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Abstract. We present ObjectBox, a novel single-stage anchor-free and
highly generalizable object detection approach. As opposed to both ex-
isting anchor-based and anchor-free detectors, which are more biased
toward specific object scales in their label assignments, we use only ob-
ject center locations as positive samples and treat all objects equally in
different feature levels regardless of the objects’ sizes or shapes. Specifi-
cally, our label assignment strategy considers the object center locations
as shape- and size-agnostic anchors in an anchor-free fashion, and al-
lows learning to occur at all scales for every object. To support this,
we define new regression targets as the distances from two corners of
the center cell location to the four sides of the bounding box. Moreover,
to handle scale-variant objects, we propose a tailored IoU loss to deal
with boxes with different sizes. As a result, our proposed object detec-
tor does not need any dataset-dependent hyperparameters to be tuned
across datasets. We evaluate our method on MS-COCO 2017 and PAS-
CAL VOC 2012 datasets, and compare our results to state-of-the-art
methods. We observe that ObjectBox performs favorably in comparison
to prior works. Furthermore, we perform rigorous ablation experiments
to evaluate different components of our method. Our code is available
at: https://github.com/MohsenZand/ObjectBox

Keywords: Object detection, Anchor-free, Object center, MS-COCO
2017, PASCAL VOC 2012

1 Introduction

Current state-of-the-art object detection methods, regardless of whether they
are a two-stage [7], [8], [2] or a one-stage method [24], [38], [29], hypothesize
bounding boxes, extract features for each box, and label the object class. They
both conduct bounding box localization and classification tasks on the shared
local features. A common strategy is to use hand-crafted dense anchors on con-
volutional feature maps to generate rich candidates for shared local features [12],
[32]. These anchors generate a consistent distribution of bounding box sizes and
aspect ratios, which are assigned based on the Intersection over Union (IoU)
between objects and anchors.

Object detection has been dominated by anchor-based methods [18], [24] due
to their great success. They however suffer from a number of common and serious
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Fig. 1. The first row shows keypoint-based anchor-free methods which use different
combinations of keypoints and then group them for bounding box prediction. A pair of
corners, a triplet of keypoints, and extreme points on the object are respectively used
in CornerNet [16], CenterNet [4], and ExtremeNet [41]. The second row shows center-
based methods, which can be anchor-based (such as RetinaNet [18]) or anchor-free
(such as FCOS [29]). As opposed to FCOS which employs all the locations inside the
bounding box, ObjectBox only uses 2 corners of the central cell location for bounding
box regression

drawbacks. First, using predefined anchors introduces additional hyperparame-
ters to specify their sizes and aspect ratios, which impairs generalization to other
datasets. Second, anchors must densely cover the image to maximize the recall
rate. A small number of anchors however overlap with most ground truth boxes,
leading to a huge imbalance between positive and negative anchor boxes and
adds extra computational cost, which slows down training and inference [16],
[3]. Third, anchor boxes must be designed carefully in terms of their number,
scales, and aspect ratios, as varying these parameters impacts performance.

In response to these challenges, a number of anchor-free object detectors [22],
[29], [16], [41], [40], [11], [35] have been recently developed, which can be cate-
gorized into keypoint-based [22], [16], [41], [40] and center-based methods [11],
[29], [35]. In keypoint-based methods, multiple object points, such as center and
corner points, are located using a standard keypoint estimation network (e.g.,
HourglassNet [21]), and grouped to bound the spatial extent of objects. They
however require a complicated combinatorial grouping algorithm after keypoint
detection. In contrast, center-based methods are more similar to anchor-based
approaches as they use the object region of interest or central locations to define
positive samples. While anchor-based methods use anchor boxes as predefined
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Fig. 2. ObjectBox treats the target boxes at all scales as positive (orange) samples,
while target boxes at some scales are discarded as negatives (gray) in other methods
(both anchor-based and anchor-free). For instance, YOLO utilizes the IoU scores to
threshold out negative samples and FCOS uses range constraints to select positive
samples

reference boxes on these central locations, anchor-free methods instead directly
regress the bounding boxes at these locations (see Figure 1).

It is shown in [37] that the main difference between anchor-based and anchor-
free methods in center-based approaches is the definition of positive and negative
training samples, which leads to a performance gap. To distinguish between pos-
itive and negative samples, anchor-based methods use IoU to select positives
in spatial and scale dimension simultaneously, whereas anchor-free methods use
some spatial and scale constraints to first find candidate positives in the spa-
tial dimension, then select final positives in the scale dimension. Nevertheless,
both static strategies impose constraint thresholds to determine the boundaries
between positive and negative samples, ignoring the fact that for objects with dif-
ferent sizes, shapes or occlusion conditions, the optimal boundaries may vary [6].
Many dynamic assignment mechanisms have been developed in response to this
issue [37], [6], [13]. For instance, in [37], the division boundary is proposed to be
set for each target based on some statistical criterions.

In this paper, we propose to relax all constraints imposed by static or dynamic
assignment strategies and, thus, treat all objects in all scales equally. To learn
the classification labels and regression offsets regardless of the object shape or
size, we only regress from object central locations which are treated as shape-
and size- agnostic anchors [40]. To support this, we define new regression targets
as the distances from two corners of the grid cell that contains the object center,
to the bounding box boundaries (L, R, B, and T in Figure 1). As illustrated
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in Figure 2, we use no criteria compared to other methods in different scale
levels. We therefore expand the positive samples without any bells and whistles.
To learn these positive samples from all scales, we propose a new scale-invariant
criteria as an IoU measure which penalizes the error between target and predicted
object boxes with different sizes at different scale levels.

In summary, our contribution is the proposal of a novel anchor-free object
detector, ObjectBox, which is better equipped to handle the label assignment
issue, and performs favorably in comparison to the state-of-the-art. Moreover,
our method is plug-and-play and can be easily applied across various datasets
without the need for any hyperparameter tuning. Our method is therefore more
robust and generalizable, and achieves state-of-the-art results. Lastly, we will
make our code implementation publicly available upon publication of this paper.

2 Related Work

2.1 Anchor-based object detectors

To localize objects at different scales with various aspect ratios, Faster R-CNN
introduced anchor boxes as fixed sized bounding box proposals. The rationale
behind anchor boxes is to use a set of predefined shapes (i.e. sizes and aspect
ratios) as bounding box proposals, an idea which has become common in other
object detection methods [24], [1], [18], [20].

Early anchor-based methods include two stages for region proposal genera-
tion and object detection, which make them unsuitable for real-time applications.
To achieve real-time performance, single-shot detectors [18], [20], [24], [34] used
anchors without relying on RPNs. They directly predicted bounding boxes and
class probabilities from the entire image in a single evaluation. The most repre-
sentative single-shot detectors are SSD [20], RetinaNet [18], and YOLO [24], [1].
Several other techniques used different variations of anchor boxes. For example,
a multiple anchor learning approach was proposed in [12] to construct anchor
bags and select the most representative anchors from each bag.

2.2 Anchor-free object detectors

A limitation of anchor-based methods is that they require predefined hyperpa-
rameters to specify the sizes and aspect ratios of the anchor boxes. Specifying
these hyperparameters requires heuristic tuning and several empirical tricks, and
is dependent on the dataset and therefore lacks generality. Anchor-free detectors
have been recently proposed to overcome the drawbacks of anchor boxes. They
can be categorized as keypoint-based and center-based approaches.

Keypoint-based methods detect specific object points, such as center and
corner points, and group them for bounding box prediction. Although they show
improved performance over anchor-based methods, the grouping procedure is
time-consuming, and they usually result in a low recall rate. Some representa-
tive examples include CornerNet [16], ExtremeNet [41], CenterNet [40], [4], and
CentripetalNet [3].
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Center-based methods use an object region of interest or central locations
to determine positive samples, which makes them more comparable to anchor-
based approaches. FCOS [29], for instance, considered all locations within the
object bounding box to be candidate positives and found the final positives in
each scale dimension. It computed the distances from these positive locations
to the four sides of the bounding box. It however generated many low-quality
predicted bounding boxes from locations far from the object center. To suppress
these predictions, it used a centerness score to down-weight the scores of low-
quality bounding boxes. Moreover, it utilized a 5-level FPN (Feature Pyramid
Network) [17] to detect objects with different sizes at different levels of feature
maps. FoveaBox [14] predicted both the locations where the object center is
likely to exist, and the bounding box for each positive location. FSAF (Feature
Selective Anchor-Free) [42] attached an anchor-free branch to each level of the
feature pyramid in RetinaNet [18].

2.3 Label assignment

It is shown in [37] that anchor-based and anchor-free methods achieve similar
results if they use the same label assignment strategy. In label assignment, each
feature map point is labeled positive or negative based on the object ground-
truth and the assignment strategy. Some anchor-free methods such as FCOS [29]
utilize static constraints to define positives, while a proper constraint may vary
based on the objects’ sizes and shapes.

Many other label assignment strategies have been recently proposed. ATSS [37]
(Adaptive Training Sample Selection), for example, proposed a dynamic strat-
egy based on statistical features of the objects. In [13], the anchor assignment
is modeled as a probabilistic procedure by calculating anchor scores from a de-
tector model and maximizing the likelihood of these scores for a probability
distribution. OTA [6] (Optimal Transport Assignment) proposed to formulate
label assignment as an optimal transport problem, which is a variant of linear
programming in optimization theory. It characterized each ground-truth as a
supplier of a particular number of labels, and defines each anchor as a deman-
der that requires one unit label. If an anchor obtains a large enough number of
positive labels from a given ground-truth, it is treated as one positive anchor for
that ground-truth.

These strategies, however, do not maintain equality between different objects,
and they tend to assign more positive samples for larger objects. This can be al-
leviated by assigning the same number of positive samples and allowing learning
to occur at all scales for every object regardless of its size.

3 ObjectBox

Let a training imageX∈RW×H×3 contain n objects with ground-truth {bi, ci}ni=1,
where bi and ci respectively denote the bounding box and the object class label
for the ith object. Each bounding box b = {x, y, w, h} is represented by its center
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Fig. 3. ObjectBox computes the distances from two corners of the center cell to the
bounding box boundaries. A large and small object are respectively shown in (a) and
(b). In (b), the small object lies completely within a cell, which usually occurs in larger
strides (e.g., si = 32). ObjectBox however does not discard these cases as it regresses
to four sides of the bounding box for all objects with varying scales

(x, y), width w and height h. Our goal is to locate these boxes in an image and
assign their class labels.

3.1 Label assignment based on object central locations

The bounding box b with center (x, y) in the input image can be defined using its

corner points as {(x(i)
1 , y

(i)
1 ), (x

(i)
2 , y

(i)
2 )}, where (x

(i)
1 , y

(i)
1 ) and (x

(i)
2 , y

(i)
2 ) denote

the respective coordinates of the top-left and bottom-right corners at scale i.
Our method predicts bounding boxes at 3 different scales to handle object scale
variations. Hence, different sizes of objects can be detected on 3 feature maps
corresponding to these scales. We specifically choose strides s= {8, 16, 32} and
map each bounding box center to certain locations on these embeddings.

We map the center (x, y) to the center location (i.e., the orange cell in Figure 3
(a)) in the embedding for scale i, and separately compute the distances from
its top-left and bottom-right corners (red circles) each respectively from two
boundaries of the bounding box. Specifically, as shown in Figure 3, we compute
the distances from the bottom-right corner to the left and top boundaries (L and
T ), and the distances from the top-left corner to the right and bottom boundaries
(R and B) as follows:





L(i)∗ = (⌊ x
si
⌋+ 1)− (x

(i)
1 /si)

T (i)∗ = (⌊ y
si
⌋+ 1)− (y

(i)
1 /si)

R(i)∗ = (x
(i)
2 /si)− ⌊ x

si
⌋

B(i)∗ = (y
(i)
2 /si)− ⌊ y

si
⌋

(1)
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where (L(i)∗ , T (i)∗ , R(i)∗ , B(i)∗) represent the regression targets at scale i, and
(⌊ x

si
⌋, ⌊ y

si
⌋) and (⌊ x

si
⌋+1, ⌊ y

si
⌋+1) denote the respective coordinates of the top-

left and the bottom-right corners of the center location. It should be noted that
L(i)∗+R(i)∗ =w(i)+1 and T (i)∗+B(i)∗ = h(i)+1, where w(i) = w/si and hi = h/si
denote the width and height of the bounding box b at scale i, respectively. The
predictions corresponding to these distances are as follows:





L(i) = (2× σ(p0))
2 ∗ 2i

T (i) = (2× σ(p1))
2 ∗ 2i

R(i) = (2× σ(p2))
2 ∗ 2i

B(i) = (2× σ(p3))
2 ∗ 2i

(2)

where σ stands for the logistic sigmoid function, and (p0, p1, p2, p3) denote the
network predictions for distance values, which we enforce by sigmoid, to be in the
range of 0 and 1. Multiplying by 2 allows detected values to cover a slightly larger
range. With ()2, the output is stably initialized with around zero gradient. We
differentiate between different scales by multiplying to a constant scale gain, i.e.,
2i, i = 1, 2, 4. The overall network outputs include one prediction per location
per scale, each of which comprises the above-mentioned distance values, as well
as an objectness score and a class label for each bounding box.

Our formulation ensures that all the distances being regressed remain pos-
itive under different conditions. As illustrated in Figure 3 (b), the 4 distances
can be computed as positive values even for a small object which is contained
completely within a cell at a larger stride. More importantly, we treat all the
objects as positive samples at different scales. This is in contrast to existing
center-based approaches (i.e., both anchor-based and anchor-free methods). In
the anchor-based methods, for instance, each center location in a certain scale
is seen as the center of multiple anchor boxes, and if the IoUs of the target box
and these anchor boxers are not within the threshold ranges, then it is consid-
ered as a negative sample. Similarly, anchor-free methods discard some target
boxes as being negative samples based on different spatial and scale constraints.
FCOS [29], for example, defines a set of maximum distance values that limit
the range of object sizes that can be detected at each feature level. As another
example, FoveaBox [14] controls the scale range for each pyramid level by an
empirically-learned parameter, while in [42], a set of constant scale factors is
used to define positive and negative boxes. As seen in Figure 2, ObjectBox how-
ever treats all target boxes at all scales as positive samples. It therefore learns
from all scales regardless of the object size to achieve more reliable regressions
from multiple levels. As ObjectBox considers only central locations for each ob-
ject, the number of positive samples per object is independent of object size.

As the geometric center of the box might lie near a boundary of the center
cell, we augment the center with its neighboring cells. For example, the above
location is used in addition to the center cell when the center of the bounding
box is on the upper half of the cell.

Our method detects the objects from their central regions. If two boxes over-
lap, their centers are less likely to overlap given that it is quite rare for two box
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Ground-truth

Predicted box

Smallest 
covering box (C)

Intersection (I)

Non-overlapping 
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Object center

Central locations 

Fig. 4. The areas in SDIoU loss for box regression

centers to be situated at the same location. In MS-COCO [19] and PASCAL
VOC 2012 [5], we found no cases where centers of overlapping objects overlap.
Our augmented center locations, however, can be useful in dealing with these
boxes. In our experiments (Section 4.2), we show that adding more points in
addition to the central locations hurts the detection performance.

Our strategy implicitly harnesses the intuition behind anchor boxes, which
are usually created by clustering the dimensions of the ground truth boxes in the
dataset [23]. Their dimensions are obtained as estimates of the most common
shapes in different sizes. For instance, Faster R-CNN [25] and YOLO [24,1]
use three scales and three aspect ratios, yielding 9 anchors at each position. Our
method however uses the central locations of the bounding boxes at each scale to
generate multiple predictions for each object. Our method is also more effective
than other anchor-free methods such as FCOS [29] which leverage additional
levels of FPN (i.e., a total of 5 layers) to handle the overlapping bounding boxes.

3.2 Box Regression

As {L(i), T (i), R(i), B(i)} are distances, they can be treated independently and
Mean Square Error (MSE) can be used to perform regression on these values
individually. Nevertheless, such a strategy would disregard the integrity of the
object bounding box. IoU (Intersection over Union or Jaccard index) loss has
already been proposed to take the coverage of the predicted and ground-truth
bounding box areas into consideration. IoU is a widely-used similarity metric
between two shapes, which due to its appealing feature of being differentiable,
can be directly used as an objective function for optimization [35,26,39,31]. In
object detection, IoU can encode the width, height, and location of each bound-
ing box into a normalized measure. The IoU loss (LIoU = 1− IoU) thus allows
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a bounding box to be recognized as a single entity, and jointly regresses the four
coordinate points of the bounding box.

IoU loss has been recently improved upon by considering different cases. For
example, GIoU (Generalized IoU) loss [26] included the shape and orientation of
the object in addition to the coverage area. It can find the smallest area that can
simultaneously cover the predicted and ground-truth bounding boxes, and use it
as the denominator to replace the original denominator used in IoU loss. DIoU
(Distance IoU) loss [39] additionally emphasized the distance between the centers
of the predicted and ground-truth boxes. CIoU (Complete IoU) loss [39] simul-
taneously included the overlapping area, the distance between center points, and
the aspect ratio.

In our case, we are interested in minimizing the distance between two boxes
which are each given by four distance values. As we learn from different scales
for objects with different sizes (i.e., we do not differentiate between scale levels),
our bounding box regression loss function should be scale-invariant. Neverthe-
less, ℓn-based losses grow as the scales of the bounding boxes become larger [27].
As opposed to the original IoU loss and its variants, our loss does not require
the bounding box locations to be matched, since the localization task is al-
ready embedded in the process. Moreover, the predicted and ground-truth boxes
share at least one point in the worst case (i.e., overlap ≥ 0). This is because
{L(i),T (i),R(i),B(i)}≥0 for each box. In this work, we propose an IoU-based loss
tailored for our object detection method, which can be used to improve other
anchor-free detectors as well (the experiments are provided in the supplemen-
tary materials). Our proposed loss, called SDIoU which stands for scale-invariant
distance-based IoU, is directly applied on the network outputs which are distance
values from the object center to top-left and bottom-right corners. Other IoU-
based losses, however, work on the object center and object width and height.
As SDIoU is based on the Euclidean distances between corresponding offsets of
the predicted and ground-truth boxes, it can keep the box integrity and score
the overlapping area in all 4 directions.

Similar to CIoU [39] and scale balanced loss [27], we consider non-overlapping
areas, overlapping or intersection area, and smallest box that covers both boxes.
We first compute the non-overlapping area, S, by summing the squares of all
the Euclidean distances between corresponding distance values as:

S = (L∗ − L)2 + (T ∗ − T )2 + (R∗ −R)2 + (B∗ −B)2, (3)

where {L, T,R,B} and {L∗, T ∗, R∗, B∗} are the predicted and ground-truth dis-
tances, respectively. (We omit here the scale i, for better readability.) Intuitively,
computing the squared Euclidean distances between different distance values can
effectively consider the predicted and ground-truth distances at 4 directions.

We obtain the intersection area, I, by computing the square of the length of
the intersection area’s diagonal as:

I = (wI)2 + (hI)2, (4)
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where wI and hI are the width and height of the intersection area, respectively,
and are computed as:

wI = min(L∗, L) +min(R∗, R)− 1

hI = min(T ∗, T ) +min(B∗, B)− 1.
(5)

The smallest area that covers both predicted and ground-truth boxes, C, is
calculated by the square of its length as:

C = (wC)2 + (hC)2, (6)

where wC and hC respectively denote C’s width and height, which are computed
as:

wC = max(L∗, L) +max(R∗, R)− 1

hC = max(T ∗, T ) +max(B∗, B)− 1.
(7)

By minimizing C, the predicted box can move towards the ground-truth box at
4 directions. We finally compute the SDIoU as:

SDIoU =
(I − ρS)

C
, (8)

where ρ denotes a positive trade-off value that favors the overlap area (we how-
ever set ρ = 1 in all the experiments). We use both I and (−S) in the numerator
to score the intersection area as well as penalizing the non-overlapping area. The
predicted 4 distance values are thus enforced to faster match the ground-truth
distances. The SDIoU loss is eventually defined as LIoU = 1 − IoU . Figure 4
illustrates the areas considered in our SDIoU loss.

4 Experiments

Datasets. Two common challenging datasets, MS-COCO [19] and PASCAL
VOC 2012 [5], which are widely-used benchmarks for natural scene object de-
tection, were selected to evaluate the proposed ObjectBox method and compare
it against current state-of-the-art methods. MS-COCO is a challenging dataset
that includes a large number of objects labeled in 80 object categories. We used
the trainval35k split containing 115k images for training our network, and re-
ported the results on the test-dev split with 20k images. The PASCAL VOC 2012
dataset consists of complex scene images of 20 diverse object classes. We trained
our model using the VOC 2012 and VOC 2007 trainval splits (17k images) and
tested it on the VOC 2012 test split (16k images). Experimental results on the
PASCAL VOC 2012 [5] can be found in the supplementary materials (Sec. S.2).
Implementation Details. We implemented our method on two different back-
bones, i.e., ResNet-101 and CSPDarknet [33], [10], [1]. We use ResNet-101 which
is a widely-used backbone in many object detectors to provide a fair comparison
with other state-of-the-art methods. We also utilized CSPDarknet and add SPP
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Table 1. Performance comparison with the state-of-the-art methods on the MS-COCO
dataset in single-model and single-scale results. The bold and underlined numbers
respectively indicate the best and second best results in each column

Avg. Precision, IoU Avg. Precision, Area Avg. Recall, # Dets Avg. Recall, Area

Method Backbone AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

SSD513 [20] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8 28.3 42.1 44.4 17.6 49.2 65.8
DeNet [30] ResNet-101 33.8 53.4 36.1 12.3 36.1 50.8 29.6 42.6 43.5 19.2 46.9 64.3
F-RCNN w/ FPN [17] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2 - - - - - -
YOLOv2 [23] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4
RetinaNet [18] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2 - - - - - -
YOLOv3 [24] DarkNet-53 33.0 57.9 34.4 18.3 35.4 41.9 - - - - - -
CornerNet [16] Hourglass-104 40.6 56.4 43.2 19.1 42.8 54.3 35.3 54.7 59.4 37.4 62.4 77.2
CenterNet [4] Hourglass-52 41.6 59.4 44.2 22.5 43.1 54.1 34.8 55.7 60.1 38.6 63.3 76.9
ExtremeNet [41] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1 - - - - - -
FCOS [29] ResNeXt-101 42.1 62.1 45.2 25.6 44.9 52.0 - - - - - -
ASSD513 [34] ResNet101 34.5 55.5 36.6 15.4 39.2 51.0 29.9 45.6 47.6 22.8 52.2 67.9
SaccadeNet [15] DLA-34-DCN 40.4 57.6 43.5 20.4 43.8 52.8 - - - - - -
YOLOv4 [1] CSPDarknet 43.5 65.7 47.3 26.7 46.7 53.3 - - - - - -
FoveaBox [14] ResNeXt-101 43.9 63.5 47.7 26.8 46.9 55.6 - - - - - -
RetinaNet+CBAF [28] ResNet-101 43.0 63.2 46.3 25.9 45.6 51.4 - - - - - -
ATSS [37] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6 - - - - - -
PAA [13] ResNet-101 44.8 63.3 48.7 26.5 48.8 56.3 - - - - - -
OTA [6] ResNet-101 45.3 63.5 49.3 26.9 48.8 56.1 - - - - - -
VarifocalNet [36] ResNet-101 46.0 64.2 50.0 27.5 49.4 56.9 - - - - - -
ObjectBox ResNet-101 46.1 65.0 48.3 26.0 48.7 57.3 35.3 57.1 60.5 39.2 65.0 76.9
ObjectBox CSPDarknet 46.8 65.9 49.5 26.8 49.5 57.6 36.0 57.5 60.7 39.4 65.2 77.0

(Spatial Pyramid Pooling) [9], [24], [1] over the backbone to increase the recep-
tive field of the extracted features. CSPDarknet has the potential to enhance
the learning abilities of the CNNs and reduce the memory cost [1].

The training hyperparameters were set to an initial learning rate of 0.01,
momentum of 0.937, weight decay of 0.0005, warm-up epochs of 3, and warm-up
momentum of 0.8. The initial learning rate was multiplied with a factor 0.1 at
400,000 steps, and then again at 450,000 steps. We set the batch size to 24 and
used SGD optimization. We trained our models to a maximum of 300 epochs
with early stopping patience of 30 epochs. The experiments were executed on a
single Titan RTX GPU. The NMS (Non-Maximum Suppression) threshold was
also set as 0.6 in all experiments.

We used CutMix and Mosaic data augmentation during training [1]. They
both mix different contexts to facilitate detection of objects outside their normal
context. CutMix mixes 2 input images, while Mosaic mixes 4 training images.
For each scale level s, we use a multitask loss as:

ℓs = ℓscls + ℓsobj + ℓsbox (9)

where ℓscls, ℓ
s
obj , and ℓsbox respectively denote the classification loss, a binary cross

entropy loss, and the regression loss for box offsets at scale s. We use the binary
cross entropy between the target classes and the predicted probabilities as our
classification loss and the binary confidence score. We employ SDIoU loss as the
regression loss between the proposed targets and the predicted ones. The losses
are computed for each scale and are summed as L =

∑
s ℓ

s.
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4.1 MS-COCO Object Detection

Table 1 shows the evaluation results on the MS-COCO dataset. Compared to
the baseline methods, ObjectBox is considerably more accurate, achieving the
best AP performance of 46.8% with a CSPDarknet backbone. Our method also
achieves the second-best performance of 46.1% with a ResNet-101 backbone. The
relative improvement of AP (which is averaged over 10 IoU thresholds of 0.5 to
0.95) indicates that ObjectBox generates more accurate boxes with better lo-
calization. With the CSPDarknet backbone, the improvements are also achieved
over 8 other metrics including AP50, APM , APL, AR1, AR10, AR100, ARS ,
and ARM . Notably, ObjectBox with ResNet-101 obtains the second-best perfor-
mance over 7 different metrics. These improvements over both anchor-based and
anchor-free methods are mainly due to our strategy to learn object features in
different scales fairly. Nonetheless, this is not possible without regressing from
the object central locations, which can be seen as shape- and size-agnostic an-
chors.

The relative improvement in ARS indicates that our method can detect more
small objects (which are more likely to overlap and generally harder to detect).
The performance boost is also evident for APL when detection of larger objects
can benefit from all feature maps at 3 scale levels. This is another major differ-
ence with other detectors which learn from all points in the objects. To maintain
the relative equality between different objects, they consider the larger objects
as positive samples only for embeddings with larger strides.

The second best performing method, VarifocalNet [36], replaces the classifi-
cation score of the ground-truth class with a new IoU-aware classification score.
It is built on an ATSS [37] version of FCOS [29]. In ATSS, the Adaptive Train-
ing Sample Selection (ATSS) mechanism is used to define positive and negative
points on the feature pyramids during training. FoveaBox [14], which is also an
anchor-free detector and concentrates on the object center, achieves AP = 43.9.
It however separates samples as positives and negatives at each scale. Improve-
ments over FCOS [29] (+4%) shows that central regions of the objects include
enough recognizable visual patterns to detect the objects if we consider positive
samples from all scales, and therefore, learning all the pixels inside the bounding
box is not required for a general object detection method.

It is also interesting to note that ObjectBox does not use any data-dependent
hyperparameters. Other anchor-free methods which tend to address the gener-
alization issue often use a number of such hyperparameters. FCOS [29], for
example, defines a hyperparameter for thresholding the object sizes at different
scales, while FoveaBox [14] defines a hyperparameter to control the scale range.

4.2 Ablation Study

To verify the effectiveness of our method, we performed several experiments
with different settings on the MS-COCO dataset. We utilized ObjectBox with a
CSPDarknet backbone in all ablation experiments.
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Table 2. The ablation study of ObjectBox with CSPDarknet on MS-COCO. We inves-
tigate the influence of box regression from different locations (A), number of predictions
per location per scale (B), and imposing constraints based on the object size (C)

Avg. Precision, IoU Avg. Precision, Area

Experiment Method AP AP50 AP75 APS APM APL

A
Regression
locations

(1) center 33.1 56.8 36.0 17.5 35.2 42.1
(2) aug. center (ObjectBox) 46.8 65.9 49.5 26.8 49.5 57.6
(3) h-centers 42.3 56.9 46.5 24.1 45.3 54.2
(4) aug. center + h-centers 41.7 58.2 45.2 23.6 43.3 54.5
(5) 4 corners 28.2 51.5 35.6 16.0 33.9 41.3
(6) 4 corners + center 37.4 57.8 43.0 20.4 39.7 45.5

B #Pred.
1 prediction (ObjectBox) 46.8 65.9 49.5 26.8 49.5 57.6
4 predictions 37.3 58.3 41.9 19.5 41.6 48.0

C
Scale

constraints

m = {0, 32, 64,∞} 29.6 45.8 30.4 17.0 31.8 40.6
m = {0, 64, 128,∞} 35.8 58.0 36.8 19.2 39.1 46.5
m = {0, 128, 256,∞} 30.4 49.2 32.0 16.8 33.5 43.5
m = {0, 256, 512,∞} 27.3 43.5 29.6 14.7 30.4 38.1

Box regression locations. Table 2 part A shows the impact of regression
from different locations by choosing the boxes to be regressed from different
locations. We defined 6 cases: (1) only one location at the center (referred to as
‘center’), (2) center location augmented with its neighboring locations (as done
in ObjectBox, denoted by ‘aug. center’), (3) the centers of the connecting lines
between the box center and two top-left and bottom-right box corner points
(referred to as ‘h-centers’), (4) central locations in (2) plus all locations in (3)
(denoted by ‘aug. center + h-centers’), (5) four corners of the bounding box,
and (6) corner points in (5) plus the center location. The results show that using
only the center cell is not sufficient for box regression. Another important point
is that (3) outperforms (1), meaning that selection of two other points close
to the center is better than only center point. Removing these two locations
and considering only central locations in (2) even brings further improvements.
Interestingly, in (4), no improvement is seen over (3). This indicates not only
that considering locations other than the central locations does not add valuable
information, but also that doing so can actually degrade detection performance.
The worst case occurs when we use only the corner points of the bounding box.
While the performance is improved by the addition of one center location to the
points in (5), the results are still far from those in (2), (3), and (4), where box
regression is obtained only from points that are closer to the center locations.

Number of predicted boxes. We analyzed the influence of the number of
predictions per location, and reported the results in Table 2 part B. In this
experiment, we assigned 4 predictions to each location based on the offset of the
object center in that location. Specifically, each location was divided into four
equal finer locations, with one prediction given to each of them. When we predict
4 boxes at each location, surprisingly the performance degrades, confirming that
our strategy of returning just one prediction per scale level is indeed beneficial.
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Table 3. The influence of different loss functions on ObjectBox

Avg. Precision, IoU Avg. Precision, Area

Method AP AP50 AP75 APS APM APL

MSE 22.6 44.1 19.4 12.5 18.3 35.7
Adopted GIoU 27.4 46.9 28.2 23.8 30.2 41.8
Adopted CIoU 27.1 46.5 28.1 24.0 30.5 41.0
SDIoU 46.8 65.9 49.5 26.8 49.5 57.6

Specialized feature maps. To show the impact of imposing constraints on
the feature maps at different scales, we chose four sets of thresholds: (1) m =
{0, 32, 64,∞}, (2) m = {0, 64, 128,∞}, (3) m = {0, 128, 256,∞}, and (4) m =
{0, 256, 512,∞}. An object at scale i is considered as a negative sample if
{w, h} < mi−1 or {w, h} > mi for i = 1, 2, 3. The negative boxes thus are not
regressed. This is similar to both anchor-based and anchor-free detectors. Specif-
ically, anchor-free methods like YOLO [24], [1] assign anchor boxes with different
sizes to different feature levels, and anchor-free methods such as FCOS [29] di-
rectly limit the range of box regression for each level. The results in Table 2 part
C show the high sensitivity of the performance to these thresholds. Moreover,
this experiment verifies our choice of considering embeddings in all scale levels
for all objects, as thresholding the feature maps drastically hurts the results.
Loss functions. To show the effectiveness of our SDIoU loss for box regression,
we replaced it with three other common losses in three different experiments.
We first used MSE (Mean Square Error) loss on all 4 distances separately. In the
second and third experiments, we converted the 4 distances to {x, y, w, h} and
used the GIoU [26] and CIoU losses [39]. As observed in Table 3, these losses
are not suitable in anchor-free detectors like ObjectBox. More importantly, the
benefit of our IoU loss is evident from these experiments.

We provide more experiments in the supplemental materials (Sec. S.4) to
verify the effectiveness of SDIoU in other anchor-free approaches like FCOS [29].

5 Conclusion

ObjectBox, an anchor-free object detector, is presented without the need for
any hyperparameter tuning. It uses object central locations and employs a new
regression target for bounding box regression. Moreover, by relaxing the label
assignment constraints, it treats all objects equally in all feature levels. A tailored
IoU loss also minimizes the distance between the new regression targets and the
predicted ones. It was demonstrated that using existing backbone architectures
such as CSPDarknet and ResNet-101, ObjectBox compares favorably to other
anchor-based and anchor-free methods.

Acknowledgments. Thanks to Geotab Inc., the City of Kingston, and the
Natural Sciences and Engineering Research Council of Canada (NSERC) for
their support of this work.
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S.1 Overview

We provide additional experiments to further explore the robustness of our
method. Experimental results on the PASCAL VOC 2012 [S.1] are represented
in Sec. S.2. In Sec. S.3, we investigate correlations between the object size and
the scale at which it is detected. We also utilize our IoU loss in other detectors
and report the results in Sec. S.4. Inference details are also discussed in Sec. S.5.
Finally, we qualitatively show some ObjectBox results in Sec. S.6.

S.2 PASCAL VOC 2012

To demonstrate the effectiveness of our method on different object categories
in a subtle way, we perform another experiment on the PASCAL VOC 2012
dataset. We trained the network under the same settings as we performed on
MS-COCO dataset. Notably, our method does not need to set dataset-dependent
hyperparameters like anchor boxes. The results are shown in Table S.1. Object-
Box outperforms the other methods, achieving a higher AP score on 13 of the 20
object classes. Overall, ObjectBox achieves an mAP of 83.7%, which is +2.4%
higher than the next best performing method. It can be observed that ObjectBox
works relatively well in both small object and large object classes. For example,
it achieves 92.1% in the class ‘plane’ and 93.3% in the class ‘car’. It can be
observed that ObjectBox is either the best or the second-best method in terms
of AP score in all categories except ‘cat’, ’dog’, and ‘bike’. This is probably due
to the use of YOLO’s Darknet backbone, as YOLOv2 similarly does not work
well in these categories.

S.3 Multiscale Prediction

We investigate correlations between the object size and the scale at which it is
detected. As shown in Table S.2, we consider predictions per individual scales,
observing that larger objects are better detected at coarser scales, and smaller
objects are better detected at finer scales, despite being trained without the
bias in defining the positive samples. Each scale level still contributes to the
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Table S.1. Detection results on the PASCAL VOC 2012 dataset. F-RCNN denotes
Faster R-CNN. The bold and underlined numbers respectively indicate the best and
second best results in each column
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F-RCNN[S.8] 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6
SSD513[S.4] 79.4 90.7 87.3 78.3 66.3 56.5 84.1 83.7 94.2 62.9 84.5 66.3 92.9 88.6 87.9 85.7 55.1 83.6 74.3 88.2 76.8
YOLOv2[S.6] 73.4 86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7
Retina[S.3] 67.7 80.4 74.0 73.4 53.5 49.7 73.0 71.2 88.2 45.8 69.7 50.6 87.1 74.0 76.8 78.9 45.6 69.1 51.3 77.2 65.0
ASSD513[S.10] 81.3 92.1 89.2 82.5 71.5 60.4 85.5 84.8 93.9 63.7 88.6 67.4 92.6 90.2 89.0 86.5 60.4 88.2 73.4 88.6 77.0
ObjectBox 83.7 92.1 92.2 80.5 74.0 77.4 92.1 93.3 89.5 68.2 85.3 75.7 87.3 90.6 86.6 87.9 60.0 84.7 77.6 91.3 85.4

prediction of objects at other scales. This shows that the learning can be better
because all objects are being learned at all possible scales.

Table S.2. Predictions per scale level on the MS-COCO dataset

Avg. Precision, IoU Avg. Precision, Area Avg. Recall, Area

Scale level AP AP50 AP75 APS APM APL ARS ARM ARL

0, s={8} 24.9 44.9 32.1 25.5 11.7 20.5 38.1 18.4 37.3
1, s={16} 35.7 56.4 37.7 24.3 49.2 33.6 37.6 64.8 46.3
2, s={32} 42.7 61.6 46.0 22.0 48.0 56.1 30.9 63.2 75.6
all, s={8,16,32} 46.8 65.9 49.5 26.8 49.5 57.6 39.4 65.2 77.0

S.4 IoU Loss

In this work, we propose an IoU-based loss tailored for our object detection
method. Recall that our loss is applied to our regression targets {L, T,R,B},
which are distance values from the corners of the object center cells to the four
sides of the bounding box. There are other methods that use similar targets for
box regression. For example, FCOS [S.9] defines {l, t, r, b} as regression targets
as distances from each positive location to the bounding box boundaries. The
positive locations are selected based on the scale ranges defined for each pyra-
mid level. ATSS [S.11] uses the same targets but with a different strategy for
positive sample selection. It specifically uses statistical characteristics of objects
as the IoU threshold to adaptively select enough positives for each object from
appropriate pyramid levels.

Regardless of their sample selection strategies, both FCOS and ATSS use
IoU-based losses, such as the GIoU loss function, for bounding box regression.
In our experiments, we replaced their regression losses with our tailored IoU loss,
and trained their models with the same settings as the original ones. The results
are reported in Table S.3. It can be seen that our loss consistently improves
detection performance. Our loss improves FCOS by +0.2% on AP , +0.6% on
AP50, +0.1 on APS , +0.9 on APM , and +1.2 on APL. Similarly, it achieves a
higher performance in ATSS by +0.4% on AP , +1.1% on AP50, +0.1% on AP75,
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Table S.3. Relative performance of our loss function and GIoU loss, when applied to
ObjectBox, FCOS and ATSS

Avg. Precision, IoU Avg. Precision, Area

Method Backbone Loss AP AP50 AP75 APS APM APL

FCOS [S.9] ResNeXt-101
GIoU 42.1 62.1 45.2 25.6 44.9 52.0
ours 42.3 62.7 45.2 25.7 45.8 53.2

ATSS [S.11] ResNet-101
GIoU 43.6 62.1 47.4 26.1 47.0 53.6
ours 44.0 63.2 47.5 26.2 48.4 54.2

ObjectBox
ResNet-101

GIoU 44.9 63.6 47.3 25.6 48.5 55.9
ours 46.1 65.0 48.3 26.0 48.7 57.3

CSPDarknet
GIoU 45.7 64.2 48.0 26.1 48.9 57.0
ours 46.8 65.9 49.5 26.8 49.5 57.6

+0.1 on APS , +1.4 on APM , and +0.6 on APL. Note that our loss function is
directly applied to the network outputs. It therefore keeps the box integrity
based on the model regression targets, and scores the overlapping areas in all
four directions.

In Sec. 4.3, we showed the effectiveness of our loss function for box regression,
where replacing it with other losses drastically decreased performance. It was
however coupled with the impact of regression location from only one center
location. To further investigate the necessity of this loss in our method, we keep
the best settings from our ablation study in Sec. 4.3, and only replace our loss
with the GIoU loss as used in FCOS and ATSS. Particularly, we use our proposed
regression targets ({L, T,R,B}), augmented centers (the best results in Table 3
part A), one prediction per scale level, and no scale range constraints. As shown
in Table S.3, ObjectBox with a ResNet-101 backbone clearly benefits from the
new IoU loss since it obtains a higher performance by +1.2% on AP , +1.4%
on AP50, +1.0% on AP75, +0.4 on APS , +0.2 on APM , and +1.4 on APL,
when compared with GIoU loss. The performance boost on ObjectBox with a
CSPDarknet backbone is also evident as our loss improves the performance by
+1.1% on AP , +1.7% on AP50, +1.5 on AP75, +0.7 on APS , +0.6 on APM ,
and +0.6 on APL. These relative improvements indicate that the box IoU loss
in our method practically helps to align the bounding boxes more precisely.

S.5 Inference

Our method does not impose any additional costs to the inference stage. Given
an input image, ObjetcBox predicts an objectness (confidence) score, m clas-
sification scores, and four regression values ({L, T,R,B}) for each feature map
location, where m denotes the number of class labels. Therefore, the network
output is of size 3 × W

si
× H

si
× (m + 5), where si ∈ {8, 16, 32}. The predictions

at all scale levels are sorted based on their confidence scores. They are then
refined sequentially based on a threshold value (we set it as 0.001) until all can-
didates are investigated. To reduce redundancy in the box prediction, we use
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Table S.4. Inference speed comparison

Method Backbone # params FPS AP

SSD513 [S.4] ResNet-101 57 M 43 31.2
Faster R-CNN w/ FPN [S.2] ResNet-101 42 M 26 36.2
YOLOv3 [S.7] DarkNet-53 65 M 20 33.0
FCOS [S.9] ResNeXt-101 32 M 50 42.1
ATSS [S.11] ResNet-101 32 M 50 43.6
ObjectBox ResNet-101 30 M 70 46.1
ObjectBox CSPDarknet 86 M 120 46.8

non-maximum suppression (NMS) [S.5] on the predicted boxes based on their
classification error. We use an NMS threshold 0.6 and obtain the final results by
keeping the highest quality bounding boxes and eliminating the others.

We used the same sizes of input images as in training, and evaluated the
inference speed on a single Titan RTX GPU by measuring the end-to-end infer-
ence time. We selected different anchor-based and anchor-free methods as com-
parisons, including SSD513 [S.4], Faster R-CNN with FPN [S.2], YOLOv3 [S.7],
FCOS [S.9], and ATSS [S.11]. As shown in Table S.4, the average inference speed
of ObjectBox with the ResNet-101 backbone is 70 FPS. Meanwhile, using the
CSPDarknet backbone can improve the inference speed by 50 FPS, achieving
120 FPS. ObjectBox is significantly faster than other detectors, while having a
larger number of parameters (86 M). For instance, the detection speed of Ob-
jectBox is more than two times higher than that of FCOS (50 FPS). Even with
the same ResNet-101 backbone, ObjectBox outperforms the ATSS frame rate
by 40%, i.e. from 50 FPS for ATSS to 70 FPS for ObjectBox.

The superior time performance of ObjectBox is mainly due to its smaller
detection head, and that it considesrs only object central locations for box re-
gression. More specifically, the number of predictions per scale level is just one
in ObjectBox, while it is equal to the number of anchors (usually > 1) in anchor-
based detectors. It also filters out all non-center locations by using the confidence
score, which undoubtedly reduces the NMS computational load. By relaxing the
scale range constraints, ObjectBox redefines positive and negative training sam-
ples without incurring any additional overheads. It is therefore quite efficient,
while achieving the state-of-the-art performance.

S.6 Qualitative results

In Figure S.1, we show some detection examples on the MS-COCO test-dev
dataset. It can be seen that our method is able to successfully detect objects
with different sizes and different scene types, with severely overlapping boxes.
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Fig. S.1. Detection examples of applying ObjectBox on COCO test-dev
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