
University of Wollongong
Research Online

Faculty of Engineering and Information Sciences -
Papers: Part A Faculty of Engineering and Information Sciences

2014

Objective computation versus subjective
computation
Nir Fresco
Hebrew University of Jerusalem, nfresco@uow.edu.au

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Fresco, N. (2014). Objective computation versus subjective computation. Erkenntnis: an international journal of analytic philosophy,
Online First

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eis

Objective computation versus subjective computation

Abstract
The question ‘What is computation?’ might seem a trivial one to many, but this is far from being in consensus
in philosophy of mind, cognitive science and even in physics. The lack of consensus leads to some interesting,
yet contentious, claims, such as that cognition or even the universe is computational. Some have argued,
though, that computation is a subjective phenomenon: whether or not a physical system is computational,
and if so, which computation it performs, is entirely a matter of an observer choosing to view it as such.
According to one view, which we dub bold anti-realist pancomputationalism, every physical object (can be
said to) computes every computer program. According to another, more modest view, some computational
systems can be ascribed multiple computational descriptions. We argue that the first view is misguided, and
that the second view need not entail observer-relativity of computation. At least to a large extent, computation
is an objective phenomenon. Construed as a form of information processing, we argue that information-
processing considerations determine what type of computation takes place in physical systems.

Disciplines
Engineering | Science and Technology Studies

Publication Details
Fresco, N. (2014). Objective computation versus subjective computation. Erkenntnis: an international journal
of analytic philosophy, Online First

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/3265

http://ro.uow.edu.au/eispapers/3265

 1

Objective Computation versus Subjective Computation#
Nir Fresco1

Abstract. The question ‘What is computation?’ might seem a trivial one to many, but this is far

from being in consensus in philosophy of mind, cognitive science and even in physics. The lack of

consensus leads to some interesting, yet contentious, claims, such as that cognition or even the

universe is computational. Some have argued, though, that computation is a subjective

phenomenon: whether or not a physical system is computational, and if so, which computation it

performs, is entirely a matter of an observer choosing to view it as such. According to one view,

which we dub bold anti-realist pancomputationalism, every physical object (can be said to)

computes every computer program. According to another, more modest view, some computational

systems can be ascribed multiple computational descriptions. We argue that the first view is

misguided, and that the second view need not entail observer-relativity of computation. At least to a

large extent, computation is an objective phenomenon. Construed as a form of information

processing, we argue that information-processing considerations determine what type of

computation takes place in physical systems.

1. Introduction

Some maintain that the claim that computation is objective is either false or misguided. For

example, both Hilary Putnam (1988) and John Searle (1990) have claimed, roughly, that every

physical object can be described as implementing any number of programs and, hence, as

computing every Turing-computable function. This claim leads to bold anti-realist

pancomputationalism1. At least prima facie, it seems that if every physical object can be described

as computing every Turing-computable function, then the phenomenon of physical computation is

less interesting in its own right. Nevertheless, a better understanding of what computation is, and in

This is a preprint of the article that appears in Erkenntnis (DOI: 10.1007/s10670-014-9696-8). It is reproduced with
the permission of Springer-Verlag. The final publication is available at http://link.springer.com/article/10.1007/s10670-
014-9696-8.

1 Sidney M. Edelstein Centre for History & Philosophy of Science, Technology & Medicine. The Hebrew University of
Jerusalem. Email: nir.fresco@mail.huji.ac.il

 2

particular digital computation, helps show why some pancomputationalist arguments are wrong and

that bold pancomputationalism is unfounded.

The observer-relativity of computation can also supposedly be derived from the less contentious

view that multiple computational descriptions can be ascribed to a single computational system. For

example, a basic AND-gate (under its conventional interpretation) could be just as well described as

an OR-gate (Bishop 2009, p. 228; Shagrir 2001, p. 374; Sprevak 2010, pp. 268–269) (see Table 1).

Which function does the gate compute then? “[T]here is nothing that decides between the two

options. No physical, structural, or functional property [would help] decide [… in this matter]”

(Sprevak 2010, p. 269). “[P]ositing processes and structures is necessary if an explanation is to be a

computational explanation” (Dietrich 1989, pp. 130–131). Yet, “the precise function of the system-

as-a-whole remains fundamentally observer- relative” (Bishop 2009, p. 228).

Table 1. Truth tables of an AND-gate and an OR-gate “mirroring” one another when logical 0s and 1s are swapped.

Whatever the “correct” account of digital computation is (Copeland 1996; Fresco and Wolf 2014;

Piccinini 2007; Turing 1936), we argue here that, at least to a large extent, computation is an

objective phenomenon. Nontrivial computation in memory-based systems is an objective

phenomenon, whereas the boundaries of objectivity in memoryless system computation are blurry

as is shown below. It would also seem that the cognitivist should resist the purported observer-

relativity of computation. For if cognition is to be explained computationally, but computational

 3

systems require a cognitive observer to determine what computation is performed, then the

explanation is circular.

At least two related questions arise in relation to the purported subjectivity of computation and

they should be addressed separately. The first one is whether computational descriptions are trivial

or vacuous. The second question, which need not presuppose either bold or weak

pancomputationalism (i.e., the thesis that every physical object computes at least one Turing-

computable function), is what fixes the computational identity of a computational system. Indeed,

some physical systems may not compute. But if some computational systems compute more than

one Turing-computable function, what is the criterion for fixing the “correct” computational

identity of the system? (cf. Table 1). We argue that the multiplicity of computational descriptions in

itself does not imply that these descriptions are incompatible or that the computational identity of

the system concerned is unfixed. Either of these implications would have been problematic for the

objectivity of computation.

To ground the discussion, we begin (Section 2) by construing ‘computation’ as a form of

information (or data) processing, and then reply to an important objection. In Section 3, we present

the bold anti-realist pancomputational view and argue against it. In Section 4, we discuss the

‘multiple computational identities’ argument and examine the implications of this argument for

genuine computational systems. Section 5 concludes the article.

2. Computation as a Form of Information Processing

2.1. Nontrivial versus trivial computation

According to the instructional information processing (IIP) account, nontrivial computation is the

processing of discrete data in accordance with finite instructional information (possibly) through

discrete state transitions. Digital computational systems send, receive and process data. Trivial

computational systems process data, which need not be structured, by way of exercising a single

 4

capacity. Nontrivial computational systems, on the other hand, process instructional information

under the right conditions by way of being capable of systematically processing at least two distinct

imperative instructions (Fresco and Wolf 2014).

This characterisation requires some unpacking. First, roughly speaking, a datum is the lack of

uniformity between at least two distinct variables. Data are not defined in the alphanumeric sense of

the word, but in the sense of either differences de re (i.e., as lack of uniformity in the real world) or

differences de signo (i.e., as the lack of uniformity between at least two signals). For our purposes

here, data are taken as differences de signo. Examples include a higher or lower charge in a battery,

a variable electrical signal in a telephone conversation and even the presence or absence of noise on

a communication line (Floridi 2011, pp. 85–86).

Second, instructional information is nonempty, well-formed and meaningful data that if satisfied

through unambiguous action yield a particular outcome within a system in a given context. Put

differently, well-formed and meaningful data carry instructional information i within a system S iff

when S acts in accordance with i under the right conditions, S systematically performs an action in a

way that depends on the structure of i. This shows that S can process two types of data: one is the

“raw” data acted upon and the other is information that instructs S how the former has to be

processed. The latter must be structured, whereas the former can be either structured or unstructured

(for more details, see (Fresco and Wolf 2014)). Importantly, the structure of instructional

information exists in concert with other “raw” data: at least some structure in the overall collection

of input data is required for specific data to carry instructional information (Fresco and Wolf

unpublished-a).

Third, we note that whilst a single datum seems, at first blush, unstructured, in the context of

computational systems, it is structured. Indeed, when two or more data exist, there is the potential

for a non-reflexive relationship obtaining amongst those data, whereas a single datum can only have

reflexive relationships. Yet, a single bit is all that is required, for example, to issue either a stop or

 5

resume command within S. And if a single bit can carry instructional information, on the definition

above, it ought to be structured. We stipulate that a single datum is trivially structured. This sort of

stipulation is akin to defining an entity with zero symbols as a string, namely the empty string: the

simplest case is defined in such a way as to allow for consistent treatment (Fresco and Wolf

unpublished-a).

Instructional information is prescriptive rather than descriptive: the execution of an action is

neither true nor false. Hence, it cannot be straightforwardly qualified as true or false. One might

argue that ‘satisfied instructional information’ is tantamount to ‘true instructional information’. This

claim, however, is misguided. The conflation of ‘being-satisfied’ and ‘being-true’ may certainly

result from viewing the satisfaction of instructional information as singling out the set of possible

worlds in which the relevant state of affairs obtains (Hamblin 1987, p. 152). For example, the

instruction ‘turn off the air conditioner’, call it Stop-AC, is satisfied in those worlds in which the air

conditioner is turned off. Yet, the air conditioner being turned off could be the result of a power

outage, for example, rather than the recipient of Stop-AC executing the necessary action (turning off

the AC) to achieve the particular outcome (the AC is stopped). Neither the instruction nor the action

Stop-AC prescribes is straightforwardly alethically-evaluable. Rather, instructional information is

either effective or ineffective depending on the contextual success criteria.

Computational systems that have at least two capacities (typically) require instructional

information to single out the action to perform. “[T]he characteristic purpose of imperatives is to

influence choice. It is futile to tell [...] anyone to do something [...] he cannot help doing” (Hamblin

1987, p. 145). The selection between these capacities is enabled by instructional information. A

capacity is an action a system, whether abstract or physical, can reliably and systematically execute

under the right conditions. Thus characterised, the distinction between trivial and nontrivial

computational systems can now be articulated. A nontrivial computational system has at least two

capacities and it selects between them by processing instructional information in a way that

 6

systematically depends on the structure of that information (for a discussion on exceptions to this

rule see (Fresco and Wolf unpublished-b)). A trivial computational system, on the other hand, has

only one capacity: it is capable of only one action, and, therefore, need not process instructional

information.

A critic might argue that actions, too, are observer-relative in a manner akin to computation2.

Any given system can be viewed as performing any number of actions in several ways that go

against our intuitive individuation of actions. There are four cases that result from the

synchronic/diachronic and one-to-many/many-to-one distinctions. In the diachronic/one-to-many

case, the same action (e.g., jumping or relaying high voltage only if all inputs are high voltages, call

it RHV) that is performed at two different times could also be viewed as two different actions (first

jump and second jump or first RHV and second RHV). In the diachronic/many-to-one case, an

action (e.g., jumping or RHV producing low voltage) followed by another action (e.g., running or

RHV producing high voltage) could instead be viewed as a single action (e.g., exercising or

ANDing). (Similar examples can be constructed in the case of synchronic identity.)

The individuation of actions that potentially gives rise to an unlimited proliferation of actions has

been discussed in the literature at length (for a discussion, see, e.g., Mackie (1997)). As is well-

known, the act of a man moving his arm, thereby operating a pump, which pumps poisoned water in

the house’s water supply, thereby poisoning the inhabitants can be described as multiple or a single

action(s). But actions can instead be individuated in terms of their results, and their spatiotemporal

and causal properties can be determined by the properties of the results. By adopting an act-

individuation principle according to which actions are identical iff they have the same results, the

unlimited proliferation of actions can be avoided (Mossel 2001, pp. 258, 264). Poisoning the

inhabitants is a result of the replenishing of the water supply, but an effect, rather than a result, of

the man moving his arm. Similarly, the data processing actions underlying trivial and nontrivial

 7

computations are individuated in terms of their data (and possibly information) processing results

(e.g., low voltage output or transitioning into a new state).

Let us consider a few representative cases of trivial and nontrivial computational systems

showing the delineation between classes of computational systems. Standard two-input, one-output

Boolean gates are trivial computational systems, because they operate on unstructured data3 and

have only one capacity. Neither input bit of an AND-gate, for example, has any special role in

determining the action of the gate. No ordering relation need be imposed on the data processed:

swapping the order of the input bits still yields the same output. The AND-gate has a single

capacity, which is to perform logical conjunction whenever two input data are present.

Next, we consider computational systems that process structured data. The input data to an n-bit

adder, for example, are structured: the 0th bits are separate from the 1st bits and so on. It is,

therefore, more computationally powerful than standard two-input, one-output Boolean gates. Still,

it only performs trivial computation, as it only has a single capacity, which does not require

instructional information to be exercised. An arithmetic logic unit (ALU), which is capable of more

than one operation, say, addition and conjunction, is a nontrivial computational system, for it

processes instructional information. Instructional information is required for the ALU to select

between the two operations to perform. (In the next section, we qualify this characterisation of the

ALU.) All the preceding cases are memoryless systems.

The next level of complexity is that of memory-based computational systems, such as flip-flops,

finite state automata (FSAs), Turing machines (TMs) and physical instantiations thereof. These

systems process instructional information in performing computation, but they are also capable of

retaining their state (e.g., a flip-flop is the most basic computer memory cell) and their present state

affects their next state. In memory-based computational systems, their memory model implies a

structure to the data they process (Fresco and Wolf 2014). At each step of a TM computation, for

example, the combination of the scanned symbol (being structured data) and the state of a

 8

(deterministic) TM uniquely determines the capacity to be exercised next. This combination is

instructional information, the processing of which leads to the execution of a capacity of a TM by

moving from its current memory configuration to another. An FSA is different from a TM in that

the former has a more restricted set of capacities. The contents of the FSA’s input tape remains

unchanged in the course of the computation, and the position of its read-only head shifts only to the

right by exactly one position.

2.2. A reply to an objection

A critic might argue that such an account of nontrivial computation relies on a distinction between

structured and unstructured data that is itself observer-relative. Consider a two-function logic unit

(FLU) that performs either a logical AND or XOR. Its truth table is depicted in Table 2.

Table 2. A binary truth table of a two-function logic unit capable of AND or XOR.

Under this description (2-FLUAX), the rightmost input-bit (‘In3’) is a control bit: if it is 0, perform

XOR on the other input bits (‘In1’ and ‘In2’); otherwise, perform AND on those bits. But, arguably,

the very same truth table can describe a single capacity circuit, and under this description, the

circuit is a memoryless trivial computational system. This, supposedly, shows that the IIP account

fails to provide an observer-independent explanation of digital computation.

Our reply to this objection is that it shows that computational descriptions of some memoryless

computational systems – rather than memory-based nontrivial computational systems – are observer

relative. The same information – or data – processing operations may be used in different ways,

 9

giving rise to different “computations” relative to different levels of abstraction (see Floridi 2011,

Chapter 3).4 The structuring of data is not an intrinsic property of data, rather it is imposed by the

physical system processing the data. Nevertheless, the underlying computation at the physical level

remains the same. This is akin to measuring the length of a piece of metal using either a yardstick or

a metrestick. The two measurements yield different numerical results, but the objective physical

length of the piece of metal remains the same.

It is simply the nature of memoryless computational systems that they can be described

differently by appealing to a single abstract specification of the system, such as a truth table.

Consider a truth table of an FLU capable of performing either AND or OR (rather than XOR as

depicted in Table 2), call this description 2-FLUAO. Under this description, the leftmost input bit

(‘In1’) is a control bit (recall the observation above about structure in the overall collection of input

data): if it is 0, perform AND on the other input bits (‘In2’ and ‘In3’); otherwise, perform OR on

those bits.

Table 3. A binary truth table of a two-function logic unit capable of AND or OR.

Here, too, the very same truth table can be used to describe a single capacity circuit that computes

the 2-threshold function (2-THR): if there are two or more 1s as input, produce 1 as output;

otherwise, produce 0 as output.

Prima facie, there is no reason inherent to the truth table description in Table 3 that privileges 2-

FLUAO over 2-THR, or vice versa, as the “correct” description of the computation the circuit

performs. But, according to the IIP account, by adopting Occam’s razor, we should opt for 2-THR:

 10

structure should not be posited when it is not required. 2-THR provides a shorter description of the

circuit than 2-FLUAO. This is readily demonstrated by observing that the 2-FLUAO description

requires the introduction of additional (meta-)information, namely the structuring of the data and

the identification of the control bit, whereas the description of the circuit as 2-THR does not require

the introduction of any such information.

Many problematic cases of memoryless computational systems can be resolved elegantly by

appealing to “shorter-length” descriptions rather than just to “simpler” descriptions, in the spirit of

Occam’s razor. The advantage of the former is the applicability of Kolmogorov Complexity for

“large” enough systems in deciding between two given computational descriptions, such as 2-

FLUAO and 2-THR. The simplest amongst competing computational descriptions is determined by

finding the one whose program-length is shortest (for a detailed discussion, see (Fresco and Wolf

unpublished-b)). Occam’s Razor demands that we adopt the simpler theory that posits the least

structure unless there is evidence to the contrary. (Of course, there is no guarantee that the simpler

explanation is always the correct one.)

These examples show that some memoryless computational systems can be described as

performing either trivial or nontrivial computation. A single capacity circuit description is

preferable over multiple-capacity descriptions, because the former is, generally, shorter. Clearly,

some computational problems cannot be solved by memoryless computational systems, since they

require stateful transitions and the storage of data from previous states. In such cases, for the

implementing physical system to transition from one memory configuration to another where more

than one possible transition exists, instructional information is required to induce the correct,

systematic transition. (We elaborate more on this point in Section 4.2.)

FSAs and TMs, for example, are not subject to the same objection. The truth table describing all

possible input combinations of an FSA is infinite, whereas a truth table describing, say, a two–

output, one–output Boolean function is finite. An infinite truth table cannot be plausibly described

 11

as a single capacity (otherwise, exercising that capacity would require traversing through infinitely

many paths). It is the finite transition table of the FSA that describes its multiple capacities. For that

reason, the IIP account classifies FSAs, TMs, flip-flops and conventional digital computers

objectively as memory-based nontrivial computational systems.5

3. A Reply to Bold Anti-Realist Pancomputationalism

With a better understanding of digital computation as a form of information processing we can turn

to examine the claims concerning the subjectivity of computation starting with bold

pancomputationalism. The view described here should be distinguished from the computational

view of the universe, according to which the universe not only has the capacity to implement any

program, but it actually performs computations all the time (Fresco and Staines 2014). The former

view is also known as anti-realist pancomputationalism, which is commonly used to argue against

the Cognitivist position (Dodig-Crnkovic and Müller 2011, p. 154). This anti-realist version of

pancomputationalism is the target of this article, since it claims that it is the observer’s description

of a physical object that makes it into a computational one.

3.1. Background

According to bold pancomputationalism, every physical object (can be said to) computes every

Turing-computable function. In arguing against the Cognitivist position, Searle has pointed out that

the very idea of multiple realisability is problematic for the cognitivist. Whilst the true threat of his

argument is not pancomputationalism as such, but rather the observer relativity of computation, his

argument can be taken to support bold anti-realist pancomputationalism. The Searlean

Pancomputational Thesis may be stated as follows. For any sufficiently complex physical object O

(that is, an object with a sufficiently large number of distinguishable parts) and for any arbitrary

program specification P, there exists an isomorphic mapping M from some subset S of the physical

states of O to the formal structure of P (Searle 1990, pp. 27–28). With the added assumption that

 12

such an isomorphism is sufficient for O to realise P, Searle’s result, if it were true, would imply that

every sufficiently complex physical object computes every Turing-computable function.

How is this thesis justified? For any physical object to be “sufficiently complex” it simply needs

to have a sufficiently large number of distinguishable parts. A big enough wall, for instance, would

do the trick. That wall may then be physically described at a microscopic level specifying some

movement pattern of some large enough number of molecules. Any arbitrary program, such as

WordStar, has some specification that describes its formal structure and this structure can be

implemented by any number of physical substrates as dictated by the principle of multiple-

realisability. “The physics [of the implementing substrate] is irrelevant except insofar as it admits of

the assignments of 0’s and 1’s and of state transitions between them” (Searle 1990, p. 26).

What remains to be seen is how M is fixed by the implementation of P. Here Searle was

(mis)guided by Alan Turing’s analysis of the human computor executing an algorithm. The TM

goes through the steps of P based on the rules P provides for deriving the output symbols from the

input symbols. This process is causal insofar as some physical properties of O (implementing some

FSA or a TM) suffice for O to follow these steps (Searle 1990, pp. 32–33). M maps the states in S

onto the abstract states of P. Since, by Searle’s lights, M need not be a one-to-one mapping, it

suffices that only the states in S partake in the mapping from O to P. The requirement that O have a

sufficiently large number of distinguishable parts supposedly guarantees that such a subset S exists.

Accordingly, a (large enough) wall is bound to have the right pattern of moving molecules that

“mirrors” the state transitions of WordStar (or any other P) (Searle 1990, pp. 27–28).

In a similar vein, Putnam’s Pancomputational Theorem can be stated as follows. There exists a

physical theory P such that for any ordinary open system6 Κ, an inputless FSA δ, n > 0 (the number

of computational steps of δ) and for any (divisible) real-time interval I, Κ (describable in P) realises

n computational steps of δ within I. According to Putnam, Κ realises n computational steps of δ

within a given interval I of real time, if there exists a one-to-one mapping F from δ’s state types

 13

onto physical state types of Κ and a division of I into n subintervals such that for any two states q, p

of δ the following condition holds: if q → p is a transition of δ from the computational step j to j+1

(for 0 < j < n) and Κ is in state F(q) during the jth subinterval, then Κ transitions into state F(p) in

the j+1th subinterval (Scheutz 1999, pp. 166–167).

How is this theorem justified? Putnam argues that insofar as K has a sufficient number of internal

states7 it will be a realisation of any FSA. His example is an FSA that transitions between two

computational states A and B producing the sequence ABABABA. The internal state of K is

considered at seven points in time (e.g., 12:00, 12:01, … 12:06) yielding seven states s1, s2, … s7.

Each si is assumed to be caused by si-1. State A of δ may be defined as the disjunction s1 ∨ s3 ∨ s5 ∨

s7 (and similarly for B and the remaining states of K). K then implements δ from 12:00 to 12:06

(inclusive). Crucial to his proof are two assumed principles. The first is the principle of continuity,

which states that forces, such as electrical and gravitational fields, that may influence Κ are

continuous. The second is the principle of non-cyclical behaviour, which states that there exists

some natural clock that constantly stamps the system in such a way that Κ cannot have a duplicated

physical state and enter the same (maximal) state twice. Accordingly, there are only one-to-one

mappings of the physical states of Κ to the computational states of δ. For once K transitions out of a

particular physical state it does not return to that state, due to forces that irregularly perturb Κ.

Putnam asserts that his proof can be generalised to apply to an arbitrary number of computational

states and state transitions of an FSA, as well as for FSAs with input.

3.2. A Reply to Bold Anti-Realist Pancomputationalism

Neither Searle nor Putnam restricts the physical objects under consideration to computing only

some Turing-computable functions. As long as the object has sufficient internal physical states it

may implement any FSA. And since the physical states are chosen arbitrarily (there is no restriction

on selecting atomic or subatomic particles), any “macroscopically small” object will do. We start

 14

with two well-known objections. The first one is the failure to account for counterfactuals (cf.

(Block 2002; Chalmers 1996; Chrisley 1994; Copeland 1996)). Inherent to Searle and Putnam’s

arguments are the lack of any constraints on physical state type formation (Scheutz 2012, p. 100)

but also the ex post facto nature of their computational descriptions.

The physical states of Searle’s wall or any “clocked” open system are chosen according to the

computation actually performed. But counterfactuals are important to physical computational

systems. (Nevertheless, some argue that it would be preferable to dispense with counterfactuals in

an account of physical computation altogether (Scheutz 2012, p. 81).) Any particular sequence of

state-transitions is only one (of possibly many) that could have occurred. A computational

description should also allow all the possible computations, which the system could have

performed, rather than just the one it actually performs. The more complex the computational

system is, the more counterfactuals there are.

The second objection is an undesirable consequence of Searle’s claim that syntax is observer-

relative, rather than intrinsic to physics. The consequence is that even conventional digital

computers do not compute. Logical 0s and 1s that are typically associated with the operation of

physical computational systems are not intrinsic to the physics of the labelled states. There are no

discrete binary states intrinsic to the physics of an iMac, iPhone or IBM’s Jeopardy! player Watson.

Binary labels are externally assigned according to whether some specific variables, such as voltage

levels, degrees of magnetisation or the presence/absence of water droplets, fall within one

predefined range or another. “If the truism that syntax is not intrinsic to physics implies that brains

are not ‘intrinsically digital computers’ then by parity it implies that no entity is intrinsically a

digital computer” (Copeland 1996, p. 356).

A better understanding of digital computation as a form of information (or merely data)

processing gives rise to two other objections to bold pancomputationalism. Additionally, it

motivates the computational objectivist view. The claim at the core of these objections is that a

 15

finite physical object can only support a finite number of computations simultaneously. The result is

that bold pancomputationalism cannot be true for finite physical objects. Two similar arguments

support this claim and the first one can be summarised as follows.

1. A finite physical object has the capacity to store a finite amount of information8.

2. Digital computation – as the processing of information – requires storage of information.

3. Simultaneous distinct computations (also) require the storage of distinct information.

4. (Therefore, a finite physical object can only support a finite number of distinct computations

simultaneously.)

Since the locutions ‘finite’, ‘storage of information’ and ‘simultaneously’ play a key role in the

ensuing discussion, they require some explication. The notion of finiteness is easiest to demonstrate

in mathematics and more specifically in set theory. A set is finite if its cardinality is a positive

integer. For example, the cardinality of {a, b, c, d, e} is 5. The set of natural numbers is

enumerable, but its cardinality cannot be given as a positive integer. It is, therefore, infinite.

Finiteness implies not only bounds but also minima and maxima. Whilst the description of a single

TM is finite, its tape is infinite. The TM’s tape, in principle, has no bounds – it can always be

extended if needed. After a finite amount of time, the portion of the tape that has been used in the

computation is always finite. When considering the physical realm, a region of space is finite if the

set of all distances from its points to some fixed point is bounded.

Next, we consider the locution ‘storage of information’. We use information storage systems

every day: dictionaries, telephone directories and computer discs. Each discrete piece of

information is stored separately, for example, as a dimple on the surface of a computer disc.

Information is carried and transmitted by signals – or data, so, if it is to be stored physically, what

needs to be stored is, first and foremost, the underlying data. Since a datum, by our definition, is the

lack of uniformity between at least two distinct variables, the storing of data has to preserve this

lack of uniformity. The most basic storage unit of discrete data is a classical bit. In an electronic

 16

computer, it is physically realised by a bistable device stabilising on either logical 0 or 1. Very little

information can be stored in a single bit, so larger amounts of information are stored as collections

of bits.

We now proceed to examine the individual premises of the first argument in order. (The third

locution is explicated below in conjunction with the third premise of the argument.) Putnam and

Searle’s arguments rely on physical microstates being used in the computations. The physical

substrate of the object in question (be that matter or fields) serves as a storage medium of

information. A physical object with 2n possible states can store n classical bits of information.9

“Space is […] literally just a storage space for information [… that] is naturally associated with

matter” (Verlinde 2011, p. 5). According to some physicists, information is stored in discrete bits on

surfaces, rather than in points of a discretised space: the information content of each particle is

proportional to its surface area (cf. Vedral 2010, p. 190; Verlinde 2011, pp. 5–6).

In any finite physical system – that is, a system with an effectively finite-dimensional state space

with some energetic constraint – only a finite amount of information can be stored (Hänggi and

Wehner 2013). (From a quantum mechanical perspective, the amount of classical information that

can be encoded in a system is known as Holevo’s bound.10) Any finite region of space can only

contain a finite amount of matter. And matter can only be subdivided into smaller parts up to a

limit. There is some minimum size beyond which it cannot be further subdivided. This is

compatible with Max Planck’s idea of indivisible quanta (Planck 1914). Unless matter is infinitely

divisible, which is certainly logically possible11, and whatever the minimum size of the elementary

particles is, it can only store a finite amount of information.

Construed as a form of information processing, digital computation requires storage of

information. Here the distinction introduced above between memory-based and memoryless

computational systems comes in handy. Computation in memoryless systems does not require the

retention of state and, therefore, does not require a long-term storage of information. A two-input,

 17

one-output AND-gate, for example, performs its computation without depending on a previous

state. Trivial computations only require that the data processed be somehow physically realised by

whichever particles are available as data storage media. (Trivial computations that operate on

structured data require additionally that these particles be somehow structured appropriately.)

However, nontrivial computations further require that instructional information be physically

realised and be distinguished from “raw” data being operated on. Memory-based computations

require additionally that their states be stored throughout the course of the computation.

Consider physical instantiations of a TM and an FSA. The former is the quintessential digital

computational system storing and deleting information. Whatever computation the TM performs it

uses its tape for storage. Perhaps, the TM is too easy an example. An FSA clearly computes, but its

tape is unidirectional and it cannot store information on this read-only tape. Nevertheless, the FSA’s

tape is used for storing the input data and its states are storage media of instructional information.

Anything that can be computed by a TM equipped with a finite tape can also be computed by an

FSA with sufficiently many states. The FSA’s states can be used to store information that the TM

would store on its read/write tape.

Bold pancomputationalism entails that every physical object computes every Turing-computable

function and there are infinitely many TMs, each corresponding to a different algorithm for

computing a function using a different table of instructions. This brings us to the third premise and

to the third locution: ‘simultaneous’. It may certainly be true that ‘most conventional digital

computers instantiate distinct programs simultaneously’ (where at least some portions of these

programs do not overlap; more is said about this in Section 4). But the truth of this claim depends

on what ‘simultaneous instantiation’ means. One possible interpretation is that a general-purpose

computer has multiple distinct programs stored in its memory and each program is executed at some

point in time but not necessarily all at once. ‘Simultaneous instantiation’, accordingly, could mean

that all these distinct programs are executed on the computer over its lifetime (possibly, ad

 18

infinitum), provided that it is powered indefinitely. On this interpretation, less information storage is

required. Any particular program requires information storage during its execution, and upon its

termination – the information can be discarded.

Nonetheless, bold pancomputationalism implies that every physical object implements infinitely

many distinct programs simultaneously. If we accept the three premises above, then we should also

accept the conclusion that follows and reject bold pancomputationalism. Consider a universal TM

(UTM) that has infinitely many heads and infinitely many (enumerable) tapes (instead of a single

infinite tape), each of which stores a single TM. Such an idealised UTM can, arguably, support

infinitely many distinct programs simultaneously. On the other hand, a finite physical object cannot

support infinitely many distinct programs (or TMs) even given unbounded time (though arbitrarily

many computations may then be possible by manufacturing more tape when necessary).

It seems that either way the bold pancomputationalist might respond to this last assertion, she

faces serious challenges. On the one hand, despite using classical physics, she might grant that

matter is indeed not infinitely divisible, so there is some minimum unit of information storage in

Nature. But, then, the argument continues by claiming that there can still be infinitely many TMs all

operating on the same set of data, perhaps, even cooperatively to a single end. In other words,

(possibly infinite) storage space could be saved by having those TMs write to overlapping “physical

regions”. But, for one thing, even by extending the tape of a single TM, the very same TM

description characterises a computation of the same function over a larger domain (Brown 2012, p.

62). And bold pancomputationalism implies that infinitely many Turing-computable functions are

computed simultaneously. Why is there a reason to assume that all these infinitely many TMs

operate on the same set of data? Neither Searle nor Putnam restricts the set of data that physical

objects supposedly operate on. Besides, why should all possible inputs to these infinitely many TMs

be excluded? These infinitely many inputs also have to be physically stored as data for the

computation.

 19

Moreover, the bold pancomputationalist should also account for the storage of the infinitely many

TMs’ tables of instructions. Every TM clearly has a finite description, but infinitely many of them

exist. If these (infinitely many) tables of instructions are not somehow stored in the physical object

performing the computation, then the information about every particular TM algorithm can be

present only in a complete description of all the possible trajectories of the particles engaged in the

computation (Brown 2012, p. 63). In other words, bold pancomputationalists ought to provide a

complete listing of what each TM would do under every possible circumstance (cf. the

counterfactual objection above). However, that, too, would unavoidably require that a finite

physical object store an infinite amount of information.

Suppose, on the other hand, that the bold pancomputationalist rejected the idea that there exists

some indivisible particle. That would mean that somehow a finite physical object has infinitely

many particles, each of which can be an information storage unit. But, then, she would have to

account for the structural stability of the “physical system”, as a functionally related set of “parts”,

performing the computation. The structural stable “physical system” should be able to recover an

equilibrium state upon being disturbed by any of the admissible perturbations. (Putnam’s

pancomputational theorem, for one, is explicitly defined in terms of open systems that are not

shielded from external forces.) At some point, subdividing a physical system destroys its property

of being structurally stable. Clearly, resorting to infinitesimally small particles as information

storage units unavoidably reaches that point.

Our second argument can be summarised as follows.

1. A finite physical object has a finite amount of energy.

2. Digital computation dissipates energy in order to process information.

3. Simultaneous distinct computations require the dissipation of distinct energy.

4. (Therefore, a finite physical system can only support a finite number of distinct computations

simultaneously.)

 20

The first premise is motivated by Einstein’s mass–energy relationship in special theory of

relativity and Planck’s observation on the speed of light. “Since […] energy radiation is propagated

in the medium with a finite velocity […], there must be in a finite space a finite amount of energy”

(Planck 1914). Light propagates at a finite speed anywhere and it cannot propagate instantaneously.

Otherwise, if one assumes that the propagation of energy is variable, one gets a contradiction: some

parts of the system would receive energy before others via a non-constant light speed (Shour 2008).

Similarly, from the mass–energy relationship it follows that matter confined within a finite volume

with a standing structure has a finite amount of energy associated with it. In this context, too, it is

posited that light has a finite speed of propagation (Bohm 2006, p. 12).

The justification of the second premise proceeds in two steps: for irreversible and reversible

computations. An operation is logically reversible if its inputs can always be inferred from its

outputs. Conversely, a logically irreversible operation is such that in producing an output loses

information about the history of the operation (i.e., not all inputs may be inferred from the output).

The ultimate limits of the real-time speed of computational systems (as well as their

miniaturisation) are governed by unavoidable heat increase through their energy dissipation. There

is a minimum thermodynamic cost to any computation. This cost is the sum of the energy involved

in providing the extra bits required in the course of a computation plus the destruction (by erasure)

of the “garbage” bits produced.12 This erasure operation, and, similarly, the merging of two

computational paths, is the irreversible part of the computation. According to Landauer’s principle,

only this irreversible part of the computation dissipates heat. As it turns out, there are upper and

lower bounds on the ultimate limits of the thermodynamic cost of effective computations (Landauer

1961; Li and Vitanyi 1992).

Most conventional computational systems are irreversible. Consider, for instance, an AND-gate

or an OR-gate that lose information about the history of computation when the output produced is a

logical 0 or 1, respectively. The loss of information in logically irreversible operations is

 21

accompanied by energy dissipation to the surrounding environment as heat. Still, even reversible

computation is accompanied by some minimum heat dissipation when garbage information is

erased. Importantly, any finite physical system that computes all infinitely many Turing-computable

functions will ultimately run out of storage space. That is, of course, assuming that information is

stored discretely and that the physical media used for storage is not infinitely divisible. Since our

concern is digital computation, this assumption is not implausible.

From the three premises above it follows that a finite physical system can only support a finite

number of distinct computations simultaneously. The third premise is justifiable by the first law of

thermodynamics: inevitably, computation, as a thermodynamic process, decreases the internal

energy of the physical object whilst some heat is dissipated to the surrounding environment. The

upper limit to the number of possible concurrent computations (also) depends on the energy

footprints of the particular computations performed. Still, bold pancomputationalists might argue

that multiple computational tasks can somehow be performed efficiently using the “same” energy

dissipation, thereby lowering the total energy dissipation. However, they ought to show how

arbitrary finite physical objects in nature minimise energy dissipation by way of efficient heat

exchange between different physical objects, preventing heat loss, etc.

This shows that the bold pancomputationalist can argue for either weak or moderate

pancomputationalism. Searle’s Pancomputational thesis and Putnam’s Pancomputational theorem

may threaten the objectivity of computation even if the number of relativistic computational

descriptions of a given system is neither maximal nor infinite. According to weak

pancomputationalism, every physical object (can be said to) computes at least one Turing-

computable function. Many physical objects can possibly be described as performing trivial

computation, for example, as computing Boolean functions on n inputs. (Such computations can be

performed by memoryless systems and do not require information storage for their computation.)

Furthermore, every physical object can be described as implementing a single-state FSA.

 22

Nevertheless, the more interesting – but hard to justify – hypothesis would be that these objects are

nontrivial memory-based computational systems with multiple states.

The lack of appropriate constraints on physical state type formation simply reinforces the

question of what counts as a legitimate physical state in (possibly competing) computational

descriptions (Scheutz 2012, p. 104). Many objects can be described as implementing a two-state

FSA as long as the physical states describable by the physical theory can be straightforwardly and

reliably mapped onto one of these two state types. Fewer objects can be described as implementing

a three-state FSA and so on. According to moderate pancomputationalism, every physical object

(can be said to) computes more than one Turing-computable function. In the next section, we

address the matter of multiple computational descriptions given to a single (computational) system

and what it takes for a system to compute more than one Turing-computable function.

Moreover, it is one thing to describe the physical system concerned in an arbitrary and ex post

facto manner. However, it is questionable whether Searle’s pancomputational thesis and Putnam’s

pancomputational theorem can be upheld in a form of a reliable law-like generalisation. A

computational state-transition has to be reliable and yet open systems are susceptible to external

influences where even the slightest perturbation affects the system’s state.

By way of concluding this section, we briefly respond to a possible objection to the two

arguments above: the conception of information being used in these arguments is objective and non-

semantic.13 Such conception, so the objection continues, is very different from the semantic

conception of instructional information used in Section 2. Supposedly, the same physical system

can be given an infinite number of informational descriptions in the sense of what instructional

information is processed.

Our brief reply to this objection is twofold. First, explaining nontrivial digital computation in

terms of instructional information, which is a semantic notion, does not entail either 1) that there is

no underlying quantitative/non-semantic conception of information in play or 2) that instructional

 23

information cannot be formalised.14 For one thing, instructional information is underpinned by

structured data. Structured data can be quantified and shown to be different from unstructured data.

Second, even though instructional information (e.g., in a given data set {d1, d2, d3}) can be any one

of the data being processed (i.e., any of d1, d2, d3, d1d2, d1d3 or d2d3), it does not follow that there

exists an infinite number of informational descriptions of the computational system processing that

information (in our case there are at most six such descriptions). Besides, very few of those would

be coherent descriptions in consideration of all the valid input/output mappings of the

computational system concerned.

4. Multiple Computational Identities

4.1. Background

Let us now examine the putative, more modest, claim for the observer-relativity of computation

stemming from the multiplicity of computational identities of genuine computational systems. The

argument for multiple computational identities can be summarised as follows.

1. Some computational systems simultaneously implement multiple computations.

2. In any given context, the computation performed by a computational system is determined

by a single syntactic structure, which is the underlying task.

3. The underlying task is at least partially semantically individuated.

4. (Therefore, some computation is at least partially semantically individuated relative to one

particular task that the computational system performs.)

The gist of the argument is that some physical systems implement more than one syntactic

structure simultaneously. It appears in (Shagrir 2001) and is originally aimed at computational

cognitive systems. To determine which syntactic structure constitutes the system’s computational

identity, some other constraint has to be invoked. Oron Shagrir argues that this constraint is

semantic: the system’s computational identity is affected by the content of its computational states.

 24

We focus here solely on the argument’s implications for the alleged observer-relativity of

computation and, in particular, on the first premise. An AND-gate can be said to implement either

conjunction or disjunction (in negative logic) (Bishop 2009, p. 228; Shagrir 2001, p. 374; Sprevak

2010, p. 269). Similarly, a NAND-gate can be reinterpreted as a NOR-gate and a XOR-gate can be

reinterpreted as an XNOR-gate by reversing the standard interpretation of logical 0s and 1s. Whilst

the first premise clearly does not entail either bold or weak pancomputationalism, it does invite the

question whether the computational identity of the system is observer-relative.

It should be noted that not all those who endorse the view described here subscribe to the identity

conditions of computational systems being observer-relative. Shagrir, for one, claims that none of

the premises of the argument above makes the identity conditions of computational systems

observer-relative. Rather, he claims that “a physical system may simultaneously implement more

than one syntactic structure” and it can safely be “assume[d] that all these implemented structures

are intrinsic [to the system]” (Shagrir 2001, p. 379). On the other hand, Mark Bishop claims that the

computational function implemented by the physical system must be contingent on the observer-

determined computational-to-physical state mapping used (2009, p. 228). In a similar vein, Mark

Sprevak claims that even an “appeal to the larger system in which [a computational] unit is

embedded does not help to determine whether [… it computes] AND or OR” (2010, p. 269).

4.2. A Reply to Multiple Computational Identities

A clarificatory question is in order before we proceed. Multiple syntactic structures introduce an

observer-relativity problem only if 1) they are somehow incompatible, and 2) none of them is

ontically or epistemically privileged over the others. As already suggested above, computation

being an observer-relative phenomenon does not follow from a single computational system lending

itself to more than one description. Arguably, standard conventional digital computers (e.g., those

using x86 compatible processors) instantiate distinct assembly language programs and higher-level

language programs simultaneously. Why would some constraint be required to determine the

 25

computational identity of the system?

The argument for multiple computational identities does not centre on a computational system

simultaneously implementing a program P in, say, Java or C++, as well the same program compiled

into, say, assembly (call it P’). Thus described, every conventional soft-programmable computer

certainly implements multiple programs, such as P and P’, simultaneously. Such description is akin

to a multi-level description of a UTM performing some computation. At one level of abstraction, it

may be described as executing a particular program on some specific input. At another level, it may

described as computing, for example, the square root of 80 to 10 decimal places. However, these

two descriptions do not qualify as two distinct functions computed by the UTM. In that sense, the

AND-gate being amenable to performing disjunction is a red herring. The argument is better served

by considering a multi-head/multi-tape UTM that implements many distinct programs (i.e., specific

TMs) simultaneously. Provided that these programs imply different behaviours and that none of

them is ontically or epistemically privileged over the others, the computational identity of the

system is supposedly observer-relative.

What, then, determines the computational identity of the system concerned? Shagrir lists three

different ways to describe what a physical computational system, S, does.

1. A physical description, for example, in terms of the volts flowing through S.

2. A syntactic description of the abstract structure that S implements, for example, in terms

of a truth table description of S’ input/output mappings.

3. A semantic description interpreting the state types of the abstract structure of S (e.g.,

interpreting the symbols ‘0’ and ‘1’ as representing numbers).

On the received view, the computational identity of S is determined by its syntactic structure, yet

Shagrir argues that it does not follow from that view that semantic content has no impact on

individuating S’ computational identity (2001, p. 373). Similarly, Sprevak argues that

“representational content is a necessary condition that does crucial work in determining

 26

computational identity” (2010, p. 261) of physical computational systems, whereas an abstract

“Turing machine operates on syntactic entities” (2010, p. 269). But it seems curious to insist on

semantic interpretation as being necessary for establishing the computational identity of S when

there could be multiple distinct interpretations. Of course, none of these interpretations would

change the underlying physical working of S. “[T]he computational identity of [the system] is the

same if we interpret the ‘0’ and ‘1’ as representing numbers, colored hats or shapes” (Shagrir 2001,

p. 373).

Rather than S’ computation being determined by some single syntactic structure (being “the

underlying task” according to the second premise above), it is determined by all the syntactic

structures that S implements. None of these syntactic structures is either ontically or epistemically

privileged over the others. Whilst a UTM is an abstract computational system, it serves us well here

to make our point. Consider again a multi-head/multi-tape UTM, U, that implements many distinct

programs simultaneously. A complete description of U at any point in its computation can be

specified by giving the state of its controllers, the contents of all the tapes, and the position of the

heads on the tapes. Call such a complete description the Instantaneous Description (ID) of U. A

directed graph consisting of all the possible IDs can be used to represent every possible

computation performed by U where each vertex in the graph is in one-to-one correspondence with

an ID (labelled IDx). A directed edge is added from vertex IDx to vertex IDy when the configuration

specified by IDy follows from IDx via a single move of U. A single vertex (labelled ID0) represents

the starting configuration of U. Any path starting at ID0 that continues through the graph to some

vertex IDi with the halt state corresponds to a valid computation U. (For a full description of how

such configuration graphs are constructed, see, for example, (Adriaans and van Emde Boas 2011, p.

7) and (Fresco and Wolf 2014).)

A physical conventional computer can be similarly represented by such a configuration graph

that can be used to determine the computational identity of the computer at any given time. Each

 27

vertex of the corresponding configuration graph represents the total memory configuration of the

computer (including the contents of all its data storage units) and the state of all its CPUs. (The

initial state of the computer is represented by the vertex labelled ID0.) Viewed this way, the

processing of instructional information results in the computer moving from one memory

configuration to another. The loading of a program into the computer’s memory affects its memory

configuration, even if the program is not executed. A description of a computational system that

appeals to its configuration graph depends not only on the syntactic structures implemented by the

system but also on its physical makeup.

At the physical level, computation as information/data processing is a systematic manipulation of

dynamically enforced microphysical state correlations. This systematic manipulation means that the

way information is manipulated is itself sensitive to the dynamical mechanisms that produce these

correlations (Bokulich 2013, p. 40). Structured systems arise through a systematic correlation of

effective degrees of freedom. A degree of freedom is an independent parameter that specifies the

state of the system at a given time. A single point particle has three degrees of freedom, whilst its

microphysical state space (displaying both the generalised coordinates and the canonically

conjugate momenta of the particle) is six-dimensional. Structure reduces degrees of freedom. A

molecule can do less than its composite atoms can (e.g., by limiting the momentum of some of the

atoms in a molecule) (Bokulich 2013, pp. 32–33).

The objectivity of the computational identity of the system is fixed by degrees of freedom at the

physical level and in memory-based systems the configuration graph can be used to determine this

identity during runtime. The effective causal dynamical structures that process information are

observer-independent facts about the computational system that allow an observer to interpret a

particular system as performing a given computation. The correlation of one microphysical state of

the system with another allows inferring one microphysical state from another correlated

microphysical state. In memory-based computational systems, multiple semantic interpretations can

 28

be ascribed to a single system only if they are homomorphically equivalent to its configuration

graph. That is, not only do input/output data need to be fully specified by the semantic interpretation

concerned, but also every possible transition from one memory configuration to another. The

configuration graph representation does not apply to memoryless computational systems though,

such as two-input, one-output Boolean gates.

Nevertheless, the semantic interpretations that can be ascribed to trivial memoryless

computational systems are also restricted by the data processing operations performed at the

physical level. A conventional AND-gate can only be used as a device performing logical

conjunction on input data due to the particular structure of the gate that limits the degrees of

freedom of the underlying microphysical states. The same AND-gate can be semantically

reinterpreted as performing logical disjunction. But this is only because the same microphysical

state correlation obtained in an OR-gate when the input and output data are interpreted in negative

logic and ¬(p	 ∧ q) is equivalent to ¬p ∨ ¬q. However, a conventional AND-gate cannot be

similarly reinterpreted as performing NAND or XOR.

The semantic interpretation does not fix the computational identity of the system concerned, but

rather gives the computation a different name. A logical disjunction may very well be called

conjunction instead (and vice versa), but the computational identity of the Boolean gate is fixed by

the underlying data processing operations. The corresponding truth table of the gate is merely

mirrored, whereas the “black box” does not change, only how the input and output data are

interpreted. “There is [...] an abstraction involved in naming an operation and using it on account of

‘what it does’ while completely disregarding ‘how it works’” (Dijkstra 1972, p. 11).

Whilst the Cryptographer’s Constraint may not apply in the case of Putnam’s pancomputational

theorem, it does apply as a constraint on the semantic interpretations that can be ascribed to some

computational system. According to the Cryptographer’s Constraint, the larger (or more complex) a

string of text (or a system) to be decoded is, the fewer nontrivial interpretations of the text there are

 29

(Dennett 1989, p. 136, fn. 6). This constraint does not apply to Putnam’s pancomputational theorem

because of the posited principle of continuity (Chrisley 1994, p. 419 , fn. 9). But it does apply when

considering nontrivial versus trivial computational systems.

The distinction drawn in Section 2 between trivial and nontrivial computation elucidates the

increasing complexity of such computational systems. Two-input, one-output Boolean gates are

memoryless and their data processing operations are amenable to a simple description. Yet, as the

complexity of the computational system increases “the chances that there is more than one

meaningful interpretation for that [… system] decreases drastically” (Chrisley 1994, p. 419 , fn. 9).

Nontrivial memory-based computational systems are far more complex in that they have multiple

capacities and require some form of information to determine the next state-transition depending on

the current state and input read. The more complex the configuration graph of the system is, the

fewer (interesting) coherent interpretations of the computation there are.

Lastly, a critic might argue that any instance of an NP-complete problem can be

translated/reduced to an instance of another NP-complete problem in polynomial time (Hopcroft et

al. 2001, p. 447 ff). And this shows that any NP-complete problem can be semantically

reinterpreted as any other NP-complete problem. However, we argue that multiple semantic

interpretations can be correctly ascribed to a single computational system only if they are

homomorphically equivalent to its configuration graph. The homomorphic equivalence requirement

is, strictly, more restrictive than what is required of a reduction of one NP-complete problem, N, to

another, M. The latter requires that the input(s) to and output(s) of the algorithm for solving N be

translated to the corresponding ones in M (e.g., translating Boolean clauses in N to vertices on

graphs for M). But such reduction does not require, for example, that the instance of N and instance

of M be of exactly the same input size.

 30

5. Conclusion

We conclude that, at least to a large extent, computation is an objective phenomenon. Construed as

a form of information/data processing, the effective dynamics of the computational system have to

maintain the structures that realise the information. The structure of the data and the system

processing them guarantees the correlation amongst the effective microphysical states. We have

argued that information-processing considerations determine what type of computation takes place

in physical systems. Some genuine computational systems may indeed be semantically interpreted

as performing “different” computations. This is certainly the case for some trivial computational

systems. But, in the case of nontrivial computation, it becomes increasingly harder to ascribe them

multiple coherent interpretations as their complexity increases. Besides, the computational identity

of the system remains fixed even though all these semantic interpretations are equally “correct”. We

have also argued above that bold anti-realist pancomputationalism does not hold in finite physical

objects. The result was weakening pancomputationalism to the claim that a finite physical system

can only support a finite number of computations simultaneously.

Acknowledgments

I am grateful to Marty Wolf for extremely useful remarks on a previous draft of this paper as well as many
discussions on issues raised herein. I thank Graham White for his comments on an early draft of this paper.
Several anonymous referees have contributed important insights into the revision process thereby
significantly improving this latest version. This research was supported by a Research Fellowship from the
Sidney M. Edelstein Centre for History & Philosophy of Science, Technology & Medicine. Part of this
research was conducted while I was a visiting fellow at the School of Humanities & Languages, University
of New South Wales, Australia. I gratefully acknowledge their support. The usual disclaimer applies: any
remaining mistakes are my sole responsibility.

Notes:
1 Some have called this view unlimited pancomputationalism claiming that it is the strongest version of
pancomputationalism (Piccinini 2012). But the strongest version of pancomputationalism is the view that the universe is
a computer (Dodig-Crnkovic and Müller 2011, p. 153).
2 I thank an anonymous referee for this critique.
3 There are four two-input, one-output gates that process structured input data.
4 For a similar argument in the context of defending the mechanistic account of computation see (Dewhurst 2014).
5 It may be argued that there exist some weaker FSAs and TMs (e.g., a single-state FSA) for which an indeterminacy
argument can be constructed thereby showing that the IIP account cannot treat all these systems uniformly as memory-

 31

based nontrivial computational systems. For a detailed discussion of the memory model in such systems in a generalised
meta-computational space see (Fresco and Wolf 2014).
6 The expression ‘ordinary open systems’ refers to systems that are open to influences, such as gravitational and
electromagnetic forces, and constantly change.
7 An internal state of Κ is defined as a set of K’s maximal states (a maximal state is a complete specification of the
values of all the relevant variables of Κ) for some given real-time interval (e.g., from 13:00 to 13:04) such that these
maximal states correspond to the automaton’s states in a single run of δ.
8 This argument can be reformulated in terms of data, rather than information, since the underlying data are those used
to carry information. For ease of exposition it is formulated in terms of information.
9 Interestingly, although quantum mechanics provides for a significant improvement over classical mechanics in the
efficiency of communication, arguably, “the transmission of n quantum bits cannot serve to communicate more than n
classical bits of information” (Brassard 2003, p. 1611).
10 I thank an anonymous referee for emphasising the quantum mechanical perspective.
11 If matter and time are infinitely divisible, then it is possible to perform infinite computations in finite space and time.
12 Garbage information is an intermediate memory that is used to keep track of the history of the computation going
from state sx to sy but is not otherwise used for the computation itself.
13 A related critique might be that the information a physical state carries is observer-relative. But the critic will have to
concede that the sum of all actual or possible attributions is finite.
14 cf. Peter Corning’s (2001, pp. 1280–1281) proposed framework for quantifying “control information” in relation to
its capacity to control and utilise available energy and matter in or by a cybernetic system.

References

Adriaans, P., & van Emde Boas, P. (2011). Computation, Information, and the Arrow of Time. In S.

B. Cooper & A. Sorbi (Eds.), Computability In Context (pp. 1–17). Imperial College Press.

http://www.worldscientific.com/doi/abs/10.1142/9781848162778_0001.

Bishop, J. M. (2009). A Cognitive Computation Fallacy? Cognition, Computations and

Panpsychism. Cognitive Computation, 1(3), 221–233. doi:10.1007/s12559-009-9019-6

Block, N. (2002). Searle’s arguments against cognitive science. In J. Preston & M. Bishop (Eds.),

Views into the Chinese room  : new essays on Searle and artificial intelligence (pp. 70–79).

Oxford: Clarendon Press.

Bohm, D. (2006). The special theory of relativity. London: Routledge.

Bokulich, P. (2013). The Physics and Metaphysics of Computation and Cognition. In V. C. Müller

(Ed.), Philosophy and Theory of Artificial Intelligence (Vol. 5, pp. 29–41). Berlin,

Heidelberg: Springer Berlin Heidelberg. http://www.springerlink.com/index/10.1007/978-3-

642-31674-6_3.

 32

Brassard, G. (2003). Quantum Communication Complexity. Foundations of Physics, 33(11), 1593–

1616. doi:10.1023/A:1026009100467

Brown, C. (2012). Combinatorial-State Automata and Models of Computation. Journal of Cognitive

Science, 13(1), 51–73.

Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3),

309–333. doi:10.1007/BF00413692

Chrisley, R. L. (1994). Why everything doesn’t realize every computation. Minds and Machines,

4(4), 403–420. doi:10.1007/BF00974167

Copeland, B. J. (1996). What is computation? Synthese, 108(3), 335–359. doi:10.1007/BF00413693

Corning, P. A. (2001). “Control information”: The missing element in Norbert Wiener’s cybernetic

paradigm? Kybernetes, 30(9/10), 1272–1288. doi:10.1108/EUM0000000006552

Dennett, D. C. (1989). The intentional stance. Cambridge, Mass.: MIT Press.

Dewhurst, J. (2014). Rejecting the Received View: Representation, Computation, and Observer-

Relativity. In The 7th AISB Symposium on Computing and Philosophy: is computation

observer-relative?. University of London, UK.

Dietrich, E. (1989). Semantics and the computational paradigm in cognitive psychology. Synthese,

79(1), 119–141. doi:10.1007/BF00873258

Dijkstra, E. W. (1972). Structured programming. In O. J. Dahl, E. W. Dijkstra, & C. A. R. Hoare

(Eds.), (pp. 1–82). London, UK, UK: Academic Press Ltd.

http://dl.acm.org/citation.cfm?id=1243380.1243381

Dodig-Crnkovic, G., & Müller, V. C. (2011). A Dialogue Concerning Two World Systems: Info-

computational Vs. Mechanistic. In G. Dodig-Crnkovic & M. Burgin (Eds.), Information and

Computation (pp. 149–184). World Scientific.

Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.

 33

Fresco, N., & Staines, P. J. (2014). A Revised Attack on Computational Ontology. Minds and

Machines, 24(1), 101–122. doi:10.1007/s11023-013-9327-1

Fresco, N., & Wolf, M. J. (unpublished-a). Information Processing and the Structuring of Data.

Fresco, N., & Wolf, M. J. (unpublished-b). Objective Computational Descriptions and Kolmogorov

Complexity.

Fresco, N., & Wolf, M. J. (2014). The instructional information processing account of digital

computation. Synthese, 191(7), 1469–1492. doi:10.1007/s11229-013-0338-5

Hamblin, C. L. (1987). Imperatives. New York, NY: Basil Blackwell.

Hänggi, E., & Wehner, S. (2013). A violation of the uncertainty principle implies a violation of the

second law of thermodynamics. Nature Communications, 4, 1670.

doi:10.1038/ncomms2665

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to automata theory, languages,

and computation. Boston: Addison-Wesley.

Landauer, R. (1961). Irreversibility and Heat Generation in the Computing Process. IBM Journal of

Research and Development, 5(3), 183–191. doi:10.1147/rd.53.0183

Li, M., & Vitanyi, P. M. B. (1992). Mathematical theory of thermodynamics of computation.

Amsterdam, The Netherlands: Centre for Mathematics and Computer Science.

Mackie, D. (1997). The Individuation of Actions. The Philosophical Quarterly, 47(186), 38–54.

doi:10.1111/1467-9213.00045

Mossel, B. (2001). The Individuation of Actions. Australasian Journal of Philosophy, 79(2), 258–

278. doi:10.1080/713659226

Piccinini, G. (2007). Computing Mechanisms. Philosophy of Science, 74(4), 501–526.

doi:10.1086/522851

 34

Piccinini, G. (2012). Computation in Physical Systems. In E. N. Zalta (Ed.), The Stanford

Encyclopedia of Philosophy. http://plato.stanford.edu/archives/fall2012/entries/computation-

physicalsystems/

Planck, M. (1914). The theory of heat radiation. New York: Maple Press: P. Blakiston’s Son & Co.

Putnam, H. (1988). Representation and reality. Cambridge, Mass.: The MIT Press.

Scheutz, M. (1999). When Physical Systems Realize Functions... Minds and Machines, 9(2), 161–

196. doi:10.1023/A:1008364332419

Scheutz, M. (2012). What it is not to Implement a Computation: a critical analysis of Chalmers’

notion of implementation. Journal of Cognitive Science, 13(1), 75–106.

Searle, J. R. (1990). Is the brain a digital computer? Proceedings and Addresses of the American

Philosophical Association, 64, 21–37.

Shagrir, O. (2001). Content, Computation and Externalism. Mind, 110(438), 369–400.

doi:10.1093/mind/110.438.369

Shour, R. (2008). Isotropy, entropy, and energy scaling. eprint arXiv:0805.1715.

Sprevak, M. (2010). Computation, individuation, and the received view on representation. Studies

in History and Philosophy of Science Part A, 41(3), 260–270.

doi:10.1016/j.shpsa.2010.07.008

Turing, A. M. (1936). On Computable Numbers, with an Application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, s2-42(1), 230–265. doi:10.1112/plms/s2-

42.1.230

Vedral, V. (2010). Decoding reality: the universe as quantum information. Oxford: Oxford

University Press.

Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy

Physics, 2011(4). doi:10.1007/JHEP04(2011)029

	University of Wollongong
	Research Online
	2014

	Objective computation versus subjective computation
	Nir Fresco
	Publication Details

	Objective computation versus subjective computation
	Abstract
	Disciplines
	Publication Details

	Objective Computation

