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Abstract 
Background - Robotic laparoscopic surgery has revolutionized minimally invasive surgery for the treatment of 
abdominal pathologies. However, current training techniques rely on subjective evaluation. The authors sought 
to identify objective measures of robotic surgical performance by comparing novices and experts during three 
training tasks. 
 
Methods - Five novices (medical students) were trained in three tasks with the da Vinci Surgical System. Five 
experts trained in advanced laparoscopy also performed the three tasks. Time to task completion (TTC), total 
distance traveled (D), speed (S), curvature (Ƙ), and relative phase (Φ) were measured. 
 
Results - Before training, TTC, D, and Ƙ were significantly smaller for experts than for novices (p < 0.05), whereas 
S was significantly larger for experts than for novices before training (p < 0.05). Novices performed significantly 
better after training, as shown by smaller TTC, D, and Ƙ, and larger S. Novice performance after training 
approached expert performance. 
 
Conclusion - This study clearly demonstrated the ability of objective kinematic measures to distinguish between 
novice and expert performance and training effects in the performance of robotic surgical training tasks. 
 
Keywords     Performance · Robotic surgery · Skill assessment · Training 
 
 

Introduction 
Laparoscopy, a form of minimally invasive surgery, has revolutionized the treatment of abdominal 

pathologies. The benefits for patients include shorter recovery time with less pain [1], fewer adhesions [2], and 
better postoperative quality of life [3] than experienced with traditional open procedures. However, manual 
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laparoscopy also has shown several limitations during surgery. These limitations include lack of depth 
perception, poor camera control, limited degrees of freedom of the instrument tips, and inverted hand–
instrument movements [4–6]. Furthermore, these limitations lead to unnatural and painful surgical postures that 
result in fatigue for the surgeon [4–6]. 

The advent of robotic surgical systems, such as the da Vinci Surgical System (dVSS; Intuitive Surgical, Inc., 
Sunnyvale, CA, USA), has overcome some limitations of manual laparoscopy. The addition of three-dimensional 
visualization has provided depth perception [7] and increased dexterity [8, 9]. The wrist-like articulations of the 
instruments also have been shown to improve surgeons’ dexterity [9]. The coordinated hand–instrument 
movements have reduced the training time for the use of robotic systems versus manual laparoscopy [10]. In 
addition, tremor abolition and motion scaling have been shown to enhance dexterity with the use of robotic 
systems compared with manual techniques [9]. 

As of 2000, more than 100 dVSS systems were in use worldwide [11]. Currently, more than 400 systems 
are used worldwide (personal communication with Intuitive Surgical). As of January 2001, it was estimated that 
the dVSS had been used to perform more than 2,000 surgeries, and that number is rising rapidly [12]. At our 
clinical facility alone, 204 laparoscopic procedures have been performed using the dVSS as of February 2005. 
According to hospitals that responded to a survey, 45% of dVSS procedures are cardiac, 33% are urologic, 11% 
are general surgery, 7% are gynecologic, and 4% are pediatric [13]. The growing prevalence of dVSS procedures 
poses a clear need to establish standardized training and evaluation for robotic laparoscopic surgery. In addition, 
no clearly established measures exist for judging performance during surgery. 

The current means for evaluating surgical performance and skill acquisition during training are limited to 
measurement of task completion time and number of errors [9, 14–17] or a subjective evaluation by an expert. 
In all the cited studies, task completion time and number of errors were reduced with training. Errors are 
important to evaluate, but review by an expert is required to identify the errors. Furthermore, the 
aforementioned measures do not characterize the movements (e.g., speed or distance covered). Moreover, it is 
not known whether faster is better. The speed–accuracy trade-off is a well-known phenomenon in motor 
control, in which speed increases cause decreases in accuracy and vice versa [18]. More accurate movements 
may take more time to complete. Therefore, additional objective measures are needed to quantify surgical 
performance improvements and differentiate between expert and novice surgeons. 

This study aimed by the use of objective measures to compare robotic surgical performance between 
novices and experts, specifically after a short training period. We previously identified task completion time, 
distance traveled, and relative phase (coordination) as potential measures of surgical proficiency, as shown by 
changes over a 4-week training period [19]. We also showed previously that task completion time and relative 
phase can distinguish novice from expert performance during three inanimate tasks [20]. In addition, we 
determined that path curvature and grip force improve with training, as shown by changes over only one session 
comprising 10 trials of training [21]. 

In this study, we performed a comprehensive evaluation of all previously identified objective measures 
by comparing experts and novices (before and after training) during three inanimate tasks of increasing 
difficulty. We focused in using only a short training period due to restrictions that exist with long training periods 
(i.e., availability of the robot, availability of experts). We hypothesized that expert and novice performances in 
speed, curvature, and grip force are significantly different, and that novice performance will improve with 
training. Specifically, we hypothesized that experts and trained novices will make faster, straighter movements 
and use less grip force. These objective measures provided the foundation for quantifying movement 
characteristics and improved robotic surgical evaluation. 
 
 
Materials and methods 
 
Subjects 
 

Five novice users (first- and second-year medical students, ages 22–24 years) and five expert users 
(advanced laparoscopic surgeons, ages 35–45 years) of the dVSS were recruited to participate in this study. 



 

 

Novice users had no prior experience using the dVSS. Expert users were trained as advanced laparoscopic 
surgeons and had performed at least five human procedures using the dVSS. All participants were right-handed. 
Informed consent was obtained from each subject before his or her participation in accordance with the 
Institution Review Board of the University of Nebraska Medical Center. 
 
Experimental protocol 
 

Subjects performed and/or practiced three tasks using the dVSS throughout this study: bimanual 
carrying (BC), needle passing (NP), and suture tying (ST). The bimanual carrying task required that two 15 X 2-
mm rubber pieces (one each with left and right graspers) be picked up from 30-mm (diameter) metal caps and 
placed in two other metal caps 50 mm away (Fig. 1A). The caps were arranged in a square configuration such 
that the left graspers removed pieces from the top left cap and placed them in the bottom left cap. The right 
grasper removed pieces from the bottom right cap and placed them in the top right cap. The subject repeated 
the movement six times in succession. 

The needle-passing task required that a 26-mm surgical needle be passed through six holes in a latex 
tube (Fig. 1B). Subjects started from the proximal holes and proceeded to the distal holes. 

The suture-tying task required that two knots be tied with a 100 X 0.5-mm surgical suture using the 
intra-corporeal knot (Fig. 1C). The subjects performed the tasks by manipulating the dVSS from the surgeon’s 
console (Fig. 1D). 

All three tasks were cyclic tasks designed to mimic actual laparoscopic tasks that required significant 
bimanual coordination. 

Novices performed 16 trials of each task divided into 3 training blocks (Fig. 2): 3 pre-training trials (N-
PRE), 10 training trials, and 3 post-training trials (N-POST). All trials were performed during one session. The task 
order was randomized between subjects, but remained the same between training blocks. Experts performed 
five trials of each task. The last three trials of each task by the experts were used for data analysis. Subjects were 
not allowed to practice with the dVSS before the experiment 
 
Fig. 1 - The tasks performed in the current study using the da Vinci Surgical System (dVSS). 
(A) Bimanual carrying. (B) Needle passing. (C) Suture tying. (D) Subject seated at the surgeon’s dVSS console 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 
 
Fig. 2 - Training paradigm for the novice subjects. Each novice performed each task in three training blocks: 3 
pre-training trials (N- PRE), 10 training trials (TRAIN), and 3 post-training trials (N-POST). Task order was 
randomized between subjects, but remained the same between training blocks 
 
 
 
Data analysis 
 

All objective measures of performance were based on kinematic measures of the dVSS instrument tips. 
Kinematics of the dVSS were collected using the Application Programmer’s Interface (API) provided by Intuitive 
Surgical. A custom LabView program (National Instruments, Inc., Concord, MA, USA) was written to interface 
with the dVSS via an Ethernet connection. Data were streamed at 75 Hz (determined by API). All post-processing 
of data was performed in MATLAB (version 6.5; Mathworks, Inc., Natick, MA, USA). All kinematic data were 
down-sampled to 5 Hz using a cubic spline to enforce a constant sampling rate between data points. Variables of 
interest streamed from the API were position (x, y, and z location) of the right and left instrument tips and the 
grip force applied by the left and right grasper. 

Before data collections for training tasks, a local coordinate system was defined for all kinematics: x 
(left/right), y (forward/backward), and z (up/down) (Fig. 3). A local coordinate system is necessary for accurate 
measurements of relative phase (described later). The local coordinate system was defined by measuring the 
location of the instrument tip at the local origin (GPLorig), at a point on the local x-axis (GPLx), and at a point on the 
local y-axis (GPLy). A transformation matrix was computed from these three points to transform points in the 
global coordinate system to the local coordinate system [22]. 

All measurements acquired from the robot kinematics were computed from position, velocity, and 
acceleration of the instrument tips. All measurements were calculated for the left and right instruments (or 
graspers) unless noted. Velocity and acceleration of the instrument tips were calculated directly by computing 
the first and second derivatives, respectively, of the positions of the instrument tips. 
 

 
 

Fig. 3 - Local coordinate system of measurement for training tasks 
 



 

 

 
Objective measures 
 

The objective performance measures were time to task completion (TTC), total distance traveled (D), 
speed (S), curvature (Ƙ), and relative phase (Φ). Time to task completion was the time required to complete a 
given training task. Start and end times were identified as the time when the instrument tips were within 1 cm of 
the starting positions. Total distance traveled was the sum of Euclidean distances between each time sample. 
Speed was calculated as the magnitude of the velocity. The mean (Smean) and standard deviation (Sstd) of speed 
were computed for each trial. 

Curvature measured the straightness of the path and was calculated at each point on the path by the 
following equation [23, 24]: 
 

 
 
where 𝑟̇ is the velocity of a point r on the three-dimensional path, and 𝑟̈ is the acceleration of point r. The 
median (Ƙmed) and 95% confidence interval (ƘCl) were computed for each trial. The 95% confidence interval was 
computed as defined by Campbell and Gardner [25]. Values of Ƙmed close to zero indicate relatively smooth and 
straight movements, whereas larger values indicate curved and jerky movements. 

Relative phase was computed to determine the coordination of the instrument tips in the dominant 
direction of movement (x for needle passing and suture tying, y for bimanual carrying). It is measured as the 
difference in phase angle between the left and right instruments, as given in the following equation [26]: 

 
 
where φA is the phase angle of point A, φB is the phase angle of point B, xA is the position of point A in the x 
direction, xB is the position of point B in the x direction, 𝑥̇A is the speed of point A in the x direction, and 𝑥̇B is the 
speed of point B in the x direction. Note that the atan2 function was used to calculate the inverse tangent in 
order for φ to range from -𝜋 to 𝜋. Circular statistics were used to calculate the mean (Φmean) and standard 
deviation (Φstd) of the relative phase as defined by Stergiou [26]. Values of Φmean close to zero show an in-phase 
relationship, whereas values close to 180 show an antiphase relationship. 

Grip force (F), provided by the dVSS API, represented a percentage of the maximum torque of the servos 
that drive the graspers. To verify the linearity of the grip force and its correlation with applied pressure, a force 
sensing resistor (FSR) was squeezed while measurements from the dVSS and FSR were collected simultaneously 
(R2 > 0.91). The resistance of the FSR is proportional to the force applied. Therefore, grip force could be 
measured directly. The dVSS and FSR grip force measurements were compared using a linear regression fit. Right 
and left grip force measured by the dVSS was very well correlated (R2 = 0.97 and 0.91, respectively) with FSR 
measurements. Mean grip force (Fmean) was computed for each trial. Small values of Fmean are desirable because 
they indicate that little pressure would be applied to tissue. 
 
 
Statistical analysis 
 

Group means were calculated for all the dependent variables: time to task completion (TTC), total 
distance traveled (D), speed (S), curvature (Ƙ), and relative phase (Φ). Subsequently, independent t-tests were 
used to compare the group means between the untrained novices (N-PRE) and the experts (EX) and between the 
trained novices (N-POST) and the experts (EX) for each objective measure and each task at α = 0.05. Dependent 



 

 

t-tests were used to compare the group means of novices before and after their training (N-PRE vs N-POST) for 
each objective measure and each task at α = 0.05. Bonferroni corrections due to the number of comparisons 
were not used. However, the actual p values are presented in our results, as considered in the Discussion section 
later. All statistical analyses were performed using SPSS 12.0 (SPSS, Chicago, IL, USA). 
 
 

Results 
 
Bimanual carrying 
 
              Task completion time, speed, and curvature successfully distinguished between novice (before training) 
and expert performance as well as before and after novice training (Fig. 4). Expert TTC was significantly less than 
that of novices before training (p = 0.014), whereas expert right Smean was significantly larger (p = 0.003). Expert 
left Smean was significantly larger than that of novices before training (p = 0.011), as was right Sstd (p = 0.004). Left 
Sstd was significantly larger for experts than for novices (p = 0.005), and experts made significantly straighter 
movements for right Ƙmed than novices (p = 0.022). 

 
 

Novices also improved performance after training, as shown by smaller task completion time, faster 
movements, and straighter movements. After training, TTC was significantly smaller (p < 0.0005). Both and left 
Smean were significantly larger after training (right p < 0.0005 vs. left p = 0.001), as were both right and left Sstd 
(right p = 0.002 vs. left p < 0.0005). Both right and left Ƙmed were significantly smaller after training (right p = 
0.009 vs. left p < 0.0005), as were both right and left ƘCI (right p = 0.023 vs. left p = 0.002). Novice performance 
after training was very similar to expert performance. Only left Ƙmed and ƘCI were significantly different between 
experts and novices after training (p = 0.005 and p = 0.023, respectively). 
 
Needle passing 
 

Task completion time, distance traveled, speed, curvature, relative phase standard deviation, and grip 
force successfully distinguished between novice (before training) and expert performance, and the same 



 

 

measures, except for distance traveled, distinguished before and after training (Fig. 5). Expert TTC was 
significantly smaller than that of novices before training (p = 0.004). Right D was significantly smaller for experts 
than for novices before training (p = 0.002). Expert left Smean was significantly larger than that of novices before 
training (p = 0.016). Experts made significantly straighter movements for right Ƙmed (p = 0.027) and left Ƙmed (p < 
0.0005) than novices before training. Left ƘCI was significantly smaller for experts than for novices (p = 0.01). 
Experts had significantly less variation in relative phase than novices before training (p = 0.006). Right F was 
slightly, but significantly, larger for experts than for novices (p = 0.019). 

Novices also improved performance after training, as shown by shorter task completion time, faster 
movements, straighter movements, and increased deviations of relative phase. After training, TTC was 
significantly smaller (p = 0.001). Both right and left Smean were significantly larger after training (right p = 0.012 vs. 
left p = 0.001), whereas both right and left Ƙmed were significantly smaller (right p = 0.001 vs. left p = 0.006). Left 
ƘCI was significantly smaller after training (p = 0.022), whereas left Φstd was significantly larger (p = 0.043). Left F 
was significantly larger after training (p = 0.042). Novice performance after training was very similar to expert 
performance. Only Φstd and right Fmean were significantly different between experts (p = 0.001) and novices (p = 
0.003) after training. 
 
Suture tying 
 

Task completion time, distance traveled, speed, curvature, and grip force successfully distinguished 
between novice (before training) and expert performance, and the same measures, except for grip force, 
distinguished performance before and after training (Fig. 6). Expert TTC was significantly smaller than that for 
novices before training (p < 0.0005). Both right and left D were significantly smaller for experts than for novices 
before training (right p = 0.001 vs. left p = 0.001). Both right and left Smean were significantly larger for experts 
than for novices before training (right p = 0.001 vs. left p < 0.0005), as were both right and left Sstd (right p = 
0.004 vs. left p = 0.005). Experts made significantly straighter movements for right Ƙmed (p = 0.001) and left Ƙmed 
(p < 0.0005) than novices before training. Left F was slightly, but significantly, smaller for experts than for novices 
before training (p = 0.007). 
 

 
 



 

 

Novices also improved performance after training, as shown by shorter task completion time, shorter 
distance traveled, faster movements, and straighter movements. After training, TTC was significantly shorter (p < 
0.0005). Both right and left Sstd were significantly smaller after training (right p = 0.006 vs. left p = 0.001), 
whereas right and left Smean were significantly larger (right p < 0.0005 vs. left p < 0.0005). Both right and left Sstd 
were significantly larger after training (right p < 0.0005 vs. left p < 0.0005), whereas right and left Ƙmed were 
significantly smaller (right p = 0.002 vs. left p = 0.042). Novice performance after training was very similar to 
expert performance. Only left Ƙmed was significantly different between experts and novices after training (p = 
0.036). 
 
 
Discussion 
 

This study clearly demonstrated the ability of objective kinematic measures to distinguish between 
novice and expert performance and training effects in the performance of robotic surgical training tasks. All 
objective measures except Φmean were significantly different between novices and experts, and after training for 
at least one task. Therefore, these variables have the potential to measure and evaluate robotic surgical 
performance. 

These results agree with those of previous studies that found decreases in task completion time and 
distance traveled [16, 17, 27, 28]. These results also agree with our previous findings of reduced task completion 
time and decreased distance traveled after training [19, 21] as well as our more recent findings comparing 
novices and experts [20]. 

Remarkably, we found that novices required relatively few trials (n = 10) to reduce task completion time 
significantly. In general, the total distance traveled (D) was shorter, the average speed (Smean) was faster, the 
standard deviation for speed (Sstd) was larger, the movements were straighter (Ƙmed), the confidence intervals of 
curvature (ƘCI) were smaller, and the standard deviation of relative phase (Φstd) was smaller for experts and 
novices after training than for novices before training. 

Although these results are expected with improved performance, mean grip force (Fmean) was larger for 
experts than for novices. This is likely due to the lack of tactile feedback from the dVSS (i.e., the inability to 
‘‘feel’’ the amount of force applied by the graspers). Using too much force could potentially damage delicate 
tissue during surgery. Future studies should investigate other training means for providing alternative feedback 
to reduce grip force. 
 



 

 

 
 

Furthermore, the performance of the novices after training was similar to expert performance (i.e., the 
difference between novice performance before and after training was similar to the difference between the 
performance of experts and novices before training. Few objective measures (Ƙmed and ƘCI for BC, Φstd and right F 
for NP, and Ƙmed for ST) were significantly different between novice performance after training and expert 
performance. For the BC tasks, novices actually made straighter movements than experts. For the NP and ST 
tasks, novice performance approached expert performance, but may require slightly more training. 

Although nearly all objective measures improved overall, there were task differences. The number of 
objective measures with significant differences increased with task complexity. For the bimanual carrying task 
(the easiest task), six objective measures were significantly different between novices and experts, and nine 
measures were significantly different between pre- and post-training. For the needle-passing task (a moderately 
difficult task), eight measures were significantly different between novices and experts, and eight measures 
were significantly different between pre- and post-training. For the suture-tying task (the most difficult task), 
nine measures were significantly different between novices and experts, and nine measures were significantly 
different between pre- and post-training. 

It is likely that novices performed better on less complex tasks, reducing the likelihood of training effects 
and differences between novice and expert performance. However, further investigation is needed to explore 
task complexity and robotic surgical performance. 

One measure, the mean relative phase, did not show any differences between novice and expert 
performance nor between pre- and post-training. Our previous study did find relative phase differences for long-
term training [19]. It is possible that coordination requires additional training before differences are apparent. 

Alternatively, normalization techniques for calculating relative phase differed between this study and 
our previous work. In our previous work, position and velocity were normalized during post-processing. In the 
current study, a local coordinate system was calculated before data collection. Kurz and Stergiou [29] showed 
that normalization can affect relative phase calculations. Other researchers have used the local minimum and 
maximum of the relative phase curve because they are reversal points in the segment relationships. It has been 
noted previously that these points provide insight on the specific changes in coordination [30]. However, this 
analysis may not be appropriate for our study. Our tasks did not have clearly defined cycles (e.g., gait) because of 



 

 

mistakes such as missed grabs, dropped needles, and the like. Also, suture tying does not have multiple cycles 
because it is just one knot. Further investigation is needed to determine the extent to which normalization 
affects relative phase for robotic surgery or whether differences between our previous and current studies are 
due to the amount of training given. 

Previous studies emphasized that task completion time and distance traveled are insufficient to explain 
fully all aspects of robotic surgical performance (i.e., there may be qualitative aspects of robotic surgical 
performance that one should consider when identifying objective measures of performance) [9, 17, 26, 31, 32]. 
The results from this study clearly suggest that these additional objective measures of robotic surgical 
performance, particularly speed and curvature, can distinguish between expert and novice performance and 
training effects and have the potential to identify additional aspects of robotic surgical performance not 
quantified by task completion time and distance traveled alone. Finally, relatively little training (10 trials per 
task) is needed for novices to perform well during the training tasks. 
 
Acknowledgments This study was supported by NIH (K25HD047194), NIDRR (H133G040118), and the   Nebraska 
Research Initiative. 
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