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We present a study of multiple sclerosis segmentation algorithms conducted at the international 

MICCAI 2016 challenge. This challenge was operated using a new open-science computing 
infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms 

in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen 

methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against 

a high-quality database of 53 MS cases coming from four centers following a common definition of 
the acquisition protocol. Each case was annotated manually by an unprecedented number of seven 

different experts. Results of the challenge highlighted that automatic algorithms, including the recent 
machine learning methods (random forests, deep learning, …), are still trailing human expertise on 

both detection and delineation criteria. In addition, we demonstrate that computing a statistically 

robust consensus of the algorithms performs closer to human expertise on one score (segmentation) 

although still trailing on detection scores.
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Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system affecting around 2.5 
million persons worldwide, with a prevalence rate of 83 per 100000 (higher rates in countries of the northern 
hemisphere) and a woman:man ratio of around 2.01. It is characterized by widespread inflammation, focal demy-
elination, and a variable degree of axonal loss. With the appearance of new treatment molecules modifying the 
disease evolution (disease modifying drugs - DMD), one of the major challenges in treating multiple sclerosis is 
now to overcome classical clinical criteria, such as the expanded disability status scale (EDSS), to go towards more 
sensitive and specific criteria. In this context, Magnetic Resonance Imaging (MRI) plays an important role for the 
diagnosis2 and evaluation of the evolution of the disease, thus providing insights to adapt the treatment to each 
individual due to the highly variable nature of the MS disease course3.

In this context, the number and spread of lesions in the patient’s parenchyma (and their evolution)2 has 
become a crucial information on the patient’s disease status, which may then be used for validating the patient 
treatment. This task however requires the delineation of MS lesions: a tedious, manual operation performed 
by the radiologist. In addition, this delineation is prone to inter-expert variability, especially when the images 
being used for segmentation differ from a center to another (in terms of protocols, modalities and intrinsic MRI 
quality). Doing this task manually on large databases of patients is therefore almost impossible and automatic 
algorithms, thoroughly validated, have become a crucial need for the clinical community. To simplify the cli-
nician’s task, a large literature of automatic segmentation methods has been devised4–6 with a large spectrum of 
algorithms from classical tissue intensity classification and lesion modeling to machine learning.

All published approaches are however evaluated on different datasets, usually not calibrated, and their results 
are therefore usually not directly comparable, making difficult the choice of the most relevant method adapted to 
a clinical context. To overcome this issue, competitions (so-called challenges) have been organized in MS lesion 
segmentation in the past years. The first one was organized at the MICCAI 2008 conference7. It evaluated nine 
different methods on a database of 45 patient images (from two different centers: 20 for training and 25 for test-
ing), with respect to a ground truth composed of two expert segmentations for each case. However, no protocol 
standardization was performed between the two sites, therefore two raters were not enough to handle the vari-
ability in the acquired images and get a sufficiently reliable consensus manual segmentation. The second major 
challenge on MS lesion segmentation was held in 2015 at the IEEE ISBI international conference8. It was more 
focused on the study of longitudinal lesion evolution with specific evaluation metrics based on segmentation vol-
ume evolution (in addition to the regular segmentation overlap metrics used in 2008). This challenge evaluated 10 
different methods on a dataset composed of five patients images each with an average of 4.4 time points, each time 
point being manually delineated by two experts. As for the MICCAI 2008 challenge, two raters were not enough 
to account for disparities in the different raters manual segmentations and get a representative consensus. The 
process of evaluation was similar for the two challenges. A subset of the patient images was provided to the par-
ticipants with the ground truth (GT) segmentation to the participants for them to train their respective methods. 
In a second step, a testing set was provided (without the ground truth) to the participants asking them to submit 
back their results. Evaluation was then performed on those results using overlap-based metrics.

Several problems may however affect such challenges. First, as a general comment for all challenges, a lack 
of fairness may exist between the participants: since the testing images are provided, some participants may 
indeed optimize the parameters of their algorithms on a patient basis to obtain better results. Doing this illus-
trates the potential of the method but not its practical usability: a clinician would prefer to use always the same 
set of parameters to process each new or returning patient. In addition, since participants run their algorithm on 
their own computing environment, no evaluation relative to computing performance (e.g. required memory of 
computing time) is possible. There is therefore a need for computing platforms for supporting challenges includ-
ing data storage, processing pipelines (i.e. segmentation algorithms work-flow used) integration and evaluation 
on stored datasets. Such platforms would provide a truly fair comparison between fully automatic methods. In 
addition, such remote computing platforms, able to host a large variety of algorithms, announce what the future 
cloud computing services will provide to assist clinicians (radiologists, neurologists, …) in using computer aided 
diagnosis solutions. This computing environment also opens the road to open-science platforms where people 
will find solutions to post their data, send or retrieve algorithmic solutions and provide an independent yet secure 
environment to compare, assess and combine various algorithms outcomes and solve clinical problems.

Another issue in segmentation challenges is the number of manual delineations to compute the ground truth. 
Usually only two are available, which is insufficient to illustrate the inter-expert variability, particularly when 
considering MS lesions segmentation. Finally, and specifically to MS lesions segmentation, previous challenges 
considered only segmentation based metrics, ignoring the number of correctly detected lesions independently 
of their shape, which is an acute criterion to assess the disease evolution2. This would be very beneficial for the 
clinician, especially when considering MS evolution where the number of new lesions is critical.

We proposed and organized in 2016 a new generation of segmentation challenge hosted at the MICCAI inter-
national conference (http://www.miccai2016.org). It aimed at proposing solutions to several of the previously 
mentioned defects first by gathering an unprecedented database of MS patients, coming from three different 
centers (representing four different scanners, one of which was intentionally hidden at the training phase from 
the challengers to test their algorithms’ adaptation capabilities) but all following a common consensus protocol9, 
each patient being delineated by seven experts to evaluate not only automatic methods performance but also 
inter-expert variability of manual segmentation. We have performed the evaluation on a dedicated computing 
platform provided by France Life Imaging (https://www.francelifeimaging.fr/en), providing pipeline integration, 
database storage and automatic execution capabilities. Challenge participants were asked to train their algorithms 
on a reduced set (n = 15) and then integrate their pipeline on the platform, requiring no action from them in the 
latter parts of the evaluation process (n = 38). We also proposed an evaluation strategy on two separate levels: a 
segmentation level where the overlap precision of the segmentation was evaluated; and a detection level where the 
number of correctly detected lesions was evaluated, independently of the precision of their shape.

http://www.miccai2016.org
https://www.francelifeimaging.fr/en


www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |  (2018) 8:13650  | DOI:10.1038/s41598-018-31911-7

We present in this article a retrospective analysis of this challenge and the methods we used to obtain those 
results. The main outcomes of the challenge highlighted that automatic algorithms are still trailing human exper-
tise on the front of MS lesions segmentation and sensitive to unknown images (different scanners) even with an 
harmonized acquisition protocol. This happens for all methods, independently of their category (recent machine 
learning algorithms including deep learning or random forests or more classical tissue classification algorithms). 
In addition, we demonstrate how using an open-science computing environment allows for the combination of 
multiple algorithmic outcomes, and how combining these algorithms could lead to improvements in detection 
and contouring of MS lesions. Together with the computing platform introduced in this paper, this could lead to 
tremendous help for the clinicians in the use of automatic segmentation algorithms to support their diagnosis 
and treatment follow-up in MS.

Results
Challenge data, computing platform and participating teams. The first major result of this study is 
the gathering of a database of 53 multiple sclerosis patients with “ground truth” of very high-quality. The database 
patient scans were following the OFSEP protocol recommendations in9, which is currently applied in France 
for the constitution of the national cohort in MS (for more details on the protocol, see Section 4.1). Following 
this approach has allowed for an evaluation representative of the current imaging protocols standards and eas-
ily usable to characterize the best performing algorithm for future use. This standardization of imaging proto-
cols announces how the dissemination of computer aided diagnosis and imaging biomarkers solutions will be 
implemented in the future. Image processing algorithms indeed need image normalization and quality control to 
ensure peak performance. In addition, the images came from three different sites in France on four different MRI 
scanners and different manufacturers (Siemens, Philips and GE) including three 3 T and one 1.5 T magnets. For 
each MS patient case, an unprecedented number of seven manual delineations was gathered, from trained experts 
split over the three sites providing MR images. From these segmentations, a consensus “ground truth” segmenta-
tion was built for evaluation with the LOP STAPLE algorithm10. We present in Fig. 1 an example of a patient 3D 
FLAIR, the seven manual segmentations of lesions and their consensus segmentation, illustrating the variability 
for a representative patient between expert segmentations. Patients demographic data were the following: aver-
age age of 45.3 years (±10.3 years) with a male:female ratio of 0.4. This database was then split into two sets: one 
training set of 15 patients from three scanners (thus intentionally missing one scanner from the database) given 
to participants, and one testing set of 38 patients, not seen by the participants, used for evaluation. Demographics 
of patients do not vary significantly over the different sitesin terms of age. Some variations exist in the male:female 
ratios in some centers. The training and testing sets have an average age difference of 5 years (training set patients 
are 5 years younger).

A total of thirteen teams were evaluated, and the website (http://portal.fli-iam.irisa.fr/msseg-challenge/), 
databases and algorithms will remain open for future use. A summary of the evaluated methods is presented 
in Table 1 with a short description of their characteristics (MR sequences used as input, implementation, main 

Figure 1. Illustration of an MS patient delineations overlaid on the 3D FLAIR image. (a–g) Individual manual 
delineations of MS lesions from each of the experts, (h) consensus segmentation considered as the ground truth.

http://portal.fli-iam.irisa.fr/msseg-challenge/
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methodology). The algorithms evaluated in the challenge are representative of a broad range of the available 
methods in the recent literature, with unsupervised tissue classification methods, level-sets, random forests and 
deep learning (convolutional neural network, artificial neural networks). Depending on the challenger team, 
the image modalities used for the segmentation varied from just one (usually FLAIR) to all provided modalities. 
Most evaluated algorithms ran on regular computer CPU, while two (team 6 and 12) leveraged specific hardware 
(GPUs) for intensive computation (e.g. deep learning). The computing infrastructure was able to provide the 
relevant computing solution for all requirements.

These teams were evaluated in a distributed Web platform based on software containers provided by the 
France Life Imaging platform, allowing for the automatic, challenger independent evaluation of the algorithms 
(see Section 4.3 for more details on the challenge execution platform). Using such a platform, providing inte-
grated storage and computing facilities for challenges, allowed for fair comparisons as challengers could not tune 
their algorithm specifically for each test patient. Each challenger was indeed asked only to provide a binary image 
(i.e. an annotated Docker container image) of their processing pipeline and the evaluation was later on run auto-
matically on the platform with the following metrics used.

Two kinds of performance metrics were set up for evaluation. Clinicians evaluate lesion segmen-
tation in multiple sclerosis with different criteria. Lesion segmentation precision, i.e. the precision of contours 
delineated for each lesion, is crucial as the total volume of lesions (total lesion load - TLL) is part of the criteria to 
evaluate disease severity11,12. When coming to pathology evolution or treatment efficiency evaluation however, 
lesion count and particularly the number of new lesions independently of their sizes is key. Moreover, this lesion 
count is a crucial component of MS diagnosis according to McDonald criteria2. For these tasks, detecting all 
lesions is more important than their precise contours. We have therefore implemented a large set of evaluation 
measures for the challenge with the goal of evaluating these different aspects. Evaluation in the following is there-
fore split into three major categories of evaluation metrics:

•	 Segmentation evaluation: does the algorithm provide a precise delineation of each lesion? This category 
includes average surface distance and Dice overlaps as the main metrics

•	 Lesion detection evaluation: does the algorithm find all lesions in the image independently of its precise 
delineation? This category includes the F1 score, gathering in one scalar information on the number of lesions 
correctly and incorrectly detected.

All methods are outperformed by the experts. We have automatically clustered the average algorithms 
and experts annotations agreements (with their covariances accounted for) with respect to the “ground truth” (see 
Section 4.4 for more details). Results of this clustering, illustrated in Fig. 2 for all couples of measures considered 
in the challenge, highlight a major result of the challenge: over all patients and all evaluation metrics, each indi-
vidual method performs slightly below all experts. On all graphs in Fig. 2, all experts (and only them) are indeed 

Team Authors Segmentation approach Platform Sequences used

1
J. Beaumont
O. Commowick

Graph cut segmentation initialized by a robust 
EM23,24 CPU

T1-w, T2-w, FLAIR 
(preprocessed)

2
J. Beaumont
O. Commowick

Multi-modal abnormalities detection from 
normalized images on an atlas25,26 CPU T2-w, FLAIR (preprocessed)

3
S. Doyle
F. Forbes

HMRF segmentation framework with a 
weighted data model27,28 CPU T1-w, FLAIR (raw)

4
J. Knight
A. Khademi

Segmentation by edge-based model of partial 
volume/pure tissue gray levels29,30 CPU FLAIR (raw)

5
A. Mahbod
C. Wang

Supervised artificial neural network with 
intensity and spatial based features31,32 CPU FLAIR (preprocessed)

6
R. McKinley
T. Gundersen

Ensemble of three 2D fully Convolutional 
Neural Networks with skip connections33 GPU FLAIR (preprocessed)

7
J. Muschelli
E. Sweeney

Random Forest (RF) on normalized multi-
modal features34 CPU T1-w, T2-w, PD, FLAIR (raw)

8
E. Roura
X. Lladó

Outlier segmentation based on brain tissue 
labeling and post-processing rules35,36 CPU T1-w, FLAIR (raw)

9
M. Santos
A. Silva-Filho

Multilayer perceptron with cost functions 
oriented to competition evaluation metrics37,38 CPU

T1-w, T2-w, FLAIR 
(preprocessed)

10
X. Tomas-Fernandez
S.K. Warfield

Lesions and brain tissue segmentation through 
simultaneous estimation of spatially and 
population varying intensity distributions39,40

CPU T1-w, T2-w, FLAIR (raw)

11
H. Urien
I. Bloch

Hierarchical segmentation using max-tree, 
spatial context and anatomical constraints41,42 CPU

T1-w, T1-w Gd, T2-w, PD, 
FLAIR (raw, preprocessed)

12
S. Valverde
M. Cabezas

Cascade of two 7-layer convolutional neural 
networks of 3D patches43 GPU

T1-w, T2-w, PD, FLAIR 
(preprocessed)

13
F.J. Vera-Olmos
N. Malpica

Grey matter filter as input to a RF classifier 
corrected with Markov Random Field 
processing44

CPU
T1-w, T2-w, PD, FLAIR 
(preprocessed)

Table 1. MS lesion segmentation methods evaluated at the MICCAI 2016 challenge.
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always grouped in a single cluster that performs better than all automatic algorithms. Two other clusters are also 
distinguished in these graphs, which vary depending on the evaluation metric, that regroup better performing 
and lower performing algorithms for each couple of evaluation metrics.

In those graphs, we can additionally study the performance of automatic algorithms with regards to each 
evaluation metric considered (average surface distance, Dice score and F1 score). Automatic methods fail much 
more on the detection of lesions (F1 score), with a minimum average score of 0.13 and maximum average of 0.49, 
while the minimum average score obtained by an expert is 0.66 (significant difference, Wilcoxon signed rank 
test, p = 3.7 × 10−5). This is understandable however as all algorithms are primarily designed to obtain the best 
segmentation scores while not considering lesion detection which is a somewhat different task. However, even on 
the Dice score, which is a segmentation metric, the best automatic method performs lower than the lowest expert 
average score: it reaches an average of 0.59 while the lowest expert is on average at 0.67 (significant difference, 
Wilcoxon signed rank test, p = 2.9 × 10−3). The average surface distance is a more balanced metric in terms of 
results with the second group of algorithms in each graph reaching the level of agreement that the experts do with 
the consensus.

Segmentation on an unknown scanner leads to poorer performance. Scanner 3 in the testing 
database was unknown to the teams participating to the challenge. On this center, we have evaluated how auto-
matic algorithms performed without knowing the image characteristics beforehand. The results of this compar-
ison highlight for a large number of automatic algorithms a slight decrease in performance when encountering 
unknown images, even if they come from a common protocol. This evaluation per center and per evaluation 
metric is presented in Fig. 3.

Looking closer at the graphs in Fig. 3, we can observe for the detection metric (F1 score, Fig. 3b) a slight 
decrease for 8 teams among the thirteen evaluated, leading to an average score over all teams of 0.22 for center 3 
while the same automatic methods range between 0.32 and 0.39 for other centers. The same trend can be observed 

Figure 2. Graphical results illustration of automatic clustering of average results for each team and expert into 
three groups (scatter plots of pairs of two evaluation parameters: (a) Dice and F1 scores, (b) surface distance 
and F1 scores, (c) surface distance and Dice scores). Legend: blue crosses: group 1 (always containing only the 
seven experts even though the clustering is automatic), green crosses: group 2 (best performing algorithms), 
red crosses: group 3 (lower “quality” algorithms). Team numbers associated with each point on the graph are 
indicated as labels. Team fusion indicates a composite segmentation result further discussed in Section 2.5.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |  (2018) 8:13650  | DOI:10.1038/s41598-018-31911-7

for the Dice score segmentation metric (Fig. 3a) with a slight decrease in performance for 8 teams as well, and 
an average score over all teams of 0.38 while the same algorithms reach a level ranging between 0.48 and 0.50 on 
other centers. The observations are different for the average surface distance (Fig. 3c), where results for center 
3 are at the same level as center 8, however the variance in results is much higher, preventing from finding any 
statistically significant difference on that metric.

Combining methods through label fusion improves over individual algorithms. In addition to 
the individual automatic algorithms, we have evaluated a composite team named “team fusion”. This method 
gathered the other thirteen teams segmentations in a consensus through label fusion using the LOP STAPLE 
algorithm10. The goal of this fourteenth method was to evaluate the capability of such a label fusion method to 
overpass the individual difficulties of each method and thus obtain results closer to the ground truth. We present 
the results of this evaluation on the different evaluation metrics in Fig. 4.

This composite algorithm improves the average results the average results of individual automatic algorithms 
for all metrics, suggesting its ability to incorporate the best of each team into a consensus segmentation, better 
in line with the experts. These results are confirmed by points “Team fusion” in the clustering graphs in Fig. 2. 

Figure 3. Dice scores (a) F1 scores (b) and average surface distances (c) with respect to the consensus per team 
for each center and averaged over all centers.
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However, the results obtained are still not perfect and lag behind the experts level of agreement with the “ground 
truth”. More precisely, the improvement of team fusion over other algorithms is particularly visible on segmen-
tation metrics (Dice scores and average surface distance) since it provides segmentation performances similar to 
the lowest experts. This improvement is however less important on the detection metric (F1 score). This smaller 
improvement seems logical as the label fusion algorithm used for team fusion is primarily designed to optimize 
segmentation performance and not specifically detection. With that said, the first position of Team fusion among 
the segmentation methods illustrates how a composite algorithm mixing results of other teams is able to perform 
better than each individual automatic method. This also illustrates the importance to provide an open-science 
computing platform able to combine results of independent algorithms.

Lesion load and lesion size directly influences automatic segmentation quality. We additionally 
performed an experiment to evaluate, independently of their individual behaviors, the algorithms sensitivity 
to the true amount of lesions in the “ground truth” for a given patient. To this end, we averaged the Dice scores 
(respectively the average surface distances and F1 scores) over all methods for each patient and plotted in Fig. 5 
this average value with respect to either the number of lesions or the total lesion load in the consensus. On each 
graph, we then computed a log-linear regression for which we display the Spearman squared correlation.

From Fig. 5, it is clear that the worst results are obtained for patients whose total lesion load is low. This is 
especially true for segmentation performance scores: the Dice score (the squared correlation R2 of the regression 
reaches 0.82) and the average surface distance (R2 of 0.71). For the F1 score (a detection metric), the correlation is 
however weaker than for the total lesion load (R2 of 0.45). From these graphs, the correlation between the number 
of lesions and the obtained scores is less clear, all correlations being smaller than with the total lesion load (R2 of 
0.46 with the Dice score, 0.38 with the F1 score, and 0.60 with the average surface distance). This result however 
seems reasonable since a patient presenting many small lesions is intuitively more difficult to delineate than a 
patient with a small number of large lesions.

Total lesion load in a patient is thus very correlated with segmentation and detection scores while not with 
the number of lesions. To further qualify this fact, we performed an experiment considering detection scores 
individually for each lesion in regard of its volume. We have thus computed, for each team and for each lesion 
of the “ground truth” of each patient, a binary detection score telling whether the lesion was detected or not by a 
specific team. Counting the number of teams which detected the lesion thus provides us with a rate of detection 
for each lesion (a rate of 0% meaning that no team detected the lesion, and 100% meaning that all teams detected 
the lesion). Those detection rates were further binned according to lesion volume. The graph in Fig. 6 illustrates 
their relation with respect to lesion volume (in mm3).

From Fig. 6, we can clearly see that not only total lesion load influences segmentation quality, but lesion vol-
ume is also clearly linked with lesion detection (R2 of 0.88 after a logarithmic linear regression). All methods tend 
to fail (rates of detection going to zero) for small lesions, while almost all teams are detecting the lesions when 
their volume is sufficiently large.

Delineating an image with empty consensus. We finally present in Table 2 results obtained by each 
expert and each evaluated pipeline on a specific case, from Center 7, where no lesion was present in the consensus 
segmentation. In this specific case, none of the proposed detection and segmentation measures can be used since 
they all rely on the fact that the consensus is not empty. We thus instead defined two specific metrics: the number 

Figure 4. Dice scores (a) F1 scores (b) and average surface distances (c) with respect to the consensus for each 
center and averaged over all centers for composite Team fusion with respect to the average experts agreement 
level.
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of lesions detected (i.e. the number of connected components whose size is larger than 3 mm3 in the segmenta-
tion), and the total lesion load (i.e. the total volume of the previously extracted connected components) found by 
each algorithm. For both metrics, since the consensus contains no lesions, a perfect value is 0 while the results get 
worse when the metrics grow.

Several observations may be drawn from this table. First of all, among experts, two delineated no lesions while 
five actually delineated one or several lesions (from one to 8 depending on the expert, and from 0.02 to 11 cm3). 
The fact that the consensus is empty therefore means that the experts were not agreeing on the position and extent 
of lesions, which lead to no lesions in the final “ground truth”. Among the automatic segmentation pipelines, the 

Figure 5. Link between average scores of all methods and number of lesions (first column) and total lesion load 
(cm3, second column). First line: Dice score, second line: F1 score, third line: average surface distance.

Figure 6. Individual lesion detection rate (average over all methods) as a function of lesion size. X-axis: 
individual lesion volume on a logarithmic scale. Y-axis: detection rate (in percentages, number of teams 
detecting a lesion of this volume over all patients).
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results are also largely varying: depending on the team, the number of lesions delineated varies from 0 to 522, 
while the lesion load detected varies from 0 to 28.44 cm3. In addition, this image caused problems to some algo-
rithms not initially designed for patients without lesions (team 4). This is an interesting case as it highlights the 
different behaviors of the algorithms on a case for which the pipelines were not designed. Overall, we can notice 
that most of the methods behave well in comparison to the experts.

Discussion
We have presented the first challenge based on an integrated computing platform, applied to multiple sclerosis 
lesions segmentation. The challenge computing platform was constituted of 1- a database to store the challenge 
images and results from the challengers, 2- a computing platform on which the evaluation was performed inde-
pendently of the participants who were asked to post their processing pipelines, and 3- an automatic evaluation 
of the results against the “ground truth”. This open-science computing platform has many advantages, including a 
fair comparison of the participants algorithms being run on the same platform and with the same set of parame-
ters for all patients. In addition, the packaged algorithms may be re-used for other applications or if the validation 
database gets extended. As future work, we plan at transitioning to use the BIDS format (http://bids.neuroimag-
ing.io) to provide a standardized and more intuitive way of storing both the input data and output results. This 
would provide a great improvement in easing the pipeline design and integration in the platform.

This platform was put together for the specific organization of a challenge on multiple sclerosis segmentation 
with a database of 53 patients each with an unprecedented number of seven manual segmentations from trained 
experts. A total of thirteen teams participated, illustrating the variety of algorithms both in terms of methodology 
and implementation. All results computed from the challenge were very insightful and revealed several points 
worth of discussion. First of all, despite that methods vary in their results, the point where a single automatic 
method is able to perform as well as the consensus of the experts has not yet been reached. The experts are indeed 
always slightly better than any method for all performance measures. More specifically, all methods perform rela-
tively poorly on detection metrics, which is however an important point for MS diagnostic and clinical evaluation 
of the patient evolution. Historically all methods have been interested in segmenting well the contours of the 
lesions rather than counting well the number of lesions. As a consequence the detection metrics are not optimal, 
which explains why results are well below the experts. On a more positive point, recent methods such as those 
based on machine learning (especially deep learning) have made great progress and the gap is reducing, which 
leaves hope to reach the same level of agreement than the experts. In addition, it should be remembered that it is 
always difficult to define a “ground truth” for MS lesions segmentation. The experts have indeed a relatively large 
variability, which comes from different appreciations of the image and of the definition of a lesion. Finally on this 
point, it is also interesting to note that a composite method for segmentation (team fusion) combining the differ-
ent automatic methods while rejecting outliers is able to drastically improve segmentation results and get closer 
to the ground truth. However, this happens mainly for segmentation performance metrics and less for detection 
performance metrics. This may be due to the inherent design of the label fusion methods that do not work on a 
lesion basis but rather on a voxel basis, and thus favor segmentation based metrics. In addition, since many meth-
ods fail at delineating well lesions when the total lesion load is small (see Fig. 5), this composite method is not able 
to perform a good segmentation for these cases.

Lesions volume (cm3) Number of lesions

Expert 1 0.052 2

Expert 2 0.090 2

Expert 3 10.887 8

Expert 4 0 0

Expert 5 0.017 1

Expert 6 0 0

Expert 7 0.029 2

Team 1 8.252 18

Team 2 0 0

Team 3 0 0

Team 4 NA NA

Team 5 28.436 522

Team 6 0.473 7

Team 7 5.990 168

Team 8 0 0

Team 9 2.545 33

Team 10 11.085 31

Team 11 3.436 42

Team 12 0.056 1

Team 13 0.074 4

Table 2. Number of lesions and lesion volume detected by each team and expert on the no consensus lesion 
case.

http://bids.neuroimaging.io
http://bids.neuroimaging.io
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We have also illustrated through this challenge the behavior of methods in several specific cases: testing for 
scanner dependency of the algorithms, where we compared the results for four different scanners, one of them 
being hidden from the training dataset. This study illustrated that all methods are still sensitive to scanners on 
which they were not trained for (either training in the machine learning sense or training in the sense of param-
eters tuning by a human being), obtaining lower scores for those images. On the contrary, when the training set 
included representative images of different scanners, all algorithms behaved equally independently of the center 
or scanner. This suggests the importance of looking for more training independent methods or, meanwhile, to 
have enough representative cases to train on (at the high cost of providing multiple manual image annotations 
from experts). A second specific case considered a patient with no lesions in the ground truth provided from the 
experts. For that patient, even if some methods had not planned this case, all methods behaved globally well even 
though participants were not told in advance about this fact.

While not mentioned explicitly in this article, we also looked at the relation between algorithm performance 
and preprocessing or modalities used. For both aspects, there is no clear evidence of a link. Some algorithms 
perform well while using only a subset of modalities, while some other that use all modalities perform less well. 
However the reverse is also true: some of the best algorithms use all modalities while some less good ones use a 
smaller number of modalities. This is however a crucial aspect as information on this could help in the design of 
shorter acquisition protocols in the future, using only those modalities useful for automatic segmentation. Future 
works, which have to be in close link with the challenge participants (but facilitated thanks to our computing 
platform), will look at the robustness of results of the individual algorithms with respect to both preprocess-
ing used and modalities used. This will provide a great insight into optimal, fast protocol design and optimal 
preprocessing.

We have clearly demonstrated in Fig. 5 a link between the total lesion load in a patient and the performance 
of segmentation methods: the smaller the true total lesion load, the worse the segmentation results were for every 
metric. As mentioned earlier, this is partly linked to the fact that voxel-based performance metrics are much 
more sensitive when the number of voxels in the true segmentation is small. However, this is not the only reason: 
automatic segmentation methods are indeed behaving slightly worse on these cases and a focus on them should 
probably help in designing algorithms adapted to all situations. This link between performance and lesion load 
does not generalize to the number of lesions (also seen in the same figure), which illustrates that there is no clear 
sensitivity of the methods to the number of lesions for a patient. However, this link is clearly related to a correla-
tion between lesion volume and lesion detection rate, as demonstrated in Fig. 6. This further indicates that lesions 
are clearly less well detected or even not at all when they are small, which seems rather logical as it intuitively 
seems tougher for an algorithm to properly locate a small lesion than a larger one.

Evaluation metrics presented in this article are a selection per category (segmentation and detection) of the 
metrics described in Section 4.4 and computed for the challenge. We chose them as being representative and 
most informative of the main qualities and defaults of the algorithms. Of course, as illustrated for more general 
segmentation evaluation purpose13, three metrics may not be enough for describing the behavior of each method 
in its entirety. As explained in Section 4, we have complemented these three measures with many other comple-
mentary measures, for which we encourage the interested reader to look at the supplementary materials (https://
doi.org/10.5281/zenodo.1307653).

Methods
We present in the following the methodological details that allowed us to draw the results and conclusions previ-
ously outlined. This section is split in several subparts. Sections 4.1 and 4.2 present in more details the evaluation 
database used in the challenge and the way in which the manual delineations were carried out and averaged into 
a “ground truth”. Section 4.3 then outlines the computing platform used in the challenge which was necessary to 
guarantee a fair comparison of the algorithms. Finally, Section 4.4 presents the evaluation metrics used in the 
challenge as well as the analyses plan derived from them in this article.

Reference Images Database. In this segmentation evaluation challenge, we relied on a database of images 
of 53 multiple sclerosis patients following the OFSEP protocol recommendations in9, which is currently applied in 
France for the constitution of the national cohort of MS patients. Following this approach allows for an evaluation 
representative of the current standards and easily usable for newly acquired images. For our challenge, images 
came from three different sites in France on four different MRI scanners from different manufacturers (Siemens, 
Philips and GE) including three 3T and on 1.5T magnets. The repartition of the 53 patients is shown in Table 3. 
More demographic details on the ages and gender repartitions into the training and testing groups are provided 
in supplementary material (https://doi.org/10.5281/zenodo.1307653). Overall, no significant difference of age can 
be seen between the different centers. While gender differences exist between some centers (in particular center 
8), we believe this is of little importance with regard to lesion segmentation and detection quality compared to 
scanner to scanner differences.

These patients were selected to have variable amounts of lesions both in volume and number, and from differ-
ent centers to represent the variability that may be encountered across sites. For each patient, the following images 
were provided for each MS patient (see details of the sequence parameters in Table 4): a 3D FLAIR sequence, a 3D 
T1 weighted sequence pre and post-Gadolinium injection, an axial dual PD-T2 weighted sequence. These patients 
were then split (see Table 3) between a training and testing datasets. The testing dataset was not made available to 
the challengers and was used to evaluate the different methods while the training dataset was provided, together 
with the ground truth segmentations, for challengers to train their algorithms. Images acquired on one center (3) 
were not part of the training dataset, with the goal of evaluating how much algorithms were dependent on the 
training set and sensitive to acquisition settings.

http://dx.doi.org/10.5281/zenodo.1307653
http://dx.doi.org/10.5281/zenodo.1307653
http://dx.doi.org/10.5281/zenodo.1307653
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For each patient, the challenge data includes raw datasets, and preprocessed datasets where the following steps 
were performed:

•	 Denoising of each modality using the non local means algorithm14

•	 Rigid registration of each modality on the FLAIR image15

•	 Brain extraction (skull stripping) using the volBrain platform16, from the T1-w image and applied to other 
modalities

•	 Bias field correction of each modality using the N4 algorithm17.

MS Lesions Ground Truth. Based on manual segmentation on our MS database, we first aimed at getting 
ground truth segmentations of multiple sclerosis lesions. This task is difficult and variability exists between 
experts depending on various factors, even when they follow common protocol, depending on many factors 
(image quality, training, modalities…). We chose to build for this challenge an unprecendented set of seven 
manual delineations for each patient. These delineations were performed manually on the 3D FLAIR image 
with control on the T2 weighted image. Each manual segmentation was performed by a trained junior expert, 
validated and corrected under the supervision of senior radiologists with a long experience in multiple sclerosis. 
More specifically, a first meeting between senior radiologists and workshop organizers of each site took place to 
determine the segmentation strategy and adopt a common tool (http://www.itksnap.orgITK-Snap) to perform 
manual segmentation. Junior radiologists were then recruited on each site and trained by the expert radiologists 
on a separate training set and when their agreement was above a threshold of 80%, they were allowed to delineate 
the 53 patient cases. Each case was segmented in isolation of the other cases to limit possible bias. Segmentation 
experts were split between the three sites which provided the patient images: 4 in Lyon, 2 in Rennes and one in 
Bordeaux.

MS lesions segmentation is known to be expert- and center-dependent, which can lead to relatively large dis-
crepancies between individual manual segmentations. To cope with this problem, we computed for each patient 
a consensus segmentation by using the Logarithmic Opinion Pool Based STAPLE (LOP STAPLE) algorithm 
proposed by10. This algorithm computes iteratively, using an Expectation-Maximization approach, a consensus 
segmentation based on penalties for individual deviations from agreement between manual experts segmenta-
tions. This algorithm has several advantages: it is robust to differences between manual expert segmentations, 
and it allows the computation of agreement scores with respect to the consensus segmentation considered then 
as ground truth.

Computing Architecture for Automatic MS Lesions Segmentation Evaluation. One of the critical 
aspects in performing an independent challenge and benchmarking of medical image processing solutions is to 
provide a unified infrastructure able to:

Center 
number Scanner model and site

Training 
cases

Testing 
cases Age (y.o.)

Gender 
ratio M:F

1 Siemens Verio 3T (University Hospital of Rennes) 5 10 43.6 ± 12.6 0.36

3
General Electrics Discovery 3T (University Hospital 
of Bordeaux)

0 8 48.9 ± 11.5 0.14

7 Siemens Aera 1.5T (University Hospital of Lyon) 5 10 45.3 ± 9.8 0.25

8 Philips Ingenia 3T (University Hospital of Lyon) 5 10 45.5 ± 7.8 0.87

Table 3. Demographics data of multiple sclerosis patients collected for the challenge and their repartition 
among training and testing datasets.

Scanner Modality Matrix Slices Voxel resolution (mm)

GE Discovery 3T
Sagittal 3D FLAIR
Sagittal 3D T1
Axial 2D DP-T2

512 × 512
512 × 512
512 × 512

224
248
From 28 to 44

0.47 × 0.47 × 0.9
0.47 × 0.47 × 0.6
0.43 × 0.43 × 3 Gap: 0.5

Philips Ingenia 3T
Sagittal 3D FLAIR
Sagittal 3D T1
Axial 2D PD-T2

336 × 336
336 × 336
512 × 512

261
200
46

0.74 × 0.74 × 0.7
0.74 × 0.74 × 0.85
0.45 × 0.45 × 3

Siemens Aera 1.5T
Sagittal 3D FLAIR
Sagittal 3D T1
Axial 2D PD-T2

256 × 224
256 × 256
320 × 320

128
176
25

1.03 × 1.03 × 1.25
1.08 × 1.08 × 0.9
0.72 × 0.72 × 4 Gap: 1.2

Siemens Verio 3T
Sagittal 3D FLAIR
Sagittal 3D T1
Axial 2D PD-T2

512 × 512
256 × 256
240 × 320

144
176
44

0.5 × 0.5 × 1.1
1 × 1 × 1
0.69 × 0.69 × 3

Table 4. Acquisition details for each sequence and each scanner for the training and testing MS patients 
databases.

http://www.itksnap.orgITK-Snap
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•	 anonymize and upload the training and testing data in a single place that all participants can access though 
the Web

•	 integrate and execute the image processing algorithms through a web-based portal where all algorithms are 
executed on the test dataset in identical conditions

•	 host the processed images and make them available to the participants
•	 provide a cloud-based integrated solution with interoperable distributed resource management systems.

Most of the past and existing challenges in the field of image processing were able to provide part of these 
solutions but none of them was able to provide a computing solution able to perform all of these tasks seamlessly.

We used the France Life Imaging (FLI) - Information Analysis and Management (IAM) (FLI-IAM in short) 
computing infrastructure for this challenge. FLI is a national infrastructure, which aims to coordinate and har-
monize the network of resources on in-vivo imaging in France. Its IAM node represents the computing node 
of France Life Imaging (https://www.francelifeimaging.fr/en/about/noeuds/iam/). This architecture allows (see 
Fig. 7) the storage and management of preclinical and clinical in vivo imaging data and offers services of images 
processing and analysis.

FLI-IAM is based on existing, technologically ready software solutions, coming from multiple research teams 
over France. It proposes a web portal (blue box in Fig. 7) to unify the access to all resources and tools and provides 
multiple solutions for storage and computation on medical images.

To operate this challenge, three components of the entire FLI-IAM portfolio have been used:

•	 Web portal
•	 Shanoir (SHAring NeurOImaging Resources) for the database18

•	 VIP (Virtual Imaging Platform) for the computing platform19.

In addition to these three major components, additional tools/services have been developed to provide the 
required level of interoperability and to finally integrate all components into one unique workflow.

The https://portal.fli-iam.irisa.fr/msseg-challengeweb portal has been used as a communication platform 
with all challengers. All information concerning the challenge has been distributed there, e.g. the organizational 
aspects, dataset descriptions, evaluation details, etc. Challengers had to subscribe on the portal to participate in 
the challenge.

https://shanoir-challenges.irisa.frShanoir (SHAring NeurOImaging Resources) served as central database for 
all datasets necessary for the challengers, all their processed results and challenger’s scores. Shanoir is an open 
source neuro-informatics platform designed to share, archive, search and visualize neuroimaging data. It pro-
vides a user-friendly secure web access and offers an intuitive workflow to facilitate the collection and retrieval 
of neuroimaging data from multiple sources. Shanoir comes along many features such as anonymization of data, 
support for multi-center clinical studies on subjects or group of subjects.

http://vip.creatis.insa-lyon.frVIP (Virtual Imaging Platform) provided all necessary resources for the inte-
gration and the execution of all challenger processing pipelines. The pipelines were provided by challengers as 
https://www.docker.comDocker containers and were integrated into VIP using the Boutiques application reposi-
tory. Boutiques relies on Linux containers to solve the problem of application installation in a lightweight manner 
and it uses a versatile JSON format to describe command line tools. VIP also ensured the execution of the chal-
lenger pipelines (and the subsequent segmentation performance analysis) on the computing resources available 
for the challenge.

Figure 7. FLI-IAM architecture.

https://www.francelifeimaging.fr/en/about/noeuds/iam/
https://portal.fli-iam.irisa.fr/msseg-challengeweb
https://shanoir-challenges.irisa.frShanoir
http://vip.creatis.insa-lyon.frVIP
https://www.docker.comDocker
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Figure 8 gives an overview of the integration level between database and computing platform and describes 
the workflow that was set up for the hosting of the challenge.

After the preparation of the challenge data, all source datasets were imported into Shanoir. The training data 
were shared with the challengers using the portal and its file download feature. The testing data was processed by 
VIP using a static export folder exported from the database - containing all necessary meta-data from the data-
base to import results back into the database and attach them to the source dataset for each challenger.

After the algorithms produced their results, the segmentation performance analysis (including all measures 
described in the next section) was run to compare challengers results with the consensus ground truth and cal-
culate the scores. The continuously running DataTransferModule has been connected to the results folder of VIP 
to automatically import back the result datasets into Shanoir. All result datasets and their corresponding scores 
have been made available in Shanoir for challengers. The challenge organization team could then easily access the 
scores summary within Shanoir.

Challenge Evaluation Strategy and Metrics. Using the computing platform, challengers were asked to 
provide algorithms delineating lesions in the FLAIR reference space. This was asked to match the space in which 
the manual delineations were carried out and therefore avoid any unwanted discrepancies due to interpolation 
of the challengers’ results. To evaluate these results, we have implemented a large set of evaluation measures for 
the challenge with the goal of evaluating the different aspects evaluated by clinicians when looking at MS patient 
images. For this reason, we have separated the evaluation into two major categories of evaluation metrics:

•	 Segmentation evaluation: does the algorithm provide a precise delineation of each lesion?
•	 Lesion detection evaluation: does the algorithm find all lesions in the image independently of its precise 

delineation?

Each of these categories may contain several metrics that characterize differently the segmentation quality. 
We describe in more details each of the chosen metrics for the challenge in the following sections. All evalua-
tion algorithms used for this paper are available open-source as part of the Anima software (http://github.com/
Inria-Visages/Anima-Public). Although not presented in this article (but available as part of supplementary mate-
rial (https://doi.org/10.5281/zenodo.1307653), we remind the strategy that was used at the challenge to rank, for 
each of these metrics, the different methods on all patients:

•	 For each patient, compute the selected metric for each algorithm by comparing it to the ground truth previ-
ously computed

•	 For each patient, rank the algorithms according to the selected metric (from 1: best performing to N: worst 
performing)

•	 Compute for each algorithm its average ranking over all patients evaluated. This average rank is used for the 
final ranking of the methods.

Figure 8. Workflow for database and computing platform integration.

http://github.com/Inria-Visages/Anima-Public
http://github.com/Inria-Visages/Anima-Public
http://dx.doi.org/10.5281/zenodo.1307653
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We had selected this approach instead of simply averaging the metric scores for each algorithm to avoid a bias 
of some methods that would get a few very good metric scores that would not represent their true behavior. This 
approach instead considers as the best method the one that ranks the best on average for all patients evaluated, 
thereby discarding this bias problem. Instead in this work, we focus more on the graphical analysis of the cluster 
analysis of the algorithms with respect to the experts who delineated the structures. To this end, we performed 
a multi-parametric analysis of the results. For each couple of metrics presented in the following (average surface 
distance, Dice score and F1 score), we computed a 2D scatter representation of the average results on all testing 
patients of each of the teams and of the experts. Since different clusters of results quality may be outlined by such 
graphs, we then ran for each combination of metrics a clustering into three groups of the average performance 
of the teams and experts. For this clustering to be precise enough however, we need to account for the variance 
around the average points. We have therefore chosen to perform a spectral clustering20, considering each point 
of the 2D graph not as a mean but as a multivariate Gaussian, using a distance between multivariate Gaussians as 
expressed in21, thus accounting for the covariance in the individual scores.

Segmentation evaluation. The first category of evaluation metrics is also the most known in the literature and 
concerns segmentation evaluation, i.e. are the contours of the lesions precisely delineated compared to the ground 
truth. In this group, we distinguish two sub-categories, each quantifying the precision of lesions delineation: 
overlap-based and surface-based metrics. In the following, we will consider two binary images representing 
respectively the lesions consensus (i.e. the ground truth): G, and the evaluated segmentation (i.e. one algorithm 
segmentation result): A, both illustrated in Fig. 9.

Overlap metrics: These measures consider the voxel-based overlap of A and G based on the quantities illus-
trated in Fig. 9. Among those measures, we use the following ones:

•	 Dice score22: = ∩| |

| | + | |
D 2

A G

A G

•	 Positive predictive value: = ∩| |

| |
P

A G

A

•	 Sensitivity: = ∩| |

| |
Se

A G

G

•	 Specificity: = ∪| | − | |

| | − | |
Sp

B A G

B G

where A ∪ G is computed from other quantities: A ∪ G = A ∩ G + A\G + G\A. For all formulas in this section, the 
notation |·| denotes taking the cardinal of a set of voxels, e.g. |A ∩ G| denotes the number of voxels in that set. As 
a final remark for this category, the choice of the size of image B is quite important as it will influence specificity. 
A too large region for B could indeed lead all specificity values to be very close to 1 by construction and therefore 
make them difficult to compare. We therefore chose for the challenge to compute B as the union of all available 
segmentations for a patient (automatic and manual), dilated three times by a 6-connectivity kernel.

Each overlap-based metric varies between 0 and 1, 1 being a perfect result and 0 the worst result. Each meas-
ure is however sensitive to a different phenomenon in the quality of segmentations: positive predictive value and 
specificity are influenced by false positives and are therefore sensitive to overly large segmentations; sensitivity is 
influenced by false negatives and is thus sensitive to overly small segmentations. Finally, the Dice score is a com-
posite measure attempting to summarize all influences into a single scalar measure.

Surface metric: In addition to overlap-based metrics, we have computed the average symmetric surface 
distance, also used in MICCAI 2008 challenge on MS lesions segmentation organized by7. Instead of using 
voxel-based overlaps, this measure uses contours extracted from the two input segmentations A and G, denoted 
respectively AS and GS. This distance is expressed as the following sum:

=
∑ + ∑

+

∈ ∈
S

d x G d x A

N N

( , ) ( , )

(1)

i A i S j G j S

A G

S S

Figure 9. Illustration of overlap-based segmentation evaluation: quantities used for measures computation. A 
denotes the evaluated segmentation, G the ground truth, and B the image domain.
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where d denotes the minimal Euclidean distance between a point of one surface and the other surface, NA and NG 
denote the number of points of each surface.

Detection evaluation. As mentioned in the introduction, evaluation of the detection of lesions is as crucial, if not 
even more, as segmentation precision as the number of lesions is used for MS diagnosis. We wanted to evaluate in 
this category how many lesions have been (in)correctly detected, independently of the precision of their contours.

Defining lesion detection: This whole category of measures relies on identifying individual lesions in the 
ground truth G and evaluated segmentations. For this task, we first compute the connected components of G and 
A (with a 18-connectivity kernel) and remove all lesions that are smaller in size than 3 mm3. We therefore get label 
images G and 

∼
A where each label denotes a specific lesion.

From these two labeled images, two quantities are computed that will be used to characterize the detection 
power of an algorithm:

•	 TPG: the number of lesions among the M lesions in the ground truth G that are correctly detected by 
∼
A

•	 TPA: the number of lesions among the N lesions in the automatic segmentation 
∼
A that are correctly detected 

by G.

Let us consider only the case of TPG, TPA being computed with the same procedure but reverting the roles of 
∼
A and 

G. We first construct the joint histogram H of 
∼
A and G where Hi,j corresponds to the number of voxels having label I ∈ 

{0M} in G and label j ∈ {0N} in 
∼
A. We consider a lesion j in G (Gj) to be detected if it respects the following rules:

•	 The lesion Gj is overlapped at least at a rate of α% by lesions of 
∼
A

•	 Lesions of 
∼
A that contribute the most to the detection of Gj (summing up to γ% of the total overlap) do not go out-

side of Gj by more than β%.

While the first condition ensures that the lesion to be detected is sufficiently overlapped, the second condition 
ensures that the detection is not due to an overly large segmentation in 

∼
A that would overlap many lesions in G by 

chance. These two conditions are implemented in Algorithm 1.

For the challenge, we used this algorithm with values heuristically defined on several independent tests to give 
meaningful values for TPG and TPA: α = 10%, γ = 65%, β = 70%.

Algorithm 1. TPG computation algorithm.
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Detection metrics: From the number of lesions M and N respectively in G and 
∼
A, and the numbers computed above 

(TPG and TPA), the following detection metrics are computed, named after their similarity to overlap-based metrics:

•	 Lesion sensitivity, i.e. the proportion of detected lesions in G: =SeL M

TPG

•	 Lesion positive predictive value, i.e. the proportion of true positive lesions inside 
∼
A: =PL N

TPA .

In addition to these two metrics, we have computed a summary metric to get, like the Dice score for segmen-
tation metrics, a one-glance idea of the detection performance of a given method (0 meaning worst performance 
and 1 meaning perfect detection performance). This summary metric, the F1 score, considers both lesion sensi-
tivity and positive predictive value to compute the score. It is defined as follows:

=
+

.F
P

P
2

Se

Se (2)
L L

L L
1
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