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 

Abstract—Vocal performance degradation is a common 

symptom for the vast majority of Parkinson’s disease (PD) 

subjects, who typically follow personalized one-to-one periodic 

rehabilitation meetings with speech experts over a long-term 

period. Recently, a novel computer program called Lee 

Silverman Voice Treatment (LSVT) Companion was developed 

to allow PD subjects to independently progress through a 

rehabilitative treatment session. This study is part of the 

assessment of the LSVT Companion, aiming to investigate the 

potential of using sustained vowel phonations towards objectively 

and automatically replicating the speech experts’ assessments of 

PD subjects’ voices as ‘acceptable’ (a clinician would allow 

persisting during in-person rehabilitation treatment) or 

‘unacceptable’ (a clinician would not allow persisting during in-

person rehabilitation treatment). We characterize each of the 156 

sustained vowel /a/ phonations with 309 dysphonia measures, 

select a parsimonious subset using a robust feature selection 

algorithm, and automatically distinguish the two cohorts 

(acceptable versus unacceptable) with about 90% overall 

accuracy. Moreover, we illustrate the potential of the proposed 

methodology as a probabilistic decision support tool to speech 

experts to assess a phonation as ‘acceptable’ or ‘unacceptable’. 

We envisage the findings of this study being a first step towards 

improving the effectiveness of an automated rehabilitative speech 

assessment tool.  
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I. INTRODUCTION 

ARKINSON‟S DISEASE is a chronic neurodegenerative 

disorder characterized by the progressive deterioration of 

motor function and the emergence of considerable non-
motor problems [1]. It is estimated there are at least 100 PD 

subjects per 100,000 in the population [2], and some studies 

have suggested PD prevalence may be underestimated [3]. 

Vocal impairment is reported in the vast majority of PD 

subjects, and approximately 29% of those consider it one of 

their greatest hindrances associated with the disease [4]. 

Moreover, speech performance degradation may be amongst 

the first symptoms of PD onset [5]. 

Typical vocal impairment symptoms include reduced 

loudness, monotone, hoarseness, breathiness (noise), 

imprecise articulation and vocal tremor [6]. The extent of 
vocal impairment can be assessed using sustained vowel 

phonations, or running speech. It can be argued that while 

some of the vocal deficiencies in running speech caused by 

PD (e.g. sequences of consonants and vowels) may not occur 

in sustained vowels, the analysis of running speech is 

inherently more complex due to articulatory and other 

linguistic confounds [7], [8]. Consequently, sustained vowel 

phonations, where the speaker attempts to produce a vowel 

sound as steady as possible (in terms of amplitude and 

frequency) and for as long as possible, are commonly used in 

clinical practice [8]. Both clinical practice and extensive 
research have shown that the sustained vowel “ahh…” 

(denoted /a/) may be sufficient for many voice assessment 

applications [8], [9], [10], [11], and for PD voice assessment 

in particular [12], [13], [14], [15], [16], [17]. 

Clinical speech signal processing algorithms (algorithmic 

tools extracting clinically useful information from speech 

signals) are collectively known as dysphonia measures. From 

the point of view of speech experts and ear, nose and throat 

surgeons, there is an important distinction between voice (the 

sound produced by the larynx) and speech, which is the 

integrated process of voice and articulation. Despite the subtle 

difference in the narrow definition of voice and speech, I. 
Titze asserts “in the broader sense voice is synonymous with 

speech” [8]. Strictly speaking, the dysphonia measures 

discussed in this study are entirely based on voice rather than 

speech since we do not attempt to characterize articulation 

problems. 

LSVT LOUD is a standardized, research-based speech 
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treatment protocol with established efficacy for PD [18], [19], 

[20]. A significant challenge is how to scale accessibility to 

this speech treatment program that requires a sustained, 

intensive treatment regime when there are not enough 

clinicians to deliver all the treatment that is needed. Advances 

in computer and web-based technology offer solutions to the 
problems of treatment accessibility, efficacious treatment 

delivery, and long-term maintenance in rehabilitation [21]. 

Such technology may alleviate the barrier of inadequate 

numbers of clinicians to deliver in-person therapy, enhance the 

feasibility of delivering intensive treatment requirements, and 

relieve the logistical burden of traveling to and from the clinic 

for in-person treatment. Through funding from the National 

Institutes of Health (NIH) and the Michael J. Fox Foundation, 

LSVT Global has developed and tested the LSVT Companion, 

a computer program that allows PD subjects to independently 

progress through a treatment session. The LSVT Companion 

automatically obtains data on sound pressure level (SPL), 
fundamental frequency (F0), and phonation duration during 

voice tasks, and provides instantaneous audio and visual 

feedback to the client on their vocal loudness, pitch and 

phonation duration during treatment exercises. When PD 

subjects do not meet their target goals (vocal loudness, pitch, 

duration), the LSVT Companion provides feedback to 

encourage them to appropriately adjust the characteristics of 

their phonation, e.g. louder, longer, higher or lower. 

In a recent study, the LSVT Companion was used to 

augment in-person treatment sessions [22]. Seven of the 16 

sessions were completed with subjects using the LSVT 
Companion for independent at-home therapy and nine of the 

sessions were traditional in-person sessions. Outcome data 

immediately post-LSVT and six months later for SPL were 

comparable to data from 16 in-person treatment sessions with 

a clinician. The next step in LSVT Companion development is 

to further support independent treatment delivery (i.e., 

increase the number of independent at-home sessions). One 

potential concern is that in the process of learning to improve 

vocal loudness, PD subjects may exhibit unacceptable voice 

characteristics that an LSVT expert clinician would “not allow 

to persist” during in-person treatment. 

The aim of the current study is to investigate the potential 
of using an objective statistical machine learning framework 

to automatically evaluate sustained vowel phonations as 

“acceptable” (a clinician would allow persisting in speech 

treatment) or “unacceptable” (a clinician would not allow 

persisting in speech treatment). The ultimate goal is to 

improve the effectiveness of rehabilitative speech treatment by 

developing an appropriate algorithm for the LSVT Companion 

system. This algorithm will be able to detect unacceptable 

voice characteristics during use of software away from expert 

clinical guidance, stop the patient from using voice in an 

unacceptable way, and subsequently improve voice 
characteristics through providing feedback.  

II. DATA 

Seventeen subjects with PD diagnosis were originally 

screened for inclusion in this study, of whom 14 finally 

participated. The three subjects who did not participate in this 

study were due to scheduling conflicts with the data collection 

sessions. All subjects had typical voice and speech 

characteristics of PD as determined by an experienced speech-

language pathologist (e.g. reduced loudness, monotone, 

breathy, hoarse voice, or imprecise articulation) upon 

telephone screening, and verified by two speech-language 

pathologists with expertise in PD during data collection. The 
subjects‟ enrolment in this study and all recruiting materials 

were approved by an independent Institutional Review Board.  

The 14 PD subjects (8 males and 6 females), had an age 

range of 51 to 69 (mean ± standard deviation: 61.9 ± 6.5) 

years, and produced sustained vowel /a/ phonations. The 

sustained vowel phonations were recorded in a double-walled, 

sound-attenuated room at the National Center for Voice and 

Speech-Denver (NCVS), an affiliate institution of the 

University of Colorado-Boulder. A head-mounted microphone 

was positioned according to standard protocols [23]. The voice 

signals were sampled at 44.1 kHz with 16 bits of resolution, 

and were recorded using the Audacity software package 
(http://audacity.sourceforge.net/). In total, each subject was 

originally instructed to produce 27 phonations (samples) 

where each phonation belonged to one of the nine possible 

combinations of pitch and amplitude, that is, phonations at 

comfortable pitch, high pitch, low pitch, with amplitude 

considered acceptable, too loud or too soft. The rationale 

behind using different conditions of pitch and amplitude is to 

have samples from diverse types of phonation; research has 

shown that consciously thinking of the way we speak may 

result in vocal performance improvement [24]. The aim was to 

use one good sample from each of the nine combinations: in 
practice it took more than a single attempt to record good 

samples (some subjects laughed, or coughed). Similarly, it 

took more than one attempt for some subjects to follow the 

instruction regarding the task they were required to complete 

(for example when stimulating high amplitude phonations). 

Then, for each subject, the data collection team selected (prior 

to any speech signal analysis) the best sample for each of the 

nine possible combinations of pitch and amplitude, and 

assessed each sample as “acceptable” or “unacceptable”. This 

data selection step was to ensure that we would process the 

same number of samples for each subject, and using one good 

representative sample for each combination of pitch and 
amplitude for each subject avoids contaminating the dataset 

with phonations which may not be sufficiently “good”. The 

discarded phonations did not meet target criteria (e.g. not loud 

enough for the task “high amplitude”, no change in pitch when 

instructed to produce low or high pitch phonations, cough or 

laugh, etc.). Thus, we processed nine phonations per subject 

for a total of 126 phonations for the 14 PD subjects. Twenty-

five percent of those 126 samples were repeated to quantify 

intra-rater reliability for a total of 156 samples. 

LSVT expert clinicians assessed perceptually whether 
phonations could be considered “acceptable” or 

“unacceptable”. There are no specific objective criteria with 

which speech experts assess phonations; the assessment 

largely depends on the experience of the rater. Each subject 

produced phonations of both types (“acceptable” and 

“unacceptable”), as assessed by consensus by two experienced 

speech experts (C.F. and L.R.). This assessment will be 

considered the „ground truth‟. We also have five additional 

assessments per phonation from five different speech experts, 
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who were blinded to all the other raters‟ assessments and the 

subjects‟ condition. In all cases the expert raters had to decide 

whether each phonation was “acceptable” or “unacceptable”. 

Therefore, we have six assessments from expert raters for each 

of the 156 samples.  

Each phonation was pre-processed, selecting a 2-second 
segment from the stable part of the phonation (middle of the 

speech signal) for subsequent acoustic analysis in order to 

avoid problems during the onset (start) and offset (end) of the 

phonation. Manual inspection did not reveal any problematic 

recordings (anything but an „ahh…‟ sound, e.g. coughing), so 

all data samples were used in the analysis. 

III. METHODS 

The aim of this study is to process the speech signals, 

extract information-rich dysphonia measures (generally 

referred to as features in machine learning), and map the most 

parsimonious feature subset (feature subset which is 

maximally informative with as few features as possible) to the 

response (acceptable versus unacceptable).  

A. Feature calculation 

We apply the dysphonia measures defined in detail in 

Tsanas et al. [14], [25], and summarized more recently in 

Tsanas [26]. Many dysphonia measures rely on the 

computation of the fundamental frequency (F0). In this study, 
we use the Non-Defect-Free (NDF) F0 estimation algorithm 

[27]: it was recently shown to consistently outperform popular 

competing F0 estimators in the context of sustained vowel /a/ 

phonations [26], on comparison against reference, synthetic 

speech data created by a state of the art physiological model. 

Here, we summarize the dysphonia measures used in this 

study, clustering them into groups. We refer to Tsanas [26] 

and references therein for details and the rationale behind each 

dysphonia measure. 

The first group of dysphonia measures builds on the 

physiological observation that the vocal fold vibration pattern 
is nearly periodic in healthy voices (type I according to Titze 

[8]), whereas pathological voices tend to depart from 

periodicity or are completely aperiodic (types II and III 

according to Titze [8]). Two of the most widely used 

dysphonia measures fall under this category, and are known as 

jitter and shimmer [7], [8]. Both jitter and shimmer are 

classical perturbation measures: jitter quantifies F0 deviations, 

whereas shimmer quantifies deviations in amplitude. There is 

no unique mathematical definition of jitter and shimmer, 

therefore we investigated many jitter variants and shimmer 

variants, which are algorithmic variations of the same basic 

ideas. The concept of quantifying deviations in the vocal fold 
vibration pattern has inspired us to propose the Recurrence 

Period Density Entropy (RPDE) [28], the Pitch Period 

Entropy (PPE) [12], the Glottal Quotient (GQ) [14], and other 

F0-related measures [14]. RPDE quantifies the uncertainty in 

estimating the duration of the vocal fold cycle. PPE quantifies 

impairments in controlling F0 in sustained vowel phonations. 

GQ is very similar to jitter measures, but operates on vocal 

fold cycles instead of adjacent time segments of the speech 

signal. The F0-related dysphonia measures include statistical 

summaries of the F0 distribution, and the difference in the 

measured F0 of age- and gender-matched healthy controls. 

The second general group of dysphonia measures is the 

Signal to Noise Ratio (SNR) type algorithms. The 

physiological motivation for this group is that incomplete 

vocal fold closure leads to the creation of aerodynamic 
vortices which result in increased acoustic noise. Harmonic to 

Noise Ratio (HNR) [7], Detrended Fluctuation Analysis 

(DFA) [28], Glottal to Noise Excitation (GNE) [29], Vocal 

Fold Excitation Ratio (VFER) [14], and Empirical Mode 

Decomposition Excitation Ratio (EMD-ER) [14] are 

archetypal examples of this group. GNE and VFER analyze 

frequency ranges of sustained vowel phonation in bands of 

500 Hz. We have empirically found in previous studies that 

frequencies below 2.5 kHz can be treated as „signal‟, and 

everything above 2.5 kHz can be treated as „noise‟ [14], [26]. 

Thus, we can define SNR dysphonia measures using energy, 

nonlinear energy (Teager-Kaiser energy operator) and entropy 
concepts. Organic pathology-free voices may be harmonically 

efficient up to 6-7 kHz (although this might not be true for the 

elderly), and hence the use of 2.5 kHz as the threshold for 

„noise‟ might need further clarification. We first reported on 

this empirical finding for considering frequencies below 2.5 

kHz as „signal‟ and frequencies above 2.5 kHz as „noise‟ in 

Tsanas et al. [14], where the threshold was optimized in order 

to determine a PD symptom severity clinical scale. The 2.5 

kHz threshold has a tentative physiological justification: most 

of the energy in the sustained vowels is contained mainly up to 

the second formant, and for the sustained vowel /a/ the second 
formant can be up to about 1.7 kHz [8]. Interestingly, another 

research group has reported that frequencies above 2 kHz can 

be generally considered turbulent noise [30]. Similarly, the 

Multi-Dimensional Voice Program (MDVP - 

http://www.kayelemetrics.com/) uses a dysphonia measure 

called “Voice Turbulence Index”, where the spectral 

frequencies above 2.8 kHz are used to quantify the high 

frequency energy component in the speech signal [31]. EMD-

ER has a similar conceptual basis forming ratios of signal and 

noise energies. The empirical mode decomposition (EMD) 

algorithm [32] decomposes a signal into elementary, linearly 

superposed signal components with amplitude and frequency 
contributions. Then, the top (high frequency) components are 

taken to constitute noise, whereas the lower frequency 

components are taken to constitute the signal. We defined the 

EMD-ER dysphonia measures using similar ideas as in VFER, 

i.e. energy and entropy concepts. 

The wavelet measures proposed in Tsanas et al. [25] form a 

generic approach to analyzing time series signals: we 

suggested using wavelet decomposition with ten levels of 

decomposition, to analyze the F0 time series (also known as 

F0 contour). The wavelet coefficients are then the features 

presented to the classifier (see section III.D). Inspired by 
previous work [12], [33] we also used the log-transformed F0 

time series, because this power transformation can sometimes 

help bring out additional characteristics in dysphonia measures 

[33]. 

Lastly, Mel Frequency Cepstral Coefficients (MFCCs) have 

been widely used in automatic speech recognition and speaker 

identification, and recent studies have shown that they are 

promising in biomedical applications as well [14], [15], [26], 

http://www.kayelemetrics.com/
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[34]. MFCCs target the placement of the articulators 

(collectively referring to the mouth, teeth, tongue, and lips), 

which is known to be affected in PD [35]. We clarify that the 

articulatory features used in this study are characterizing 

fluctuations and instability in postural stability of articulators 

during sustained vowel phonation, and are not used to 
characterize dysarthria. 

Overall, we calculated 309 dysphonia measures using the 

speech database, where each dysphonia measure produced a 

single number per phonation, resulting in a design matrix of 

size 156×309. There were no missing entries in the design 

matrix. 

B. Data exploration and statistical analysis 

Exploratory analysis is typically the first step in most 

applications involving dealing with data, in order to gain a 

preliminary understanding of the statistical properties of the 

dataset. It includes data visualization plots (e.g. scatter plots) 

and the computation of statistical associations [36]: here, we 

computed the Pearson correlation coefficient and the 

normalized mutual information [14] to assess the association 

strength between each feature and the response. The 

normalized mutual information ranges from 0 to 1, where 

larger values indicate stronger statistical association between 
the feature and the response. 

C. Feature selection 

The very large number of dysphonia measures used in this 

study (309) may lead to overfitting due to the curse of 

dimensionality: the feature space will be inadequately 

populated with only 126 samples. Recent findings suggest that 
even powerful classifiers such as support vector machines and 

random forests are not immune to the curse of dimensionality, 

and their performance may degrade as a result of including too 

many features [15]. Reducing the number of features may or 

may not improve the generalization performance of the 

classifier (i.e. performance in a novel dataset); however a 

reduced feature subset typically facilitates insight into the 

problem via analysis of the most predictive features [37]. 

Exhaustive search through all possible feature subsets is 

computationally infeasible. Instead, feature selection (FS) 

algorithms offer a principled, computationally tractable 

approach to select a parsimonious, information-rich feature 
subset. Contrary to feature transformation algorithms (the 

most popular example is principal component analysis, for 

details see Bishop [38]), which transform the original features 

to build a new feature set with new properties, in FS the 

results are more interpretable because we retain domain 

expertise. Hence, we try to determine “which of the originally 

computed dysphonia measures really matter in this problem”. 

Here, we used a recently proposed FS algorithm, LOGO (fit 

locally and think globally), which has shown promising results 

over a wide range of different applications [39]. LOGO is a 

feature weighting algorithm, where each feature is assigned a 
weight which can be interpreted as the „importance‟ of the 

feature in predicting the response in the presence of the other 

features. The feature subset was selected using cross-

validation (CV), using only the training data at each CV 

iteration (90% of the data, randomly selecting samples at each 

iteration, see section III.E for details). The CV process was 

repeated a total of 100 times, where in each iteration the M 

features (M=309) appear in descending order of selection. 

Ideally, the FS and ranking should be identical for all CV 

iterations, however in practice this is often not the case. In 

order to identify the feature subset we use the strategy 

previously outlined in Tsanas [15], [26]. Specifically, we 
create an empty set S which will contain the indices of the 

selected features. We apply the following voting scheme, 

where feature indices are incrementally included, one at a 

time, in S. For each step K (K=1…M) we find the indices 

corresponding to the features selected in the 1…K search steps 

for the 100 CV iterations. We select the feature index which 

appears most frequently amongst the 100×K elements that has 

not been previously included in S. This index is now included 

as the Kth element in S. Ties are resolved by including the 

lowest index number. Moreover, we introduce the stability 

weight, which is the percentage of times in the 100 CV 

iterations that each feature was selected in the feature subset 
containing K features: this expresses the confidence of the FS 

algorithm in selecting each feature in perturbed versions of the 

dataset (which are obtained by randomly selecting 90% of the 

samples in each iteration and repeating the process 100 times). 

The larger the stability weight, the more robust the results of 

the FS algorithm, and the more confident we are the feature is 

indeed predictive of the response. 

The ranked feature subsets can now be presented into the 

classifier in the subsequent mapping phase to estimate the 

binary response “acceptable” or “unacceptable” using the 

dysphonia measures. 

D. Statistical mapping: estimating the response 

Although correlation analysis may give an indication of the 

association strength of each feature with the response and the 

potential of differentiating the two classes in this study, we 

need to build a functional relationship f(X)=y, which maps the 

dysphonia measures X to the response y. That is, we need a 
binary classifier that will use the dysphonia measures to 

discriminate phonations as “acceptable” or “unacceptable”. 

We compared two widely-used statistical machine learning 

algorithms here: Random Forests (RF) [40], and Support 

Vector Machines (SVM) [41].  

RF is an ensemble method, weighting the output of a large 

number of base learners (random decision trees). Typically, 

the RF output regarding the class of a new sample is simply 

the class that gets the majority of votes from the base learners. 

RF is fairly insensitive to the choice of the free parameters 

[40]: (1) the number of trees, which should be fairly large (we 
used 500 trees, which is the default suggestion), and (2) the 

number of features over which to search to construct each 

branch of each tree (we used the square root of the input 

feature space, which is again the default suggestion). 

In many practical applications, it may be useful to predict 

the response in a probabilistic setting. That is, a new unseen 

data sample is assigned a probability belonging to each of the 

possible classes, rather than a single class. The larger this 

probability is for one of the classes, the more confident we are 

that the sample in fact belongs to that class. With RF we can 

use the proportion of the output of the decision trees to 

determine the probability that a new sample belongs to each of 
the possible classes.  
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SVM rely on the margin maximization principle, 

constructing an optimal separating hyper-plane in the feature 

space. The aim is to maximize a geometric margin between 

points from the two classes. In most practical applications data 

will not be linearly separable; in those cases SVM transform 

the data into a higher dimensional space, and construct the 
separating hyperplane in the new space [38]. SVM are known 

to be particularly sensitive to the values of their free 

parameters, and great care needs to be exercised when 

optimizing this classifier. Here, we used a Gaussian radial 

basis function kernel and linearly scaled each feature to lie in 

the range [-1, 1], which is the standard approach [42]. The 

determination of the optimal values of the kernel parameter γ 

and the penalty parameter C was decided using a grid search 

of possible values. We selected the pair (C, γ) that gave the 

lowest CV misclassification error (see III.E for details). 

Specifically, we searched over the grid (C, γ) defined by the 

product of the sets: C = [2-5, 2-13,…, 215] , and γ = [2-5, 2-13,…, 
23]. Once the optimal parameter pair (C, γ) was determined, 

we trained and tested the classifier using these parameters. We 

used the LIBSVM implementation [42]. 

Similarly to RF, it is possible to obtain probabilistic outputs 

with SVM. We refer to Wu et al. [43] for an overview of the 

different strategies to obtain probability estimates with SVM. 

Here, we used the default LIBSVM strategy, which relies on a 

sigmoid function to determine the probability that the query 

sample belongs to either of the two possible classes in the 

binary SVM setting [43]. 

E. Classifier validation and generalization performance 

The generalization performance of the classifier is an 

estimate of the performance we might expect on a novel 

feature dataset, assuming this novel dataset will come from a 

similar distribution to the feature data used to train the 

classifier. Typically, this validation is achieved using CV or 

bootstrap techniques [44]. Here, we used a 10-fold CV 
scheme, where the original data samples (126 phonations) 

were split into two subsets: a training subset consisting of 90% 

of the data samples (113 phonations), and a testing subset 

consisting of 10% of the data samples (13 phonations). The 

process was repeated 100 times, where in each repetition the 

original dataset was randomly permuted prior to splitting into 

training and testing subsets. On each repetition, we computed 

the mean absolute error ˆMAE 1/ i ii Q
N y y


  , where ˆ

iy  

is the predicted response, iy  is the actual response for each ith 

entry in the training or testing subset, N is the number of 

phonations in the training or testing subset, and Q contains the 

indices of that set. Errors over the 100 CV repetitions were 

averaged and the classifier accuracy was computed as 1-MAE.  

In addition, we report our findings when training the 

classifier using samples from 13 PD subjects and testing the 

performance of the classifier on the samples of the 14th 

subject (i.e. leave all the samples from one subject out of the 

training set and use them for testing – LOO testing scheme). 

The process is repeated for all 14 subjects, each time leaving 

the phonations of one subject out of the training set, and using 

those phonations to calculate the classifier accuracy. 
 

F. Contaminating speech signals with additive white 

Gaussian noise or pink noise 

The speech signals in this study were collected under 

controlled acoustic conditions, which might not resemble 

accurately the acoustic conditions where the LSVT 

Companion is used at home. Therefore, in addition to 

analysing the high quality speech signals, we also simulated 

more realistic ambient environments to obtain speech signals 

contaminated with noise. The aim is to investigate how well 

the proposed methodology might generalize in settings where 

the speech signals are recorded in a quiet room at the subjects‟ 

homes. Specifically, each of the 126 speech signals was 
contaminated with (a) additive white Gaussian noise, or (b) 

pink noise [45]. Both additive white Gaussian noise and pink 

noise are often used in diverse engineering applications to 

simulate noise. For example, pink noise has been observed in 

many electronic devices [45], and is often used to simulate 

realistic noisy environments over which vocal performance is 

assessed [46]. In both cases we experimented with relatively 

low power noise, because the head-mounted microphone in 

the LSVT Companion and the requirement of the LSVT 

treatment sessions to be completed in a quiet room should 

practically suggest that the contaminating noise has relatively 
low power compared to the actual speech signal (we used 

SNR=60 dB and SNR=40 dB). 

IV. RESULTS 

This section presents the main findings: firstly, based on the 

assessment of the phonations from the two most experienced 

raters (C.F and L.R.), after this, we investigate the automated 

probabilistic assessment of the speech samples to see how well 

they match the assessments of all raters. In section IV.A we 

use the 126 samples, and in the following sections we also 

introduce the additional (repeated) 30 samples to study intra-

rater and inter-rater variability. 

A. Analysis using the assessment of the most experienced 

raters 

Table I presents the 10 dysphonia measures most strongly 

associated with the response, which was defined to be 0 for 

“acceptable” phonations and 1 for “unacceptable” phonations. 
All these dysphonia measures were statistically significantly 

correlated (p<0.01) with the response. The interpretation of 

the association strength between two random variables (here 

between each feature and the response) based on the 

magnitude of the correlation coefficient depends on the 

application and there are no strict guidelines; nevertheless, 

correlation coefficients with an absolute value larger than 0.3 

can be considered relatively strong in medical applications 

[36], [47], [48]. These statistical findings suggest that the 

binary classification task in this study may be successful (i.e. 

we may expect to get relatively high accuracy). In addition, 
Fig. 1 presents density estimation plots of the 10 dysphonia 

measures most strongly associated with the response, 

providing a visual impression of the distribution of their 

values for the two classes. 
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Next, we use the LOGO FS algorithm to determine a 

parsimonious feature subset, which is presented in Table II 

along with the LOGO weight and the stability weight. It is 
interesting that many of the non-standard dysphonia measures 

(i.e. dysphonia measures other than jitter and shimmer, here 

mainly energy-related dysphonia measures) appear to be 

consistently selected by LOGO. The top five features in 

particular, appear to exhibit relatively large feature weights 

and are constantly selected (stable) in all 100 iterations of 

perturbed versions of the original dataset, which suggests 

these features may generalize well in new unseen data with the 

same properties. We note that a dysphonia measure which has 

larger weight or is selected before other dysphonia measures 

by LOGO does not necessarily mean it is more stable. Each of 

the LOGO weights across the 100 iterations (particularly the 
weights for the top six features) exhibited a quasi-Gaussian 

distribution (results not shown). LOGO weights where the 

mean value is larger than the standard deviation can be 

considered unstable (i.e. their weight value cannot be trusted). 

A very low weight value reflects that the feature does not 

contribute towards predicting the response (for example the 

LOGO weight of VFERNSR,TKEO appears as 0.00±0.00 because 

we rounded all values to the closest second decimal digit and 

practically contributes no predictive information). 

We compute the out of sample performance of SVM and 

RF as a function of presenting to the classifiers the top K 

features (K=1…30) selected using the LOGO FS algorithm. 

Figure 2 presents the performance results when using 10-fold 
CV with 100 iterations for statistical confidence, and Fig. 3 

the results when training the SVM with the samples from 13 

subjects and testing on the samples from the 14th subject 

(LOO testing). In both cases SVM was slightly better than RF, 

and hence the performance of RF is not shown. We observed 

that when at least eight features are used, the performance of 

the classifier fluctuates around 90% depending on the number 

of features presented to the classifier. The number of selected 

features can be decided on the basis of the results in Table II, 

TABLE I 

STATISTICAL ASSOCIATIONS OF THE DYSPHONIA MEASURES WITH THE RESPONSE 

Dysphonia measure Description 
Correlation 

coefficient 

Mutual 

information 

IMFNSR,SEO Noise to signal energy ratio of speech signal constituents (components) -0.508 0.474 
3rd MFCC 3rd MFCC coefficient -0.368 0.432 

2
nd

 MFCC 2
nd

 MFCC coefficient -0.530 0.404 
1

st
 MFCC 1

st
 MFCC coefficient -0.502 0.393 

DFA Characterizes the extent of turbulent noise -0.468 0.386 

0
th
 MFCC 0

th
 MFCC coefficient 0.485 0.379 

IMFNSR,entropy Noise to signal entropy ratio of speech signal constituents (components) -0.487 0.353 
JitterF0abs,diff Mean absolute difference of successive fundamental frequency estimates 0.312 0.319 

Log energy Logarithm of the energy of the speech signal  0.419 0.304 
VFERNSR,TKEO Extent of noise in speech using the nonlinear energy operator -0.281 0.303 

The ranking was determined by the mutual information (MI), and for clarity we present only the 10 dysphonia measures with the largest MI value. The reported 

MI is normalized (that is, it lies in the range 0 to 1, where 0 denotes that the response is independent of the dysphonia measure, and 1 indicates that the response 

is completely determined by the dysphonia measure). All results were rounded to the nearest third decimal digit. All dysphonia measures were statistically 

significantly correlated (p < 0.01) with the response. All samples were used to generate these results (N = 126 phonations). The response refers to the assessment 

of the phonation as “acceptable” or “unacceptable”. 

 

 

 
Fig. 1.  Density estimation plots of the 10 most strongly associated 

dysphonia measures with the response (see Table 1). The red dotted lines 

correspond to pathological voices. The estimates were computed using kernel 

density estimation with Gaussian kernels. 

  

TABLE II 

INCREMENTAL SELECTION OF A ROBUST FEATURE SUBSET USING THE LOGO 

ALGORITHM 

Dysphonia measure LOGO Weight Stability weight (%) 

Entropy detail wavelet coef 

4
th
 level of F0 

5.05 ± 0.86 100 

IMFNSR,SEO 3.16 ± 0.92 100
 

0
th
 MFCC 2.84 ± 0.75 100 

DFA 2.26 ± 0.94
 

100 

VFERSNR,SEO 1.85 ± 0.64 100 

ShimmerA0,p1 0.40 ± 0.75 80 

1
st
 MFCC 0.18 ± 0.37 88 

HNRstd 0.03 ± 0.22 38 

VFERNSR,TKEO 0.00 ± 0.00 58 

IMFNSR,entropy 0.00 ± 0.02 68 

For clarity we only present the top 10 features selected by LOGO in 

descending order of importance. The LOGO weight is the weight of the 

LOGO feature selection algorithm: larger indicates the feature contributes 

more towards predicting the response. The LOGO weight is summarized in 

the form mean±standard deviation using the LOGO weights from 100 

iterations, where each iteration uses a randomly selected 90% of the data (i.e. 

perturbed versions of the dataset). Each of the LOGO weights across the 100 

iterations (particularly the weights for the top six features) exhibited a quasi-

Gaussian distribution. The stability weight expresses how often each feature 

was selected in a 10-fold cross validation setting with 100 iterations: larger 

indicates that the feature was selected in more iterations, hence giving 

confidence this feature is predictive of the response. The weights have been 

rounded to the closest second decimal digit. 
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and also verified by the findings in Fig. 2 and Fig. 3. We 

choose to use the top eight dysphonia measures in Table II: 

this satisfies the goal of accurate performance, and the rather 

more subjective goal of parsimony (selecting a small feature 

subset with good performance). 

The results presented so far used the high quality speech 
signals collected under controlled acoustic conditions. To 

assess the robustness of the proposed methodology under 

more realistic noisy ambient environments, each of the 126 

speech signals was contaminated with (a) additive white 

Gaussian noise, or (b) pink noise (see III.F). Subsequently, we 

repeated the methodology described previously for the 

characterization and mapping of the noisy signals to the 

response. In both cases we found that the classification 

accuracy was still approximately 90% when using the top 
eight dysphonia measures presented in Table 2. 

B. Intra-rater variability 

The dataset in this study consists of 126 samples and 30 

additional repeated samples which were introduced to evaluate 

intra-rater variability. The inclusion of those 30 repeated 

samples was known in advance only to the most experienced 

expert rating team (C.F. and L.R.); hence, here we wanted to 

determine how well the five additional raters performed. The 

intra-rater reliability across the five expert raters was 100%, 

97%, 94%, 90% and 84%. This was computed by averaging 

the proportion of times each of the five raters agreed with their 

own assessments in the 30 repeated samples. 

C. Inter-rater variability: analysis using the assessment of all 

six raters 

Of particular interest are those phonations where there is no 

complete agreement amongst experts (inter-rater variability), 

that is, when not all expert raters agree on the assessment of 

the phonation as “acceptable” or “unacceptable”. It is not clear 

how to resolve this issue since there is no „ground truth‟; thus, 

the assessment obtained by consensus from the two most 

experienced raters (C.F. and L.R.) was used as the ground 

truth. The inter-rater reliability where the five expert raters 

agreed with the assessments of C.F. and L.R. across all 
samples was 50%, i.e. there was complete agreement in 78 out 

of the 156 phonations. The inter-rater reliability when using 

“majority rule” voting (three or more raters agreed with the 

assessment by C.F. and L.R.) was 85% across all phonations. 

In all cases where there was not complete agreement, one or 

more of the expert raters indicated the phonation was 

“difficult” to categorize.   

Next, we wanted to investigate whether the statistical 

machine learning framework used in the study could provide 

some probabilistic guidance in the assessment of the 78 

samples which are “difficult” to categorize. This could be a 

useful guide in practice, suggesting to clinical experts how 

confidently the algorithm assigns the phonation to either class. 

We used the 78 samples where there was complete agreement 

amongst all expert raters to train the classifiers, and 

interrogated the classifiers to provide probabilistic outputs. 

That is, both RF and SVM provided the probability that each 

phonation can be considered “acceptable” or “unacceptable”. 

The results are summarized in the Excel file 

„LSVTexpert_disagreement.xls‟ in the Electronic 

Supplementary Material. In some cases the probabilistic 

assessment is heavily driven towards one of the two classes, 

but there are a few samples where the algorithm assessed the 

output only marginally in favour of one of the two classes (in 

some cases the classifiers assigned the phonation to one of the 

two classes with less than 60% probability). Interestingly, 

most misclassifications (hard-thresholding the probabilistic 

outputs) of SVM and RF are precisely in those borderline 

 
Fig. 2.  Comparison of out of sample mean performance results with 

confidence intervals (one standard deviation around the quoted mean 

performance) as a function of the number of features, using the features 

selected using LOGO. These results are computed using 10-fold cross 

validation (CV) with 100 repetitions. For clarity, we present here only the 

first 30 steps of the feature selection algorithms. 
  

 
Fig. 3.  Comparison of out of sample mean performance results with 

confidence intervals (one standard deviation around the quoted mean 

performance) as a function of the number of features, using the features 

selected using LOGO. These results are computed by training the classifier 

using the samples from all but one subject (leave one out – LOO), and testing 

the classifier‟s performance on the samples from the subject which were left 

out in the training process. This process is repeated for all 14 subjects and the 

results are averaged. For clarity, we present here only the first 30 feature 

selection steps. 
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cases. We remark that those phonations appear to be 

particularly difficult to be correctly classified. 

V. DISCUSSION 

Analysis of speech signals using clinical speech signal 

processing has generated considerable research interest in the 

last decade. This is, in large part, motivated by the great 

potential of speech as an information-rich signal: many studies 

have demonstrated we can extract clinically useful information 

in a variety of applications [26], [34], [49], [50], [51]. 

Moreover, speech signals are easy to collect since all they 

require is a microphone and a digital recording device that are, 
these days, ubiquitous in everyday life. In this study, we have 

applied an extensive pool of speech signal processing 

algorithms in order to investigate how accurately we can 

discriminate sustained vowel /a/ phonations which a clinician 

would allow to persist in speech treatment (“acceptable”), 

from those that a clinician would not allow to persist in 

therapy (“unacceptable”). The objective automatic 

characterization of acceptable and unacceptable voices is an 

essential step toward the ultimate goal of advancing the use of 

treatment software by PD subjects, independent of the clinic 

and expert staff. We demonstrated that we can achieve about 

90% accuracy using a feature subset consisting of eight 
dysphonia measures. We remark that we did not observe 

substantial difference in the classifier accuracy when 

evaluating the proposed methodology using standard ten-fold 

CV with 100 iterations, or iteratively training the classifier 

with the samples from 13 subjects and testing its performance 

on the samples of the 14th subject (i.e. leave one subject out) 

which were not used in the training of the classifier (see Fig. 2 

and 3).  

We used a recently proposed robust FS algorithm to 

determine the most parsimonious feature subset: that is, the 

minimum set of dysphonia measures that jointly carries the 
maximum information towards predicting the response. The 

features were selected using a voting mechanism from 100 

perturbed versions of the original dataset (each version using a 

randomly selected 90% of the 126 samples). We quantified 

confidence in the selected feature subset using the concept of 

feature stability: the selected features (particularly the top five 

features), are consistently selected on perturbed versions of the 

dataset. This finding strongly suggests the selected feature 

subset may generalize well in new unseen data with the same 

joint distribution as the dataset studied here.  

As with previous studies we have found that the 

combination of classical (ShimmerA0,p1), newly-proposed 
nonlinear speech signals processing algorithms (IMFNSR,SEO, 

VFERSNR,SEO), and low-order MFCCs may be the most 

information-rich feature subset that leads to accurate 

replication of the speech experts‟ assessment of the phonation 

(see Table II). The dysphonia measure Entropy detail wavelet 

coef 4th level of F0, which quantifies the entropy of the 4th 

decomposition level detail wavelet coefficient, is consistently 

selected as the most predictive feature with a large LOGO 

weight, indicating that wavelet decomposition of the 

fundamental frequency time series [25] is worthy of more 

detailed investigation in other speech signal processing 
applications, particularly when high-quality F0 estimates are 

available [26]. Also, this study reinforces the findings of 

previous studies that MFCCs appear to carry clinically useful 

information in the assessment of vocal disorders [14], [15], 

[34]. It is not easy to physically interpret the MFCCs, but the 

low-order MFCCs broadly express amplitude and formant 

fluctuations. Also, IMFNSR,SEO, DFA, and VFERSNR,SEO are 
SNR-type dysphonia measures quantifying excessive noise in 

the phonation. Collectively, these dysphonia measures suggest 

that incomplete vocal fold closure and vocal tremor which 

lead to the creation of aerodynamic vortices resulting in 

increased acoustic noise, may be the primary characteristic 

that clinicians use to perceptually assess whether a phonation 

is considered “acceptable” or “unacceptable”. 

Recent studies have suggested that it may be useful to 

partition the data according to gender [14], [26], [52]. 

Potentially, this can offer insight into differences of voices 

observed in males and females and possibly indicate 

something about gender-dependent characteristics. However, 
splitting the original dataset into two subsets reduces the 

statistical power of the performance evaluations, because of 

the relatively limited number of samples available to this 

study. This was verified when we partitioned the data 

according to gender, and obtained reduced performance 

accuracy. It is possible that using a larger dataset and 

partitioning the data might lead to interesting new insights, 

and increased overall performance accuracy. For example, 

data partitioning by gender provided tentative physiological 

insight into the differences of the pathophysiological 

mechanism in PD for males and females [14], [26]. 
The voice samples of this pilot study were collected under 

high quality controlled conditions: this was the first step to 

investigate the potential of the proposed methodology in 

automatically classifying rehabilitative PD speech treatment 

phonations as acceptable or unacceptable using a range of 

dysphonia measures. We have also investigated contaminating 

the high quality speech signals with low power noise (we used 

SNR=60 dB, and SNR=40 dB): specifically, we used (a) 

additive white Gaussian noise and (b) pink noise, which may 

present a more realistic setting of recording conditions at the 

PD subjects‟ homes. Encouragingly, we found practically 

negligible loss in performance compared to the setting where 
the original high quality signals were used when the noise 

power was kept at relatively low levels. 

It would be interesting to study the effect of collecting data 

under less controlled settings, for example at the subjects‟ own 

homes, to verify the findings of this study: this is ultimately 

necessary to scale the applicability and practicality of the 

proposed technology. We remark that the use of the head-

mounted microphone in the LSVT Companion and the 

expected compliance of the PD subjects to complete the 

speech treatment sessions in a quiet room (environment with 

low ambient noise) will lead with very high probability to high 
quality signals with minimal interference from external 

sources. In practice, it may be useful to integrate in the LSVT 

Companion an assessment of ambient noise in order to avoid 

starting or pausing the speech treatment session when the 

required acoustic requirements are not met. We have 

previously reported that using self-collected speech signals 

obtained remotely from the subjects‟ homes may be a viable 

approach towards monitoring average PD symptom severity 
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[14], [26]. Similarly, the LSVT Companion has shown great 

promise recently as a tool for independent at-home speech 

rehabilitation through self-collected speech signals and 

automatic feedback [22]. Perhaps most importantly, the 

satisfactory reception of the PD subjects towards the LSVT 

Companion makes this a promising field for further 
exploration [22]. We are currently working towards expanding 

the current database in a less acoustically controlled 

environment where the recordings are obtained in the subjects‟ 

homes. We will later use this information in the development 

of an algorithm that can predict “acceptable” and 

“unacceptable” ratings automatically during independent use 

of the LSVT Companion by PD subjects. 

VI. CONCLUSIONS 

We see this study as a step towards the larger goal of 

developing automatic decision support tools in clinical 

applications. We emphasize that the developed methodology 

is objective, fully replicable, and logistically convenient both 

for patients and national health systems; whereas the 

assessment of the phonations by trained raters is subjective, 

requires the dedicated time of experts, and may not always be 

replicable (intra-rater and inter-rater variability). The 

relatively limited number of samples used in the study 

suggests caution in the generalization of the current findings, 

which need to be further validated using new datasets before 
this technology could be used widely in clinical praxis. 

We envisage these advances as major technological 

milestones and would set the stage for a continuum of 

technology-supported solutions that increase accessibility to 

voice clinical treatment for a wider PD population. 
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