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Abstract—This paper presents an object tracking method for
object-based video processing which uses a two-dimensional (2-D)
Gabor wavelet transform (GWT) and a 2-D golden section algo-
rithm. An object in the current frame is modeled by local features
from a number of the selected feature points, and the global place-
ment of these feature points. The feature points are stochastically
selected based on the energy of their GWT coefficients. Points with
higher energy have a higher probability of being selected since they
are visually more important. The amplitudes of the GWT coeffi-
cients of a feature point are then used as the local feature. This
takes advantage of the characteristics of Gabor wavelets which are
highly localized in both the time and the frequency domains. The
global placement of the feature points is determined by a 2-D mesh
whose feature is the area of the triangles formed by the feature
points. In this way, a local feature is represented by a GWT coeffi-
cient amplitude vector, and a global feature is represented by a tri-
angle area vector. One advantage of the 2-D mesh is that the direc-
tion of its triangle area vector is invariant to affine transform. Con-
sequently, the similarity between two local features or two global
features can be defined as a function of the angle and the length
ratio between two vectors, and the overall similarity between two
objects is a weighted sum of the local and global similarities. In
order to find the corresponding object in the next frame, the 2-D
golden section algorithm is employed, and this can be shown to be
the fastest algorithm to find the maximum of a unimodal function.
Our results show that the method is robust to object deformation
and supports object tracking in noisy video sequences.

Index Terms—Content-based video, feature points, Gabor
wavelets, golden section, mesh, object-based video, object
tracking.

I. INTRODUCTION

D IGITAL video processing such as video compression,
video indexing, and video manipulation, is changing from

frame-based approaches to object-based or content-based ap-
proaches [1]–[8]. Instead of treating video as a flow of frames,
the video is modeled by a combination of a number of objects
spanning different time intervals. These approaches have the
advantage of automatically supporting description, indexing,
and compression of the video content at the object level. In
the newest MPEG standard, MPEG-4 [9], content or media
objects are one of the key concepts used to satisfy the needs
of authors, service providers, and end users such as far greater
reusability and flexibility, higher levels of interaction and
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more efficient compression. The emerging MPEG-7 [10] will
be a standardized description of various types of multimedia
content.

Object tracking is an important problem in the field of ob-
ject-based video processing. When a physical object appears
in several consecutive frames, it is necessary to identify its ap-
pearances in different frames for purposes of processing. Ob-
ject tracking attempts to locate, in successive frames, all objects
which appear in the current frame. The most straightforward ap-
proach to this task is to consider objects as rectangular blocks
and use traditional block matching algorithms [11]. However,
since objects may have irregular shapes and deformations in
different frames, video spatial segmentation and object tem-
poral tracking can be combined [12]–[14]. In [13], a supervised
I-frame segmentation and unsupervised P-frame tracking algo-
rithm based on motion estimation is proposed, and in [12], a
watershed-based algorithm and a hierarchical block matching
motion estimation algorithm are used to segment the first frame
of a video sequence, and then temporal tracking is realized by
motion projection. A generic point approach in which objects
are modeled by five generic points is implemented in [14] to
make the tracking process less sensitive to partial occlusion.

In content-based video compression, in order to save bits rep-
resenting the shape and motion vectors of an object, two-dimen-
sional (2-D) or three-dimensional (3-D) mesh based algorithms
have been used [1], [3], [4], [6]. The idea is to represent an
object by a set of nodes and connecting line segments which
usually form triangles. The tracking information which repre-
sents the corresponding relationship of objects among consec-
utive frames is described by the motion vectors of the nodes.
Usually, the motion vectors are computed by traditional motion
estimation or optical flow methods. However, in previous work,
the motion estimation algorithms are all based on local intensity
which can be unstable under challenging conditions such as il-
lumination variation, contrast variation, object zooming, object
rotation, and object deformation.

Another problem arises from the use of texture matching. In
most cases, objects can be viewed as a combination of pieces of
texture, and textures can be used as local features. But intensity
based motion estimation methods have difficulties in matching
textures because many textures are homogeneous and sensi-
tive to the deformation. Homogeneity causes errors in matching
while sensitivity to deformation arising from a small shift may
result in a large matching distance.

Gabor functions and wavelets, originally proposed by Gabor
[15], have achieved impressive results when used for texture
and object recognition. Gabor wavelets are very suitable for
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representing local features based on a number of useful prop-
erties: a) Gabor wavelets are the best localized wavelets, i.e.,
Gabor wavelets provide the best trade-off between spatial res-
olution and frequency resolution, b) Gabor wavelets contain
a rather large number of parameters, and, c) research in psy-
chology shows that responses of simple cells in the visual cortex
can be modeled by the Gabor functions [16]–[18]. Gabor func-
tions have been used for image processing in a number of ways.
For example, a family of 2-D Gabor wavelets have been derived
for complete image representation using wavelet theory in [19].
In [20] and [21], the GWT coefficients have been used success-
fully in texture browsing and retrieval. In [22], the magnitude of
GWT coefficients was used for 2-D object recognition in a dy-
namic link architecture approach. The Gabor wavelets are used
for local feature representation and a uniform but elastic grid
is used for object structure representation. Then, a cost function
between the model and the object is defined as a linear combina-
tion of the object’s local feature difference and global structure
deformation. At last, the object recognition is done by simulated
annealing based elastic graph matching algorithm which mini-
mizes the cost function. Reference [23] is an advanced version
of the dynamic link architecture approach for 3-D object recog-
nition. It utilizes both the magnitude and the phase of the coef-
ficients of the GWT, defines a more sophisticated cost function,
and implement a better simulated annealing algorithm.

Although object detection and recognition schemes share
some commonality with object tracking, it is typically ineffi-
cient to apply the former to object tracking directly. Objects
detection algorithms are mainly designed to detect and recog-
nize an object in a more challenging environment and require
extensive computation. In object tracking, one has more infor-
mation to assist in the tracking process. For example, objects in
successive frames often obey affine transform constraints and
the motion of the object between adjacent frames is limited.

In this paper, we integrate the 2-D Gabor wavelet, dynamic
link, and 2-D mesh approaches along with a number of new
ideas for object tracking. The amplitudes of the GWT coeffi-
cients instead of the local intensity [1], [3], [4] are used to repre-
sent local features. A nonuniform 2-D mesh instead of a uniform
grid in [22], [23] is used to represent the global structure. In ad-
dition, the object is tracked by a 2-D golden section algorithm
followed by the elastic graph matching. The technique described
here presents three new methods: 1) an innovative feature point
selection scheme, 2) an affine-transform invariant mesh repre-
sentation method, and 3) a fast 2-D golden section search algo-
rithm.

This paper is organized as follows. Section II presents a brief
explanation of Gabor functions and wavelet and how they can
represent local features. Section III describes our feature point
selection scheme. Next, the generation and representation of the
mesh is presented in Section IV. Section V explains the simi-
larity measures we define between two mesh representations.
Section VI describes the 2-D golden section search algorithm
used for object tracking. Experimental results are given in Sec-
tion VII, and the paper concludes with a summary and a discus-
sion in Section VIII.

II. GABOR FUNCTION, GABOR WAVELETS,
AND LOCAL FEATURES

A 2-D Gabor function, , and its Fourier transform
are defined as [20], [22], [23]:

(1)

(2)

where and are the standard derivations of along
the and axes, respectively. Here and

are the standard derivations of along the
and axes, respectively. In the spatial domain, the 2-D Gabor
function is a product of an elliptical Gaussian and a complex
plane wave. In the frequency domain, the Gabor function is just
2-D elliptical Gaussian function shifted along theaxis. The
Gabor function is well known for its optimal time-frequency
localization. For any and its Fourier transform, , the
uncertainty relationship holds [25]:

(3)

where and are the effective widths of and ,
respectively. The equality condition is possible only when the
signal is a Gabor function, and this makes the Gabor function
the best choice for representing local features of a signal.

Gabor wavelets are generated by scaling and rotating the
Gabor function:

(4)

(5)

where is the scaling parameter. Gabor wavelets can be un-
derstood as a set of Gabor functions with different frequency
centers and orientations. The factor of yields a logarithmic
frequency sampling. The orientation of the Gabor wavelets is
controlled by . Since Gabor wavelets are symmetric, we need
only specify the value of to realize an evenly sampled space in

. In this way the concept of the localization of the Gabor
wavelets has been extended to time, frequency and orientation.
Indeed, orientation localization is another reason why Gabor
wavelets are a very good choice for representing local features.

By convolving an image with Gabor wavelets the Gabor
wavelet transform (GWT) of the image can be defined
as:

(6)

Referring to (1), one may observe that the output of the GWT is
a complex number. There are a total ofdifferent frequencies
and different orientations, resulting in coefficients
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for each image pixel . The amplitudes of these coefficients
can be viewed as the local feature vector of that point [22], [23]:

(7)

This vector represents the local features of point and cap-
tures the frequencies and orientations which should remain con-
stant during object motion.

Note that using this definition the Gabor function and Gabor
wavelets have a nonzero mean, and additionally the GWT has a
strong response to the DC component of a signal. In fact, domi-
nant DC components can decrease the effectiveness of the GWT
coefficients. So in [20] and [22], is set to zero to avoid
this dominant effect. In our work, is only scaled since
we do not want to totally remove the DC component.

III. L OCAL FEATURE POINT SELECTION

After we calculate the GWT of the whole image (frame), we
select particular points as the feature points, which represent the
object using their local feature vectors. The GWT coefficients
of any given point are calculated from the pixels of the local area
surrounding the point. Thus the coefficients of adjacent points
are calculated from overlapped local areas. As a result, the cal-
culated GWT coefficients are redundant, and it is not necessary
to select all points as feature points. For this reason, [22] and
[23] have used a uniform grid placed on the object and the nodes
of the grid are then selected as the feature points.

Another concern is that different points have different levels
of importance in object representation. For example, in a
noisy environment, some points with small coefficients may
be contaminated by noise, and these points may be ill-suited
for use in the object representation. To avoid the selection of
these points, an amplitude threshold can be used to exclude
them [25]. Furthermore, some points are more important than
others and should have a better chance of selection. This can
be accomplished by employing a function which depends on
the differences between the GWT coefficients of different
frequencies [26]. The point with the maximum value of this
function in a local neighborhood is selected as a feature point.
This approach supports the selection of starting and ending
points of line segments as well supporting the selection of any
points where there are significant curvatures.

Another commonly used method of object delineation is
based on the intensity gradient [3], in which the points with
the highest gradient in a local neighborhood are selected as the
feature points corresponding to edges of the object. Generally,
both the GWT based and intensity gradient based selection
methods can be modeled as finding the local maximums of a
significance measure function. Only those points with local
maximums are selected as feature points .

Unfortunately, while both these schemes generally avoid the
selection of ill-suited points, they preclude the selection of those
points which, while significant, are not local maximum. Another
problem in the local maximum approach is that all local regions
are treated equally even though they may make different con-
tributions to the representation of the object. For example, the

local maximum of a nonsignificant region may be selected even
though the region contributes little or no information to the rep-
resentation of the object. In a good selection scheme, the distri-
bution of the feature points should be globally balanced. Intu-
itively, more important regions should be apportioned more fea-
ture points than less important regions with similar areas. Ref-
erence [4] presents such a method. It relates the size of the local
neighborhood with the local intensity gradient. The higher the
local intensity gradient, the smaller the local neighborhood. In
this way, the more importants regions should have more features
points.

We propose a simpler selection scheme to achieve the same
goal. We randomly select a point as a feature point with a prob-
ability which depends on the significance of the point (signif-
icance will be defined later). More significant points are more
likely to be selected. As a result, a region with more significant
points should have a larger contribution to the representation of
the object as compared with other regions simply because there
are more feature points in the region. For example, a human face
has regions with different levels of significance. The eyes, nose,
and mouth have a higher level of significance than other regions.
This means that the density of the selected feature points in the
regions of eyes, nose, and mouth should be higher than in the
other facial regions. However, this does not mean that we to-
tally ignore the latter. We describe this process as follows: First,
we define the energy of the GWT coefficients of point as:

(8)

The significance of the point is measured by an in-
creasing function of :

(9)

There are two reasons for selecting energy as the measure of the
significance. The first reason is that the human visual system
can be modeled by the Gabor function [16]–[18]. Higher energy
signals represent stronger stimuli to the human visual system.
The second reason is that Gabor wavelets can be viewed as edge
detectors, which is consistent with the traditional edge-based
object representation. Fig. 1 shows that the energy of the GWT
coefficients of a face is higher around the significant areas such
as eyes, mouth, nose, and the contour of the face.

Secondly, we use the significance function to control
the variance of a random variable in order to obtain a
random significance function :

(10)

Here, a Gaussian random variable is used
whose value is not bounded within an interval. This will give
every point a probability of being selected. The random signif-
icance also has a Gaussian distri-
bution. A threshold is set for , and those points with

will be selected as feature points:

(11)
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Fig. 1. Energy of the GWT coefficientsE(x; y). White color means high
energy.

The probability of selecting as a feature point is:

(12)

where is the error function and defined as
. The points with higher energy are

more likely to be selected as is an increasing function.
All points are evaluated equally. By changing the function

, we can also control the relationship between the energy
and the probability. Fig. 2 shows one result of our feature
point selection approach. The nodes of the solid mesh are the
selected feature points. Most of the feature points are located
close to edges, but there are also points located inside the
object. Unlike traditional edge-based representations, this is
a rich, multi-resolution representation which includes more
information from the object. For comparison purposes, the
grid based feature point selection as used in [22], [23] is also
shown in this figure as nodes of the dashed grid. Although the
latter method is applied to the same region and generates the
same number of the feature points, it is less efficient than our
proposed method. Note that some feature points selected by the
grid approach are in the regions which are not important, such
as the background or hair. Furthermore, there are no feature
points in some important regions such as the eyes and mouth.

Additionally, our statistical selection scheme supports an
adaptive number of the feature points. The total number of the
feature points can be controlled by adjusting the threshold.
One advantage is that the number of feature points changes
smoothly with the changing of . It is, of course, possible
that two or more selected feature points might be too close,
and can be viewed as redundant. To counteract this problem in
the selection procedure we compute the distance between the
candidate feature points with those points already selected, if
one distance is less than a threshold, , the candidate point
is not selected.

IV. GLOBAL FEATURE

Next, we need to define the global relationship among these
feature points in order to describe the object completely. Since

Fig. 2. Feature point selection for a face. The “�” points of the mesh are
the feature points selected by the technique we elaborate in Section III, as
compared to the “�” points of the grid which are the feature points selected by
a conventional girding technique.

the feature points are not uniformly distributed inside the ob-
ject, the first step is to connect these points using line seg-
ments to form a mesh. Suppose that there arefeature points

distributed on the object. First
we select a new point from to and con-
nect this point to all old points
with new line segments. Secondly if a new line segment inter-
sects an old line segment, we retain the shorter line segment and
remove the longer one. Finally, we organize lines to form trian-
gles. The mesh can also be generated by the other popular al-
gorithms like Delaunay algorithm. We use and to denote
the number of the line segments and triangles retained after the
procedure is completed, respectively. Fig. 2 shows an example
of this mesh generating procedure.

In a video sequence, a physical object may deform in different
frames. In [1] and [4], a small region is defined for every node
to limit the mesh’s deformation, but inside the region there is
no constraint. In object recognition, if grid is used to represent
the object, deformed grid can be represented by the lengths of
the line segments connecting feature points and the angles be-
tween line segments [22], [23]. While in most video sequences,
the object’s deformation can be modeled by an affine transform,
length-based or angle-based representations are not invariant
under affine transformations. For example, if an uniform grid
is scaled along the vertical direction, all vertical line segments
are scaled but all horizontal line segments keep their original
length. Then if we simply use the length of all the line segments
of this grid as a vector to represent the grid’s structural informa-
tion, the resultant vector changes its length and direction after
the vertical scaling, which is an example of an affine transform.
Similar analysis and results are also valid for mesh representa-
tions.

In this paper, we propose an area-based mesh description
which is invariant to the affine transform. Our representation
of a mesh is very compact and consists of a vector of the areas
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of all triangles, , where is the
area of the th triangle.

The affine transform can be modeled by the following for-
mula [27]:

(13)

where is a point’s original coordinate and is its
new coordinate after the affine transform. Now suppose an ob-
ject undergoes an affine transform and the new area vector is

, is the area of theth
triangle after the affine transform. represents a shifting
and it will not affect the areas of the triangles. Using the Sin-
gular Value Decomposition (SVD) [27], the matrix can be
decomposed into three parts:

(14)

The decomposition shows that thematrix is actually com-
posed of two rotating and one scaling matrices. Thus, the area
of a triangle will only be changed by scaling, while rotating
does not affect the area. If the area of a triangle in the cur-
rent mesh is , the new triangle’s area after the affine trans-
form is , and the new area vector would
be . Thus, only the length of the area vector
changes, and the direction of the vector is invariant to affine
transform. This direction-invariant property is guaranteed so
long as the motion of the object can be modeled by an affine
transform.

V. SIMILARITY MEASURE

With the local features and the global feature defined, we can
now compute the similarity between the representation of the
model (the object in the current frame) and that of an object
(which can actually be any arbitrary area) in the new frame.
The two representations should have the same structure such
as , and , and the relationship between points, line
segments, and triangles. Since the local features and the global
feature represent different features of the object, they should
be considered separately when measuring similarity. In the dy-
namic link architecture methods [22], [23], a cost function is
defined as a linear combination of the local features similarity
and the grid deformation. Then the matching goal is to minimize
the cost function. The linear combination of similarity and de-
formation is the key idea of elastic graphic matching. On the one
hand, it attempts to maximize the local feature similarity; on the
other, it attempts to maintain the structure of the object as well as
possible. We expand this idea and use a final similarity measure
which is the weighted sum of the local and global similarities.
The local feature similarity, , is the sum of individual local
feature similarities between each pair of corresponding feature
points. The individual local feature similarity between the
local features of corresponding feature points

in the object and in the model is defined as
[22], [23]

(15)

where is the local feature vector of
in the model, and is the local feature vector of

in the object. The operator “” is the inner
product, is the norm operator used to calculate the length
of a vector, and returns the smallest component. The final
local similarity, , is the sum of for all feature point pairs

(16)

We note that the affine transform does not change the direction
of the area vectors. One can therefore define the similarity of the
global placement, , as a function of the angle between the
model’s area vector, , and
the object’s area vector, :

(17)

where is a parameter used to balance the sensitivity of the
global and local similarities.

The overall similarity between the model and the object is
thus defined as:

(18)

where is a weighting parameter which can be selected through
experiment. Basically, controls the trade-off between local
and global similarities. Global similarity emphasizes the shape
of the object, while the local similarity stresses the local fea-
tures.

VI. SEARCHING

The most straightforward method for searching for an object
in the next frame is to place the object model to all possible po-
sition in the next frame and find the position which manifests
the best matching result [11]. It is also used in grid based ob-
ject recognition [22] and [23]. Applied to the mesh representa-
tions of objects, we would thus place the mesh of the model in
the current frame to an arbitrary position in the next frame, and
then define the position of the nodes of the new mesh in the next
frame as a new set of feature points which represents a test ob-
ject. Then the similarity between these two sets of the feature
points can be computed. After testing all possible positions, the
test object which has the maximum similarity to the model is
selected as the search result. Once the position is found, the ob-
ject deformation need to be tracked. In [22] and [23], simulated
annealing based elastic graphic matching algorithm is applied
for global optimization to identify objects. Each node is shifted
randomly to find its best matching position. In [3], [4], every
feature point is examined independently and no global place-
ment information of features points is used. Consequently the
object’s structural information may be lost.

Here we propose a 2-D golden section searching algorithm
to find the object in the next frame quickly. In a 1-D optimiza-
tion problem, the golden section algorithm can be used to find a
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Fig. 3. Two-dimensional golden section algorithm.

global maximum if the function is unimodal [28]. Suppose that
a function is defined on , and is the unique maximum of

on . If strictly increases for and strictly
decreases for , it is called unimodal. The golden section
search is based on Fibonacci numbers which are defined as:

(19)

The golden section algorithm picks the golden-section points
and to decrease the

interval covering . If , the new interval will
be . Otherwise, the new interval will be . This
refinement is done recursively until the length of the interval
reaches the requirement. As , ,
so the algorithm is called the golden section algorithm.

Here we expand the acbove golden section algorithm from
1-D to 2-D. Suppose that a function is defined on
a rectangle, , as shown in Fig. 3, and is the
unique maximum of . If decreases when the
distance between and increases, we can apply the
2-D golden section algorithm to search for the maximum. We
first select and as the golden section points of the line
segment , and as the golden section points of ,

and as the golden section points of , and and
as the golden section points of . We pick the intersection
points of as the 2-D golden section
points, which are and , respectively. If is
the largest of the four points, the region covering the global
maximum will be refined to a new rectangle . New
rectangles are generated in a similar way if , or is the
maximum point.

As we have discussed above, the basic idea for searching is to
place the mesh of the model to the new frame and shift it around
to find the best matching object. We measure the shifting by

which is calculated by , where
is the coordinate of the center of the mesh of the model and

is the coordinate of the center of the mesh in the new
frame. As the motion of the object is often limited between
adjacent frames, we can apply the 2-D golden section algo-
rithm by limiting within a rectangle and define a func-
tion on the rectangle. is just the simi-
larity between the model whose mesh center is and the

Fig. 4. One similarity function example between the 1st and 10th frames of
the Miss America sequence.

test object whose mesh center is . So the goal is to find
the maximum of . In most cases, if the moving dis-
tance is not too large, we assume that the similarity function
is unimodal. Fig. 4 shows an example of the similarity func-
tion between the first and tenth frames of the Miss America
video sequence. From the figure, one can see that the similarity
function is close to be unimodal, but there still exist local maxi-
mums. These local maximums will affect the accurate tracking
of the object. Fortunately, the values of these local maximums
are significantly less than the global maximum; therefore, one
may possibly avoid the local maximum by continuing the search
until a satisfactory maximum of the similarity function is found.
This of course will cause more computation that is a trade-off
for more robust performance of the proposed method.

The maximum point of is the coarse position of
the object in the next frame, but it does not reflect the defor-
mation of the object. To refine the position and to track the de-
formation, we further search for the best matching position for
every feature point like [22], [23]. For every feature point, we
simply move it around in a local searching region to find its best
matching position. These two steps are alternatively applied it-
eratively until the similarity cannot be further improved, or until
all the allocated computation time is consumed. The final result
is a mesh on the new frame which reflects not only the position
but also the deformation of the object.

In order to decrease the computational cost of the GWT we
use a cache scheme during the searching. Consequently, in our
search algorithm, we do not need to compute the GWT coeffi-
cients of all the points. When the GWT coefficients of a new
point are needed, we first look for that point in the cache, and if
it is there, we proceed without further computation.

VII. EXPERIMENTAL RESULTS

Here we apply the proposed object tracking algorithm to
several video sequences. The parameters of the Gabor wavelets
are selected by the experiments, and for convenience, we
express these parameters in the Fourier domain. We choose
five frequencies and five orientations. The highest frequency
is and the scaling ratio is . The five orientations are

and , respectively. The standard
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Fig. 5. First frame of the Miss America sequence.

derivation, , along the long axis of the Gabor wavelet with
the highest frequency is . The scaling ratio of the standard
derivation is also . The ratio between the standard derivation
of the long and short axes is 2.

In the first searching step, the size of the searching area in the
golden section algorithm depends on the size and the standard
derivation of the lowest frequency wavelet in the time domain.
We select the size to be 3636 pixels. In the second refinement
step, the searching rectangle is 1010. In the similarity mea-
sure, we weigh the global and local feature similarities equal, so

. is selected individually based on the deformation of
the object. During the tracking, the mesh’s geometry and place-
ment are updated frame by frame, but the local feature is not in
order to prevent error accumulation and make the tracking ro-
bust.

Here we use two video sequences of our experiments. The
first is the Miss America sequence which is used to test the
ability of the algorithm to track object deformations and shifts.
Only the first frame in every five frames is used to force the mo-
tion and deformation to be large. In the first frame, a rectangle is
interactively selected by the user. Although the user specifies a
rectangle to cover the object, we find that after the feature point
selection, all the feature points are located inside the object or on
the boundary. Fig. 5 shows the first frame of the sequence. Fig. 6
shows the tracking result in the last frame. The solid mesh is the
tracking result of our proposed method (note that the large block
outside the face is by the approach of [11] which will be men-
tioned later again). From the result we can see that the face is
tracked even with considerable deformation and shift. It can also
be noted that the feature point pairs in the first frame and the last
frame represent the same physical points, which demonstrates
that the GWT coefficients are useful for representing local fea-
tures. Fig. 7 shows the matching similarity in each step of the
proposed tracking method. The experiment also proves that the
golden section algorithm is very efficient. In the experiment the
first step of the search required only five recursive steps to find
the correct position.

Fig. 6. Tracking result of the 100th frame of the Miss America sequence
tracked by the proposed method (mesh) and the method of [11] (block).

Fig. 7. Matching similarity during the tracking of the Miss America sequence
(x: Steps of search,y: Similarity).

We also compared our method with existing approaches re-
ported in [11] and [1], [4], [6], respectively. Both methods were
developed for tracking objects in video. In [11], a simple block
matching method is used. The tracking approach is similar to
the one used for motion estimation in MPEG, but with a differ-
ence in that the search block is much bigger in order to cover
the entire object. Matching is achieved by a simple subtraction
of the feature block from the testing location, and searching for
the minimal difference. One can see that this method does not
include any semantic meanings of the feature, and may entirely
lose tracking of the object. Even in the best case, it can track
the block but does not locate the detailed features of the object.
We applied this simple method of [11] to the Miss America se-
quence and results are shown in Fig. 6. The block is the one
which is used by the method of [11] to cover the entire face,
while the mesh is by our method. One can see that the block
method locates the object, but provides no information about
the deformation of the object while our method does both.
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Fig. 8. Tracking result of the 100th frame of the Miss America sequence by
independent node-point matching.

In [1], [4], and [6], an object is represented by a hierarchical
2–D or 3–D mesh consisting of Delaunay triangles. The mesh is
tracked by applying simple block matching method individually
to each node or by optical flow method. We repeat the block
matching method. The tracking of the object is conducted by
individual nodes and not by the entire set collectively. The mesh
in Fig. 8 is the result achieved by applying the block matching
method on each mesh node individually. One may observe that
one tracked point has very large shift from its correct position.
This is caused by the failure of the matching method which uses
no global constraints.

Obviously the trade-off of our method is a higher computation
cost. This is because of the computation of Gabor wavelet trans-
forms, which is mathematically more complicated. The compu-
tation for the block-matching method [11] is the simplest, and
is therefore less powerful than the alternatives.

To test the robustness of our approach, we further applied
the approach to the sequence titled “Claire.” In this sequence,
the deformation of the face is more complex than in the first
sequence. Fig. 9 shows the first frame of the sequence. The
tracking result is shown in Fig. 10 as solid mesh. Note that
even though the object undergoes a significant deformation, our
method still tracks the face. Fig. 11 shows the matching simi-
larity at each step of our tracking method. One may notice that
the similarity drops significantly at the end. That is because the
deformation in the last few frames is very big. In fact the golden
section may even fail for certain kind of feature points.

In order to test our tracking method in a noisy environment,
we add Gaussian noise to a video sequence before the object
tracking is applied. The Miss America sequence is used again.
A Gaussian noise image is added to every frame of
the original video. Fig. 12 shows the first frame of the sequence
and Fig. 13 show the tracked object in the last frame. Fig. 14
is the matching similarity in every tracking step. The average
PSNR of the video is 28 dB.

In order to test our approach under a truly affine transform,
we artificially apply an affine transform to the first frame of the

Fig. 9. First frame of the Claire sequence.

Fig. 10. Tracking result of the 100th frame of the Claire sequence by the
proposed method.

Fig. 11. Matching similarity during the tracking of the Claire sequence (x:
Steps of search,y: Similarity).
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Fig. 12. First frame of the noisy Miss America Sequence.

Fig. 13. Tracking result of the 100th frame of the noisy Miss America
sequence by the proposed method.

Fig. 14. Matching similarity during the tracking of the noisy Miss America
sequence (x: Steps of search,y: Similarity).

Fig. 15. First frame of Miss America for affine transform.

Fig. 16. Tracking result of Miss America with affine transform.

Miss America video sequence. The experiment focuses on ro-
tating and scaling; therefore, and and no golden
section searching is involved. Other affine transform parameters
are , , , and . Fig. 15 is
the original frame and Fig. 16 is the new image after the affine
transform. Fig. 16 also shows the tracked result. One may notice
that the deformed mesh follows the affine transform well. This
experiment proves that our affine transform invariant represen-
tation is effective.

When the translation distancesand are not zero while
small, we may rely on the golden section algorithm to track
them. But the translation distance which can be tracked by the
golden section algorithm is inversely proportional to the affine
transform. The larger the affine transform, the smaller the track-
able translation. When and are larger than the trackable
translation, the case is like the object recognition in [22]. Simi-
larly, we therefore define a set of exhaustive search regions with
its center at the coordinates of where are integers
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and is the size of the regions. is inversely pro-
portional to the deformation. Then, our method can be applied
to all the regions. The maximum similarity of all the regions is
the final tracking result. The computation cost for the exhaus-
tive search is increased by multiple times which is equal to the
number of the regions.

VIII. C ONCLUSIONS

This paper has described an object tracking method using
2-D Gabor wavelets, a 2-D mesh, and a 2-D golden section al-
gorithm. By using the GWT coefficients to represent the local
features, one is able to track objects in a video sequence with
large deformations or in which objects undergoes affine trans-
forms—conditions under which many existing motion estima-
tion methods fail. Because the GWT coefficients represent the
local features centered on feature points, they are robust to de-
formations and transformations. By randomly selecting feature
points based on their GWT energy, our approach represents an
object more efficiently than the traditional uniform grid-based
methods or edge-based methods developed in computer vision.
In comparison with the methods recently developed for video
object tracking such as block or mesh based approaches, our
method provides a more comprehensive representation of the
object since every feature point is selected based on the Gabor
wavelet transform which reveals both spatial and temporal in-
formation of the feature point. These feature points provide the
possibility of constructing a rich, complete, and multi-resolu-
tion representation of the object.

Another advantage of the technique is that during the feature
point selection, the background is easily removed as its GWT
coefficients are usually small. The global placement of a fea-
ture is represented by an area vector invariant to the affine trans-
form, which is a reasonable transform model explaining object
appearances in consecutive frames. In general, it is difficult to
apply a gold-section algorithm directly to a similarity function
as one cannot guarantee that the similarity function is unimodal.
However, by representing the object using the amplitude of the
GWT coefficients, which are related to local features, we note
that similarity function is close to unimodal. Thus, the golden
section algorithm can be applied in a search for the object to
save computation time. Finally, our experimental results show
the effective advantages of our proposed method.
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