSE, as well as to the following heuristics.

—Fixed. Use a preselected set of cameras. This amounts to the first k elements of {1,
4, 7, 10, 8, 12, 3, 5, 2, 6, 11, 9}.

—Random. Use randomly selected cameras.
—Closest. Pick k closest cameras to the object location mean.

In addition, the simulations for the greedy algorithm and the brute-force method are
performed using both the perspective (Section 5.1) and weak perspective (Section 5.2)
camera models. The performance of different selection methods are also compared to
using all cameras.

Figure 12 compares the tracking performance achieved by different selection meth-
ods averaged over ten simulation runs, for k = 2 to six selected cameras. The solid
lines denote the averages and the error bars denote one standard deviation of RMSEtr.
The dotted line is the average tracker RMSE achieved by using all 12 cameras. The
worst case average RMSE (RMSEmax) when no tracking is performed and the object
is assumed to be at the center of the room is 47.9 (not shown in the figure). As seen
from the figure, the greedy selection algorithm performs close to the brute-force method
and outperforms the other selection heuristics. The fixed selection heuristic performs
worst because the subset is not updated dynamically and therefore some of the selected
cameras cannot see the object due to the “L” shape of the room. Particularly note that
the closest selection heuristic does not perform as well as one might expect. The reason
for this is two-fold. First, cameras are angle sensors, not range sensors. Therefore,
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Fig. 13. Experimental setup. (a) View of lab (cameras are circled). (b) Relative locations of cameras and
virtual static occluder. The solid line shows the actual path of the object to track.

choosing the closest sensor is not the right thing to do with cameras. A camera ori-
ented orthogonally to the direction of highest uncertainty in the object location would
perform better. Such a camera is favored by the MSE metric. Second, the MSE metric
favors a more diverse selection in the viewing angle for k ≥ 2, compared to the closest
selection heuristic. These ideas are also illustrated in Figure 7 of Ercan et al. [2006].
In addition, the fixed, random, and closest selection heuristics do not take static or
moving occlusions into account.

We also observe from Figure 12 that the performance achieved using the weak per-
spective model is within one standard deviation of that of the perspective model. This
justifies the use of the weak perspective model for selection in order to save computation
energy. Another interesting observation is by only using six cameras and performing
greedy selection, the performance of using all 12 cameras (dotted line in the figure) can
be achieved.

7. EXPERIMENTAL RESULTS

We tested our tracking algorithm in an experimental setup consisting of 16 Web cam-
eras placed around a 22′ × 19′ room. The horizontal FOV of the cameras used is 47◦. A
picture of the lab is shown in Figure 13(a) and the relative positions and orientations of
the cameras in the room are provided in Figure 13(b). Each pair of cameras is connected
to a PC via IEEE 1394 (FireWire) interface and each can provide 8-bit 3-channel (RGB)
raw video at 7.5 frames/s. The data from each camera is processed independently, as
described in Section 3. The measurement data is then sent to a central PC (cluster
head) where further processing is performed.

The object follows the predefined path (shown in Figure 13(b)) with no occlusions
present and Tmax = 200 time steps of data is collected. The effect of static and mov-
ing occluders is simulated using one virtual static occluder and M = 20 virtual moving
occluders: we threw away the measurements from the cameras that would have been
occluded had there been real occluders. The virtual moving occluders walk according to
the model explained in Section 6. D is chosen 12 inches for the moving occluders. The
camera noise parameters were assumed σpos = 1 inch, σread = 2 pixels, and σθ = 0.068
radians in the computation of the likelihood or the MSE selection metric.

We first explore the performance of our tracker in experiments versus number
of cameras used for different occluder prior accuracies. For selection of the camera
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Fig. 14. Experimental results on the tracker RMSE versus the number of cameras for different occluder
prior accuracies. There are M = 20 moving occluders and one static occluder. The solid lines denote the
averages and the error bars denote one standard deviation of RMSE over different simulation runs. Not all
error bars are shown in order not to clutter the graphs. A fixed selection heuristic is used. The worst case
average RMSE (RMSEmax) when no tracking is performed and the object is assumed to be at the center of
the room is 77.5 inches (not shown).

subsets, we use the fixed selection heuristic which returns the first k elements of
{1, 13, 9, 5, 3, 8, 11, 16, 6}. Figure 14 plots the RMSE of the tracker over 50 runs for
the two extreme cases of RMSEocc = RMSEmax = 77.5 inches and RMSEocc = 0 and for
the case of RMSEocc = 12.1 inches versus the number of cameras. Because the data
set is for only 200 time steps, averaging in the computation of the RMSE is performed
starting from t = 5 to reduce the effects of the initial transients. The solid lines in the
figure denote the averages and the error bars denote one standard deviation of RMSE
over different runs. Not all error bars are shown in order not to clutter the graphs.
There is some difference in the performance between the three cases throughout
the entire plot. However the difference is not substantial considering the variations
around the average RMSEs, as shown by the error bars. However, the average RMSEs
improve as the number of cameras used or as the available occluder prior accuracy
increases, agreeing with the trade-offs discussed in Section 6.

Next, we explore the effect of dynamically selecting the subset of camera nodes
used in tracking on the tracking performance. Figure 15 plots the RMSE of the
tracker over 50 runs for the different selection methods described in Section 6.2. The
solid lines denote the averages and the error bars denote one standard deviation of
RMSE over different runs. Not all error bars are shown in order not to clutter the
graphs. We used only the weak perspective model in the computation of the selection
metric for experiments, since the results achieved by using perspective and weak
perspective models are shown to be close in Section 6.2. The occluder prior accuracy
(RMSEocc) is 12.1 inches. Also in the figure, the average tracker RMSE achieved by
using all 16 cameras is denoted by the dotted line. The average tracker RMSE for the
greedy selection method is close to that of the brute-force method and better than the
other heuristics. Note that in this case the variations of the RMSEs values are also
large.
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Fig. 15. Experimental results on the effect of dynamically selecting the subset of camera nodes used in
tracking. Tracker RMSE versus the number of cameras for different selection heuristics are shown. The
error bars represent one standard deviation of the RMSE. Not all error bars are shown in order not to clutter
the graphs. M = 20 and one static occluder is present. The dotted line is the average tracker RMSE achieved
by using all 16 cameras. The worst case average RMSE (RMSEmax) when no tracking is performed and the
object is assumed to be at the center of the room is 77.5 inches (not shown). The occluder prior accuracy
(RMSEocc) is 12.1 inches. The weak perspective camera model is used for the greedy algorithm and the
brute-force method.

8. CONCLUSIONS

We described a sensor network approach for tracking a single object in a structured
environment using multiple cameras. Instead of tracking all objects in the environment,
which is computationally very costly, we track only the target object and treat others as
occluders. The tracker is provided with complete information about the static occluders
and some prior information about the moving occluders. A key contribution of this
article is developing a systematic way to incorporate this information into the tracker
formulation.

Using preselected subsets of cameras, we explored the trade-offs involving the
occluder prior accuracy, the number of cameras used, the number of occluders present,
and the accuracy of tracking. Based on our simulations, we generally found the
following.

—Obtaining moving occluder prior information may not be worthwhile in practice,
unless it can be obtained cheaply and to a reasonable accuracy.

—There is a trade-off between the number of cameras used and the amount of occluder
prior information needed. As more cameras are used, the accuracy of the prior infor-
mation needed decreases. Having more cameras, however, means incurring higher
communications and processing cost. So, in the design of a tracking system, one needs
to compare the cost of deploying more cameras to that of obtaining more accurate
occluder priors.

—The amount of prior occluder position information needed depends on the number
of occluders present. When there are very few moving occluders, prior information
does not help (because the object is not occluded most of the time). When there is
a moderate number of occluders, prior information becomes more useful. However,
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when there are too many occluders, prior information becomes less useful (because
the object becomes occluded most of the time).

We also explored the effect of dynamically selecting the subsets of camera nodes used
in tracking on the tracking performance. The minimum MSE of the best linear estimate
of object position based on camera measurements is used as a metric for selection. We
showed through simulations that a greedy selection algorithm performs close to the
brute-force method and outperforms other selection heuristics. We also showed that
the performance achieved by greedily selecting a fraction of the cameras is close to that
of using all cameras, which translates to savings in bandwidth and energy.

APPENDIX

A. LIST OF SELECTED SYMBOLS

Symbol Description Section
x Position of the tracked object 3
μx Mean of x 5
�x Covariance of x 5
u State of the object 4
S A subset of selected cameras 5
k Number of selected cameras 5
T Number of time steps between selections 5
Tmax Total number of time steps in one simulation run 6
D Diameter of moving occluders 3
M Total number of moving occluders 3
j Enumerator for moving occluders 4
xj Position of moving occluder j 4
μ j Mean of occluder j’s prior 4
� j Covariance of occluder j’s prior 4
L Total number of particles 4
� Enumerator for particles 4
u� State of particle � 4
w� Weight of particle � 4
x� Position of particle � 4
N Total number of cameras 3
i Enumerator for cameras 3
θi Orientation (yaw angle) of camera i 3
ηi Occlusion indicator variable for camera i 3
zi Measurement from camera i 3
fi Focal length of camera i 3
vi Additive Gaussian noise to zi 3
σθ Standard deviation of camera orientation (θi) inaccuracy 3
σpos Standard deviation of the camera position inaccuracy 3
σread Standard deviation of the read-out noise 3
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hi(x)
x

di(x)

θi

σθ

σread

σpos

Fig. 16. Illustrations of read noise and camera calibration inaccuracies leading to the camera measurement
noise vi .

B. DERIVATION OF THE CAMERA MEASUREMENT NOISE VARIANCE

To derive the conditional mean and variance of camera measurement noise vi given
object position x, we assume the read-out noise and the inaccuracies in camera po-
sition and orientation calibration to be zero mean with variances σ 2

read, σ 2
pos, and σ 2

θ ,
respectively (see Figure 16). Further, we assume that these sources of noise are mutu-
ally independent. Assume that the camera is at xci := [xci1 xci2]T and the object is at
x := [x1 x2]T . Then hi(x) and di(x) are given by

hi(x) = sin(θi)(x1 − xci1) − cos(θi)(x2 − xci2),
di(x) = − cos(θi)(x1 − xci1) − sin(θi)(x2 − xci2).

Taking the partial derivatives of zi in Equation (1) with respect to θi, xc1, and xc2, we
obtain the following.

∂zi

∂θi
= − fi

(
1 + h2

i (x)
d2

i (x)

)
,

∂zi

∂xci1
= − fi

(
di(x) sin(θi) + hi(x) cos(θi)

d2
i (x)

)
,

∂zi

∂xci2
= fi

(
di(x) cos(θi) − hi(x) sin(θi)

d2
i (x)

)
.

Let us denote the zero mean errors in camera positions xci1 and xci2 by �xci1 and �xci2 ,
respectively. We assume that the variances of the position error in both directions are
equal and given by σ 2

pos. The read-out noise and error in camera orientation are denoted
by �read and �θ , respectively. Then

E(vi|x) ≈ ∂zi

∂θi
E(�θ ) + ∂zi

∂xci1
E(�xci1 ) + ∂zi

∂xci2
E(�xci2 ) + E(�read) = 0.
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Using the independence assumption between the error sources, we obtain the following
conditional variance.

σ 2
vi |x ≈

(
∂zi

∂θi

)2

σ 2
θi

+
(

∂zi

∂xci1

)2

σ 2
�xci1

+
(

∂zi

∂xci2

)2

σ 2
�xci2

+ σ 2
read

= f 2
i

(
1 + h2

i (x)
d2

i (x)

)2

σ 2
θ + f 2

i

(
h2

i (x) + d2
i (x)

d4
i (x)

)
σ 2

pos + σ 2
read.

C. DERIVATION OF EQUATION (8)

In this section, the derivation of Equation (8) is provided. In Section 4.2, we assumed
the rotation of the coordinate system where the major axis of moving occluder j’s prior
is horizontal. Consider another rotation, where the rectangle Ai(x) is horizontal. Let
the mean and the covariance matrix of occluder j be μ′

j and �′
j at this orientation. Let

θi, j(x) := θ for brevity. Without loss of generality, assuming that the camera is at the

origin, we have the relations μ′
j = RT

θ μ j , �′
j = RT

θ � j Rθ , and |�′
j | = |� j | = σ 4

j

α j
, where

Rθ is the rotation matrix by θ . Then qmv
i, j (x) is found by

qmv
i, j (x) =

∫ D
2

− D
2

∫ ‖x‖

0

1

2π
√

|�′
j |

exp
(

−1
2

(x′ − μ′
j)

T �′
j
−1(x′ − μ′

j)
)

dx′ (17)

=
∫ D

2

− D
2

∫ ‖x‖

0

√
α j

2πσ 2
j

exp

⎛
⎜⎝−1/2 x′T �′

j
−1x′︸ ︷︷ ︸

A

+μ′
j
T
�′

j
−1x′︸ ︷︷ ︸

B

−1/2 μ′
j
T
�′

j
−1

μ′
j︸ ︷︷ ︸

C

⎞
⎟⎠dx′.

(18)

Let us look at each preceding term defined separately. First define

G :=
[

cos θ − sin θ√
α j sin θ

√
α j cos θ

]
= [g1 g2] ,

where g1 and g2 are the columns of G. Note that

�′
j
−1 = RT

θ � j
−1 Rθ = 1

σ 2
j

GT G.

Define x′ := [x′
1 x′

2]T , then

A = −1
2

x′T �′
j
−1x′ = − 1

2σ 2
j

(‖g1‖2x′
1

2 + ‖g2‖2x′
2

2 + 2gT
1 g2x′

1x′
2

)
.

To compute B, define

O :=
[

cos θ − sin θ

α j sin θ α j cos θ

]
= [o1 o2] ,

where o1 and o2 are the columns of O. Then

B = μ′
j
T
�′

j
−1x′ = (

μ j
T Rθ

)(
RT

θ � j
−1 Rθ

)
x′ = 1

σ 2
j

μ j
T Ox′ = 1

σ 2
j

(
μ j

T o1x′
1 + μ j

T o2x′
2

)
Finally,

C = −1
2

μ′
j
T
�′

j
−1

μ′
j = −1

2
μ j

T Rθ RT
θ � j

−1 Rθ RT
θ μ j = −1

2
μ j

T � j
−1μ j .
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By substituting A, B, and C into Equation (18) and using the formula

∫ c2

c1

exp(−ζρ2 + 2ξρ)dρ = 1
2

√
π

ζ
exp

(
ξ2

ζ

)[
erf

(
ζc2 − ξ√

ζ

)
− erf

(
ζc1 − ξ√

ζ

)]
, (19)

we reach

qmv
i, j (x) = 1

2

√
α j

2πσ 2
j ‖g1‖2

exp
(

−1
2

μ j
T � j

−1μ j

)
∫ D

2

− D
2

exp

(
2μ j

T o2x′
2 − ‖g2‖2x′

2
2

2σ 2
j

+ (μ j
T o1 − gT

1 g2x′
2)2

2σ 2
j ‖g1‖2

)
[

erf

(
‖g1‖2‖x‖ − μ jo1 + gT

1 g2x′
2√

2σ j‖g1‖

)
+ erf

(
μ jo1 − gT

1 g2x′
2√

2σ j‖g1‖

)]
dx′

2.

Notice that there are three places where we have gT
1 g2x′

2 = x′
2(α j −1) sin(2θ )/2. Here,√

α j ≥ 1 is the ratio of the major axis of occluder j’s prior to the minor axis (see
Figure 3). We assume that α j is not too big and D is small with respect to σ j , such that
gT

1 g2x′
2 can be ignored.

qmv
i, j (x) ≈ 1

2

√
α j

2πσ 2
j ‖g1‖2

exp
(

−1
2

μ j
T � j

−1μ j

)
exp

(
(μ j

T o1)2

2σ 2
j ‖g1‖2

)
[

erf

(
‖g1‖2‖x‖ − μ j

T o1√
2σ j‖g1‖

)
+ erf

(
μ j

T o1√
2σ j‖g1‖

)]
∫ D

2

− D
2

exp

(
2μ j

T o2x′
2 − ‖g2‖2x′

2
2

2σ 2
j

)
dx′

2.

The formula in Equation (19) is then used once more to get Equation (8). Note that when
α j is too big, the prior of occluder j can be treated as a degenerate 1D Gaussian function
in 2D, and one could still perform the integral in Equation (17) using Equation (19)
once, as the prior is effectively one dimensional. However, we did not implement this
modification.

To test the validity of the preceding approximation, we performed several simula-
tions. We selected random priors for the occluders and ran Monte-Carlo simulations
to find qmv

i, j (x) empirically. We compared these values to the ones computed by using
Equation (8). For example, in Figure 17, you see Monte-Carlo runs for 16,000 random
points. The solid line is for denoting y = x and the error bars represent the ±3σ
tolerance for the Monte-Carlo simulation. Here D = 3.33, σ j = 2, α j = 4. For this
example, although D > σ j and α j is considerably greater than 1, most of the 16,000
points still lie in the ±3σ tolerance range.

D. DERIVATION OF THE LOCALIZATION MSE

In this section, we derive the formulas for the covariance matrices required for the
computation of the MSE for both perspective and weak perspective model.
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Fig. 17. Monte-Carlo simulations to test the accuracy of Equation (8). Here D = 3.33, σ j = 2, α = 4.

D.1. Perspective Model

The expected value of z̆i can be simplified as follows.

E(z̆i) = P{ηi = 1}E
(

fi
hi(x)
di(x)

+ vi

)
+ P{ηi = 0}E(z̆i)

(1 − P{ηi = 0})E(z̆i) = P{ηi = 1}
[
Ex

(
fi

hi(x)
di(x)

)
+ Ex(Evi (vi|x))

]
.

Using the fact that vi|x is zero mean (see Appendix B), we find E(z̆i) = fiEx

(
hi (x)
di (x)

)
. To

compute the elements of the covariance matrices required for the computation of the
MSE, define x̃ := x − μx. Then

�Zx(i, :) = E((z̆i − E(z̆i))x̃T ) = E(z̆i x̃T )

= P{ηi = 1}E
((

fi
hi(x)
di(x)

+ vi

)
x̃T

)
+ P{ηi = 0}E(z̆i)E(x̃T )

= P{ηi = 1} fiEx

[(
hi(x)
di(x)

)
x̃T

]
,

where �Zx(i, :) denotes the ith row of �Zx. Similarly,

�Z(i, j) = E(z̆i z̆ j) − E(z̆i)E(z̆ j)
= P{ηi = 1, η j = 1}E(z̆i z̆ j |ηi = 1, η j = 1) + P{ηi = 1, η j = 0}E(z̆i z̆ j |ηi = 1, η j = 0)

+ P{ηi = 0, η j = 1}E(z̆i z̆ j |ηi = 0, η j = 1)
+ P{ηi = 0, η j = 0}E(z̆i z̆ j |ηi = 0, η j = 0) − E(z̆i)E(z̆ j).
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Note that E(z̆i z̆ j |ηi = 1, η j = 0) = E(z̆i z̆ j |ηi = 0, η j = 1) = E(z̆i z̆ j |ηi = 0, η j = 0) =
E(z̆i)E(z̆ j). Therefore,

�Z(i, j) = P{ηi = 1, η j = 1}
(

E
(

fi
hi(x)
di(x)

+ vi

)
E
(

f j
hj(x)
dj(x)

+ v j

)
− E(z̆i)E(z̆ j)

)

= P{ηi = 1, η j = 1}
[
E
(

fi f j
hi(x)
di(x)

hj(x)
dj(x)

)
− E(z̆i)E(z̆ j) + E(viv j)

]

= P{ηi = 1, η j = 1}
[

fi f jE
(

hi(x)hj(x)
di(x)dj(x)

)
− E(z̆i)E(z̆ j) +

{
σ 2

vi
, i = j

0, i �= j

}]
.

D.2. Weak Perspective Model

E(z̃i) is found by

E(z̃i) = P{ηi = 1}(aT
i μx + E(ṽi)) + P{ηi = 0}E(z̃i)

P{ηi = 1}E(z̃i) = P{ηi = 1}aT
i μx =⇒ E(z̃i) = aT

i μx.

The elements of the covariance matrices are computed by

�Zx(i, :) = E
(
(z̃i − E(z̃i))x̃T

)
= E(z̃i x̃T ) = P{ηi = 1}E[(aT

i (x̃ + μx) + ṽi)x̃T ]

= P{ηi = 1}aT
i E(x̃x̃T ) = P{ηi = 1}aT

i �x.

�Z(i, j) = E(z̃i z̃ j) − E(z̃i)E(z̃ j)
= P{ηi = 1, η j = 1}E(z̃i z̃ j |ηi = 1, η j = 1)

+ P{ηi = 1, η j = 0}E(z̃i z̃ j |ηi = 1, η j = 0)
+ P{ηi = 0, η j = 1}E(z̃i z̃ j |ηi = 0, η j = 1)
+ P{ηi = 0, η j = 0}E(z̃i z̃ j |ηi = 0, η j = 0) − E(z̃i)E(z̃ j)

= P{ηi = 1, η j = 1}E((aT
i (x̃ + μx) + vi)(aT

j (x̃ + μx) + v j) − E(z̃i)E(z̃ j))

= P{ηi = 1, η j = 1}
[
aT

i �xaj +
{

σ 2
ṽi
, i = j

0, i �= j

}]
.
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