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Mathematical programming applications often require an objective function to be ap- 
proximated by one of simpler form so that an available computational approach can be used. 
An a priori bound is derived on the amount of error (suitably defined) which such an 
approximation can induce. This leads to a natural criterion for selecting the "best" ap- 
proximation from any given class. We show that this criterion is equivalent for all practical 
purposes to the familiar Chebyshev approximation criterion. This gains access to the rich 
legacy on Chebyshev approximation techniques, to which we add some new methods for 
cases of particular interest in mathematical programming. Some results relating to post- 
computational bounds are also obtained. 
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M o s t  a p p l i c a t i o n s  of  m a t h e m a t i c a l  p r o g r a m m i n g  requ i re  the  m o d e l e r  to e x e r c i s e  
s o m e  d i s c r e t i on  in e s t ima t ing  or  a p p r o x i m a t i n g  the  o b j e c t i v e  f u n c t i o n  to  be  
op t im ized .  W e  give  a s imple  a p r io r i  b o u n d  re la t ing  the  a m o u n t  of  o b j e c t i v e  
f u n c t i o n  a p p r o x i m a t i o n  e r ro r  to  the  a m o u n t  of  e r ro r  t h e r e b y  i n d u c e d  in the  
so lu t ion  of  the  c o r r e s p o n d i n g  o p t i m i z a t i o n  p r o b l e m .  This  f u rn i shes  a na tu ra l  
c r i t e r ion  to gu ide  the  cho i ce  of  an  e s t i m a t e d  or  a p p r o x i m a t e  o b j e c t i v e  func t ion .  
T h e  c r i t e r ion  can  o f t e n  be  app l i ed  v ia  s imple  g r aph i ca l  c o n s t r u c t i o n s  tha t  we  
d e v e l o p  fo r  the  case  of  l inear  s epa rab i l i t y ,  and  we  show tha t  it  is gene ra l l y  
e q u i v a l e n t  to  the  f ami l i a r  C h e b y s h e v  c r i t e r i o n - w h i c h  t h e r e b y  p r o v i d e s  
d i r ec t  a c c e s s  to a p o w e r f u l  a r r a y  of  e s t a b l i s h e d  resu l t s  and  t e chn iques  for  the  
gene ra l  case .  

In  a d d i t i o n  to a p r io r i  e r ro r  b o u n d s ,  w h i c h  fac i l i t a t e  the  des ign  of  an  o b j e c t i v e  
f u n c t i o n  before do ing  a n y  o p t i m i z a t i o n ,  w e  a lso  d i scus s  the  t igh te r  e r ro r  b o u n d s  

ava i l ab l e  af ter  an o p t i m i z a t i o n  has  b e e n  p e r f o r m e d .  This  l e a d s  to  a na tu r a l  
s u b j e c t i v e  t i e -b r eak ing  rule  fo r  use  in c o n j u n c t i o n  wi th  the  p r i m a r y  c r i t e r ion  and  
a lso  to the  no t i on  of  " r e t ro f i t "  o b j e c t i v e  func t i ons :  i m p r o v e d  h y b r i d s  b e t w e e n  
the  a p p r o x i m a t i o n  ac tua l l y  u s e d  and  the  t rue  u n a p p r o x i m a t e d  o b j e c t i v e  func t ion .  
S ince  us ing  a re t rof i t  o b j e c t i v e  f u n c t i o n  in p l ace  of  the  a p p r o x i m a t e  one  w o u l d  
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not destroy the optimality of the solution to the approximating problem, the 
analyst has the option of interpreting the optimization results as though they had 
been obtained using the retrofit objective function. 

The results of Section 1 are applied in a related paper [41 to obtain new 
aggregation results in a specific applications context. 

1. B a s i c  r e s u l t s  

Let the following two optimization problems be given: 
(P) Minimize f(x), subject to x E X 

(~') Minimize f(x),  subject to x E X, 

where X is an arbitrary non-empty set and f and f are both real-valued functions 
bounded below on X. Interpret (P) as the " t rue"  problem and (15) as the 
"approximating" problem in the sense that an approximate objective function 
is used in place of f. What can be said about the relationship between (P) and (15) 
when the difference between f and f can be bounded on X?  

In the absence of further assumptions guaranteeing the existence of optimal 
solutions, it is necessary to phrase the answer to this question in terms of 
epsilon-optimal solutions, that is, in terms of feasible solutions having an 
objective function value known only to be within epsilon of the true infimal 
value. Let v(P) denote the infimal value of (P) and similarly for v(15). 

T h e o r e m  1 (Objective Function Approximation). Let E and g be scalars (not 
necessarily nonnegative) satisfying 

Then 

- E < - f ( x ) - f ( x )  <- g for all x E X. (1) 

- e - -  v(15) - v ( P )  --< ~ (2)  

and, for any e >-O, any e-optimal solution 2 of (15) will necessarily be (e +_~+ g)- 
optimal in (P). 

P r o o f .  Writing the first inequality of (1) as 

f(x)<--f(x)+E for a l l x E X ,  

it is evident that 

Inf f(x) ~- l nf x f(x) + e. 
x ~ X  

This is the first inequality of (2). The second is proved similarly. Now let ~ be an 
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e-optimal solution of (15) for  some e -  0. We have 

f ( ~ ) - e - - -  f(~) by the first inequality of (1) 

<-In[ f ( x ) +  e by the definition of 
x E X  

<-- In[ f (x)  + e + g by the second inequality of (2). 

Thus [(~) --- v(P) + (e + e + g). Since ~ @ X, $ satisfies the definition of (e + e + g)- 
optimality in (P). 

This result can hardly be considered new (cf. [2]), but its importance for 
modeling in mathematical programming seems largely to have been overlooked.  
The writer has been unable to find the result in any textbook, even in the context  
of separable programming where,  as shown in Section 2, it is especially easy and 
natural to apply. 

It would be difficult to overstate the possible usefulness of being able to place 
a bound on the solution error of (15) be[ore solving it. Such a priori bounds can 
be used to design objective function approximations within a given tractable 
class that guarantee as much accuracy as possible. This will be illustrated in 
Section 2. 

Notice that Theorem 1 draws no conclusion whatever  regarding the "dis tance"  
between optimal solutions of (P) and (~'). It is this writer 's opinion that this is 
not a drawback in most practical applications, since bounds relating to the value 
of f seem to address more directly a decision-maker 's concerns when using (15) 
as a surrogate for  (P). Bounds in decision space rather than payoff space appear 
to require additional structure on X and a Lipschitz condition on [. 

Theorem 1 provides a natural criterion for the choice of f when alternatives 
are available, as when a linear objective function is desired in the presence of 
known nonlinearities. Let  f be drawn from some class of functions indexed by 
the parameter  vector  p constrained to a set P;  the notation f ( - ; p )  refers to a 
particular choice. Then the natural criterion for  the choice of p is to select that 
member of P which leads to the smallest permissible value of E+ g. 

If e and g are selected to be as tight as possible for each allowable choice of p, 
the natural criterion is embodied by the optimization problem 

Minimize [Sup {f(x) - f (x ;  p )} + Sup {jr(x; p) - [(x)}]. (3) 
p e P  x ~ X  x~.X 

The first (second) term within brackets is the tightest possible value for e(g) for a 
given p. One would interpret ~(g) as the maximum amount  by which f can 
undershoot  (overshoot)  f on X. Note that neither E nor g need be nonnegative. 

An alternative way of expressing (3) is 

Minimize e + ~, (4) 
p,g,E 

subject to [ ( x ) - f ( x ;  p)--<_E for all x E X, 

f (x;p)-[(x)<--?:  for  all x E X, 

p e P .  
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This has particular appeal when f is to be chosen based on knowledge of f at 
only a finite number of points. 

How can one solve (3) or (4)? The following theoretical result can be useful. 

Theorem 2. Let  P be a convex set and let f ( x ;  .) be linear on P fo r  every fixed x in 
X. Then (3), the problem of  finding the p in P which is best by the natural 
criterion, is a convex programming problem. 

Proof. The first term within brackets in (3) is the supremum of a collection 
(indexed by x) of functions that are assumed linear in p on P, and hence it is a 
convex function of p on P. The same is true of the second term within the 
brackets. Thus (3) has a convex objective function defined over  a convex set. 

It is to be stressed that f can be decidedly nonlinear (even discontinuous) in x 
for fixed p;  linearity in p for fixed x is not as restrictive an assumption as one 
might think at first glance. 

Theorem 2 can simplify the task of seeking best approximations. For  instance, 
it gives conditions under which any locally optimal choice for p must be globally 
optimal (this fact  is used in Section 2 to help justify a simple graphical 
construction for finding best linear approximations in one dimension). It also 
indicates when a direct computational attack on (3) by convex programming 
methods is possible. 

Our main result toward characterizing and finding best approximations is the 
demonstrat ion that the natural criterion and the familiar Chebyshev (minimax) 
criterion are equivalent in a very strong sense. This means that the extensive 
theoretical and algorithmic legacy of Chebyshev approximation (see, e.g., [3]) 
can be employed to determine approximations that are best by the natural 
criterion. For  future reference,  we remind the reader that the Chebyshev 
criterion is embodied by the optimization problem 

Minimize [Sup I f ( x )  - f(x; p)l]. (5) 
pEP x ~ X  

The essential equivalence between (3) and (5) requires an assumption that is 
entirely innocuous in the context  of (P) and (]5). We shall say that i is drawn 
from a class of approximation functions that includes a simple translation 
parameter, say P0, if )r is of the form )Z(x; p) + P0, where p E P and P0 ~ P0 C R 
and P0 does not enter into P or the functional form of f in any way. Certainly 
we may always make this assumption, as P0 could be ignored when solving (15) 
and then used to translate the optimal value afterward if desired (it can have no 
influence on the optimal solution). 

Lemma 1. A s s u m e  that f is drawn f rom a class that includes a simple translation 
parameter. The value of  this parameter is a matter  of  indifference so far  as the 
natural criterion is concerned. 
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Proof. In this case, (3) can be written as 

Minimize [Sup {f(x)  - f ( x ;  p )  - Po} + Sup be(x; p) + Po - f(x)}]  
pEP x E X  x E X  

poEPo 

(6) 

Clearly, P0 cancels out of the objective function entirely. 
This invariance property is not satisfied by the Chebyshev criterion. It is the 

key to the relationship between the two criteria. 

Theorem 3 (Criterion Equivalence). Assume (as one can without loss of general- 
ity in mathematical programming) that f is drawn from a class of approximation 
functions that includes an unconstrained simple translation parameter. If a 
choice is optimal by the Chebyshev criterion, then it is also optimal by the natural 
criterion. If a choice is optimal by the natural criterion, then it can be translated 
to become optimal by the Chebyshev criterion. Moreover, the optimal value of (3) 
is twice the optimal value of (5). 

Proof. The Chebyshev problem (5) becomes 

Minimize [Sup  If(x)  - f ( x ;  p )  - Po[]- (7) 
pEP x E X  

PO 

For any given p, one may readily verify that the optimal choice for P0 in (7) is 
that which yields 

Sup If(x) - )~(x; p) - Po[ = Sup i f (x )  - f (x ;  p) - Po} 
x E X  x E X  

= Sup be(x; p) + p o -  f(x)}, (8) 
x E X  

namely 

Po = ½ [Sup i f (x )  - f ( x ; p ) } -  Sup be(x ; p) - f ( x ) } l .  
x E X  x@X 

(9) 

Relations (8) and (9) can be used to eliminate Po in (7) and express it equivalently 
a s :  

Minicmvize ½ [Sup {f(x)  - f ( x ; p ) }  + Sup be(x ; p) - f ( x ) } l .  
x E X  x E X  

(10) 

Thus we have shown that (p*, p0*) is optimal by the Chebyshev criterion if and 
only if p* is optimal in (10) and (p*, p*) satisfies (9), and that the optimal value 
of (5) equals that of (10). We also know from Lemma 1 that (p**, p0**) is optimal by 
the natural criterion if and only if p** is optimal in (6)- the value of P0 is 
immaterial. But (10) is equivalent to (6) except for the factor of ½. The con- 
clusions of the theorem are now at hand. 
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2. Construct ing best fits in one d imens ion  

Some particularly simple constructions are available to determine best fits of 
functions of a single variable. The simplicity of these constructions and the 
Criterion Equivalence Theorem suggest that they would be identical to standard 
manual methods for determining Chebyshev fits, but this does not appear to be 
the case. This may be due partly to simplifications obtained by exploiting the 
arbitrariness of the pure translation parameter for the natural criterion, and 
partly to the fact that most of our constructions involve assumptions that tend to 
be peculiar to the mathematical programming context. Whatever the reason, the 
Chebyshev legacy of approximation techniques is still a very rich one for cases 
other than those discussed here. 

The one-dimensional cases treated below are especially applicable to ma- 
thematical programming applications in which the approximate problem (P) will 
be solved by linear or mixed integer linear programming, or by a minimum cost 
flow network technique. Think, for instance, of a network problem with some 
nonlinear flow costs, or of an LP with some nonlinear activity costs. Each 
nonlinear univariate function requires a suitable approximation which, depend- 
ing on the circumstances, may be purely linear, fixed plus variable, piecewise- 
linear convex, etc. 

The standard procedure we envisage is that the modeler will design a suitable 
approximation to each nonlinear univariate function independently, as it is 
usually impractical to design the approximations with full regard for the joint 
dependencies caused by the coupling constraints of X. Suppose that X implies 
0~x j -<  uj for all j, and that f ( x )  is of the form Eif~(xi). Let each fi be 
approximated by ~, with undershoot and overshoot bounds _~j and ~i satisfying 

- ~  <- f i (x j ) - f i (x j )<-~ for all O<-xi <-u j. 

It follows that (1) holds with e = ~ j ~  and g =  Y~J~i, and hence that Theorem 1 
applies. One attempts to se lec t~  so as to  make ~. + gj as small as possible - that 
is, one applies the natural fitting criterion to fj over the interval [0, uj]. This is a 
practical alternative to applying the natural criterion directly to Zifi  over X. 

For simplicity of notation, we shall drop the variable subscript j throughout 
the rest of this section. The function f to be approximated is assumed to be 
real-valued and bounded. For expository convenience, separate treatment will 
not be accorded the discrete data case; it is obvious how to adapt each fitting 
procedure to deal with f when it is defined on some discrete subset of [0, u]. 

2.1. Linear fits 

We seek the best approximation to f over [0, u] of the form 

3Z(x ; P0, P ~) = P0 + P ix, (11) 

where P0 and pl are scalar parameters. Recall from Lemma 1 that the value of 
the simple translation parameter P0 can be selected arbitrarily. It can therefore 
be selected so as to make [ exactly equal to f at any preselected "anchor"  point. 
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The value x = 0 is an obvious choice for an anchor point, although any other 
point in the interval could be used. 

Finding the best approximation thus reduces to the problem of finding the best 
choice (according to (3)) for p~ with P0 fixed at f(0). The best choice for p~ can 
be found by a conceptually simple procedure performed directly on the graph of 
f. The basic idea is to start with p~ = ~, reduce it parametrically and track the 
loci of the x-values at which the maximum undershoot  and maximum overshoot  
occur, and stop as soon as the point of maximum undershoot  equals or exceeds 
the point of maximum overshoot.  Possible nonexistence of a point of maximum 
undershoot  or overshoot  for some values of p~ should be dealt with by using 
accumulation points of sequences tending to the corresponding supremal values 
of undershoot  or overshoot.  Possible ties for points of maximum undershoot  or 
overshoot  (whether exact  or by accumulation) should be resolved by taking the 
smallest such point in the case of undershoot  and largest such point in the case 
of overshoot  (use the infimum or supremum in case the smallest or largest does 
not exist). 

The validity of this procedure rests on the convexi ty  of maximum undershoot  
plus maximum overshoot  as a function of p~ (apply Theorem 2) and on the fact 
that f changes faster  with p] relative to f for  larger values of x than for smaller 
(think of/~ as a straight line superimposed on the graph of f that pivots about the 
point (0, f(0)) as P l is changed). 

The procedure is easy to carry out for  most functions likely to be encountered 
in practice, and can be reduced to a simple non-graphical method for many 
closed-form functions. Figure 1 illustrates the procedure for an economy-of-  
scale type function: 

x if 0--<x <-- 15, 

f ( x ) =  1 5 + ½ ( x - 1 5 )  if 1 5 ~ x ~ 2 5 = u .  

As p~ decreases from ~, the point of maximum undershoot  (overshoot) is x = 0 
(x =25)  until p~= 1. For  0 .8-<p~< 1.0, the point of maximum undershoot  
(overshoot) is x = 1 5  ( x = 2 5 ) .  For  0.5 _< p~ < 0.8, the point of maximum un- 

f 'f ,/P1=1.2 
/' 

, ,,," Pl= 1.0 
j "  / / /J 

20 .  " / P ;=  .8 

10.  "" ' "  = '  

,X 
0 1'5 2 5  = U 

Fig. 1 
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dershoot  (overshoot) is x = 15 (x = 0). Thus the optimal value of p~ must be 0.8. 
Fig. 2 illustrates the procedure for an S-shaped curve. For  Pl -> 0.88, the point of 
maximum undershoot  clearly remains less than the point of maximum overshoot.  
For  Pl <0.88,  the undershoot  at x = 25 increases rapidly until it becomes the 
point of maximum undershoot  for  all Pl < 0.8. Thus p~ = 0.8. 

Independent  confirmation of the validity of the solutions obtained in Figs. 1 
and 2 can be obtained by observing that an obvious translation of each solution 
satisfies the famous Chebyshev equioscillation property for a first degree poly- 
nomial (e.g., Section 7.6 of [3]). The translated solutions must therefore be 
optimal Chebyshev linear fits, from which validity under the natural criterion 
follows by Theorem 3. We point out that this validity argument applies only 
when fitting a continuous f since the equioscillation Theorem [3] assumes 
continuity, whereas our graphical procedure does not require f to be continuous. 

f,i" 

22. 
20. 

10. 

P1=.88 / pl 80 ===================== =" 

/j" 
X 

g do 2s=u 
Fig. 2 

2.2. Fixed-plus-linear fits 

The application of integer programming frequently calls for  best approximations 
of the form 

[(x;pl,p2)=plx+fO if x =0 ,  (12) 
t P2 ifO<l<_x<_u 

to f over {0} U [l, u]. Coefficient P2 is usually interpreted as a "fixed charge" for 
the use of the activity measured by x. A lower limit l is given for the value of x 
when x > 0. We can assume without loss of generality that f(0) = 0.1 

The optimal choices of Pl and P2 can be determined by applying the previously 
described linear fit procedure to f over  [l, u] with x = l instead of x = 0 as the 
anchor point. Certainly this produces an optimal fit to f over [l, u]; as pl and P2 

f can be translated to enforce this assumption, if necessary, without altering the optimal solution 
set of (P). Alternatively, f could be left untranslated and a simple translation parameter  could be 
introduced into the class of approximating functions and used to make f and [ coincide at x = 0. 
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do not alter the fit to f at x = 0 (the fit is necessari ly perfect) ,  the fit must  be 
optimal over  {0} U [l, u]. 

Figure 3 illustrates an optimal fit to the following function (note the dis- 
continuity): 

0 if x = 0 ,  
f ( x ) =  1 0 + ~ ( x - 5 )  i f 5 < _ x _ 2 0 ,  

1 9 + ~ ( x - 2 0 )  if 2 0 < x ~ 2 5 .  

Apply the linear fit p rocedure  to this funct ion over  [5, 25] with x = 5 as the anchor  
point. For  p 1 ~ ( 2 5 - 1 7 ) / ( 2 5 - 2 0 ) = } ,  the point of max imum undershoot  
(overshoot)  is x = 5 (x = 25). For  3 < P l < }, the point of max imum undershoot  
(overshoot)  is x = 5 (x = 20). Below pl -- 0.75, the point of max imum undershoot  
jumps to x = 25 and the point  of max imum overshoo t  stays at x = 20. Hence  
p* = 0.75. The line through the point (5, f(5)) with slope 0.75 yields p* = ?} (in 
general, p~  + p * l  = f(1) yields p f  = f (1) - p ' l ) .  Thus the best  fit to f in Figure 3 is 
given by  f equal to 

0.75x + if 5 -< x ----- 25. 

p-8  / l - g  
f,~" / 

25, P~'= .75 • """ / 
19, , . ' '  . . . ' / ' /" 
17, 

10. 

4 

iX 
o ; 2b 25=. 

Fig. 3 

2.3. Piecewi se - l i near  f i ts  to convex  and concave  f u n c t i o n s  

Economies  of scale of ten lead to concave  cost  functions;  diseconomies of scale 
and congest ion effects of ten lead to convex  cost  functions.  In this section we 
seek the best  piecewise-l inear continuous fit to continuous functions that  are 
convex  or concave.  It  suffices to treat  the case where f is concave  on [0, u], as 
the results for  the convex case are entirely analogous. 

We shall require the following result  stating conditions under  which a fitting 
problem can be conditionally decomposed  into independent  subproblems.  
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Lemma 2. Suppose that f is to be approximated on [0, u] by f drawn from a 
class of  functions constructed independently on the subintervals [0, t] and [t, u], 
where t is a given point in [0, u]. The value of  f ( t )  is specified. Let  fL denote the 
best choice on [0, t] ignoring [t, u], and let fR denote the best choice on [t, u] 
ignoring [0, t]. Denote the maximum undershoot (overshoot) of  fc on [0, t] by 
-eL(eL), and define -eR and gR similarly for  fR. Put  • = Max {•L, •R} and g = 
Max {go, eR}. I f  -eL = -e and gL = g, or if -eR = -e and gR = g:, then fL and fR together 
comprise the best choice of f on [0, u]. 

Proof. Le t / r ,  be any permissible approximation on [0, u], and denote its maxi- 
mum undershoot  (overshoot) by _d(i'). Clearly ( +  i ' -> e L + gL by the definition 

of fL, and similarly _e' + g' -->_eR + gR. But by  hypothesis we know e + g equals 
_eL + gL or -eR + gR, and so g + g'_> E + g. Thus f '  could be no be t te r  than the 
comprised of fL and JR. 

Consider first the problem of finding a 2-piece continuous fit. That  is, f is of 
the form 

~(x;pi ,  P2, P3, P4, P s ) = I  p l+p2x  if 0-<x---Ps,  
I.p3 + p4x if p~ <- x <- u 

where P5 is interpreted as the "transition point" between the two linear pieces and 
P l  + P 2 P 5 - - - P 3 + P 4 P 5  • In view of Lemma 1, without loss of optimality one may 
restrict consideration to approximating functions that exactly equal f at the 
transition point (simple translation is accomplished by adding an identical 
constant to the values of pl and P3, whereby one may obtain Pl +P2P5 = P3 + 

P4P5 = f(Ps) for any given Ps). Given a trial transition point in the interval [0, u], 
one may determine Pl and P2 so as to yield a best linear fit to f on [0, ps] with P5 
serving as anchor point, and P3 and P4 so as to yield a best linear fit to f on 
[Ps, u] with P5 again serving as anchor point. These determinations can be made 
via the graphical procedure of Section 2.1, which simplifies in an obvious way 
due to the assumed concavity of f :  the resulting/z is uniquely specified by the 
two chords to f determined by the three points 0, P5 and u. Now in general this 
would not necessarily yield the best possible joint choices for Pl, P2, P3 and P4 
for a given Ps. The concavity of f, however,  implies via Lemma 2 (since 
gc = gR = 0) that these independent choices are also jointly best. To put it 
another way, fixing Ps decomposes the 2-piece fitting problem into two in- 
dependent  linear fitting problems of a type easily solved. 

It remains but to find the best choice of the transition point Ps. As P5 moves 
from x = 0 toward x = u, the maximum undershoot  of the " lef t"  chord increases 
and that of the "right" chord decreases (this follows from the concavity of f).  
The best transition point is the one where the maximum undershoot  of the left 
chord equals that of the right, for  this obviously, minimizes the maximum 
undershoot  over  the entire interval [0, u] (remember that the maximum overshoot  
is 0 for  all Ps). 

To summarize the procedure for finding the best 2-piece continuous fit to a 
continuous concave function, then, one parametrically increases the transition 
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point starting from 0 and monitors the maximum undershoot  of the chord A B  
and of the chord BC, where A = (0___z,f(0)), B = (Ps, f(Ps)), C = (u , f (u)) .  Stop 
when the maximum undershoot  of A B  becomes equal to that of BC. 

This procedure  is illustrated in Fig. 4 for  f (x )  = 5~/x on [0, 25]. The maximum 
undershoot  of the left  chord is less than that of the right until P5 = 2.78, after 
which it is greater. Thus p* = 2.78 and the best fit is as shown; the maximum 
undershoot  for  each chord is 2.08, occurring at x = 0.69 for the left chord and at 
x = 11.11 for the right chord. Two other fits are shown for comparison: one for 
P5 = 0.69 and one for Ps=  11.11. 

Now consider the problem of finding a best piecewise-linear continuous fit 
with 3 pieces. There are two transition points instead of one. By Lemma 1, 
consideration can be restricted to approximating functions that exactly equal f at 
the leftmost  transition point, say. Let  B be the point on the graph of f 
corresponding to a trial left transition point t. Construct  the best one-piece linear 
fit to f on [0, t] using B as an anchor point: we know that it is the chord AB,  
where A is the left  end-point of the graph of f. Construct  the best two-piece 
continuous fit to f on It, u] using B as an anchor point: we know that it is given 
by the chords BC and CD, where D is the right end-point of the graph of f and C 
is chosen to make the maximum undershoots  of BC and CD equal. The 
concavity of f implies via Lemma 2 that the fit given by the three chords AB,  
BC, CD is the (jointly) best  3-piece continuous linear fit to f on [0, u] passing 
through B. It remains but to find the best value for t. As the left transition point 
increases, starting from 0, the maximum undershoot  of the chord A B  increases 
and that of BC and CD decrease. The best value for t is the one where the 
maximum undershoots  of all three chords are equal since this minimizes the 
maximum undershoot  on [0, u] (the maximum overshoot  is 0 for  all t). 

One may proceed inductively in this fashion to obtain the following general 
necessary and sufficient conditions characterizing best piecewise-linear con- 
tinuous fits. 

Theorem 4 (Piecewise-Linear  Fits). Let f be a continuous concave function on 
an interval [l, u], to which an approximation is desired from the class of  all 
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piecewise-linear continuous functions with n pieces. Such an approximation is 
best in the sense of the natural criterion if and only if a simple translate of it 
coincides in value with f at both end points and at each transition point and the 
maximum undershoots associated with the n chords are all of equal value. 

The same result holds for f convex except that overshoot plays the role of 
undershoot. 

3. After  the approximate  problem is solved 

Up to this point we have taken the viewpoint of a modeler who is designing an 
approximation (I 5) to (P) prior to any computations. The bounds and associated 
fitting procedures developed do not presume any knowledge concerning an 
optimal solution of (15), much less of (P). We now consider the situation after 
(15) has been solved. Can the bounds of Theorem 1 be improved? Can the fits 
based on a priori analysis be improved? 

3.1. A posteriori bounds 

The bounds of Theorem 1 can indeed be improved as follows. See Schweitzer [5] 
for results similar in spirit but different in substance. 

Theorem 5 (Post-Computational Error Bounds). Let E_ and ~ be scalars (not 
necessarily nonnegative) satisfying (1). If £ is any e-optimal solution of (P), then 

- Min {_E, f(£) - f(£) + •} -< v(15) - v(P) ---< g (2A) 

and the suboptimality of £ in (P) is at m o s t •  + g + f ( £ ) -  f($). 

Proof. To prove (2A) it suffices to demonstrate 

Max {- E, )~(~) - f(~) - •} -< Max { - _e, v (P) - f(£)} _< v (P) - v (P) -< g. 
(13) 

The first inequality of (13) follows from the definition of £, which asserts 
f(£)-~ v(15)+ a. The second inequality follows from the feasibility of 2 in (P), 
which implies v ( P ) ~ f ( £ ) ,  and the first inequality of (2). The third inequality of 
(13) is identical with the second of (2). It remains to show 

f ( y )  < v ( p )  + • + i + f ( y )  - f ( y ) .  

This follows by the same line of argument used to prove the analogous part of 
Theorem 1 except for one change: the initial inequality f(£) -E_< f(£) is replaced 
b y  f ( ~ )  + [ ( ~ )  - f ( ~ )  = f (~ ) .  

Observe that the lower bound in (2A) will be strictly improved if 

f(.f) -f()~) --< _E- • (14) 

that is, if f undershoots f at ~ by less than the greatest possible amount (_~) 
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minus e. Since 

f ( x )  - f ( ~ )  -< 

by the definition of _E, (/4) is highly likely if e is relatively small. 

3.2. A secondary criterion 

The nature of post-computational bounds suggests an appealing approach to the 
a priori choice of approximations when the natural criterion admits non-trivial 
ties, i.e., when (3) admits alternative optimal solutions other than those ob- 
tainable by simple translation. Suppose for simplicity that (15) will be solved to 
optimality, so that E = 0. Given alternative possibilities for the choice of f, all of 
which are best by the natural criterion of minimizing the corresponding E+ & 
how should a selection be made? An obvious idea would be to make a selection 
according to one's subjective expectations regarding the post-computational 
bound ~ + f ( ~ ) -  f(~). According to Theorem 5, this quantity is the suboptimality 
bound on ~ and also the width of the interval of uncertainty containing v(P) 
when e = 0. 

We therefore propose this subjective secondary criterion: among [ satisfying 
the natural criterion, choose one which minimizes the subjective expected value 
of g + f ( f f ) -  f(2) (bearing in mind, of course, that ~ and ~ depend on D. 

As an illustration, consider again the function f(x)= 5V~ on [0,25] with 
approximations of the fixed-plus-linear type: 

f(x;pl, p2)=plX + ( 0  if x =0 ,  
P2 if 0 < x  <-25. 

The procedure of Section 2.2 indicates that an optimal fit is given by (p*, p*)=  
(1,0) which has _e= 6.25 and ~ = 0. This fit is not uniquely optimal. In fact, 
(Pl, P2) - (1, P2) is optimal for any P2 satisfying 0-< Pz--- 6.25 (e = 6.25 - Pz and 

= P2)- The secondary criterion suggested above would select Pa between 0 and 
6.25 in an effort to minimize 

P2 if $ > 0, 

J'p2 if ~ = 0, 

t 5 V ~ - ~  if ~ >0 .  

(15) 

It is not immediately obvious what choice of P2 would minimize (15). Choosing 
P2 small would make (15) small if ~ equals 0, but the contrary case $ > 0  
becomes more likely as P2 becomes smaller because then less of a penalty is 
imposed in (15) for x > 0. Notice also that, among choices of P2 leading to $ > 0, 
the value of (15) is constant. 

A somewhat idealized analysis to minimize the subjective expected value of 
(15) is as follows. Estimate the subjective probability 

O(P2) a= Prob [3~ = 0 in (15) given P2] 
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and also the subjective conditional expected value 

E ~ Exp [5~,/Yc - ~ I ~ > 0 in (15)] 

(as noted above, E must be independent of P2)- Then the subjective expected 
value of (15) is 

O(pz)p2+ (1 - O(pz))E, or E + O(p2)(P2- E). 

This expression is to be minimized over 0 ~P2 ~ 6.25. Certainly 0(.) will be a 
non-decreasing function. It follows that P2 should not be selected larger than E 
(since the product  0(p2)(p~_-E) is increasing for P2 > E). Thus the problem of 
choosing P2 reduces to 

Minimize E + O(pz)(p 2 -  E) 
P2 

subject to 0-< P2 -< Min {E, 6.25}. (16) 

This can be solved with the help of a simple manual construction directly on the 
graph of 0(.) which locates the values of P2 (if any) at which the slope of the 
objective function of (16) turns from negative to positive. The optimal choice of 
P2 will be among these points and the end points 0 and Min{E, 6.25}. The 
mechanics of the graphical construction are left as an exercise for the reader. 

The usefulness of this procedure depends on the availability of subjective 
estimates for E and 0(.), which depends in turn on having some insight into the 
system being modeled. In distribution system planning, to cite just one possible 
domain of application, it is the author 's  experience that simple calculations can 
lead to plausible rough guesses of E and 0(.). And, of course, subjective 
judgments are likely to emerge from prior computational experience with 
variants of the model at hand. 

The alert reader may have noticed that a fixed-plus-linear fit to 5X/x on [0, 25] 
has e+  g = 6.25, whereas a 2-piece linear fit as in Fig. 4 has e+  g = 2.08 (recall 
the discussion of Section 2.3). Both approximations require one new binary 
variable to permit solving (15) by standard methods. Depending on a modeler 's  
subjective analysis of the situation, it may well be wiser to use a 2-piece fit than 
a fixed-plus-linear fit. 

3.3. Retrofits 

An optimal solution ~ of (15) would remain optimal even if a nonnegative 
function 0 were added to j~ so long as 0(~) = 0. This elementary observation leads 
to the notion of "retrofits",  a concept  of value when there is an opportunity to 
revise f using knowledge of ~ or when it is desired to present  the results of an 
optimization to sponsors in the most favorable light. 

A retrofit objective function, which can only be defined after an optimal 
solution Y has been found for (15), is any function of the form 1~+0 with 0 
defined over X such that 0(x)-~ 0 for all x ~ X and 0(if)= 0. One selects 0 to 
make )~+ 0 a closer approximation to f than j( 

To illustrate, suppose that f is linearly separable with respect  to some 
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variables and that one component  is 5~x~x/as in Fig. 4. Suppose further that the 
2-piece approximation given in Fig. 4 has been used to define this component  of 
[ and that ~ is less than 2.78. Now define this component  of ~, ~j, to be 0 for 
0 <- x i <- 2.78 and 5~/~ . -  )~(xj) for  2.78 -< x i -< 25. The graph of )~ + ~i i is shown in 
Fig. 5. Then ~ would still be optimal in the approximating problem if )~ + ~j were 
to replace )~. 

In this illustration, improving the approximation to fj requires changing the 
part of )~ where x-< 2.78 if there is to be any effect on ~ - a  fact that every 
modeler should know instinctively. It might not be quite so clear that the results 
of the optimization could be presented as having employed the more realistic- 
looking approximation of Fig. 5 rather than the 2-piece approximation of Fig. 4. 
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