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Objective comparison of methods to decode
anomalous diffusion
Gorka Muñoz-Gil 1, Giovanni Volpe 2✉, Miguel Angel Garcia-March3, Erez Aghion4, Aykut Argun2,

Chang Beom Hong5, Tom Bland6, Stefano Bo 4, J. Alberto Conejero3, Nicolás Firbas 3,

Òscar Garibo i Orts 3, Alessia Gentili 7, Zihan Huang 8, Jae-Hyung Jeon 5, Hélène Kabbech 9,

Yeongjin Kim5, Patrycja Kowalek 10, Diego Krapf 11, Hanna Loch-Olszewska 10, Michael A. Lomholt12,

Jean-Baptiste Masson 13, Philipp G. Meyer 4, Seongyu Park 5, Borja Requena 1, Ihor Smal9,

Taegeun Song 5,14,15, Janusz Szwabiński10, Samudrajit Thapa 16,17,18, Hippolyte Verdier 13,

Giorgio Volpe 7, Artur Widera 19, Maciej Lewenstein 1,20, Ralf Metzler 16 & Carlo Manzo 1,21✉

Deviations from Brownian motion leading to anomalous diffusion are found in transport

dynamics from quantum physics to life sciences. The characterization of anomalous diffusion

from the measurement of an individual trajectory is a challenging task, which traditionally

relies on calculating the trajectory mean squared displacement. However, this approach

breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous

behaviour, or non-ergodic processes. Recently, several new approaches have been proposed,

mostly building on the ongoing machine-learning revolution. To perform an objective

comparison of methods, we gathered the community and organized an open competition,

the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to

a commonly-defined dataset including diverse conditions. Although no single method

performed best across all scenarios, machine-learning-based approaches achieved superior

performance for all tasks. The discussion of the challenge results provides practical advice for

users and a benchmark for developers.
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T
he random walk1 is a mathematical model ubiquitously
employed at all scales in a variety of scientific fields,
including physics, chemistry, biology, ecology, psychology,

economics, sociology, and computer science (Fig. 1a)2,3. Random
walks are characterized by an erratic change of an observable over
time (e.g., position, temperature, or stock price, Fig. 1b). The
archetypal example of a random walk is Brownian motion, which
describes the movement of a microscopic particle in a fluid as a
consequence of thermal forces4.

The space explored by random walkers over time is commonly
measured by the mean squared displacement (MSD), which
grows linearly in time for Brownian walkers (MSD∝ t)4. Devia-
tions from such a linear behavior displaying an asymptotic
power-law dependence (MSD∝ tα) have been observed in several
fields and are generally referred to as anomalous diffusion4:
subdiffusion for 0 < α < 1, and superdiffusion for α > 1 (as parti-
cular cases, α= 0 corresponds to immobile trajectories, α= 1 to
Brownian motion, and α= 2 to ballistic motion). The left panel in
Fig. 1c shows some examples of MSDs for Brownian (black line),
subdiffusive (blue line), and superdiffusive (red line) motion
together with the corresponding trajectories in 2D. For example,
anomalous diffusion occurs in the diffusion of lipids and recep-
tors in the cell membrane5, in the transport of molecules within
the cytosol6 and the nucleus7, in the foraging and mating

strategies of animals8, in sleep-wake transitions during sleep9, and
in the fluctuations of the stock market10.

The recurrent observation of anomalous diffusion has driven
an important theoretical effort to understand and mathematically
describe its underlying mechanisms. This effort has provided a
palette of microscopic models characterized by different spatial
(step length) and temporal (step duration) random distributions,
both with and without long-range correlations4. Important
models for the interpretation of experimental results are
continuous-time random walk (CTRW)11, fractional Brownian
motion (FBM)12, Lévy walk (LW)13, annealed transient time
motion (ATTM)14, and scaled Brownian motion (SBM)15 (some
sample trajectories are shown in the central panel of Fig. 1c, see
Methods, "Theoretical models”).

In typical experiments aimed at understanding diffusion, the
available data consists of trajectories of a tracer, such as a molecule
in a cell, a stock price in the stock market, a foraging animal in its
environment. The aim is to extract from these trajectories infor-
mation about properties of the tracer and of the medium where its
motion takes place, namely to infer the anomalous diffusion expo-
nent α, to determine the underlying diffusion model and, finally, to
determine whether these properties change over time and space.

The first crucial step to characterize the tracer’s motion
is the determination of the anomalous diffusion exponent α

Task 1: Inference of α Task 2: Model classification Task 3: Trajectory segmentation
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Fig. 1 The AnDi challenge tasks and datasets. a Random walks, characterized by an erratic change of an observable, occur at all length and time scales in a
variety of systems. Examples are provided by atoms in magneto-optical traps; the diffusion of cellular components, such as DNA, proteins, lipids, and organelles;
the motion of bacteria and cells; and animals foraging and mating. b Trajectories of tracers in spaces of different dimensionality: 1D, Proteins sliding along DNA
fragments; 2D, receptors diffusing in the plasma membrane; 3D, cells migrating in a 3-dimensional matrix. The color code of the trajectories represents time.
c The challenge tasks. Task 1 – Inference of the anomalous diffusion exponent. Representative trajectories and corresponding MSD for diffusive (α= 1, black
lines), subdiffusive (0 < α < 1, blue lines), and superdiffusive (1 < α < 2, red lines) motion. Task 2 – Classification of the underlying anomalous diffusion model.
Representative trajectories for a continuous-time random walk (CTRW), fractional Brownian motion (FBM), Lévy walk (LW), annealed transient time motion
(ATTM), and scaled Brownian motion (SBM). Different diffusion models produce subtle changes. Details of the models are described in the text and in
Methods, "Theoretical models''. Task 3 – Segmentation and characterization of a trajectory with changepoint. Trajectory switching diffusion model and/or
exponent as a result of diffusion in a spatially heterogeneous environment, represented by the colored patches.
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(Task 1, Fig. 1c). It is typically estimated by fitting the MSD to a
power law16. Traditionally, the MSD is defined as the ensemble
average over a group of tracers (EA-MSD, Equation (1)), in
analogy to the solution to Fick’s second law for the spreading of a
bunch of particles in a homogeneous medium4. When long tracks
are available, the MSD can be instead obtained as a time average
from the trajectory of a single tracer (TA-MSD, Equation (2)).
While seemingly a straightforward procedure, determining α
from the MSD can introduce significant errors and biases: (i) the
accuracy of the estimation depends on fluctuations, which can
only be reduced by increasing the number of tracers (for EA-
MSD) or the length of the trajectory (for TA-MSD), which is
often not possible because of practical constraints; (ii) the value of
α is biased by noise, such as the localization precision of
experimental trajectories17, which needs to be estimated inde-
pendently to introduce a proper correction16,18; iii) while for a
stationary motion in a homogeneous medium, EA-MSD and TA-
MSD have the same exponent, several systems are intrinsically
heterogeneous and non-stationary19,20, which can lead to non-
ergodicity (i.e., the non-equivalence of time and ensemble
averages). Typically, the exponent α of the EA-MSD characterizes
the physical properties of the systems (e.g., the trapping time
distribution in CTRW or the time-dependence of diffusivity in
SBM). However, in several non-ergodic systems, the TA-MSD
shows a linear behavior with respect to the timelag in the long
time limit even when α ≠ 14; iv) the behavior of the MSD at short
times or timelags might differ from its asymptotic limit4, thus
long trajectories are required for the correct estimation of α.

The second critical issue is to determine the underlying dif-
fusion model (Task 2, Fig. 1c), which is related to its driving
physical mechanism. Here, difficulties arise because the calcula-
tion of the MSD is not very informative, since different models
provide curves with the same scaling exponent. Other statistical
parameters have been proposed for this task and algorithms based
on the combination of several estimators allow to distinguish
between pairs of models21–24, but there is no general consensus
on how to unambiguously determine the underlying diffusion
model from a trajectory.

The third issue is to determine whether the properties of the
motion of a given tracer change over time6,20,25,26 (Task 3, Fig. 1c).
This can be both the result of heterogeneity in the environment
(e.g., patches with different viscosity on a cellular membrane) or of
time-varying properties of the tracer (e.g., different activation states
of a molecular motor). In these cases, the determination of α and of
the underlying diffusion model must be combined with a seg-
mentation of the trajectory to identify fragments with homogeneous
characteristics. Several methods have been proposed for the seg-
mentation of time traces27, mostly based on changes in diffusion
constant, velocity, or diffusion mode (e.g., immobile, random,
directed)28–31. Only recently, attempts have been made to deter-
mine changepoints with respect to a switch in α25,32,33 and diffusion
model34. Until now, a systematic assessment of changepoint
detection methods for anomalous diffusion has not been performed.

In recent years, advances in fluorescence techniques have greatly
increased the availability of high-precision trajectories of single
molecules in living systems35, producing an increasing drive to
develop methods for quantifying anomalous diffusion16,25,32,36–39.
Furthermore, the recent blossoming of machine learning has pro-
moted the accessibility of new powerful tools for data analysis40 and
further widened the palette of available methods33,41–43. Some of
the novel approaches have already delivered new insights into
anomalous diffusion in different scenarios44–46.

This recent increase of available methods performing similar
tasks requires an objective assessment on a common reference
dataset to define the state of the art and guide end-users in the
optimal choice of characterization tools for each specific

application. To assess the performance in quantifying anomalous
diffusion, we have therefore run an open competition, the
Anomalous Diffusion (AnDi) Challenge, divided into three dif-
ferent tasks: anomalous exponent inference, model classification,
and trajectory segmentation, each for 1D, 2D, and 3D trajectories.
The performance of submitted methods was assessed with com-
mon metrics on simulated datasets with trajectory length and
signal-to-noise level reproducing realistic experimental condi-
tions (Methods, "Structure of the datasets”). The submitted
methods were also compared on the blind analysis of experi-
mental trajectories (Supplementary Note 2). Although several
experiments provide 2D and 3D trajectories, we first present and
discuss in detail the results obtained for the 1D trajectories. This
choice is driven by the fact that the 1D-case is conceptually easier
to understand, thus complex methods are in general first devel-
oped in 1D and then extended to multidimensional space, as
testified by the larger participation for this dimension. Thus, it
allows us to assess the performance of a larger set of methods
including those that might eventually be extended to 2D and 3D.
We follow the same rationale when describing the physical
models and their simulations.

Results
Competition design. The challenge consisted of three tasks: Task
1 (T1) – inference of the anomalous diffusion exponent α; Task 2
(T2) – classification of the underlying diffusion model; Task 3
(T3) – trajectory segmentation (Fig. 1c and Methods, "Organi-
zation of the challenge”). The aim of the last task was to identify
the changepoint within a trajectory switching α and diffusion
model, as well as to determine the exponent and model for the
identified segments. Each task was further divided into three
subtasks corresponding to the trajectory dimensions (1D, 2D, and
3D, Fig. 1b), totaling 9 independent subtasks. Participants could
choose to submit predictions for any combination of subtasks.
For the competition, we let developers build and use their own
tools to provide predictions for the common dataset. While this
choice limited the methods assessed to those provided by the
community, it ensured that those algorithms were properly
applied. Datasets were generated as described in Methods,
"Structure of the datasets” and "Theoretical models”.

Challenge participants and performance evaluation. We
received submissions from 13 teams for T1, 14 teams for T2, and 4
teams for T3. One of the methods participating in T3 had results
comparable with random predictions and was thus excluded from
the discussion of the results. Basic information about methods used
by participating teams can be found in Methods, "Challenge
methods”, Table 1, and Supplementary Note 1. A detailed descrip-
tion of each of the methods can be found in the referenced articles.

We investigated the performance of the methods submitted for
each task separately using the metrics described in Methods,
"Metrics”. A summary of rankings for all tasks and methods is
presented in Supplementary Fig. 2. Full rankings for T1 and T2 in
all dimensions are presented in Fig. 2a–c and Fig. 3a–c, respectively,
together with representative information for the best-in-class
methods for the 1D case (Fig. 2d–g and Fig. 3d–g, respectively).
The same analysis is presented in Supplementary Fig. 3 and
Supplementary Fig. 4 for higher dimensions. Results for T3 in 1D
are shown in Fig. 4a–c, together with representative information for
the best-in-class methods (Fig. 4e, f). Results for all dimensions are
presented in Figs. 4d, e and Supplementary Fig. 5.

Task 1: Inference of the anomalous diffusion exponent. The
inference of the exponent α is the most popular way to quantify
anomalous diffusion and 13 teams participated in T1 of the AnDi
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Challenge (Fig. 2a–c). We observed a rather large spread of
performances, but for each dimension we could identify a cluster
of four top methods with comparable performance, scoring better
than the rest. Three methods (E, G, and L) were consistently part
of the top group in all dimensions. All top teams used machine-
learning approaches: teams E, G, J, and M applied them to raw or
simply pre-processed trajectories; teams F and L used statistical
features as inputs. All these methods, except L and J, were based
on length-specific training.

Besides the overall MAE, Fig. 2a–c also shows the performance
obtained for specific diffusion models (colors within bars) by all
participating teams. In Fig. 2d–g, the methods are compared with
the simple fitting of the TA-MSD, used as a baseline method
(Methods, "Alternative and baseline estimators”). Most methods
perform better than TA-MSD. As expected, the fit of the TA-MSD
shows better performance on ergodic (FBM) and ultra-weakly non-
ergodic (LW) rather than on (weakly) non-ergodic models
(CTRW, ATTM, and SBM), for which TA-MSD and EA-MSD
have different scaling exponents (Fig. 2d and Supplementary
Fig. 6). Interestingly, the top-performing methods do not suffer
from this limitation and provide similar MAE for all the models,
with exception of the ATTM (short ATTM trajectories might not
undergo any change of diffusion coefficient and, therefore, the
result is indistinguishable from pure Brownian motion, impacting
the final performance). As an example, in Fig. 2e, we show a 2D
histogram of the predicted exponent vs the ground truth for the
best-in-class method (team M) and the TA-MSD (upper inset) in
1D. As most of the top-scoring methods (Supplementary Fig. 7,
Supplementary Fig. 8, and Supplementary Fig. 9), the best-in-class
method achieves similar performance over the whole range of α,
whereas TA-MSD has a lower accuracy for α≃ 0.5 to 1. Obtaining
precise predictions for α≃ 1 is particularly relevant, since the
correct assessment of the exponent in this regime would further
allow the discrimination between normal and anomalous diffusion.
In addition, the method of team M (similarly to other top methods,
(Supplementary Fig. 14, Supplementary Fig. 15, and Supplemen-
tary Fig. 16)) does not show any bias, whereas the TA-MSD
systematically underestimates the value of α as a consequence of
localization error16,18 (Fig. 2e, lower inset).
In Fig. 2f, we explore the effect of the trajectory length on the

exponent prediction. As the trajectory length increases, the MAE

rapidly decreases toward a value ≈ 0.1 for the best-performing
methods. Thus, the MAE of machine-learning approaches
features a striking improvement with respect to the nearly
constant MAE of the TA-MSD, demonstrating the capability of
machine learning to take advantage of the information contained
in longer trajectories.

Last, we investigate the effect of the level of noise (Fig. 2g).
Even for SNR= 1, i.e., when the standard deviation of the noise
has the same amplitude as the displacement standard deviation,
the top-performing methods show a greater than 2-fold
improvement in predicting α with respect to TA-MSD. Thus,
while localization noise delays convergence of TA-MSD to its
asymptotic behavior16, the top methods seem able to determine
patterns associated to the correct exponent even from short-time
behaviors, which is an ability particularly useful for many
potential applications to the analysis of experimental data.

Task 2: Classification of the underlying diffusion model. We
present the performance of the submitted methods to classify
trajectories between the 5 diffusion models in Fig. 3 and Sup-
plementary Fig. 4. For each dimension of this task, a different
number of methods showed comparable performance (Fig. 3a–c).
For each dimension, we selected the 2 teams that achieved top
scores. These top positions were occupied by three teams with
machine-learning methods operating on raw trajectories (teams E
and M) or features (team L). In general, the use of features as
input to machine learning models seems to provide better results
as the trajectory dimension increases.

We also dissect the results as a function of the exponent α, as
shown in Fig. 3a–c (colors within the bars), and in more detail in
Fig. 3d for 1D, and in Supplementary Fig. 10 for all dimensions.
For all methods, the worst performance is achieved for α≃ 1. This
is expected because in this regime all models converge to pure
Brownian motion and thus feature large similarities in their long-
time statistical properties, even though their microscopic
generative dynamics are different. A similar situation occurs for
α→ 0, a regime in which, independently of the underlying model,
trajectories are nearly immobile and dominated by localization
noise. Still, most of the methods show good predictive capability
(F1≳ 0.7) even in these two regimes, since they probably learn to
recognize details or patterns of the microscopic dynamics. The

Table 1 Participating teams and summary of methods. See Supplementary Note 1 for further details on these methods. Methods

were classified based on the type of approach (as machine learning (ML), or classical statistics (Stat)); their input data (as raw/

lightly preprocessed trajectories (Traj), or features (Feat)); and their training procedure (as length-specific (L-specific, Yes), or

not (No)).

Label Team name Method Class Input Tasks L-specific

A Anomalous Unicorns Ensemble of CNN and RNN45,76 ML Traj T1(1D), T2(1D) No
B BIT Bayesian inference77,78 Stat Traj All No
C DecBayComp Graph neural networks79 ML Traj + Feat T1, T2(1D, 2D) No
D DeepSPT ResNet + XGBoost80,81 ML Traj + Feat T1(1D), T2(1D) No
E eduN RNN + Dense NN82 ML Traj All Yes
F Erasmus MC bi-LSTM + Dense NN31 ML Feat T1, T2 Yes
G HNU LSTM83 ML Traj T1 Yes
H NOA CNN + bi-LSTM84 ML Traj T1(1D) No
I QUBI ELM85 ML Feat T1(1D), T2(1D) No
J FCI CNN42,86 ML Traj T1(1D, 2D), T2(1D, 2D), T3(1D, 2D) No
K TSA Scaling analysis and feature engineering87 Stat Feat T1, T2(1D) No
L UCL Feature engineering + NN88 ML Feat T1, T2 No
M UPV-MAT CNN + bi-LSTM89 ML Traj T1, T2 Yes
N Wust ML A 1D: RISE + forest classifier90 ML Feat T2 No

2D, 3D: MrSEQL + logistic reg.91

O Wust ML B Gradient boosting regression +
classifier43,92,93

ML Feat T1(1D, 2D), T2 No
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confusion matrix of the best-in-class method (team E) for the 1D
subtask (Fig. 3e) provides a representative view of the classifica-
tion capabilities of these methods. Results obtained by other
methods are shown in Supplementary Fig. 11, Supplementary
Fig. 12, and Supplementary Fig. 13. The best accuracy is obtained
for CTRW and LW, for which the method of team E is able to
identify their markedly different features. However, it shows a
higher level of error when discriminating between Gaussian
processes, such as FBM and SBM39. The worst performance is
obtained for ATTM, whose trajectories display a large hetero-
geneity in diffusion coefficients and lack a characteristic time-
scale. Rather long trajectories (including at least a switch of
diffusivity) are thus necessary to distinguish ATTM from the
other models.

Similarly to what we observe for T1, the trajectory length and
the presence of localization noise affect the performance of the
methods, as shown in Fig. 3f, g, respectively. Nevertheless, even
for very short and noisy trajectories, the results obtained by the
top methods display excellent accuracy (F1 ≈ 0.6 to 0.8), taking
into account that the largest noise level severely hides the actual
diffusive dynamics.

Task 3: Segmentation of the trajectory. Recently, several experi-
mental studies have evidenced the occurrence of switching of dif-
fusion model and α within individual trajectories6,25. However,
methods to determine and analyze such changes are not established
and are widely employed yet. Probably, for this reason, the parti-
cipation to T3 was reduced as compared to T1 and T2, with two
teams proposing machine-learning methods (RNNs for team E
and CNN for team J), and team B using Bayesian inference.
The methods taking part in T3 were specifically designed for the
challenge and have not been tested on other time-dependent pro-
cesses, e.g., such as those involving a continuous change of anom-
alous diffusion properties.

The main objective of T3 is the precise assessment of the
changepoint between two diffusive regimes, characterized by
different diffusion models and anomalous diffusion exponents. As
shown in Fig. 4a, participants to this task achieved RMSE well
below the one obtained from random predictions. The RMSE is
heavily affected by the position of the changepoint, being
minimum for changepoints located near the center of the
trajectory. As described earlier, the performance for predictions
of α and the diffusion model strongly depends on the trajectory

Fig. 2 Challenge results for Task 1: inference of α. a–c Final leaderboards according to the MAE obtained by participants for 1D (a), 2D (b), and 3D (c).
The colors represent the relative contributions to the overall mean absolute error (MAE) calculated for each underlying diffusion model and normalized
such that the sum of all contributions gives the value of the same metric calculated over the whole dataset. d MAE obtained by participating teams as a
function of the diffusion model for 1D trajectories. e Probability distribution of the predicted vs ground-truth anomalous diffusion exponent for the best-in-
class team in 1D (team M). Insets: (top left) Probability distribution of the predicted vs. ground-truth anomalous diffusion exponent for the baseline method
(TA - MSD). (bottom right) Frequency of the bias between predicted and ground-truth anomalous diffusion exponent for the best-in-class team (team M,
orange line) and the baseline method (TA - MSD, gray area) in 1D. f MAE obtained by participating teams as a function of the trajectory length in 1D.
gMAE obtained by participating teams as a function of the SNR in 1D. All results for T1 in 1D, 2D, and 3D are provided in Supplementary Figs. 3, 6-9, 14-16.
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length. In this task, they are thus correlated to the changepoint
position, which sets the segment length. Therefore, the larger
(smaller) the distance of the changepoint from the origin, the
better (worse) the prediction for the first segment is and the worse
(better) than for the second segment (Fig. 4b, c).

For the challenge purposes, we simulated all trajectories as having
a changepoint that could be located at any position, including the
endpoints. In this view, the presence of a changepoint at one
extreme was interpreted as a trajectory not having an “actual”
changepoint. Similarly, participants were required to always provide
a prediction for the changepoint position. In the case of not
detecting a changepoint, the predicted position should have
coincided either with the start or the end point of the trajectory,
considered equivalent for this evaluation. With this design, the
RMSE simultaneously provides an evaluation of the localization
precision as well as of its specificity. We also performed further
analyses to independently assess the sensitivity and specificity of the
participating methods and gain further insight into their perfor-
mance. Since Fig. 4a-c show that it is challenging to estimate the
changepoint when it is located very close to the trajectory start/end

points, we considered trajectories with a changepoint within ϵ= 20
points from the start/end as not having a changepoint. The same
criterion was applied to the predictions provided by each method.
Predictions/ground truth pairs located at ϵ < t < L− ϵ were counted
as true positives. Predictions/ground truth pairs located at t ≤ ϵ or
t ≥ L− ϵ were counted as true negatives. Mixed cases were
considered as false positive or false negatives. Based on this
classification, we could evaluate the recall (Equation (14)), the false
positive rate (Equation (15)), and the Jaccard similarity coefficient
(Equation (16)). We also calculated the RMSETP, defined as the
RMSE obtained only for true positives.

The plot of the recall vs. the false positive rate (Fig. 4d) shows
that all submitted methods detect more than 92% of the inner
changepoints but present a rate of false positives larger than ≈10%
and sometimes as high as ≈40%. We think that several factors might
interplay to produce this behavior. As explained earlier, participants
always provided a prediction for the changepoint position, the latter
being equal to one of the trajectory endpoints if no changepoint was
detected. In the latter analysis, our distance-based criterion relaxes
this requirement to a distance ϵ= 20 points from the endpoints.

Fig. 3 Challenge results for Task 2: diffusion model classification. a–c, Final leaderboards according to the F1-score obtained by participants for 1D (a), 2D
(b), and 3D (c). The colors represent the relative contributions to the overall F1-score calculated for different ranges of anomalous diffusion exponents and
normalized such that the sum of all contributions gives the value of the same metric calculated over the whole dataset. d F1-score obtained by participating
teams as a function of the anomalous diffusion exponent for 1D trajectories. e Confusion matrix for the predictions of the best-in-class team in 1D (team E).
Numbers in matrix cells represent the number of correctly and incorrectly classified trajectories for each ground-truth model as percentages of the number
of trajectories of the corresponding ground-truth model (column-based normalization, so that their sum along the columns should add up to 100, with
minor deviation due to rounding). Thus, the percentages of correctly classified observations can be thought of as class-wise recalls. f F1-score obtained by
participating teams as a function of the trajectory length in 1D. g F1-score obtained by participating teams as a function of the SNR in 1D. All results for T2 in
1D, 2D, and 3D are provided in Supplementary Figs. 4, 10-13, 17-20.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26320-w

6 NATURE COMMUNICATIONS |         (2021) 12:6253 | https://doi.org/10.1038/s41467-021-26320-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Thus, the high false-positive rate reflects the methods’ limitations
when dealing with changepoints close to the trajectory endpoints
that, instead of being associated with no changepoint, are generally
predicted to be more internal. Nevertheless, since the challenge
metric does not explicitly account for false-positive identifications,
predicting an inner changepoint even when the odds of predicting a
false positive are high might be a conservative choice to keep the
RMSE low. In some cases, this effect is produced by the choice of
architecture. For example, in 1D and 3D, team E applied a strategy
based on the averaging of predictions obtained through different
networks. In this way, they could reduce the RMSE even for
changepoints close to the trajectory endpoints (Fig. 4a), but it also
led to a high rate of false positives (Fig. 4d, e), associated with
contrasting predictions of the networks (e.g., a very early
changepoint and a very late changepoint), averaging into an
internal point.

In addition, we aimed at exploring the relationship between the
overall detection performance and changepoint localization
precision. As a measure of detection performance, we used the
Jaccard similarity coefficient for binary classification (Equation
(16)) that, with respect to the recall, further accounts for false-
positive detection. The localization precision was instead
estimated by RMSETP resulting from true positive identifications.
The plot of the Jaccard similarity coefficient vs RMSETP (Fig. 4e)
shows that, despite the false positive rate, all submitted methods
show good overall detection performance and comparable
precision (RMSETP= 10–20 points). Interestingly, the perfor-
mance of teams B and J improves with the dimensionality of the
problem, consistently with the increase of information provided
by the additional components of the motion. Team E also shows
an improvement from 1D to 2D, in agreement with this
explanation. The degradation of performance of team E in 3D

can be ascribed to their approach to the problem through the
independent training of three 1D networks, showing obvious
limitations when applied to a diffusion model that is not the
simple composition of 1D diffusion along with orthogonal
directions.

The combination of α-exponents and diffusion models of the
two segments is also expected to affect the changepoint
localization precision. However, our dataset has a rich parameter
space entangling several variables (anomalous model, α, noise,
changepoint location) and some imbalance since not all the
models can have any value of α. To highlight changes in RMSE
due to a switch in α or in the diffusion model, we restricted the
analysis to a subset of trajectories with a single noise level
(SNR=10, Fig. 4f, g). Unsurprisingly, the RMSE is minimal when
there is a large change in α, as between nearly immobile motion
(α < 0.5) to either superdiffusion (1 ≤ α < 1.5) or directed or
ballistic motion (1.5 ≤ α ≤ 2) (Fig. 4f). The worst-case scenario is
instead observed when both segments undergo mild sub-
(0.5 ≤ α < 1) or superdiffusion (1 ≤ α < 1.5). The matrix shows a
reasonable level of symmetry, considering the large heterogeneity
of the dataset. However, in the presence of small changes of α,
such as between 0.05 ≤ α < 0.5 and 0.5 ≤ α < 1, or between
1 ≤ α < 1.5 and 1.5 ≤ α ≤ 2, the methods seem to detect changes
involving an increase of α with better precision.

This dependence is related in a nontrivial fashion to the change
in RMSE observed as a function of diffusion models (Fig. 4g). In
fact, while FBM and SBM allow Brownian, sub-, and super-
diffusion, CTRW and ATTM do not allow superdiffusion, and
LW does not allow subdiffusion. Changepoints associated with a
switch of α but with no change of model are the most difficult to
precisely locate. The smallest RMSE is observed when LW
switches to CTRW. In contrast, models involving an abrupt

Fig. 4 Challenge results for Task 3: trajectory segmentation and characterization. a Root mean square error (RMSE) as a function of the changepoint
location along the trajectory for all teams in 1D (teams E, J, and B). Dashed lines represents the RMSE associated to a random prediction of the changepoint
position. b Corresponding means absolute error (MAE) of the prediction of α and, (c) F1-score for the classification of the diffusion model for the first (solid
symbols/continuous line) and second segment (empty symbols/dashed line) as a function of the changepoint location along the trajectory. d Plot of the
recall vs the FPR for all participating teams. e Plot of JSC vs RMSETP for all participating teams. For the calculation of the metrics in d-e, only trajectories
presenting a changepoint at a distance larger than 20 points from the start/end points were considered as undergoing a switch. RMSETP was estimated
only for true positive position pairs. Colors indicate teams, following the same color code as in a. f, g RMSE as a function of the anomalous diffusion
exponent (f) and of the diffusion model (g) of the first and second segment for the best-in-class team in 1D (team E). All results for T3 in 1D, 2D, and 3D
are provided in Supplementary Fig. 5.
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(ATTM) or smooth change of diffusivity (SBM) are the most
difficult to distinguish from the others.

Analysis of experimental data. The datasets provided to the
participants for the scoring of the methods participating in T1
and T2 also included experimental trajectories of mRNA mole-
cules in bacterial cells, telomeres in the cell nucleus, proteins in
the cell membrane and cytoplasm, single atoms in an optical trap,
and tracer particles in the cell cytoplasm and stirring liquid, from
previously published works. For these trajectories, no objective
ground truth is available besides the interpretation given in the
literature. Therefore, it is not possible to assess their absolute
errors and they were not included in the scoring. However, we
found it interesting to carry out a comparative analysis of the
predictions blindly provided by the 5 top-scoring challenge

participants in each task. Out of the whole dataset, we discuss the
results for 4 representative experiments20,38,47–49 for the infer-
ence of α (Fig. 5a–d) and the classification of the underlying
model (Fig. 5e–h). The results obtained by all methods are shown
in Supplementary Figs. 21–28.

The first dataset includes 2D trajectories of mRNA molecules
inside live E. coli cells from the work by Golding and Cox47

(Fig. 5a). Together with Ref. 50, these data provide one of the first
evidence of subdiffusion in cellular systems. These experiments
have generated a lively discussion about their underlying
diffusion model (mainly between FBM and CTRW) and
ergodicity21,51–53. All top-ranking methods provided distribu-
tions of exponents centered (median between 0.75 and 0.81)
around the value estimated in the original publication (α= 0.77)
with variable width (st. dev. between 0.04 and 0.18) (Fig. 5e).
However, the methods agreed in classifying the large majority

Fig. 5 Analysis of experimental datasets. a–d, Schematic representation of the experiments analyzed in the contest of the AnDi challenge: 2D motion of
mRNA molecules inside live E. coli cells (47, a); 2D motion of telomeres in the nucleus of mammalian cells (38,48, b); 2D motion of biomolecular receptors
moving on the membrane of mammalian cells (20, c); and 1D motion of single atoms moving in a 1D periodic optical potential (49, d). e–h Histograms of the
estimation of the anomalous diffusion exponent αp predicted by top teams for trajectories from experimental datasets. Gray areas correspond to the results
of the baseline method TA-MSD. Dashed lines indicate the original estimations of α provided by Refs. 47 (e),38,48 (f),20 (g), and49 (h). i–l Histograms of
the diffusion model predicted by top teams for trajectories from experimental datasets. Dashed boxes indicate the original classifications provided by
Refs. 47 (i),38,48 (j),20 (k), and49 (l). We show predictions obtained by the top 5 teams for the corresponding subtask. For the last dataset, we further
selected the teams based on their performance on short (L≈ 10) trajectories. All results for the analysis of the experimental data are presented in
Supplementary Figs. 21-28.
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(between 74% and 100%) of trajectories as ATTM (Fig. 5i). This
classification confirms the occurrence of ergodicity breaking,
since both CTRW and ATTM are compatible with non-ergodic
behavior and both have power-law waiting-time distribution. The
preference toward ATTM might arise because of its varying
diffusivity that better accounts for heterogeneity due to the
biological environment or to variable noise.

The second dataset of experiments includes 2D trajectories of
telomeres in the nucleus of mammalian cells38,48 (Fig. 5b). It was
previously shown that their TA-MSD features a FBM-like
subdiffusive scaling for short and intermediate times with a
mean exponent α≃ 0.5, approaching a linear behavior (α≃ 1) at
longer timescales48. Also in this case, the classification methods
largely agree and associate most of the trajectories to FBM
(between 65% and 85%) (Fig. 5j). However, the determination of
the exponent often produces a bimodal distribution with median
values between 0.61 and 0.75 (Fig. 5f). Likely, the methods are not
able to pick up the crossovers between diffusion regimes and
rather assign an average exponent to each trajectory. The analysis
of these experiments deserves the further methodological effort,
since heterogeneous diffusion is emerging as a key feature of
random motion in the biological environment54.

The third dataset consists of 2D trajectories recorded for
receptors diffusing in the plasma membrane of mammalian cells
(Fig. 5c). In the original work20, the TA-MSD was found to scale
roughly linearly, whereas the EA-MSD showed subdiffusion with
α≃ 0.84; this non-ergodicity was attributed to a temporal change
of diffusivity and associated to ATTM. Once more, the
classification methods largely confirmed previous results. A large
percent of trajectories were attributed to the two models with
time-dependent diffusion coefficients, namely the ATTM
(between 57% and 71%) and the SBM (between 22% and 33%)
(Fig. 5k). Moreover, inference methods consistently detected a
large heterogeneity in α, including both sub- and superdiffusion,
with a slightly subdiffusive overall value, the median between 0.86
and 0.95 (Fig. 5g), in agreement to the original study20.

To demonstrate the applicability of these methods beyond
biological systems and at different Spatio-temporal scales, we
included a dataset with 1D trajectories obtained for single atoms
moving in a 1D periodic potential and interacting with a near-
resonant light field that acts as a thermal bath49 (Fig. 5d). These
data were originally interpreted as evidence of CTRW with α= 149.
Subsequently, the CTRW was deduced from microscopic para-
meters reproducing the trajectories without free parameters55.
Because of the intrinsic complexity of this experiment, the
trajectories were extremely short (≈10 data points), a regime that
challenges the predictive power of any approach. Indeed, in this
range of trajectory length all the methods showed rather large
uncertainties on simulated data (Fig. 2f and Fig. 3f). However, since
the microscopic mechanisms are well known, we aimed at using
these experiments as a benchmark to check the predictive limits of
the different approaches for very short trajectory length in a real
scenario. The top regression methods for such short trajectories in
1D provided distributions spread over a wide range of α, with
medians between 0.8 and 0.91 (Fig. 5h). The results of model
classification were also less conclusive with respect to the previous
cases, likely a consequence of having short trajectories and of having
α≃ 1, a regime where detectable differences among models are
reduced (as shown in Fig. 3d). Predictions might also suffer from
the lack of training data based on the microscopic model of Ref. 55,
of which CTRW with α= 1 is an approximation. Still, the CTRW
was the most-likely model for 4 of the 5 top-scoring methods
(between 28% and 48%, Fig. 5l), thanks to the capability of these
methods to extract information from the microscopic dynamics of
the generative models and not only from the long-term properties
of the trajectory and its MSD.

The methods participating in T3 were not initially planned to
be applied to the analysis of experimental data, due to the lack of
trajectories featuring changes of diffusion models and/or
anomalous diffusion exponent with the availability of previous
analysis for comparison. However, when applied to some of the
experimental trajectories described above, they did not evidence a
significant occurrence of changepoints, as expected.

Discussion
The results of the AnDi Challenge (T1) show that the choice of
the analysis method strongly affects the accuracy in the deter-
mination of the anomalous diffusion exponent α, in particular for
more challenging conditions. Most of the methods outperform
the conventional TA-MSD, even for long trajectories. For each
dimension, we could identify a group of methods with compar-
able performance that greatly improve the precision of the
anomalous diffusion exponent with respect to the baseline pro-
vided by the classical estimation of the MSD. These approaches
were all based on machine learning, so we can infer that machine-
learning-based methods can go beyond classical statistics, prob-
ably because they can extract from the trajectories of complex
models some information that is not easily assessed by classical
statistics. Despite a little degradation of performance, top-ranking
methods perform best also for short and noisy trajectories, as
shown by the correlation between metrics calculated over a subset
of trajectories (L < 200, SNR= 1) with respect to the same metrics
obtained over the whole dataset (Supplementary Fig. 29). This is a
major improvement for trajectory analysis, since it enables col-
lecting information from short and noisy tracks (e.g., those
obtained by SPT PALM56) and from time segments of trajectories
exhibiting heterogeneous behavior, without further averaging.
However, the aspect that mostly boosts the overall performance is
the ability to extract the anomalous diffusion exponent (an
intrinsic ensemble property) for non-ergodic models from single
trajectories (Fig. 2d). Top-performing methods are capable of
determining model properties usually obtained from ensemble
averages or feature distributions from patterns present in single
trajectories. It is quite remarkable that this is possible even in the
presence of noise that is known to hide non-ergodic behavior in
some classical estimators57 or with short trajectories that limit
obtaining sufficient statistics for features such as the waiting-time
distribution. This is a major limitation for approaches based on
classical statistics (e.g., Bayesian inference) with models having
several hidden variables that need to be systematically integrated.
The availability of reliable methods to infer α will encourage
researchers to further investigate the deviations from Brownian
behavior that emerge in many experiments of interest, e.g., for
biology and physics.

The AnDi challenge (T2) has led to the first concerted effort to
develop methods able to classify individual trajectories among
several mathematical models of diffusion. Machine-learning
methods ranked top in the leader board and achieved an over-
all accuracy greater than 80% at detecting the ground-truth dif-
fusion models. The comparison of F1-score and AUC/ROC
(Supplementary Fig. 17, Supplementary Fig. 18, Supplementary
Fig. 19, and Supplementary Fig. 20) shows that most of the
methods are quite confident at providing the correct classifica-
tion. However, a limitation of all these classification approaches is
that they can only choose among the diffusion models provided
in the training. To robustly extend model classification to actual
experiments, it can be useful to further widen the palette of
models (e.g., by using ad hoc models), include a none-of-the-
above class, and/or to include some metric of the confidence of
the estimation (e.g., by using an entropy measure calculated on
the predictions of an ensemble of machine-learning models).
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Trajectory segmentation (T3 of the AnDi challenge) has been
widely investigated when changes occur with respect to an esti-
mator of the observable such as the mean or the variance27.
Determining changes of anomalous diffusion is a rather novel
problem, triggered by recent experimental findings6,25. We kept
the challenge design rather simple, with trajectories of fixed
length featuring exactly one changepoint. Even in this simple
condition, the wide parameter space made the problem rather
challenging, limiting the participation to T3 to only 4 teams. Yet,
the submitted results showed an interesting asymmetry: The
changepoint localization precision seems not only to depend on
the relative length of the segments but also on the changepoint
location (Fig. 4a), producing a lower RMSE for changepoints
located at the beginning of the trajectory. Similarly, the methods
show the best performance in estimating α and diffusion model
for the first segment (Fig. 4b, c). We believe that this is at least
partly a consequence of the inaccurate localization of the chan-
gepoint and the non-stationarity of some models. The inexact
localization of the changepoint produces two spurious segments,
altering the tail of the first segment and the initial point of the
second by removing or adding spurious points. For non-
stationary models, the initial point encloses information about
the initiation of the physical process, thus improper segmentation
impacts more severely the evaluation of the second segment58.

From the blind analysis of various experimental datasets, we
observed that the top methods, although based on different
principles, lead to very similar results. This is encouraging as it
points to an objective underlying reality of the anomalous dif-
fusion phenomena and its mechanisms, which can be measured
experimentally and has now been underpinned by the results of
the AnDi challenge. Importantly, the results provided by the
challenge methods were also in line with the conclusions of
previous studies20,38,47–49, further reinforcing their reliability.
Interestingly, while the original works required a combination of
several estimators, including ensemble averages, the challenge
methods were able to provide compatible predictions in a one-
shot analysis and with no prior knowledge about the experi-
mental conditions. This is a particularly remarkable result, since
the methods were not specifically trained to work with para-
meters used in experiments. In fact, experimental trajectories
often show broad distributions of diffusion coefficients. In spite of
a fixed localization error, this produces a non-uniform SNR with
respect to our simulations. Also, experiments have different
sampling rates with respect to the characteristic diffusion time-
scale. Accounting for the variability introduced by these effects
during the training might improve the methods’ prediction cap-
ability, further boosting their performance.

The number of experiments producing individual random tra-
jectories is steadily increasing, accompanied by the production of ad
hoc analysis tools. The AnDi challenge gave the opportunity to
obtain a first assessment of some of these tools, oriented at detecting
anomalous diffusion. In particular, we focused on methods quan-
tifying deviation from pure Brownian behavior in terms of anom-
alous diffusion exponent and the underlying mathematical model.
However, similar experiments are often analyzed following a more
phenomenological approach, e.g., the classification of motion as
diffusive, immobile, confined, or directed. Although the latter
classification offers a more intuitive interpretation of random
motion occurring in some systems, the models included in the
challenge are strictly connected to these diffusion modalities. In fact,
they allow a generalization of anomalous diffusion beyond the life
sciences and include macroscopic natural and human processes,
ranging from the foraging of animals to the spread of diseases, to
trends in financial markets and climate records.

Building on these considerations, we believe it is necessary to
establish clear and unified guidelines to identify and report

anomalous diffusion, in particular from experiments, where the
ground truth is not known. Possibilities in this sense might
involve a list of key parameters to be quantified together with
their respective confidence interval, e.g., based on the comparative
use of multiple methods, involving both machine learning and
classical statistics. The joint approach will allow to combine of
advantages from both worlds: while machine learning methods
are becoming more available and powerful, they often operate as a
black box; estimators based on classical statistics can thus help to
provide deep insight on anomalous diffusion phenomena.

The AnDi challenge gathered a large part of the community to
trigger this discussion and collaborate on this unifying task. We
hope this effort might be extended in the future to reach a larger
consensus. To this aim, we have built an interactive tool (http://
andi-challenge.org/interactive-tool/) where datasets and results of
the challenge are stored; new methods can undergo an automated
benchmarking according to the challenge rules and compare their
scores with those of other participants. In fact, since the con-
clusions of the challenge, several participants have already
improved their scores. Therefore, the challenge is permanently
open and performance improvements will be continuously
updated on demand.

Methods
Organization of the challenge. We ran the Anomalous Diffusion (AnDi) chal-
lenge as a time-limited competition from March 1, 2020, to November 1, 2020. The
competition was hosted on the Codalab platform (https://
competitions.codalab.org/competitions/23601) and divided in three phases
(Development, Validation, and Challenge). The competition has later been con-
verted to an open challenge, continuously accepting new submissions. Datasets,
methods, list of participants, and results of the AnDi Challenge are available at
http://andi-challenge.org. Software for simulation and analysis is hosted on the
competition GitHub repository https://github.com/AnDiChallenge.

Challenge methods. Among the participants, we could distinguish fifteen sub-
stantially different approaches (Table 1 and Supplementary Note 1). We classify the
approaches based on three different criteria, as detailed in Table 1. First, we group
methods based on the type of approach used, whether involving machine-learning
or classical statistics. A large majority of methods are based on machine-learning
architectures, such as recurrent neural networks (RNN), convolutional neural
networks (CNN), gradient boosting machines, graph neural networks, extreme
learning machines (ELM), or sequence learners. Other methods are based on
statistical approaches, such as Bayesian inference, temporal scaling, and random
interval spectral ensemble (RISE). A second grouping involves the type of input
data used. Some methods employed feature engineering using classical statistics as
an input, whereas other were simply fed raw trajectories. A further classification is
based on whether methods required a specific training or model for different
(ranges of) trajectory lengths (length-specific) or not. Several methods could be
directly used or easily adapted to run multiple tasks.

Structure of the datasets. Simulated datasets were composed of synthetic tra-
jectories generated according to five different mathematical models, both ergodic
and non-ergodic: annealed transient time motion (ATTM, weakly non-ergodic), a
motion with random changes of the diffusion coefficient in time14, continuous-
time random walk (CTRW, weakly non-ergodic), a motion undergoing local
trapping with a wide distribution of waiting for times11, fractional Brownian
motion (FBM, ergodic), a motion with long-range correlated steps, often used to
describe viscoelastic effects12, Lévy walk (LW, ultra-weakly non-ergodic), a motion
displaying irregular jumps with constant velocity, often associated with animal
foraging strategies13, and scaled Brownian motion (SBM, weakly non-ergodic), a
motion whose diffusion coefficient features deterministic time-dependent
changes15. We considered trajectories with anomalous diffusion exponents in the
range α∈ [0.05, 2]. Exponents were restricted to α ≥ 0.05 because smaller expo-
nents produce practically immobile trajectories. Note that CTRW and ATTM are
strictly subdiffusive (α ≤ 1), LW is superdiffusive (α ≥ 1), FBM cannot have ballistic
behavior (α < 2), whereas SBM covers the whole exponent range.

Each dataset contained 104 trajectories of variable length. All trajectories were
first generated with a length L= 1000. For theoretical models providing trajectory
sampling at irregular times (CTRW and LW), oversampling was used to obtain
tracer coordinates at uniform times. The trajectories were then standardized to
have a unitary standard deviation σD of the distribution of displacements over unit
time. To mimic experimental data, trajectories were corrupted with a finite
localization precision. For this, a random number from a normal distribution
N ð0; σnoiseÞ was added to each trajectory coordinate. Last, the displacements’
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standard deviation was scaled by a random number sampled from a normal
distribution N ð0; 1Þ to include the effect of an effective diffusion coefficient (see
Fig. 1a–c for exemplary trajectories in each dimension). Trajectories were thus cut
to the desired length. For T1 and T2, trajectories were cut to lengths L∈ [10, 1000],
whereas for T3 all trajectories had length L= 200. A different dataset was generated
for each task to ensure the proper balance of the feature to be determined.
Therefore, the dataset for T1 had a balanced distribution of anomalous exponents
but not of diffusion models, whereas the dataset for T2 was balanced with respect
to the diffusion models. For T3, trajectories were obtained by concatenating
trajectories simulated for all models and exponents. Each trajectory had a random
changepoint at a discrete index tGT∈ [1, 199] corresponding to a change at least in
one of the two features (α and diffusion model). An example of such kind of
trajectories is presented in Fig. 1c.

Three levels of noise were used to corrupt trajectories, corresponding to
σnoise= 0.1, 0.5, 1. The SNR was calculated as SNR= σD/σnoise, where σD is the
standard deviation of the distribution of displacements over unit time. Due to the
previous standardization, the SNR levels thus were SNR= 1, 2, 10. Trajectories in
2D and 3D were allowed to have different noise levels along with different
directions. The overall SNR was calculated as the average of SNRs calculated along
with orthogonal directions.

We developed the andi-datasets Python package59 to allow participants to
generate their own dataset (e.g., for training). Examples of trajectories for various
exponents and models are presented in Fig. 1c. Details about available functions
can be found in the hosting repository https://github.com/AnDiChallenge/
ANDI_datasets.

Theoretical models. In this section, we present a brief introduction to the concepts
of anomalous diffusion and ergodicity breaking. We provide theoretical insights
about the anomalous diffusion models considered in the AnDi challenge, as well as
the description of the pseudocode used for simulations in 1D. Finally, we describe
how to extend the algorithms to simulate the diffusion models in 2D and 3D, since
for some models this is not simply obtained as the composition of motion along
with independent directions. The Python implementation of all the algorithms
described below is available at https://github.com/AnDiChallenge/
ANDI_datasets59.

Anomalous diffusion and ergodicity breaking. When analyzing trajectories, diffu-
sion is typically quantified through the calculation of the mean squared displace-
ment (MSD). The MSD grows linearly in time for Brownian walkers, MSD ~ t,
while it shows a power-law scaling for anomalous diffusion, MSD ~ tα, where α is
the anomalous diffusion exponent. In practice, the MSD can be calculated either by
performing an ensemble average of the positions of a set of N tracers,

EA-MSD ðtÞ ¼ 1

N
∑
N

i¼1
½xiðtÞ � xið0Þ�2; ð1Þ

or, for the trajectory of a single tracer, sampled at L discrete times ti= iΔt, as a
time-average:

TA-MSD ðΔ ¼ mΔtÞ ¼ 1

L�m
∑
L�m

i¼1
xðti þmΔtÞ � xðtiÞ
� �2

: ð2Þ

In its most general definition, a process is considered ergodic if any single
realization is able to explore all the possible configurations of the system. The
impossibility of performing such an exploration is usually referred to as ergodicity
breaking. For a (strong) non-ergodic process, the space of configurations is
separated into mutually inaccessible domains, hence preventing its full exploration.
If those domains are indeed accessible, but a single tracer is unable to visit them in
a finite time, the process is instead defined as weakly non-ergodic60. In this case, a
sufficiently large ensemble of tracers may indeed explore all possible
configurations, hence producing a difference between ensemble and time averages.

In the context of anomalous diffusion, a system is said to show weak ergodicity
breaking if the TA-MSD does not converge to EA-MSD in the infinite time limit4.
Generally, while the EA-MSD still shows a power-law scaling, the TA-MSD scales
linearly with the timelag4. Moreover, the value of the TA-MSD for different
trajectories at a given time lag is a random variable, whose distribution can be
analytically calculated for some diffusion models61. One can then define the time
and ensemble-averaged TEA-MSD over a set of N trajectories as

TEA-MSD ðΔÞ ¼ 1

N
∑
N

i¼1
TA-MSD ðΔÞi; ð3Þ

where TA-MSD(Δ)i is the TA-MSD for the i-th trajectory. The so-called ergodicity
breaking parameter (EB)51 can be calculated as

EB ¼ hζ2i � 1; ð4Þ

where ζ= TA-MSD(Δ)/TEA-MSD(Δ). The EB parameter, in the limit Δ/T→ 0, is a
widely used tool to quantify ergodicity breaking (here T= LΔt represents the
trajectory length). For ergodic diffusion, then EB→ 0, while any other value
showcases a non-ergodic behavior. Processes like CTRW, ATTM, and SBM show
weak ergodicity breaking14,62,63, whereas Brownian motion and FBM are ergodic,
though convergence of the EA-MSD to the TA-MSD may be slow for certain values
of the anomalous exponent α64. Indeed, as discussed in24, the ergodicity of FBM

requires careful analysis as a function of α, and often other statistical measures are
necessary to study ergodicity breaking. To find a technique to study short
trajectories, it is important to note that, for CTRW and ATTM, the TA-MSD
shows a short-time linear behavior TA-MSD∝ Δ even for anomalous trajectories.
This showcases one of the limitations of the fitting of the TA-MSD to determine
the anomalous diffusion exponent. For the case of LW, a different kind of
ergodicity breaking named ultraweak can been identified, where time and ensemble
averages only differ by a constant factor65,66.

Continuous time random walk. The continuous-time random walk (CTRW)
defines a large family of random walks with arbitrary displacement density for
which the waiting time, i.e., the time between subsequent steps, is a stochastic
variable11. Here, we consider a specific case of CTRW for which waiting times are
sampled from a power-law distribution ψ(t) ~ t−σ and displacements are sampled
from a Gaussian distribution with variance D and zero mean. In such case,
the anomalous diffusion exponent is α= σ− 1 (the EA-MSD=〈x(t)2〉∝ tα).
Since the waiting times are generated from a power-law distribution, for σ= 2 the
EA-MSD features Brownian diffusion with logarithmic corrections2. For α= 1 one
should instead use a Poisson density, or a fixed waiting time (i.e., the limit of a one-
sided Lévy stable density in the limit α= 1).

The algorithm used to simulate CTRW trajectories is described in Algorithm 1.
Notice that the variable τ stands for the total time at i-th iteration. Also notice that

the output vector x! corresponds to the position of the particle at the irregular

times given by t
!

.

Algorithm 1. Generate CTRW trajectory
Input:

length of the trajectory T
anomalous exponent α
diffusion coefficient D
Define:

x!! empty vector

t
!! empty vector
N(μ, s)! Gaussian random number generator with mean μ and standard
deviation s

i= 0; τ= 0
While τ < T do

ti  sample randomly from ψ(t) ∼ t−σ

xi  xi�1 þ Nð0;
ffiffiffiffi

D
p
Þ

τ  τ+ ti
i  i+ 1

end while

Return: x!; t
!

Fractional Brownian motion. In fractional Brownian motion (FBM), x(t) is a
Gaussian process with stationary increments. This process is symmetric,
〈x(t)〉= 0, and importantly its EA-MSD scales as 〈x(t)2〉= 2KHt2H. Here, H
is the Hurst exponent, which is related to the anomalous diffusion exponent as
H= α/212,67. Also, the two-time correlation is

hxðt1Þxðt2Þi ¼ KHðt2H1 þ t2H2 � jt1 � t2j2HÞ.
FBM can also be introduced as a process arising from a generalized Langevin

equation where the noise is non-white (aka fractional Gaussian noise, fGn). The
fGn has a standard normal distribution with zero mean and power-law
correlations:

<ξfGnðt1ÞξfGnðt2Þ> ¼ 2KHHð2H � 1Þjt1 � t2j2H�2

þ 4KHHjt1 � t2j2H�1δðt1 � t2Þ:
ð5Þ

The FBM features two regimes: one where the noise is positively correlated (1/
2 <H < 1, i.e., 1 < α < 2, superdiffusive) and one where the noise is negatively
correlated (0 <H < 1/2, i.e., 0 < α < 1, subdiffusive). For H= 1/2 (α= 1) the noise is
uncorrelated, hence the FBM converges to Brownian motion.

For a d-dimensional FBM, the corresponding position vector has zero mean,
〈x(t)〉= 0, the EA-MSD is 〈x(t)2〉= 2dKHt2H, the autocorrelation is

hxðt1Þxðt2Þi ¼ dKHðt2H1 þ t2H2 � jt1 � t2j2H Þ, and the fGN reads

<ξfGn;iðt1ÞξfGn;jðt2Þ> ¼ 2KHHð2H � 1Þjt1 � t2j2H�2δij
þ 4KHHjt1 � t2j2H�1δðt1 � t2Þδij;

ð6Þ

where i, j in the subindex of the fGN denotes a different cartesian coordinate.
Various numerical approaches have been proposed to solve the FBM

generalized Langevin equation exactly. Here, we use the Davies-Harte method68

and the Hosking method69 via the FBM Python package (https://pypi.org/project/
fbm/). Details about the numerical implementations can be found in the associated
references.

Lévy walk. The Lévy walk (LW) is a particular case of CTRW. The time between
steps is irregular13, but, in contrast to the CTRW considered here, the distribution
of displacements for an LW is not Gaussian. We considered the case in which the
flight times (i.e., the times between steps) are retrieved from the distribution
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ψ(t) ~ t−σ−1. In one dimension, the displacements are Δx and the step length is
∣Δx∣. The displacements are correlated with the flight times such that the prob-
ability to move a step Δx at time t and stop at the new position to wait for a new
random event to happen is ΨðΔx; tÞ ¼ 1

2
δðjΔxj � vtÞψðtÞ, where v is the velocity.

From here, one can show that the anomalous exponent is given by

α ¼
2 if 0< σ < 1

3� σ if 1< σ < 2:

�

ð7Þ

The details of the numerical implementation for the LW are given in Algorithm 2.
Notice that we use a random number r, which can take values 0 or 1, to decide in
which sense the step is performed. Also note that, as for the CTRWs, the output

vectors x!; t
!

represent irregularly sampled positions and times.

Algorithm 2. Generate LW trajectory
Input:

length of the trajectory T
anomalous exponent α

Define:

x!! empty vector

t
!! empty vector
v! random number∈ (0, 10]

i= 0
While τ < T do

ti sample randomly from ψ(t) ~ t−σ−1

xi (−1)rvti, where random r is 0 or 1 with equal probability.
τ  τ+ ti
i i+ 1

end while

Return: x!; t
!

Annealed transient time motion. The annealed transient time motion (ATTM)
implements the motion of a Brownian particle whose diffusion coefficient varies in
time14. The tracer performs Brownian motion for a random time t1 with a random
diffusion coefficient D1, then for t2 with D2, etc. The diffusion coefficients are
sampled from a distribution such that P(D) ~Dσ−1 with σ > 0 as D→ 0 and that
decays rapidly for large D. If the random times t are sampled from a distribution
with expected value E[t∣D]=D−γ, with σ < γ < σ+ 1, the anomalous diffusion
exponent is α= σ/γ (corresponding to the subdiffusive regime I of the model
described in Ref. 14). Here, we consider that the distribution is a delta function,
Pt(t∣D) ~ δ(t−D−γ). Hence, the period of time ti in which the particle performs

Brownian motion with a random diffusion coefficient Di is ti ¼ D
�γ
i , with Di

extracted from the distribution described above. The numerical implementation of
the ATTM model is given in Algorithm 3. Note that, in contrast to CTRW and LW,

now the only output is x! because the trajectory is already produced at regular time
intervals of duration Δt.

Algorithm 3. Generate ATTM trajectory
Input:

length of the trajectory T
anomalous exponent α
sampling time Δt

Define:
while σ > γ and γ > σ+ 1 do
σ  uniform random number∈ (0, 3]
γ= σ/α

end while
BM(D, t, Δt) ! generates a Brownian motion trajectory of length t with
diffusion coefficient D, sampled at time intervals Δt

x!! empty vector
while τ < T do
Di  sample randomly from P(D)Dσ−1

ti  D
�γ
i

number of steps Ni= round(ti/Δt)
xi; :::; xiþN i

 BM ðDi; ti;ΔtÞ
i  i+Ni+ 1
τ= τ+NiΔt

end while

Return: x!

Scaled Brownian motion. The scaled Brownian motion (SBM) is a process
described by the Langevin equation with a time-dependent diffusivity K(t)

dxðtÞ
dt
¼

ffiffiffiffiffiffiffiffiffiffiffi

2KðtÞ
p

ξðtÞ; ð8Þ

where ξ(t) is white Gaussian noise15. For the case in which K(t) has a power-law
dependence with respect to t such that K(t)= αKαtα−1, the EA-MSD follows
<x2ðtÞ>N � Kαt

α with Kα= Γ(1+ α)Kα. The numerical implementation of SBM is
presented in Algorithm 4.

Algorithm 4. Generate SBM trajectory
Input:

length of the trajectory T
anomalous exponent α

Define:

erfcinvð a!Þ ! Inverse complementary error function of a!
U (L) ! returns L uniform random numbers∈ [0, 1]

Calculate:
~Δx ð1α; 2α; :::;TαÞ � ð0α; :::; ðT � 1ÞαÞ
~Δx 2

ffiffiffi

2
p

UðLÞ ~Δx,
x! cumsum ð~ΔxÞ.

Return: x!

Simulations in higher dimensions. The algorithms presented above provide
examples for the simulation of 1D trajectories. In order to maintain the prop-
erties of each anomalous diffusion model, extension to 2D and 3D was per-
formed differently depending on the considered model. For ATTM, CTRW,
FBM, and SBM in 2D, trajectories were obtained by the simple composition of
(independent) motion performed over orthogonal axes. The same was done for
FBM and SBM in 3D. For ATTM and CTRW (3D), and for LW (2D and 3D),
waiting times and displacement lengths were sampled according to the recipe
provided by each particular model in 1D. However, the displacement length was
used to sets the radius of the circle (2D) or the sphere (3D) over which the tracer
step ended up. The direction was randomly chosen to ensure the uniform
sampling of the circle or the sphere, and coordinates along orthogonal axes were
calculated accordingly.

Metrics. We calculated several metrics to quantify the performance of the sub-
mitted methods with respect to the ground truth in the various tasks. Although
only the most representative metrics were used to build the competition leader-
board, others were used to gain further insight about the methods. We further built
an interactive tool (http://andi-challenge.org/interactive-tool/) for comparing
method performance (Supplementary Fig. 1). This application also provides a
useful tool for developers to benchmark new methods.

Challenge metrics.

● Mean absolute error (MAE). Methods were required to provide an accurate
prediction for the anomalous diffusion exponent α for a single trajectory
(T1) or for a part of a trajectory after segmentation (T3). Method
performance was thus quantified by the MAE between the predicted value
and the ground truth:

MAE ¼ 1

N
∑
N

i¼1
jαi;p � αi;GTj; ð9Þ

where N is the number of trajectories in the dataset, and αi,p and αi,GT
represent the predicted and ground-truth values of the anomalous
exponent of the i-th trajectory, respectively.

● F1-score. For T2 and T3, the methods have to provide a score of the
probability for a trajectory (or a segment) to be assigned to one of the five
diffusion models. Predictions for which the highest probability value
corresponded to the ground-truth model were identified as true positives.
As a summary statistics for model classification, we used the F1-score. For
multi-class classification problems, scoring metrics such as precision, recall,
and F1-score can be computed as a macro-average (which evaluates the
metric independently for each class and then take the average, giving all
classes the same weight), or as a micro-average (which aggregates the
contributions of all classes to compute the average metric). Micro-
averaging is generally preferable when class imbalance is present. Although
the challenge was based on a balanced dataset with each class equally
represented, we used a micro-averaged F1-score in order not to provide any
hint to participants about the content of the dataset. The micro-averaged
F1-score was calculated as

F1 ¼
2 TP

2TPþ FPþ FN
; ð10Þ

where TP, FP, and FN represent true positives, false positives, and false
negatives calculated over the whole dataset, respectively.

● Root mean square error (RMSE). The trajectory segmentation problem in
T3 requires the location of the point where a trajectory undergoes a change
in anomalous diffusion. The most important consideration for a
changepoint method is how accurately it localizes the changepoint itself.
The quantification of this accuracy was performed through the RMSE
between the predicted and ground truth position:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
∑
N

i¼1
ti;p � ti;GT

� �2

s

; ð11Þ

where ti,p and ti,GT represent the predicted and ground-truth values of the
changepoint position, respectively. Unlike for T1, where we used the MAE,
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in this case, we opted for the RMSE. This quadratic metric gives a higher
weight to large errors, thus penalizing methods that provide predictions
very far from the ground truth.

● Mean reciprocal rank (MRR). For ranking purposes of T3, the precision in
determining the changepoint position, the anomalous diffusion exponent
α, and the diffusion model were summarized into a single statistics for the
overall method evaluation, given by the MRR:

MRR ¼ 1

3

1

rankMAE

þ 1

rankF1
þ 1

rankRMSE

 !

; ð12Þ

where rankMAE, rankF1, and rankRMSE correspond to the position in an
ordered list based on the value of the corresponding metrics. For this task,
MAE and F1-score were calculated by treating each segment (before and
after the predicted changepoint) as an individual trajectory and averaging
the metrics obtained over the two segments.

Additional metrics. Further statistics were used for the comparative analysis of the
performance of the methods.

● Anomalous exponent bias. For the determination of the anomalous
diffusion exponent in T1 and T3, besides the accuracy, we further assessed
whether the predicted value systematically differed from the ground truth.
For this reason, we calculated the distribution of the difference between
predicted and ground truth exponent (Supplementary Fig. 14, Supplemen-
tary Fig. 15, and Supplementary Fig. 16), and estimated the bias θ as its
expectation value:

θ ¼ 1

N
∑
N

i¼1
ðαi;p � αi;GTÞ: ð13Þ

As shown in Fig. 2, the estimation of the anomalous diffusion exponent
from the fit of the TA-MSD shows a negative bias (i.e., the predicted
exponent αp is systematically smaller than the ground truth exponent αGT).
Such effect is particularly important close to αGT= 1 and is associated to
the presence of localization error18. However, as shown in Supplementary
Fig. 14, Supplementary Fig. 15, and Supplementary Fig. 16, the top-
performing methods show little or no bias in their predictions.

● Receiver operating characteristic (ROC) curve and area under the curve
(AUC). The calculation of the F1-score assumes that a method outputs a
discrete classifier (i.e., a unique choice for the diffusion model). However,
many methods output continuous numbers associated to the probability of
the input to belong to each class. Thus, these values assigned to each model
contain more information about the performance of the classifier. This
information can be summarized by the ROC curve and the corresponding
AUC. The ROC curve reports the true positive rate (or sensitivity) versus
the false negative (one minus the specificity) for different levels of
probability thresholds: if an input has a certain class probability above the
threshold, it is considered to belong to such class. The AUC is given by the
integral of the ROC curve and is equal to the probability that a classifier
will rank a randomly chosen positive instance higher than a randomly
chosen negative one. It thus provides a useful tool to compare the
sensitivity and specificity of a given classifier. In particular, being based on
probability instead of class labels, ROC/AUC reports how "doubtful” a
method is about its choice of the model. ROC curves for each class versus the
others are shown in Supplementary Fig. 17, Supplementary Fig. 18, and
Supplementary Fig. 19 for all teams. Micro- (i.e., considering each class as a
binary prediction) and macro-averaged (i.e., considering an equal weight for
the classification of each label) ROC curves are also reported. The ROC/AUC
analysis confirms that ATTM is the most problematic model to classify,
whereas the best results are obtained for CTRW and LW. The scatter plot of
values of F1-score vs. micro-averaged AUC shows a rather good correlation
(Supplementary Fig. 20), with the exception of a few models (teams L, D, and
N) that perform considerably better in terms of F1-score.

● Recall, false-positive rate, Jaccard similarity coefficient, and RMSETP. For
the assessment of the changepoint localization error in T3, we followed two
different evaluation approaches. For the challenge evaluation, we simply
quantified the RMSE. Trajectories showing no changepoint were
considered as having a dummy changepoint either at index 1 or 199.
However, to get a better understanding of methods’ performance, we also
considered an alternative analysis. For this, trajectories with ground truth
and predicted changepoints within a distance ϵ= 20 from the start/
endpoints were considered as not having a changepoint. We thus
considered four cases:

– predicted and ground-truth positions located at ϵ < t < L− ϵ, counted as
true positives (TP);

– predicted and ground-truth positions located at t ≤ ϵ or t ≥ L− ϵ,
counted as true negatives (TN);

– the predicted position located at ϵ < t < L− ϵ but the ground-truth
located at either t ≤ ϵ or t ≥ L− ϵ, counted as false positive (FP);

– the predicted position located at either t ≤ ϵ or t ≥ L− ϵ. but the ground-
truth located at ϵ < t < L− ϵ, counted as false negative (FN).

Based on this classification, we evaluated the recall (also known as
sensitivity):

recall ¼ TP

TPþ FN
; ð14Þ

the false positive rate:

FPR ¼ FP

FPþ TN
; ð15Þ

and the Jaccard similarity coefficient (JSC) for binary classification:

JSC ¼ TP

TPþ FPþ FN
: ð16Þ

We also calculated the RMSETP, corresponding to the RMSE obtained only
for prediction/ground-truth pairs classified as true positives.

Alternative and baseline estimators
Inference of the anomalous diffusion exponent. Several classical statistical methods
have been employed to characterize anomalous diffusion from single trajectories
and quantify the anomalous diffusion exponent. Many of them rely on the analysis
of the EA-MSD or TA-MSD presented in Eqs. (1) and (2).

We developed a simple tool to perform the estimation of the anomalous
exponent to establish a performance baseline for T1 of the challenge. The code
calculates the TA-MSD and performs a linear fit of its logarithm with respect to the
logarithm of the timelag for the first k data points, where k is the maximum
between 10 and 10% of the trajectory length. The anomalous diffusion exponent is
thus obtained as the slope of the straight line. This criterion has been shown to
provide reliable results for the fitting of TA-MSD for Brownian diffusion70.
Although the choice of a different timescale or the use of an independently
calculated localization precision can produce better results16, we intentionally
limited the code to a simple fitting algorithm with a straightforward criterion for
the choice of the number of data points to fit. As shown in Fig. 2d, for ergodic
models (FBM), such a simple fit produces results comparable with the best
methods. In addition, as it can be observed using the interactive tool (http://andi-
challenge.org/interactive-tool/), the estimation of α through the fit of the TA-MSD
even outscores the other methods for ergodic models (FBM) at the highest SNR
(e.g., SNR= 10). The code is available at https://github.com/AnDiChallenge/
ANDI_datasets59.

For the sake of completeness, we would like to mention other statistical
approaches not considered in the challenge that can be used to tackle T1. Besides
the MSD, another popular methodology for the quantification of the anomalous
diffusion exponent is the moment scaling spectrum MSS71,72. MSS considers
several high-order moments of the displacement distribution to obtain their scaling
exponents and uses them to calculate the slope of the exponent curve versus the
moment order, which is found proportional to α.

The anomalous diffusion exponent is strictly linked to specific characteristics of
the diffusion model, thus it can also be obtained by means of their quantification4.
However, this approach requires the knowledge (or an educated guess) of the
diffusion model. If, in addition, distributions of the associated quantities can be
obtained, then anomalous diffusion exponent can be estimated through their
fitting. For instance, for CTRW, the anomalous diffusion exponent can be extracted
by fitting the waiting time distribution ψ(t)19; for the ATTM, by fitting the
distribution of diffusion coefficients or transit times20; or, for a Lévy walk from the
flight time or step length distribution73.

Classification of the underlying diffusion model. Even though the problem of
associating a trajectory to an underlying diffusion model has been long investi-
gated, there is still no clear general consensus on how to unambiguously determine
the underlying physical mechanism from a trajectory. To the best of our knowl-
edge, model classification is generally performed using a combination of multiple
estimators and further corroborated by a comparison with the corresponding
analysis of simulated data. Several statistical parameters have been proposed in this
sense. Algorithms based on multiple estimators can allow distinguishing between
pairs of models21–23. Some of the proposed approaches are based on estimating
trajectory statistical features to determine ergodicity21,51 and Gaussianity74, and
thus restrict the number of possible models. Lastly, the velocity autocorrelation
function75 and the power spectral density38 have been shown to have model-
dependent fingerprints for some diffusion models. However, none of these methods
can be directly used to classify the trajectories as required for T2. First attempts to
provide a direct and generalized classification have been proposed only
recently36,41,43 and the developing teams have participated in the challenge.
Therefore, we decided not to provide any baseline estimation for this task.

Trajectory segmentation. Although a few methods have been recently developed for
the detection of trajectory changepoints with respect to a switch in α25,32,33 and
diffusion model34, there is no consensus on a well-established method that can be
used as a baseline for T3. Limited to the changepoint detection part, we thus
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decided to compare methods’ performance with the results of a random prediction,
as shown in dashed lines in Fig. 4a and Supplementary Fig. 5. For this, we simply
calculate the RMSE for selecting a random point on a trajectory having a chan-
gepoint at tGT. The error associated with such a random prediction is not uniform,
since it depends on the changepoint position tGT along the trajectory, as well
as on the trajectory length L. The random predictor RMSErandom can thus be
calculated as the RMSE for a trajectory with a changepoint at position tGT and
random predictions t of the changepoint drawn from a uniform distribution in the
range [0, L]

RMSErandomðtGTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

L

Z L

0

t � tGT
� 	2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t3GT þ L� tGT
� 	3

3L

s

; ð17Þ

where L is the trajectory length.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The simulated data used in this study are available for download at the competition

website http://andi-challenge.org/challenge2020/. Ground-truth for datasets used in the

first phase of the competition for training are also available.

Code availability
All software used for the Challenge is available at https://github.com/AnDiChallenge.

The code of the andi-datasets package59 used to generate the competition datasets

is available at https://github.com/AnDiChallenge/ANDI_datasets.
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