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Object Tracking Using the Gabor Wavelet Transform
and the Golden Section Algorithm

Chao He, Yuan F. Zhendrellow, IEEE and Stanley C. AhglMember, IEEE

Abstract—This paper presents an object tracking method for more efficient compression. The emerging MPEG-7 [10] will

object-based video processing which uses a two-dimensional (2-D)pe a standardized description of various types of multimedia
Gabor wavelet transform (GWT) and a 2-D golden section algo- content

rithm. An object in the current frame is modeled by local features : L . . .
from a number of the selected feature points, and the global place- ~ Object tracking is an important problem in the field of ob-

ment of these feature points. The feature points are stochastically ject-based video processing. When a physical object appears
selected based on the energy of their GWT coefficients. Points with in several consecutive frames, it is necessary to identify its ap-
higher energy have a higher probability of being selected since they pearances in different frames for purposes of processing. Ob-
are visually more important. The amplitudes of the GWT coeffi- | . . . .
cients of a feature point are then used as the local feature. This ject tracking attempts to locate, in successive frames, all objects
takes advantage of the characteristics of Gabor wavelets which are which appear in the current frame. The most straightforward ap-
highly localized in both the time and the frequency domains. The proach to this task is to consider objects as rectangular blocks
global placement of the feature points is determined by a 2-D mesh and use traditional block matching algorithms [11]. However,

whose feature is the area of the triangles formed by the feature . bi h . | h d def . .
points. In this way, a local feature is represented by a GWT coeffi- since objects may have Irregular shapes and deformations in

cient amplitude vector, and a global feature is represented by a tri- different frames, video spatial segmentation and object tem-
angle area vector. One advantage of the 2-D mesh is that the direc- poral tracking can be combined [12]-[14]. In [13], a supervised

tion of its triangle area vector is invariant to affine transform. Con- I-frame segmentation and unsupervised P-frame tracking algo-
sequently, the similarity between two local features or two global . . . Lo -

features can be defined as a function of the angle and the length rithm based on motlon.estlmatlon 'S_ propqsed, and in [12]'_ a
ratio between two vectors, and the overall similarity between two Watershed-based algorithm and a hierarchical block matching
objects is a weighted sum of the local and global similarities. In motion estimation algorithm are used to segment the first frame
order to find the corresponding object in the next frame, the 2-D 4t 5 video sequence, and then temporal tracking is realized by

golden section algorithm is employed, and this can be shown to be . S . . . . .
the fastest algorithm to find the maximum of a unimodal function. motion projection. A generic point approach in which objects

Our results show that the method is robust to object deformation are modeled by five generic points is implemented in [14] to
and supports object tracking in noisy video sequences. make the tracking process less sensitive to partial occlusion.
Index Terms—Content-based video, feature points, Gabor !N content-based video compression, in order to save bits rep-
wavelets, golden section, mesh, object-based video, objecresenting the shape and motion vectors of an object, two-dimen-
tracking. sional (2-D) or three-dimensional (3-D) mesh based algorithms
have been used [1], [3], [4], [6].- The idea is to represent an
I. INTRODUCTION object by a set of nodes and connecting line segments which
) . ) _usually form triangles. The tracking information which repre-
D IGITAL video processing such as video compressioRents the corresponding relationship of objects among consec-
video indexing, and video manipulation, is changing frofjive frames is described by the motion vectors of the nodes.
frame-based approaches to object-based or content-based @1y, the motion vectors are computed by traditional motion
proaches [1]-[8]. Instead of treating video as a flow of frameggiimation or optical flow methods. However, in previous work,
the video is modeled by a combination of a number of objegjge motion estimation algorithms are all based on local intensity
spanning different time intervals. These approaches have {figich can be unstable under challenging conditions such as il-
advantage of automatically supporting description, indexingymination variation, contrast variation, object zooming, object
and compression of the video content at the object level. |]8tation, and object deformation.
the newest MPEG standard, MPEG-4 [9], content or mediaanother problem arises from the use of texture matching. In
objects are one of the key concepts used to satisfy the negdsy; cases, objects can be viewed as a combination of pieces of
of authors, service providers, and end users such as far gregigf,re and textures can be used as local features. But intensity
reusability and flexibility, higher levels of interaction and,,5eq motion estimation methods have difficulties in matching
textures because many textures are homogeneous and sensi-
, _ _ _ tive to the deformation. Homogeneity causes errors in matching
oMapuscitected by 20,130 ey 16,2002 T st e sensitvity to deformation aising fom a small i may
Wayne Wolf. result in a large matching distance.
The authors are with the Department of Electrical Engineering, The Ohio Gabor functions and wavelets, originally proposed by Gabor
State University, Columbus, OH 43210 USA (e-mail: hec@ee.eng.omﬁ-_s], have achieved impressive results when used for texture
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representing local features based on a number of useful prop- Il. GABOR FUNCTION, GABOR WAVELETS,

erties: a) Gabor wavelets are the best localized wavelets, i.e., AND LOCAL FEATURES

Gabor wavelets provide the best trade-off between spatial resy 5 Gabor function,g(z, 1), and its Fourier transform
olution and frequency resolution, b) Gabor wavelets conta@(% v) are defined as [20], [’22], [23]:

a rather large number of parameters, and, c) research in psy-

chology shows that responses of simple cells in the visual cortex 1 1/22 o2 .

can be modeled by the Gabor functions [16]-[18]. Gabor func- 9(%; ¥) = (27m . )eXP {—5 <§ + '—2> + 27FJW4
tions have been used for image processing in a number of ways. o * Y (1)
For example, a family of 2-D Gabor wavelets have been derived [u—W)? o2

for complete image representation using wavelet theory in [19].G(u, v) = exp{—i { o ﬁ} } (2

In [20] and [21], the GWT coefficients have been used success-

fully in texture browsing and retrieval. In [22], the magnitude O\gvhereoz ando, are the standard derivations gffz, v) along
GWT coefficients was used for 2-D object recognition in a dyje . andy axes, respectively. Here, — 1/(27r;7m) /énda,v _

namic link architecture approach. The Gabor wavelets are u vati

for local feature representation and a uniform but elastic g%??fg Z&)e; rfegl;eii?,g?; rﬁq ?ﬁg\fgg’t?j ggﬁ;;i?,,atlﬁg gz_tgeéabor
is used for ObjeCt structure representation. Then, a cost functmhction is a product of an e|||pt|ca| Gaussian and a Comp|ex
between the model and the object is defined as a linear combip@me wave. In the frequency domain, the Gabor function is just
tion of the object’s local feature difference and global structuep elliptical Gaussian function shifted along theaxis. The
deformation. Atlast, the object recognition is done by simulategiabor function is well known for its optimal time-frequency
annealing based elastic graph matching algorithm which mimbcalization. For anyf(¢) and its Fourier transforn¥'(w), the
mizes the cost function. Reference [23] is an advanced versiamcertainty relationship holds [25]:

of the dynamic link architecture approach for 3-D object recog-

nition. It utilizes both the magnitude and the phase of the coef- 010, > % 3
ficients of the GWT, defines a more sophisticated cost function,
and implement a better simulated annealing algorithm. whereo, ando,, are the effective widths of (¢) and F(w),

Although object detection and recognition schemes shagspectively. The equality condition is possible only when the
some commonality with object tracking, it is typically ineffi-signal is a Gabor function, and this makes the Gabor function
cient to apply the former to object tracking directly. Objectte best choice for representing local features of a signal.
detection algorithms are mainly designed to detect and recogGabor wavelets are generated by scaling and rotating the
nize an object in a more challenging environment and requfgabor function:
extensive computation. In object tracking, one has more infor-

mation to assist in the tracking process. For example, objectsin ~ gmn(2, ) =a™"g(2’, ¥),
successive frames often obey affine transform constraints and a>1, m=1:M,n=1:N. 4)
the motion of the object between adjacent frames is limited. z’ —m | cosB, sinf,||z
In this paper, we integrate the 2-D Gabor wavelet, dynamic |:y':| - {— sin 6,, cos Gnl [y} ’
link, and 2-D mesh approaches along with a number of new 0, = nw/N (5)

ideas for object tracking. The amplitudes of the GWT coeffi-
cients instead of the local intensity [1], [3], [4] are used to reprevhere is the scaling parameter. Gabor wavelets can be un-
sentlocal features. A nonuniform 2-D mesh instead of a uniforgerstood as a set of Gabor functions with different frequency
grid in [22], [23] is used to represent the global structure. In adenters and orientations. The factorof™ yields a logarithmic
dition, the object is tracked by a 2-D golden section algorithifrequency sampling. The orientation of the Gabor wavelets is
followed by the elastic graph matching. The technique describeantrolled byd. Since Gabor wavelets are symmetric, we need
here presents three new methods: 1) an innovative feature peoinly specify the value of to realize an evenly sampled space in
selection scheme, 2) an affine-transform invariant mesh repf@- 7]. In this way the concept of the localization of the Gabor
sentation method, and 3) a fast 2-D golden section search alg@velets has been extended to time, frequency and orientation.
rithm. Indeed, orientation localization is another reason why Gabor
This paper is organized as follows. Section Il presents a brigfvelets are a very good choice for representing local features.
explanation of Gabor functions and wavelet and how they canBY convolving an image with Gabor wavelets the Gabor
represent local features. Section Il describes our feature poiyvelet transform (GWT) of the imagé, y) can be defined
selection scheme. Next, the generation and representation of#fie
mesh is presented in Section IV. Section V explains the simi-
larity measures we define between two mesh representationd, ¥, m, n) = /I(l", Y )gmn(x =2’ y—y') da'dy’. (6)
Section VI describes the 2-D golden section search algorithm '
used for object tracking. Experimental results are given in SeReferring to (1), one may observe that the output of the GWT is
tion VII, and the paper concludes with a summary and a discuseomplex number. There are a total\dfdifferent frequencies
sion in Section VIII. and IV different orientations, resulting ifd x N coefficients
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for each image pixélz, y). The amplitudes of these coefficientdocal maximum of a nonsignificant region may be selected even
can be viewed as the local feature vector of that point [22], [23hough the region contributes little or no information to the rep-
resentation of the object. In a good selection scheme, the distri-

L(z, y) bution of the feature points should be globally balanced. Intu-
_ {abs (f(% . m, n)) Cm=1:M.n=1: N} @ itively, more |mportan_t regions shou_ld be a_lppo_rthned more fea-
ture points than less important regions with similar areas. Ref-

erence [4] presents such a method. It relates the size of the local
neighborhood with the local intensity gradient. The higher the
Weal intensity gradient, the smaller the local neighborhood. In

. . N . this way, the more importants regions should have more features
Note that using this definition the Gabor function and Gab 4 P g

. oints.
wavelets have a nonzero mean, and additionally the GWT has_@ve propose a simpler selection scheme to achieve the same

strong response to the DC component of a signal. In fact, dorgi I. We randomly select a point as a feature point with a prob-
nant DC components can decrease the effectiveness of the G lity which depends on the significance of the point (signif-

coefficients. So in [20] and [221(0, 0) is set to zero to avoid icance will be defined later). More significant points are more

this dominant effect. In our workG/(0, 0) is only scaled since likely to be selected. As a result, a region with more significant
we do not want to totally remove the DC component. points should have a larger contribution to the representation of
the object as compared with other regions simply because there
Ill. L OCAL FEATURE POINT SELECTION are more feature points in the region. For example, a human face
After we calculate the GWT of the whole image (frame), wBas regions with different levels of significance. The eyes, nose,
select particular points as the feature points, which represent &l mouth have a higher level of significance than other regions.
object using their local feature vectors. The GWT coefficientshis means that the density of the selected feature points in the
of any given point are calculated from the pixels of the local aréggions of eyes, nose, and mouth should be higher than in the
surrounding the point. Thus the coefficients of adjacent poir@éher facial regions. However, this does not mean that we to-
are calculated from overlapped local areas. As a result, the daily ignore the latter. We describe this process as follows: First,
culated GWT coefficients are redundant, and it is not necess¥¢§ define the energy of the GWT coefficients of pdint y) as:
to select all points as feature points. For this reason, [22] and v~
. ) . ) )
[23] have used a uniform grid placed on the object and the nodes Bz, y) = Z Z ’](% y, m, n)
n=1

This vector represents the local features of pinty) and cap-
tures the frequencies and orientations which should remain ¢
stant during object motion.

(8)

of the grid are then selected as the feature points.

Another concern is that different points have different levels
of importance in object representation. For example, in e significance of the poin§(z, ) is measured by an in-
noisy environment, some points with small coefficients mayeasing function ofs(z, y):
be contaminated by noise, and these points may be ill-suited
for use in the object representation. To avoid the selection of S(z, y) = fs(E(z, y)). 9)
these points, an amplitude threshold can be used to exclude
them [25]. Furthermore, some points are more important thahere are two reasons for selecting energy as the measure of the
others and should have a better chance of selection. This e@gnificance. The first reason is that the human visual system
be accomplished by employing a function which depends @an be modeled by the Gabor function [16]-[18]. Higher energy
the differences between the GWT coefficients of differenfignals represent stronger stimuli to the human visual system.
frequencies [26]. The point with the maximum value of thighe second reason is that Gabor wavelets can be viewed as edge
function in a local neighborhood is selected as a feature poidibtectors, which is consistent with the traditional edge-based
This approach supports the selection of starting and endipgject representation. Fig. 1 shows that the energy of the GWT
points of line segments as well supporting the selection of apyefficients of a face is higher around the significant areas such
points where there are significant curvatures. as eyes, mouth, nose, and the contour of the face.

Another commonly used method of object delineation is Secondly, we use the significance functigfx, y) to control
based on the intensity gradient [3], in which the points witthe variance of a random variabl¥z, y) in order to obtain a
the highest gradient in a local neighborhood are selected as thgdom significance functiof,.(z, ):
feature points corresponding to edges of the object. Generally,
both the GWT based and intensity gradient based selection Sr(z, y) = S(z, y)R(z, y). (10)
methods can be modeled as finding the local maximums of a
significance measure function. Only those points with loc#lere, a Gaussian random varialftéz, y) ~ N(0, 1) is used
maximums are selected as feature pofitts;, ys)}. whose value is not bounded within an interval. This will give

Unfortunately, while both these schemes generally avoid tkeery point a probability of being selected. The random signif-
selection of ill-suited points, they preclude the selection of thog&gances,.(z, y) ~ N(0, S(=, y)?) also has a Gaussian distri-
points which, while significant, are notlocal maximum. Anothepution. A thresholdl" is set forS,.(z, y), and those points with
problem in the local maximum approach is that all local regior.(z, y) > T will be selected as feature points:
are treated equally even though they may make different con-
tributions to the representation of the object. For example, the {(zf, yp)} = A{(z, v)|Sr(z, y) > T}. (11)

m=1
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Fig. 1. Energy of the GWT coefficient®(«, y). White color means high

energy.

Fig. 2. Feature point selection for a face. The points of the mesh are

the feature points selected by the technique we elaborate in Section lll, as
compared to the£” points of the grid which are the feature points selected by

a conventional girding technique.

The probability of selectingz, y) as a feature point is:

Pl € {aru) =5 -orf (50 0) 42

where erf(xz) is the error function and defined asthe feature points are not uniformly distributed inside the ob-
(1/v/27) foz e~ dt. The points with higher energy areject, the first step is to connect these points using line seg-
more likely to be selected as f(z) is an increasing function. ments to form a mesh. Suppose that thereNgydeature points

All points are evaluated equally. By changing the functiofi(x¢(n), y¢(n))|ln = 1 : N,} distributed on the object. First
fs(x), we can also control the relationship between the energie select a new poirftz (7), y¢(¢)) fromi = 1 to NV, and con-

and the probability. Fig. 2 shows one result of our featurgect this point to all old point§(x¢(j), ys(j))|j =1 :4 — 1}

point selection approach. The nodes of the solid mesh are tiigh new line segments. Secondly if a new line segment inter-
selected feature points. Most of the feature points are locatgztts an old line segment, we retain the shorter line segment and
close to edges, but there are also points located inside teewove the longer one. Finally, we organize lines to form trian-
object. Unlike traditional edge-based representations, thisgkes. The mesh can also be generated by the other popular al-
a rich, multi-resolution representation which includes momgorithms like Delaunay algorithm. We u$g and N, to denote
information from the object. For comparison purposes, thke number of the line segments and triangles retained after the
grid based feature point selection as used in [22], [23] is alpoocedure is completed, respectively. Fig. 2 shows an example
shown in this figure as nodes of the dashed grid. Although tleéthis mesh generating procedure.

latter method is applied to the same region and generates thg, 3 video sequence, a physical object may deform in different
same number of the feature points, it is less efficient than oggmes. In [1] and [4], a small region is defined for every node
proposed method. Note that some feature points selected bythémit the mesh’s deformation, but inside the region there is
grid approach are in the regions which are not important, sug§ constraint. In object recognition, if grid is used to represent
as the background or hair. Furthermore, there are no featyg object, deformed grid can be represented by the lengths of
points in some important regions such as the eyes and moutthe |ine segments connecting feature points and the angles be-
Additionally, our statistical selection scheme supports afeen line segments [22], [23]. While in most video sequences,
adaptive number of the feature points. The total number of th object’s deformation can be modeled by an affine transform,
feature points can be controlled by adjusting the thresfidld |ength-based or angle-based representations are not invariant
One advantage is that the number of feature points changggier affine transformations. For example, if an uniform grid
smoothly with the changing of". It is, of course, possible js scaled along the vertical direction, all vertical line segments
that two or more selected feature points might be too closge scaled but all horizontal line segments keep their original
and can be viewed as redundant. To counteract this problemdAgth. Then if we simply use the length of all the line segments
the selection procedure we compute the distance between dhghis grid as a vector to represent the grid's structural informa-
candidate feature points with those points already selectedjdh, the resultant vector changes its length and direction after
one distance is less than a threshalg;.,, the candidate point the vertical scaling, which is an example of an affine transform.
is not selected. Similar analysis and results are also valid for mesh representa-
tions.

In this paper, we propose an area-based mesh description
Next, we need to define the global relationship among thesich is invariant to the affine transform. Our representation
feature points in order to describe the object completely. Sinota mesh is very compact and consists of a vector of the areas

IV. GLOBAL FEATURE
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of all triangles,G = [a(1), a(2), ..., a(]N;)], wherea(¢) isthe in the object andz f,, (%), ysm (7)) in the model is defined as
area of theith triangle. [22], [23]
The affine transform can be modeled by the following for- (i Lo(i) - La(3) _ <||LM(i)|| I Lo (4)]| )
. Sil1) = - " min " s -
mula {27 T oG L@ \Lo@I 1Zar@
w) _ofe g (15)
Yo | |y Tl where Ly, (4) is the local feature vector dfx f,,(7), yrm (7))
e eo ] [z g in the model, andLo(i) is the local feature vector of
= [621 022} [y} [h} (13)  (244(4), yso(i)) in the object. The operator-™is the inner

product,|| || is the norm operator used to calculate the length
where(z, y) is a point’s original coordinate and., y,) isits of a vector, andnin returns the smallest component. The final
new coordinate after the affine transform. Now suppose an dbeal similarity,.S;, is the sum of;(7) for all feature point pairs

ject undergoes an affine transform and the new area vector is N,
Go = [aa(1), aa(2), ..., aa(Ny)], aq(i) is the area of théth S = Z 51(i)/Np. (16)
triangle after the affine transfornfy, h]” represents a shifting i=1

and it will not affect the areas of the triangles. Using the Siwe note that the affine transform does not change the direction
gular Value Decomposition (SVD) [27], the matriX can be of the area vectors. One can therefore define the similarity of the

decomposed into three parts: global placement$,;, as acos function of the angle between the
s sné]1[VAL 0 . model’s area vectof iy = (am(1), am(2), ..., an(Ny)), and
_ CcOos sin 1 COST SInT the obiect’ t = (ag(1), ay(2), ..., ag(Ny)):
C [—sind) cos¢H 0 \/)\—J |:—Sin7' COST]. e object’s area vectoo = (a,( )éa (C);, , ao(Ny))
(14) S, = cos (k X arccos <#>) a7
! 1Gumll < [IGoll

The decomposition shows that tii& matrix is actually com- wherek is a parameter used to balance the sensitivity of the
posed of two rotating and one scaling matrices. Thus, the aglabal and local similarities.

of a triangle will only be changed by scaling, while rotating The overall similarity between the model and the object is
does not affect the area. If the area of a triangle in the cuhus defined as:

][ent rr_1esh i;a(i), th§ r;\ew t.riang:je:[sharea after the aftfine trarllj- S =aS +(1-a)s, (18)

orm is a, (i) = vAihea(i), and the new area vector wou wherea is a weighting parameter which can be selected through
be G, = VA1 \2G. Thus, only the length of the area vector . .

e&perlment. Basicallyq controls the trade-off between local

changes, and the direction of the vector is invariant to affin AN R )
g d global similarities. Global similarity emphasizes the shape

transform. This direction-invariant property is guaranteed sai' . . L
long as the motion of the object can be modeled by an aﬁi'ﬁurthe object, while the local similarity stresses the local fea-

transform.

VI. SEARCHING

V- SIMILARITY MEASURE The most straightforward method for searching for an object

With the local features and the global feature defined, we canthe next frame is to place the object model to all possible po-
now compute the similarity between the representation of tk#ion in the next frame and find the position which manifests
model (the object in the current frame) and that of an objettte best matching result [11]. It is also used in grid based ob-
(which can actually be any arbitrary area) in the new framgct recognition [22] and [23]. Applied to the mesh representa-
The two representations should have the same structure stichs of objects, we would thus place the mesh of the model in
asN,, Ni,, and N, and the relationship between points, linghe current frame to an arbitrary position in the next frame, and
segments, and triangles. Since the local features and the gldheh define the position of the nodes of the new mesh in the next
feature represent different features of the object, they shofitdme as a new set of feature points which represents a test ob-
be considered separately when measuring similarity. In the dget. Then the similarity between these two sets of the feature
namic link architecture methods [22], [23], a cost function ipoints can be computed. After testing all possible positions, the
defined as a linear combination of the local features similaritgst object which has the maximum similarity to the model is
and the grid deformation. Then the matching goal is to minimizelected as the search result. Once the position is found, the ob-
the cost function. The linear combination of similarity and dgect deformation need to be tracked. In [22] and [23], simulated
formation is the key idea of elastic graphic matching. On the oamnealing based elastic graphic matching algorithm is applied
hand, it attempts to maximize the local feature similarity; on tifer global optimization to identify objects. Each node is shifted
other, it attempts to maintain the structure of the object as well@ndomly to find its best matching position. In [3], [4], every
possible. We expand this idea and use a final similarity measdeature point is examined independently and no global place-
which is the weighted sum of the local and global similaritiesnent information of features points is used. Consequently the
The local feature similaritys;, is the sum of individual local object’s structural information may be lost.
feature similarities between each pair of corresponding featureHere we propose a 2-D golden section searching algorithm
points. The individual local feature similarity(:) between the to find the object in the next frame quickly. In a 1-D optimiza-
local features of corresponding feature poifits, (i), ys,(¢)) tion problem, the golden section algorithm can be used to find a
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Fig. 3. Two-dimensional golden section algorithm. ) S .
9 9 9 Fig. 4. One similarity function example between the 1st and 10th frames of

the Miss America sequence.
global maximum if the function is unimodal [28]. Suppose that

a function is defined ofp, 1], andz is the uniqgue maximum of test object whose mesh cente(ig, /). So the goal s to find
f(z) onl0, 1]. 1f f(@ §trictly incre_ases for < z and StriCtIY the maximum ofSy;0 (2, y). In mogi/céses, if the moving dis-
decreas_es far > z, 't. IS calle_d unimodal. The gO|den.SeCtlon1ance is not too large, we assume that the similarity function
search is based on Fibonacci numbers which are defined asiS unimodal. Fig. 4 shows an example of the similarity func-

Fob=F =1, F,=F,+ Fy, tion between the first and tenth frames of the Miss America

Fs=F +Fs, ..., Fy=Fy_1+ Fj_o. (19) Video sequence. From the figure, one can see that the similarity

] . . . . function is close to be unimodal, but there still exist local maxi-

The golden section algorithm picks the golden-section poirg§, s These local maximums will affect the accurate tracking
Te—1 = Fkﬂ/Fk andxy, = Fy1/Fy, k > 20 d_ecrease t_he of the object. Fortunately, the values of these local maximums
interval coveringz. If f(zx-1) > f(x1), the new interval will 50 gignificantly less than the global maximum; therefore, one
be[0, x4]. Otherwise, the new interval will by, 1]. This 5y hossibly avoid the local maximum by continuing the search
refinement is done recursively until the length of the interva) 5 satisfactory maximum of the similarity function is found.
reaches the requirement. As— oo, (Fi—1/Fi) = ¢ = 0.618,  Thjs of course will cause more computation that is a trade-off
so the algorithm is called the golden section algorithm. for more robust performance of the proposed method.

Here we expand the acbove golden sectiqn aIg.orithm from-rhe maximum point 0By0(z, ¥) is the coarse position of
1-D to 2-D. Suppose that a functiofi(z, y) is defined on 6 ghject in the next frame, but it does not reflect the defor-
a rectangleaxbicidy, s shown in Fig. 3, andr, ) is the  a4ion of the object. To refine the position and to track the de-
unique maximum off (z, y). If f(x, y) decreases when theomation, we further search for the best matching position for
distance betweefx, y) and(z, y) increases, we can apply thegery feature point like [22], [23]. For every feature point, we
2-D golden section algorithm to search for the maximum. We, )\ move it around in a local searching region to find its best
first selectj, andiy, as the golden section points of the lingy5iching position. These two steps are alternatively applied it-
segmentuby, k), andl; as the golden section points Bfck,  gratively until the similarity cannot be further improved, or until
my, andn; as the golden section points @fdy, andp, andoi o) the allocated computation time is consumed. The final result
as the golden section points @fd. We pick the intersection iq 5 mesh on the new frame which reflects not only the position
points of jymk, iknk, kkpk, lox as the 2-D golden sectionp \ 41so the deformation of the object.
points, which areey, fi, g and hy, respectively. Iff(cx) IS order to decrease the computational cost of the GWT we
the largest of the four points, the region covering the globglke 5 cache scheme during the searching. Consequently, in our
maximum will be refined to a new rectangig jkgr.ox- NeW  goarch aigorithm, we do not need to compute the GWT coeffi-
rectangles are generated in a similar walif ci., or di IS the - cients of all the points. When the GWT coefficients of a new

maximum pointl. o . point are needed, we first look for that point in the cache, and if
As we have discussed above, the basic idea for searching i§1Q ihere we proceed without further computation.

place the mesh of the model to the new frame and shift it around
to find the best matching object. We measure the shifting by
(z, y) whichis calculated byz’, v')—(z., y.), where(z., y.)

is the coordinate of the center of the mesh of the model andHere we apply the proposed object tracking algorithm to
(¢, y') is the coordinate of the center of the mesh in the neseveral video sequences. The parameters of the Gabor wavelets
frame. As the motion of the object is often limited betweeare selected by the experiments, and for convenience, we
adjacent frames, we can apply the 2-D golden section algexpress these parameters in the Fourier domain. We choose
rithm by limiting (z, y) within a rectangle and define a func-five frequencies and five orientations. The highest frequency
tion Syso(x, y) on the rectangleSyso(x, y) is just the simi- is /2 and the scaling ratio is/2. The five orientations are
larity between the model whose mesh centéris y.) and the 0, n/5, 2x/5, 3x/5 and 47 /5, respectively. The standard

VIl. EXPERIMENTAL RESULTS
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Fig. 6. Tracking result of the 100th frame of the Miss America sequence
Fig. 5. First frame of the Miss America sequence. tracked by the proposed method (mesh) and the method of [11] (block).

derivation,o,,, along the long axis of the Gabor wavelet with *°* ' ' ' ‘ ‘ ' '
the highest frequency is/3. The scaling ratio of the standard
derivation is alsa/2. The ratio between the standard derivation °%f 1
of the long and short axes is 2.

0.985 q

In the first searching step, the size of the searching area in tt
golden section algorithm depends on the size and the standa
derivation of the lowest frequency wavelet in the time domain. ®%f
We select the size to be 3636 pixels. In the second refinement
step, the searching rectangle ist@O0. In the similarity mea- 0975¢ ]
sure, we weigh the global and local feature similarities equal, s

a = 0.5. k is selected individually based on the deformation of os7f 1
the object. During the tracking, the mesh’s geometry and place

ment are updated frame by frame, but the local feature is not iogss|- J 1
order to prevent error accumulation and make the tracking rc

bust. 096 s s ) : : : ,

i . 0 2 4 6 8 10 12 14 1I6 1I8 20
Here we use two video sequences of our experiments. The

first is the Miss America sequence which is used to test titg- 7. Matching similarity during the tracking of the Miss America sequence
ability of the algorithm to track object deformations and shifté‘f“ Steps of searchy: Similarity).

Only the first frame in every five frames is used to force the mo-

tion and deformation to be large. In the first frame, a rectangle isWe also compared our method with existing approaches re-
interactively selected by the user. Although the user specifieparted in [11] and [1], [4], [6], respectively. Both methods were
rectangle to cover the object, we find that after the feature poutéveloped for tracking objects in video. In [11], a simple block
selection, all the feature points are located inside the object ormatching method is used. The tracking approach is similar to
the boundary. Fig. 5 shows the first frame of the sequence. Figh@& one used for motion estimation in MPEG, but with a differ-
shows the tracking result in the last frame. The solid mesh is thiece in that the search block is much bigger in order to cover
tracking result of our proposed method (note that the large bloitle entire object. Matching is achieved by a simple subtraction
outside the face is by the approach of [11] which will be merof the feature block from the testing location, and searching for
tioned later again). From the result we can see that the facetie minimal difference. One can see that this method does not
tracked even with considerable deformation and shift. It can als@lude any semantic meanings of the feature, and may entirely
be noted that the feature point pairs in the first frame and the lés$e tracking of the object. Even in the best case, it can track
frame represent the same physical points, which demonstratesblock but does not locate the detailed features of the object.
that the GWT coefficients are useful for representing local feslve applied this simple method of [11] to the Miss America se-
tures. Fig. 7 shows the matching similarity in each step of tlggience and results are shown in Fig. 6. The block is the one
proposed tracking method. The experiment also proves that thigich is used by the method of [11] to cover the entire face,
golden section algorithm is very efficient. In the experiment thehile the mesh is by our method. One can see that the block
first step of the search required only five recursive steps to fimdethod locates the object, but provides no information about
the correct position. the deformation of the object while our method does both.



HE et al: OBJECT TRACKING USING THE GABOR WAVELET TRANSFORM 535

Fig. 8. Tracking result of the 100th frame of the Miss America sequence |yd- 9.  First frame of the Claire sequence.
independent node-point matching.

In [1], [4], and [6], an object is represented by a hierarchic
2-D or 3—D mesh consisting of Delaunay triangles. The mes
tracked by applying simple block matching method individuall
to each node or by optical flow method. We repeat the blof
matching method. The tracking of the object is conducted
individual nodes and not by the entire set collectively. The me
in Fig. 8 is the result achieved by applying the block matchi
method on each mesh node individually. One may observe t
one tracked point has very large shift from its correct positio
This is caused by the failure of the matching method which us
no global constraints.

Obviously the trade-off of our method is a higher computatid
cost. This is because of the computation of Gabor wavelet tra
forms, which is mathematically more complicated. The comp
tation for the block-matching method [11] is the simplest, a
is therefore less powerful than the alternatives.

To test the robustness of our approach, we further appIiBiG- 10. Tracking result of the 100th frame of the Claire sequence by the

the approach to the sequence titled “Claire.” In this sequen&&Posed method.

the deformation of the face is more complex than in the firose . ‘ . ‘ . . . ‘ .
sequence. Fig. 9 shows the first frame of the sequence. 1
tracking result is shown in Fig. 10 as solid mesh. Note th | |

even though the object undergoes a significant deformation, &
method still tracks the face. Fig. 11 shows the matching sin
larity at each step of our tracking method. One may notice tf, g/ _
the similarity drops significantly at the end. That is because tl
deformation in the last few frames is very big. In fact the golde
section may even fail for certain kind of feature points. 095
In order to test our tracking method in a noisy environmer
we add Gaussian noise to a video sequence before the ob,,|
tracking is applied. The Miss America sequence is used age
A 10x N (0, 1) Gaussian noise image is added to every frame
the original video. Fig. 12 shows the first frame of the sequencssf ]
and Fig. 13 show the tracked object in the last frame. Fig. :
is the matching similarity in every tracking step. The avera¢ . . . ‘ . ‘ , ‘ .
PSNR of the video is 28 dB. To 2 4 6 8 o 12 14 16 18 20

In Order to test our ap[_)roach under a truly .affine transformyy 11, Matching similarity during the tracking of the Claire sequence (
we artificially apply an affine transform to the first frame of thesteps of search;: Similarity).
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Fig. 12. First frame of the noisy Miss America Sequence.
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Fig. 15. First frame of Miss America for affine transform.

Fig. 13. Tracking result of the 100th frame of the noisy Miss America

sequence by the proposed method.
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Fig. 16. Tracking result of Miss America with affine transform.

Miss America video sequence. The experiment focuses on ro-
tating and scaling; thereforg,= 0 andh = 0 and no golden
section searching is involved. Other affine transform parameters
ared; = 0.9, Ay = 1.1, ¢ = —0.05, andr = —0.05. Fig. 15 is

the original frame and Fig. 16 is the new image after the affine
transform. Fig. 16 also shows the tracked result. One may notice
that the deformed mesh follows the affine transform well. This
experiment proves that our affine transform invariant represen-
tation is effective.

When the translation distancesand h are not zero while
small, we may rely on the golden section algorithm to track
them. But the translation distance which can be tracked by the
golden section algorithm is inversely proportional to the affine
transform. The larger the affine transform, the smaller the track-
able translation. Wheh and g are larger than the trackable
translation, the case is like the object recognition in [22]. Simi-

Fig. 14. Matching similarity during the tracking of the noisy Miss Americe!arly’ we therefore define a set of exhaustive search regions with

sequencea(; Steps of searchy: Similarity).

its center at the coordinates|éf7, l H] where(k, [) are integers
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and(G, H) is the size of the region$G, H) is inversely pro-
portional to the deformation. Then, our method can be applied
to all the regions. The maximum similarity of all the regions is 7
the final tracking result. The computation cost for the exhaus-
tive search is increased by multiple times which is equal to the

(6]

number of the regions. (8]
(9]

VIIl. CONCLUSIONS
(10]

This paper has described an object tracking method using
2-D Gabor wavelets, a 2-D mesh, and a 2-D golden section al*!]
gorithm. By using the GWT coefficients to represent the local
features, one is able to track objects in a video sequence wiffh2]
large deformations or in which objects undergoes affine trans-
forms—conditions under which many existing motion estima-;3
tion methods fail. Because the GWT coefficients represent the
local features centered on feature points, they are robust to d 7
formations and transformations. By randomly selecting featur
points based on their GWT energy, our approach represents an
object more efficiently than the traditional uniform grid—based[15]
methods or edge-based methods developed in computer visiqeg
In comparison with the methods recently developed for video
object tracking such as block or mesh based approaches, ddf]
method provides a more comprehensive representation of thgg
object since every feature point is selected based on the Gabor
wavelet transform which reveals both spatial and temporal in'19]
formation of the feature point. These feature points provide thé
possibility of constructing a rich, complete, and multi-resolu-[20]
tion representation of the object.

Another advantage of the technique is that during the featurgy;
point selection, the background is easily removed as its GWT
coefficients are usually small. The global placement of a fea—22]
ture is represented by an area vector invariant to the affine trang-
form, which is a reasonable transform model explaining object
appearances in consecutive frames. In general, it is difficult t?23]
apply a gold-section algorithm directly to a similarity function
as one cannot guarantee that the similarity function is unimodal.
However, by representing the object using the amplitude of th&4
GWT coefficients, which are related to local features, we notgys;
that similarity function is close to unimodal. Thus, the golden
section algorithm can be applied in a search for the object t

S . i 6
save computation time. Finally, our experimental results sho ]
the effective advantages of our proposed method. 2
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