
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997 1131

Objective Functions for Training New Hidden
Units in Constructive Neural Networks

Tin-Yau Kwok and Dit-Yan Yeung,Member, IEEE

Abstract— In this paper, we study a number of objective
functions for training new hidden units in constructive algorithms
for multilayer feedforward networks. The aim is to derive a
class of objective functions the computation of which and the
corresponding weight updates can be done inO(N) time, where
N is the number of training patterns. Moreover, even though
input weight freezing is applied during the process for compu-
tational efficiency, the convergence property of the constructive
algorithms using these objective functions is still preserved. We
also propose a few computational tricks that can be used to im-
prove the optimization of the objective functions under practical
situations. Their relative performance in a set of two-dimensional
regression problems is also discussed.

Index Terms— Cascade-correlation, constructive algorithms,
convergence, input weight freezing, quickprop.

I. INTRODUCTION

I N recent years, many neural-network models have been
proposed for pattern classification, function approximation,

and regression problems. Among them, the class of multilayer
feedforward networks is perhaps the most popular. Standard
backpropagation performs gradient descent only in the weight
space of a network with fixed topology. In general, it is useful
only when the network architecture (i.e., model) is chosen
correctly. Too small a network cannot learn the problem well,
but a size too large will lead to over-generalization and thus
poor performance. This can be easily understood by analogy to
the problem of curve fitting using polynomials. Consider a data
set generated from a smooth underlying function with additive
noise on the outputs. A polynomial with too few coefficients
will be unable to capture the underlying function from which
the data was generated, while a polynomial with too many
coefficients will fit the noise in the data and again result in a
poor representation of the underlying function. For an optimal
number of coefficients, the fitted polynomial will give the best
representation of the function and also the best predictions for
new data. A similar situation arises in the application of neural
networks, where it is again necessary to match the network
complexity to the problem being solved. Algorithms that can
find an appropriate network architecture automatically are thus
highly desirable.

Manuscript received November 18, 1995; revised June 30, 1996 and April 2,
1997. This work was supported in part by the Hong Kong Telecom Institute of
Information Technology under Grant HKTIIT 92/93.002, and the Hong Kong
Research Grants Council under Grant HKUST 15/91.

The authors are with the Department of Computer Science, Hong Kong
University of Science and Technology, Kowloon, Hong Kong.

Publisher Item Identifier S 1045-9227(97)04907-2.

A. Matching the Network Complexity to the Problem

There are three major approaches to tackle this problem.
The first involves using a larger than needed network and
training it until an acceptable solution is found. After this,
some hidden units or weights are removed if they are no
longer actively used. Methods using this approach are called
pruning algorithms. The second approach, which corresponds
to constructivealgorithms, starts with a small network and then
grows additional hidden units and weights until a satisfactory
solution is found. Review for pruning algorithms can be found
in [1], while that for constructive algorithms in [2]–[4].

The constructive approach has a number of advantages over
the pruning approach. First, for constructive algorithms, it is
straightforward to specify an initial network,1 whereas for
pruning algorithms, one does not know in practice how big
the initial network should be. Second, constructive algorithms
always search for small network solutions first. They are thus
more computationally economical than pruning algorithms, in
which the majority of the training time is spent on networks
larger than necessary. Third, as many networks with different
sizes may be capable of implementing acceptable solutions,
constructive algorithms are likely to find smaller network
solutions than pruning algorithms. Smaller networks are more
efficient in forward computation and can be described by a
simpler set of rules. Functions of individual hidden units may
also be more easily visualized. Moreover, by searching for
small networks, the amount of training data required for good
generalization may be reduced. Fourth, pruning algorithms
usually measure the change in error when a hidden unit or
weight in the network is removed. However, such changes
can only be approximated for computational efficiency, and
hence may introduce large errors, especially when many are
to be pruned.

The third approach isregularization [5]–[7]. However,
regularization cannot alter the network structure, which must
be specified in advance by the user. Although in principle
the use of regularization should allow the network to be
overly large, in practice using an overly large network makes
optimization of the regularized error function with respect
to its network weights more computationally intensive and
difficult. Moreover, there is a delicate balance, controlled
by a regularization parameter, between the error term and
the penalty term. Early attempts either set this regularization
parameter manually [5], [6] or byad hocprocedures [7]. A

1The smallest possible network to start with has no hidden units. If prior
knowledge of the problem is available, an alternative initial state may be
supplied by the user.

1045–9227/97$10.00 1997 IEEE

1132 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

more disciplined and long respected method is cross-validation
[8]. However, this approach is usually very slow for nonlinear
models like neural networks, because a large number of nonlin-
ear optimization problems must be repeated. Recently, several
researchers [9]–[12] have incorporated Bayesian methods into
neural-network learning. Regularization can then be accom-
plished by using appropriate priors that favor small network
weights (such as the normal [10] or Laplace [13] distribution),
and the regularization parameter can be automatically set.
However, Bayesian inference mechanisms must often assume
asymptotic normality of the posterior distributions, which may
break down when the number of weights in the network is
large compared to the training set size.2 This scenario is more
likely to occur in overly large networks, further escalating the
problem of determining an appropriate initial network for use
in regularization.

Hence, in this paper, we will focus mainly on constructive
algorithms. Moreover, we will be particularly interested in
regression problems, in which networks with linear output
units are the most common. Note that classification problems
can be considered as a special case of regression problems.
Some constructive methods, such as those found in [15]–[18],
that canonly be applied to classification problems will not be
discussed here.

B. How to Train New Hidden Units

There are three major problems involved in the design of
constructive algorithms:

1) How to connect: How to connect the new hidden unit
to the existing network?

2) How to train : How to determine the (new and existing)
weights in the network after connections to the new
hidden unit are made?

3) When to stop: When to stop the addition of new hidden
units, or, in other words, what is the optimal number of
hidden units to be installed in the network?

The first issue has direct implications to the resultant
network architecture. It is well known that no single class
of network architectures is ideal for all problems [19], and
so different connection strategies for the new hidden units
are suitable for different problems. But a comprehensive
comparison of different architectures is still lacking.

The third issue on model selection may be addressed using
different techniques, such as by comparing evidence in a
Bayesian framework [9], [14], or, in a non-Bayesian frame-
work, by the use of some information criteria [20]–[25] or data
resampling methods [26]–[28]. This is still an active research
topic. Interested readers may see the discussions in [26], [29],
and [30].

In this paper, we will focus on the second issue. In prin-
ciple, it is fairly straightforward as one can simply train the
whole network again (as in [31] and [32]). However, while
in neural networks with fixed architecture the weights are

2As an example, MacKay [14] reported that the Gaussian approximation in
the evidence framework seemed to break down significantly forN=k < 3�1,
whereN is the number of training patterns andk is the number of weights
in the network.

trained only once, here in constructive algorithms, training
must be repeated every time hidden units are added. Hence,
computational efficiency, in terms of both time and space,
becomes an important issue. Most optimization routines do
not scale up well when the number of weightsis large.
For example, Newton’s method requires computation of the
Hessian matrix, entailing a space requirement of and
a time requirement of in each iteration. Quasi-Newton
methods still have a space requirement of , but do not
require evaluating the Hessian matrix and are implementable
in ways which only require arithmetic operations in
each iteration. The price to pay is that instead of having
the quadratic local convergence of Newton’s method, quasi-
Newton methods only exhibit a local superlinear convergence
rate. Conjugate gradient methods do not require storage or
maintenance of the Hessian, but their local convergence rate is
roughly linear only. Simple gradient descent methods, though
they only require space and time for each iteration, are
notoriously slow when the network size is large [33]. Thus,
in short, techniques to improve computational efficiency are
essential in practical constructive algorithms, and these will
be discussed below.

On the other hand, a frequently overlooked issue concern-
ing constructive algorithms is their convergence properties.
The question of convergence can be stated as follows: Can
the constructive algorithm produce a convergent sequence of
network functions that, in the limit, approximates the
target function as closely as desired? In other words, does
the sequence so generated strongly converge3 to as

? Apparently, the universal approximation capability4

of a network structure is necessary for the convergence of
its constructive algorithm. However, we will see in Section II
why this may not be sufficient.

Improving Computational Complexity:A common tech-
nique used in constructive algorithms (like [39]–[43])
to simplify the optimization problem and thus improve
computational complexity is to assume that the hidden units
already existing in the network are useful in modeling part of
the target function. Hence, we can keep the weights feeding
into these hidden units fixed (input weight freezing), and allow
only the weights connected to the new hidden unit and the
output units to vary. The number of weights to be optimized,
and the time and space requirements for each iteration, can
thus be greatly reduced. This reduction is especially significant
when there are already many hidden units installed in the
network.

Training of the adaptable weights may then be performed
by backpropagation as usual [42], but the computational
requirement may be further reduced by proceeding in a layer-
by-layer manner. First, the weights feeding into the new hidden
unit are trained (input training). They are then kept constant
and the weights connecting the hidden units to the outputs are

3A sequenceffng stronglyconverges[34] to f if limn!1 kf�fnk = 0,
wherek � k is the norm for the function space being considered.

4A class of networks is capable ofuniversal approximationif it is broad
enough to contain the target functionf or a good enough approximation off .
See, for example, [35]–[38] for universal approximation results on multilayer
perceptrons and radial basis function networks, respectively.

KWOK AND YEUNG: OBJECTIVE FUNCTIONS FOR TRAINING 1133

trained (output training). In this way, only one layer of weights
needs to be optimized each time. There is never any need to
backpropagate the error signals and hence is much faster.

During input training, the weights feeding into the new
hidden unit are trained to optimize an objective function. The
following objective functions have been used.

1) Projection index [44] that finds “interesting” projections
deviating from the Gaussian form. However, this is
probably more suitable for exploratory data analysis [45]
rather than for regression or classification problems, as
projections of the Gaussian form may also be useful as
feature detectors.

2) The same error criterion, such as the squared error
criterion, as used in output training [40]. In this method,
the weights in each layer are updated in turn, by keeping
all the other weights unchanged, and the whole process
is cycled many times. However, it will be shown later in
this paper that such a criterion is inferior to the others
proposed in Section II.

3) The covariance between the residual error and the new
hidden unit activation, as in the cascade-correlation
architecture [39] and its variants. Without loss of gen-
erality, we assume that there is only one output unit in
the network. New hidden units are added one at a time
in a greedy manner by maximizing

(1)

where ranges over the training patterns, is the
activation of the new hidden unit for pattern, is
the residual error for pattern before the new hidden
unit is added, and and are the corresponding
values averaged over all patterns. Note that if there
are training patterns, then the time complexities for
computing (1) and its weight update are both of
only. However, the design of is ratherad hoc. As
mentioned in [39], early versions of the architecture used
a true correlation measure, but the version of in
(1) works better in most situations.

4) An objective function based on the use of projection
matrices [46]. This can be formally derived, but both
the computation of this objective function and each
weight update require multiplications. The space
requirement is also . Ideally, this , the number
of training patterns, should be large for good gener-
alization performance, and should also scale up with
problem complexity [47]. Hence, this objective function
may soon become infeasible for larger-scale problems.
Moreover, its complex form makes it vulnerable to the
problem of local optima in the optimization process.

5) Another veryad hocobjective function proposed in [48].

Effect on the Convergence Property:Input weight freez-
ing, though highly beneficial in improving computational
efficiency, unfortunately also affects the convergence property
of the constructive algorithm. Consider, without loss of
generality, feedforward networks with one hidden layer, whose

network functions can be described by the set

where

with being the weights connecting the inputs to theth
hidden unit, the weight connecting this hidden unit to the
output, and the hidden unit transfer function. In a certain
function space (such as the space), universal approximation
results state that when satisfies certain mild conditions
(e.g., bounded and nonconstant [49]), will be dense in
that space, i.e., for any given target functionin the space,
there exists a sequence of network functions in
such that strongly converges to . Notice that under
this formulation, all parameters (weights) in any in the
sequence are freely adjustable. However, when input weight
freezing is used, the new network estimate, constructed
from , cannot change the input weights of the hidden
units associated with . This restriction may then impede
the approximation capabilities of the sequence . A major
aim of this paper is to find objective functions such that the
convergence property will be preserved when these functions
are used in the constructive algorithms. Recently, there are
also some results on the convergence issue. We will postpone
the discussion of them to Section III.

Also, note that the norm used in the convergence definition
should be based on the whole input space, not just on the train-
ing patterns as is done in [48] and [50]. This is because one
is usually more interested in the generalization performance
rather than performance on the training set, and a perfect recall
of the training set is always possible simply by having more
hidden units. Hence, “convergence,” in the sense of reducing
the training error to zero [48], [50], is inadequate.

C. Organization of this Paper

Motivated by the success of the cascade-correlation ar-
chitecture in a variety of problems [51]–[55], the obscure
design of the objective function and the importance of having
convergence properties for constructive algorithms, we discuss
in Section II a class of objective functions for training new
hidden units in constructive algorithms, all of which have
a time complexity of without compromising the con-
vergence property. A comparison with related works on the
issue of convergence will be discussed in Section III. Practical
problems in optimizing the objective functions, together with
some suggested remedies, will be discussed in Section IV.
Experimental comparison in using these objective functions for
a series of regression problems will be described in Section V,
followed by some concluding remarks in the last section.

1134 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

Proofs of the mathematical results and extension to the case
of nonlinear output units are in the Appendix.

II. DESIGN OF THEOBJECTIVE FUNCTIONS

In the following, we assume that the network has only one
linear output unit. The case for nonlinear output units is dealt
with in Appendix B. Extension to multiple output units is
straightforward. Moreover, we will focus on the space, i.e.,
the space of all square integrable functions. For , the
inner product5 is defined by

where is the (positive) input environment measure,is the
whole input space which is a bounded measurable subset in
the -dimensional Euclidean space . The norm in space
will be denoted as .

A network, having hidden units directly connected to
the output unit, implements the function given by

where represents the function implemented by theth
hidden unit. Note that these ’s may only be indirectly
connected to the input units through intermediate hidden units,
and thus the network is not restricted to having only one single
hidden layer. Moreover, is the residual error
function for the current network with hidden units.

Addition of a new hidden unit proceeds in two steps:

1) Input training: Find and such that the resultant
linear combination of with the current network, i.e.,

, gives minimum residual error .
2) Output training: Keeping fixed, adjust the

values of so as to minimize the residual
error.

Note that, as will be shown later, can be found as a by-
product in Step 1), without requiring backpropagation of error.
This can then be used as an initial value in performing
Step 2).

Step 1) is performed by maximizing an objective function
over from a set . This , having finite or infinite number of
elements, contains all hidden unit functions that can possibly
be implemented. It thus depends on the particular constructive
algorithm that specifies how the new hidden unit is connected
to the existing network, how the net input to the hidden unit
is computed, and the transfer function of the new hidden unit,
etc. Step 2) is used to ensure that remains orthogonal to
the subspace spanned by . This minimization can

5An inner product[34] in a real linear spaceR is a real function defined for
every pair of elementsu; v 2 R and is denoted byhu; vi, with the following
properties:

1) hu;ui � 0 wherehu; ui = 0 if and only if u = 0;
2) hu; vi = hv; ui;
3) h�u; vi = �hu; vi; � 2 <;
4) hu; v + wi = hu; vi+ hu;wi.

be performed by using gradient descent or, when the output
unit is linear and squared error criterion is used, by computing
the pseudo-inverse.

A. Derivation for and

We first address the problem in Step 1).
Proposition 1: For a fixed ,6 the expression

achieves its minimum iff

(2)

Moreover, with and as defined in (2),
, iff

(Proofs are in Appendix A.)
Thus, Proposition 1 suggests that the objective function to

be optimized during input training is

(3)

However, in practice, (3) can only be calculated when the
exact functional form of is available, which is obviously
impossible as the true is unknown. A consistent7 estimate
of (3) using information from the training set is

, where is the activation of the new hidden unit for pattern
and is the corresponding residual error before this new

hidden unit is added. Dropping the factorwhich is common
for all candidate hidden unit functions, we obtain the following
objective function:

(4)

The corresponding update equation for connection weight
feeding into this new hidden unit is

Notice that the time complexities in computing this objective
function and each weight update are of . Moreover,
storage requirement is minimal as the ’s and ’s need
not be stored.

6kgk = 0 implies g(x) � 0 8x 2 X, which should obviously be
excluded.

7Consistency follows as the estimate is a continuous function of the sample
product moments.

KWOK AND YEUNG: OBJECTIVE FUNCTIONS FOR TRAINING 1135

The weight connecting the new hidden unit to the
output unit is also determined as a by-product, given by

as determined in (2). Compared to
[40] in which the same criterion is used for both the input
and output training phases, they have to (randomly) fix an
initial guess for before input training can proceed. Hence,
the hidden unit found is likely to be suboptimal, and so the
input and output training phases have to be iterated for several
times, significantly lengthening the optimization process. In
our approach, however, the optimal for the new hidden unit
is automatically determined and its value is not required during
input training. Moreover, the weight update process in [40]
can be regarded as a variant of the coordinate descent method
[56], which is known to have poor convergence properties.
Simulation results in Section V also confirm that this method
used without iteration is inferior.

The convergence property of the constructive algorithm
using (3) as the objective function during input training, with
input weight freezing in effect, is assured by the following
theorem.

Theorem 1: Given is dense in and
for some . If is selected as to maximize

, then .
Requiring the set of hidden unit functions to satisfy the

denseness requirement is not hard, as is supported by various
universal approximation results for feedforward networks [36],
[38], [49], [57]. Moreover, the boundedness assumption of
holds for continuous transfer functions on bounded domains.
Hence, Theorem 1 shows that the sequence of networks so
constructed incrementally strongly converges to the target
function.

If we further restrict the target function to be anexact
summation of basis functions from, i.e., of the form

(5)

for some , then, similar to [58], we can obtain the
following convergence rate.

Proposition 2: If the target function is an exact summation
of basis functions from as in (5) and the network is
constructed as in Theorem 1, then

(6)

where . Or, in other words,
.

Because of the boundedness assumption of, the denom-
inator in (3) can be dropped without affecting convergence.

Corollary 1: With the conditions in Theorem 1, if is
selected as to maximize , then
.
And we arrive at the second objective function

(7)

Again, the time complexities in computing this objective
function and each weight update are of .

If we restrict the target function to be an exact summa-
tion of basis functions from , then we have the following
proposition.

Proposition 3: If the target function is of the form in (5),
, and the network is constructed as in

Corollary 1, then

(8)

where .
Note that

which implies

i.e., the bound for in (6) is smaller than that in (8).
Of course, this does not necessarily mean that the network
sequence constructed using as the objective function
will converge faster than that using , as it also depends
on how tight the bounds in (6) and (8) are. Nevertheless,
empirical results in Section V tend to support this difference
in convergence rates.

B. Derivation for and

The objective function used in the cascade-
correlation architecture can also be derived from the above
results. But let us first introduce a few notations.

Let . For , define

(9)

where

Obviously, is a semi inner product8 in . Here we use
the notation for various spaces, which should be clear
from context. The corresponding seminorm is also denoted as

.
To convert this semi inner product into an inner product,

consider the set of all constant-valued functions in . The
quotient space is the set with elements

for each . For , define

(10)

where is as defined in (9). Obviously,
defines an inner product in . We then have the following
corollary.

8A semi inner productdiffers from an inner product in thathu; ui may be
zero even whenu 6= 0.

1136 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

Corollary 2: With the conditions in Theorem 1, if is
selected as to maximize

then .
Hence, as and differ by at most a constant when

if a constant (bias) term is included in
the expansion of . The corresponding objective function to
be maximized is

(11)

where is the average value of the new hidden unit over
all training patterns and is the corresponding average for
the residual error. Again, only time is required for
computing (11) and its weight update.

Using Corollary 1, we can drop the denominator in (11) and
arrive at the fourth objective function

which is the square of . Again, when the target function
is restricted to be an exact summation of basis functions
from , the convergence rates for or as objective
functions are .

Recall that the objective functions and are derived
by assuming that is fixed at each step when the new
hidden unit is optimized. In deriving and
by using the quotient space, however, we have basically
used the knowledge that the bias to the output unit will be
corrected during output training, and hence the mean values
of and may be ignored during input training. This is
sometimes beneficial, as is illustrated by the simulation results
in Section V.

III. RELATED WORK ON THE CONVERGENCEISSUE

The convergence issue of constructive algorithms has been
discussed in [59] and [60], originally in the context of pro-
jection pursuit regression [60], [61]. When the norms of the
elements in are bounded (i.e., as we also assumed
in Theorem 1), convergence is shown in [59] when the target
function is in the closure of the convex hull of. However,
when the norm is bounded, the convex closure is no longer
equal to the span of . Thus convergence to all functions
is not guaranteed, whereas in our case, Theorem 1 holds for
all functions.

Moreover, in both [59] and [60], the iterative sequence of
network estimates is formed from a convex combination of the
previous network function and the new basis function

(12)

where . Whereas in our approach, the new is
formed from full linear combination of the old and new hidden
unit functions. The weights connecting the old hidden units to
the output unit are thus not constrained as a group, as in (12).

Besides, in (12), has to be learned together with the new
hidden unit , while in our case, the parameters of the new
hidden unit are first learned and then the output layer weights.
Training is thus performed for only one layer of weights at a
time, making optimization of the objective function simpler.
Moreover, the objective function to be minimized in [59]
and [60] is different from that developed in the previous
section, and thus results in [59] and [60] cannot be directly
applied here.

On the other hand, while results in [59] and [60] and those
we studied here are in the context of the space (or more
general Hilbert spaces), Darkenet al. [62] extended the bounds
on the rate of approximation to broader classes of spaces, in-
cluding spaces where . However, they are more
interested in showing theexistenceof a convergent network
sequence, while we are more interested in the convergence
properties of specific methods that are able to deliver such
sequences.

Drago and Ridella [58] also studied the convergence prop-
erties of using as the objective function for func-
tion approximation, but only for the case when the hidden
unit transfer function is the hyperbolic tangent function and
uniform environment measure. Our work here poses little
restriction on the input environment measure or the hidden unit
transfer function, so long as the hidden unit transfer function is
bounded and the requirements for universal approximation are
met. Moreover, a number of other objective functions, besides

, are derived and discussed.
Recently, K̇urková and Beliczynski [63] also devised the
criterion in this paper as an objective function. However,

their convergence proof follows from that in [59], and hence
is restricted to target functions that are in the convex closure
of .

IV. SOME PRACTICAL CONCERNS

A. Practical Problems

Before discussing the simulation results, we first discuss a
few practical problems in optimizing the objective functions.

Problem with the Objective Function:In the following, we
denote any objective function obtained in the previous section
simply by . Its first and second partial derivatives with respect
to the connection weight will be denoted by and ,
respectively.

As learning proceeds, hidden units are added to the network
and the residual errors ’s decrease with time. Observe that

and are continuous with respect to , and

when all the ’s are zero. Hence

as . This may pose a problem when the residual
errors are small but still not acceptable. If gradient-ascent al-
gorithms that use only first-order information (such as standard
backpropagation) are used in the optimization,is changed

KWOK AND YEUNG: OBJECTIVE FUNCTIONS FOR TRAINING 1137

at each step by an amount

(13)

where is the learning rate. As is small, learning basically
comes to a halt. By using optimization algorithms that use
second-order information, we may be able to do a better job.
Hence, in the experiments, the quickprop learning algorithm
[33] is used to implement this optimization. However, the
problem is still not solved completely.

Problem with the Quickprop Algorithm:The quickprop al-
gorithm is a second-order method. It assumes that the function,

, to be optimized is locally quadratic with respect to each
weight, and the Hessian matrix of in weight space is
diagonal. Although these assumptions are quite “risky,” the
technique works well in practice [33], [64].

Denoting at time by , the change for weight
at time is given by:

(14)

where is the weight update at time .
There are cases when weight update by (14) is not used.

For example, since quickprop changes weights based on what
happened during the previous weight update, (13) is used to
compute the first step. Another situation is when the current
slope with respect to is in the same direction as that of the
previous slope, and its magnitude is close to or even larger
than the previous one. In this case, the next weight update is
given by

(15)

Although the aim of this restriction is to improve the
stability of the algorithm, it may be problematic when one
is exploring in a plateau9 in the error surface. Consider the
direction in the weight space. Taking the gradient ascent step
in (13) at

with

(16)

Now, using Taylor series expansion and (16)

(17)

(18)

where denotes at time . If falls in the region
of a plateau, then

9A plateau is a region where the first and second derivatives of the function
to be optimized with respect to all the parameters are nearly zero.

Equation (18) thus implies

which satisfies the conditions for (15) to be applied. The next
weight update, using (15) and (16), is then

Movement in the weight space is thus very slow.
This problem, however, is usually not that severe. Although

the next weight change is small, and even if the conditions
for (15) to be applied continue to be satisfied, it can build up
gradually given a sufficient number of training epochs. This
can be seen clearly by applying (15) repeatedly

(19)

Thus, as , the difference between and
will finally be large enough for the quadratic approximation
to be applied.

However, in constructive neural-network algorithms, train-
ing is usually limited by apatienceparameter [39], which
means that the function to be optimized has to be improved by
a certain fraction within a certain number of training epochs.
Patience helps to end each learning phase when progress is
excessively slow and thus saves time. Moreover, it is also
experimentally shown to be able to improve generalization
by avoiding overfitting of the training data [65]. However,
the value of this patience parameter is usually small. Hence,
waiting for the weight slopes to slowly build up as in (19)
is not possible under such situations. More drastic action is
needed to get out of the plateau in limited time. This situation
is particularly acute in our case, as we have shown in the last
section that when the residual errors are small, both the first
and second derivatives of the objective function are likely to
be small.

B. Remedies

To alleviate the problems mentioned above, we aim at
increasing the slope of the objective function to be optimized
when the residual errors are small, such that the region to be
searched is less likely to be a plateau. On the other hand, if we
are so unfortunate that quickprop really searches in a plateau,
we aim at finding a better method to get out of it quickly.

To avoid the first problem, Fahlman [33] suggested to adjust
by adding a small offset to the values of . However,

this distorts the true surface of and, as noted by Crowder
[66], this “confuses the correlation machinery” and cannot
solve the problem.

Transforming the Objective Function:To increase the
slope of when the residual errors are small, we transform

by a (possibly nonlinear) functional , where is
the space of all real-valued continuous functions

such that

1138 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

Fig. 1. Plot of several choices off .

when is small. Moreover, we require the function
in

to be strictly increasing. This is desirable so that locations of
the local and global optima of are the same as those of.

An obvious choice of is

This amounts to scaling up the dimension, or equivalently
increasing the learning rate. However, increasing too much
may cause oscillation, while increasing only a little may not
be useful in improving the situation.

Another simple choice is

Now , and hence when .
Thus, the slope is scaled up whenis small. The smaller
is, the larger is the scaling of the slope (Fig. 1). Even whenis
large, which makes smaller than , it is not a problem
because then quickprop will be mainly using the quadratic
approximation (14).

Of course, there are other choices of, such as

which basically changes the switch-over point where
. But the basic idea of all these schemes is to dynamically

alter the slope of the objective function during learning. This is
similar to the idea of adaptive learning rate in backpropagation
[64], [67]. However, we demonstrate here that a simple change
in the objective function to be optimized can achieve the
same goal, without requiring modification to the learning
algorithm or continual updating of the learning rate which
incurs additional computational burden. Finally, notice that
this kind of modification to the objective functions does not

affect the convergence rates of the constructive algorithm, as
given in (6) and (8).

Modification to the Quickprop Algorithm:For the second
problem of enabling a faster escape from the plateau, a simple
solution is to take large steps. From Section IV-A, we saw that
the problem arises from always using the gradient ascent step
when conditions to (15) are satisfied. To alleviate this, we take
the quadratic approximation in (14) when the changes in all
weight directions are very small, even under those conditions.

Following the analysis in Section IV-A, by taking the
quadratic ascent step

It is simple to verify that when , as when
falls on a plateau, this will be of greater magnitude than

the gradient ascent step.

V. SIMULATION

In this section, we compare the generalization performance
of several networks constructed using the objective functions

in (4), in (7), in (11), their modified versions (by
taking the square root), in (1), the objective function

used by Fujita in [46], and the squared error criterion10

used in [40]. Comparison is performed on a set of
regression functions originally used in [40]. Preliminary study
on the improvements in generalization performance by the
modifications discussed in Section IV-B has also been reported
in [68], in the context of chaotic time series prediction.

A. Setup

The networks under comparison all have linear output units
and a single layer of hyperbolic tangent hidden units. Hidden
units are added up to a maximum number of 15. Input training
is performed by using the modified quickprop algorithm as de-
scribed in Section IV-B, while output “training” is performed
by computing the pseudoinverse exactly.

The regression problems used are the two-dimensional
functions which have been used in [40]. They are as follows.

• Simple interaction function:

• Radial function:

10Notice that unlike the other objective functions,Ssqr is always measured
at the output nodes and is minimized instead of being maximized during both
the input and output training phases.

KWOK AND YEUNG: OBJECTIVE FUNCTIONS FOR TRAINING 1139

Fig. 2. f (1): simple interaction.

Fig. 3. f (2): radial.

• Harmonic function:

or equivalently, with

• Additive function:

• Complicated interaction function:

Plots of these functions are shown in Figs. 2–6.
We employ the same basic setup as in [40]. Two sets of

training data, one noiseless and the other noisy, are generated.

Fig. 4. f (3): harmonic.

Fig. 5. f (4): additive.

Fig. 6. f (5): complicated interaction.

The noiseless training set has 225 points, and is generated from
the uniform distribution . The same set of abscissa
values (’s) is used for experiments with all five functions. The
test set, of size 10000, is generated from a regularly spaced
grid on [0,1] , and is also the same for all five functions.

1140 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

TABLE I
MEAN SIGNAL-TO-NOISE RATIOS FOR THE FIVE REGRESSIONPROBLEMS

The noisy training set is generated by adding independent and
identically distributed (i.i.d.) Gaussian noise, with mean zero
and standard deviation 0.25, to the noiseless training set. Its
size is thus also 225. Whereas results in [40] are based on only
one specific set of training data, we want to get information
on the variability due to the location of the’s. Hence, in the
simulations below, we perform 100 independent trials each
generating a different set of training data. The mean signal-
to-noise ratios (SNR’s) for the five noisy functions are shown
in Table I.

As in [40], the fraction of variance unexplained (FVU) on
the test set is used for comparison. It is defined as

where . Note that the FVU is proportional
to the commonly used mean squared error. Moreover, as
mentioned in Section I-B, in this paper we focus on how
to determine the network weights after hidden unit addition,
rather than on the issue of determining the optimal number
of hidden units to be installed in the network. Hence, in the
following, we assume that some perfect criterion has been used
to handle this issue and we will use for comparison the lowest
testing FVU among the 15 networks ranging from one to 15
hidden units in each trial.

B. Results

Boxplots for the best attainable testing (generalization)
FVU’s averaged over 100 independent trials are shown in
Figs. 8 and 9. In each boxplot, the horizontal line in the
interior of the box is located at the median. The height of
the box is equal to the interquartile distance, or IQD, which
is the difference between the third quartile of the data and the
first quartile. Thewhiskers(the dotted lines extending from
the top and bottom of the box) extend to the extreme values
or a distance from the center, whichever is less.
Data points which fall outside the whiskers are indicated by
horizontal lines.

The corresponding means and medians are shown in
Tables II and III. A pairwise comparison of the generalization
performance for different objective functions, on a test by test
basis, by using the sign test [69] at a 95% level of significance,
is also reported in Tables IV–XIII. Each method (A, say)
in the row is compared with each method (B, say) in the
column. An asterisk in the corresponding entry indicates that
the generalization performance of method A issignificantly
better than that of B.

Fig. 7. Illustration for Theorem 1.

The following observations can be made.

• Poor results are obtained for the harmonic function
using all the objective functions tested. This is, however,
in line with the results by Donoho and Johnstone [70].
They studied the least-square approximation errors of
ridge approximation and kernel approximation, which are
approximation techniques analogous to feedforward neu-
ral networks with a single hidden layer of sigmoidal units
and a single hidden layer of radial basis function units, re-
spectively. Focusing on the two-dimensional input space
with respect to the Gaussian measure, they showed that
ridge approximation is better for radial functions while
kernel approximation is better for harmonic functions.
Hence, in this case, networks of size larger than 15 may
be needed for successive approximation and results for
this problem are not conclusive.

• The testing performance of is poor for all the prob-
lems. But it can be significantly improved by using the
modified version . Similar improvement also holds
for and . This shows that transforming the objective
functions as discussed in Section IV-B1 is beneficial.

• For the noiseless data, has the smallest testing
FVU’s for the simple interaction function and the
radial function , and the second smallest for the
additive function . Its superiority over other objective
functions is also confirmed by the pairwise comparison
(Tables IV, V, and VII). However, it is a bit inferior for
the complicated interaction function . From Fig. 8(e),

KWOK AND YEUNG: OBJECTIVE FUNCTIONS FOR TRAINING 1141

(a) (b)

(c) (d)

(e)

Fig. 8. Comparison of the logarithm of the testing FVU’s on noiseless data. Here,s1 stands forS1, rs1 for
p
S1, s2 for S2, rs2 for

p
S2, s3 for S3, rs3

for
p
S3, fahlman for Scascor, fujita for Sfujita, and sqr for Ssqr (a) f (1). (b) f (2). (c) f (3). (d) f (4). (e) f (5).

one can see a number of outliers with high testing FVU’s
for . Moreover, the spreads of the testing FVU’s for

are also comparatively larger than the other objective
functions in most datasets. This probably indicates that
superiority of is marred by its sensitivity to the
particular set of training data used.

• The testing performance of is much better than , and
is generally better than . Except for the com-

plicated interaction function is also better than
. Hence, the claim in Section II on the difference

in convergence rate is consistent with our experimental
results.

• The superiority of over , and over also
supports the claim in Section II that ignoring the bias to
the output unit during input training is beneficial.

• has competitive performance only for the simple
interaction function, and is significantly worse than most
other objective functions for all other functions. This
is probably because of the complicated form of ,
making it hard to be optimized. The performance of

is also poor, as is expected following the discussion in
Section II, suggesting that optimization based on has
to be repeated several times for satisfactory results, as has
been done in [40].

• and have comparable testing performance.
Moreover, the spreads of the testing FVU’s are also
comparable.

• For the noisy data, differences in performance between
different objective functions become smaller. But, still

and stand out among the others, as is
evident from the pairwise comparison.

VI. CONCLUSION

In this paper, we study a number of objective functions
for training new hidden units in constructive neural-network
learning algorithms. The aim is to derive a class of objective
functions whose value and the corresponding weight updates
can be computed in time, where is the number of
training patterns. Moreover, even though input weight freezing

1142 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

(a) (b)

(c) (d)

(e)

Fig. 9. Comparison of the logarithm of the testing FVU’s on noisy data. (a)f (1). (b) f (2). (c) f (3). (d) f (4). (e) f (5)

is used in the constructive algorithm for computational effi-
ciency, we require that the convergence property be preserved.
This class of objective functions includes:

•
•
•

•

•

•

• .

The results here are not tied to a particular network archi-
tecture (the cascade-correlation architecture), and are useful
to situations when complete retraining of the whole network
is infeasible after hidden unit addition. Moreover, the con-
structive algorithm can easily be generalized to adding a
group of hidden units, instead of just one, to the network
simultaneously, by requiring this group to optimize these same
objective functions.

Besides, we also propose a few computational tricks that
can be used to improve the optimization of these objec-
tive functions. Specifically, we address the problem of slow
convergence in plateaus of the objective function, which is
caused by both the form of the objective function and the
quickprop algorithm. A simple transformation of the objective
function to be optimized, although theoretically identical to
the original one, may lead to significantly improved results
in the numerical optimization process. Handling of plateaus
in quickprop is also modified, which is especially important
for constructive neural-network learning algorithms using the
patience parameter.

In general, the generalization performance of networks using
different objective functions can be influenced by a number
of factors. First, most constructive algorithms (such as those
studied in this paper) use a greedy approach, by grabbing the
largest possible residual error every time a new hidden unit is
added. However, being the nature of any greedy approach,
even if the “best” hidden unit function, as judged by the
“best” objective function, is selected at each step, this does

KWOK AND YEUNG: OBJECTIVE FUNCTIONS FOR TRAINING 1143

TABLE II
COMPARISON OF MEAN TESTING FVU’s IN 100 TRIALS ON NOISELESSTRAINING SETS (MEDIANS ARE IN BRACKETS)

TABLE III
COMPARISON OF MEAN TESTING FVU’s ON NOISY TRAINING SETS

not necessarily guarantee that the final network will have the
best performance.

Second, the objective functions used here are sample ver-
sions of their theoretical counterparts, basing on information
available from the training set. Their accuracy compared to
the true population version is thus dependent on whether the
training set has sufficiently sampled the whole input space, and
whether the noise in the training data has severely corrupted
its true value, etc. In the latter case when large errors are to be
expected, it may be reasonable to use robust versions of the
objective functions [71]. Also, in some constructive algorithms
(such as the cascade-correlation architecture [39]), the number
of input weights to the new hidden unit keeps on increasing.
In this case, regularization methods that add a penalty term to
the original objective function may be beneficial.

Third, practical optimization algorithms are prone to the
local optimum problem. This plagues all objective functions
being investigated here, but some are more vulnerable than
the others, probably because of their complex functional
form. Algorithms for finding global optima, such as simu-
lated annealing, may of course be used, but the demand on
computational resources will be much higher.

APPENDIX

A. Proofs

Proposition 1: For a fixed , the expression
achieves its minimum iff

1144 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

TABLE IV
NOISELESSf (1). HERE, sc STANDS FOR

Scascor; sf FOR Sfujita AND ss FOR Ssqr

TABLE V
NOISELESSf (2)

Moreover, with and as defined above,
, iff

Proof: Consider the case when all elements inare of
unit norm

For a fixed , the stated expression is minimized iff

with

From the set , the stated expression is minimized when
is maximized over all . The result follows

when the assumption of unit norm is dropped.
Theorem 1: Given is dense in and

for some . If is selected as to maximize
, then .

TABLE VI
NOISELESSf (3)

TABLE VII
NOISELESSf (4)

TABLE VIII
NOISELESSf (5)

Proof: Let denote the version of before output
training

(20)

KWOK AND YEUNG: OBJECTIVE FUNCTIONS FOR TRAINING 1145

TABLE IX
NOISY f (1)

TABLE X
NOISY f (2)

TABLE XI
NOISY f (3)

which is greater than zero as is dense (Lemma 3.3–7
of [72]). So, is strictly decreasing, and bounded below
by zero, thus it converges. That is, such that
when

TABLE XII
NOISY f (4)

TABLE XIII
NOISY f (5)

As is orthogonal to (Fig. 7), there-
fore

i.e., is a Cauchy sequence. Because is complete,
such that . From the fact that maximizes

(20) and , therefore

As strong convergence implies weak convergence, hence
, which implies .

Proposition 2: If the target function is an exact summation
of basis functions from as in (5), and the network is
constructed as in Theorem 1, then

where .

1146 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

Proof: The proof follows that of [58]. Assume that the
target function where . Consider

as is orthogonal to . But is also equal to

(21)

Hence, at least one of the terms in the summation of (21) must
be greater than or equal to , i.e.,

Hence, from (20) in Theorem 1, we have

(22)

Substituting , (22) becomes

By induction, we have

Transforming back to , we get

Proposition 3: If the target function is of the form in (5),
, and the network is constructed as in

Corollary 1, then

where

Proof: The proof is basically the same as that for Propo-
sition 2, except now we have

and

Lemma 1: is complete.
Proof: Suppose is a Cauchy sequence in .

There is a subsequence for which

which implies
for some . Thus is a Cauchy sequence
in . Since is complete, s.t. ,
with . Hence, . It
follows that converges to in . But if a Cauchy
sequence has a convergent subsequence, then the full sequence
converges. Thus is complete.

Lemma 2: If is dense in , then is
dense in .

Proof: For given and , if is
dense in s.t.

by choosing s.t. . Now,
. Hence, is dense in .

B. Nonlinear Output Units

In this section, we consider the case when the output
unit transfer function is nonlinear. Nonlinear output units are
commonly used in pattern classification tasks to restrict output
values to ranges such as [0,1] or [1,1]. In the following,
we denote the function implemented by the network as ,
where is Fréchet differentiable.11 The corresponding residual
error function becomes .

Proposition 4: For a fixed with ,
the expression achieves its minimum iff

(23)

under first-order approximation using Taylor series expansion.
Moreover, with as defined in (23)

11GivenX andY are normed spaces. Supposef : X ! Y is defined on
a neighborhood ofa 2 X. We sayf(h) = o(h) if kf(h)k=khk ! 0 as
h ! 0. A continuous linear operatorL : X ! Y is said to be theFréchet
derivative[73] of f : X ! Y at the pointx 2 X if

f(x+ h) = f(x) + Lh+ o(h)

ash! 0. We writeL = f 0(x).

KWOK AND YEUNG: OBJECTIVE FUNCTIONS FOR TRAINING 1147

iff

Proof: Consider the case when all satisfy the
condition

(24)

Ignoring higher-order terms in Taylor series expansion,
. By linearity of

and (24), therefore

Hence, for a fixed , the stated expression is minimized
(subject to the approximation in truncating the full Taylor
series) iff

with

From the set , the stated expression is minimized when
is maximized over all . Result follows by

removing the restriction (24).
Next, we compute the Fr´echet derivative . Let be the

output unit transfer function. Then , and

Thus, , and the corresponding
objective function to be maximized for nonlinear output units
is

where is the derivative of the output unit transfer function
for pattern . In the special case when the output unit transfer
function is linear, , Proposition 4 reduces to
Proposition 1, and reduces to . However, unlike the case
for linear output, convergence proof cannot be derived because
approximation by Taylor series expansion is used.

REFERENCES

[1] R. Reed, “Pruning algorithms—A survey,”IEEE Trans. Neural Net-
works, vol. 4, pp. 740–747, Sept. 1993.

[2] E. Fiesler, “Comparative bibliography of ontogenic neural networks,” in
Proc. Int. Conf. Artificial Neural Networks, vol. 1, Sorrento, Italy, May
1994, pp. 793–796.

[3] T. Y. Kwok and D. Y. Yeung, “Constructive algorithms for structure
learning in feedforward neural networks for regression problems,”IEEE
Trans. Neural Networks, vol. 7, pp. 1168–1183, Sept. 1996.

[4] D. E. Nelson and S. K. Rogers, “A taxonomy of neural-network
optimality,” in Proc. IEEE Nat. Aerospace and Electron. Conf., vol. 3,
Dayton, OH, May 1992, pp. 894–899.

[5] Y. Chauvin, “A backpropagation algorithm with optimal use of hidden
units,” in Advances in Neural Information Processing Systems 1, D.
S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp.
519–526.

[6] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network
construction with backpropagation,” inAdvances in Neural Information
Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan
Kaufmann, 1989, pp. 177–185.

[7] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization
by weight-elimination with application to forecasting,” inAdvances in
Neural Information Processing Systems 3, R. Lippmann, J. Moody, and
D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp.
875–882.

[8] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation
as a method for choosing a good ridge parameter,”Technometrics, vol.
21, no. 2, pp. 215–223, 1979.

[9] W. L. Buntine and A. S. Weigend, “Bayesian backpropagation,”Com-
plex Syst., vol. 5, pp. 603–643, 1991.

[10] D. J. C. MacKay, “Bayesian interpolation,”Neural Computa., vol. 4,
no. 3, pp. 415–447, May 1992.

[11] R. M. Neal, “Bayesian learning for neural networks,” Ph.D. dissertation,
Dept. Comput. Sci., Univ. Toronto, Ont., Canada, 1995.

[12] H. H. Thodberg, “A review of Bayesian neural networks with an ap-
plication to near infrared spectroscopy,”IEEE Trans. Neural Networks,
vol. 7, pp. 56–72, Jan. 1996.

[13] P. M. Williams, “Bayesian regularization and pruning using a Laplace
prior,” Neural Computa., vol. 7, pp. 117–143, 1995.

[14] D. J. C. MacKay, “A practical Bayesian framework for backpropa-
gation networks,”Neural Computa., vol. 4, no. 3, pp. 448–472, May
1992.

[15] E. Alpaydin, “GAL: Networks that grow when they learn and shrink
when they forget,” Int. Comput. Sci. Instit., Berkeley, CA: TR 91-032,
May 1991.

[16] G. Deffuant, “Neural units recruitment algorithm for generation of
decision trees,” inProc. 1990 IEEE Int. Joint Conf. Neural Networks,
vol. 1, San Diego, CA, June 1990, pp. 637–642.

[17] M. Frean, “The upstart algorithm: A method for constructing and
training feedforward neural networks,”Neural Computa., vol. 2, pp.
198–209, 1990.

[18] M. Marchand, M. Golea, and P. Ruj´an, “A convergence theorem for
sequential learning in two-layer perceptrons,”Europhys. Lett., vol. 11,
no. 6, pp. 487–492, 1990.

[19] J. H. Friedman, “An overview of predictive learning and function
approximation,” in From Statistics to Neural Networks: Theory and
Pattern Recognition Applications, J. H. Friedman and H. Wechsler, Eds.
Berlin: Springer-Verlag, ASI Proc., Subseries F, 1994.

[20] H. Akaike, “A new look at the statistical model identification,”IEEE
Trans. Automat. Contr., vol. AC-19, pp. 716–723, Dec. 1974.

[21] A. Barron, “Predicted squared error: A criterion for automatic model
selection,” in Self-Organizing Methods in Modeling, S. Farlow, Ed.
New York: Marcel Dekker, 1984.

[22] P. Craven and G. Wahba, “Smoothing noisy data with spline functions:
Estimating the correct degree of smoothing by the method of generalized
cross-validation,”Numer. Math., vol. 31, pp. 377–403, 1979.

[23] J. E. Moody, “Note on generalization, regularization, and architecture
selection in nonlinear learning systems,” inProc. 1991 IEEE Wkshp.
Neural Networks for Signal Processing, B. H. Juang, S. Y. Kung, and
C. A. Kamm, Eds. Princeton, NJ, Sept. 1991, pp. 1–10.

[24] J. Rissanen, “Modeling by shortest data description,”Automatica, vol.
14, pp. 465–471, 1975.

[25] G. Schwartz, “Estimating the dimension of a model,”Ann. Statist., vol.
6, pp. 461–464, 1978.

[26] J. Moody, “Prediction risk and architecture selection for neural net-
works,” in From Statistics to Neural Networks—Theory and Pattern
Recognition Applications, V. Cherkassky, J. H. Friedman, and H.
Wechsler, Eds. Springer-Verlag, 1994, vol. 136 of NATO ASI Series
F, pp. 147–165.

[27] M. Stone, “Cross-validatory choice and assessment of statistical pre-
dictions (with discussion),”J. Roy. Statist. Soc. Series B, vol. 36, pp.
111–147, 1974.

[28] A. S. Weigend and B. LeBaron, “Evaluating neural-network predictors
by bootstrapping,” inProc. Int. Conf. Neural Inform. Processing, vol. 2,
Seoul, Korea, Oct. 1994, pp. 1207–1212.

[29] B. D. Ripley, “Choosing network complexity,” inProbabilistic Reason-
ing and Bayesian Belief Networks, A. Gammerman, Ed. Alfred Waller,
1995, pp. 97–108.

[30] B. D. Ripley, “Statistical ideas for selecting network architectures,”
in Neural Networks: Artificial Intelligence and Industrial Applications,

1148 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

B. Kappen and S. Gielen, Eds. Berlin: Springer-Verlag, 1995, pp.
183–190.

[31] T. Ash, “Dynamic node creation in backpropagation networks,”Con-
nection Sci., vol. 1, no. 4, pp. 365–375, 1989.

[32] Y. Hirose, K. Yamashita, and S. Hijiya, “Backpropagation algorithm
which varies the number of hidden units,”Neural Networks, vol. 4, pp.
61–66, 1991.

[33] S. E. Fahlman, “Faster learning variations on backpropagation: An
empirical study,” inProc. 1988 Connectionist Models Summer School,
D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, Eds. San Mateo,
CA: Morgan Kaufmann, 1988, pp. 38–51.

[34] A. N. Kolmogorov and S. V. Fomin,Introductory Real Analysis, Dover,
1975.

[35] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Contr., Signials, and Syst., vol. 2, pp. 303–314, 1989.

[36] K. Hornik, “Some new results on neural-network approximation,”
Neural Networks, vol. 6, pp. 1069–1072, 1993.

[37] E. Hartman, J. Keeler, and J. Kowalski, “Layered neural networks with
Gaussian hidden units as universal approximations,”Neural Computa.,
vol. 2, pp. 210–215, 1990.

[38] J. Park and I. W. Sandberg, “Approximation and radial basis function
networks,”Neural Computa., vol. 5, pp. 305–316, 1993.

[39] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar-
chitecture,” inAdvances in Neural Information Processing Systems 2,
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp.
524–532.

[40] J. N. Hwang, S. R. Lay, M. Maechler, D. Martin, and J. Schimert, “Re-
gression modeling in backpropagation and projection pursuit learning,”
IEEE Trans. Neural Networks, vol. 5, pp. 342–353, May 1994.

[41] E. Littmann and H. Ritter, “Cascade LLM networks,” inProc. Int.
Conf. Artificial Neural Networks, vol. 1, Brighton, U.K., Sept. 1992,
pp. 253–257.

[42] A. Saha, C. L. Wu, and D. S. Tang, “Approximation, dimension
reduction, and nonconvex optimization using linear superpositions of
Gaussians,”Trans. Comput., vol. 42, no. 10, pp. 1222–1233, Oct. 1993.

[43] Y. Zhao and C. G. Atkeson, “Some approximation properties of pro-
jection pursuit learning networks,” inAdvances in Neural Information
Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann,
Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 936–943.

[44] J. L. Yuan and T. L. Fine, “Forecasting demand for electric power,” in
Advances in Neural Information Processing Systems 5, S. J. Hanson, J.
D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann,
1993, pp. 739–746.

[45] J. H. Friedman, “Exploratory projection pursuit,”J. Amer. Statist. Assoc.,
vol. 82, no. 397, pp. 249–266, Mar. 1987.

[46] O. Fujita, “Optimization of the hidden unit function in feedforward
neural networks,”Neural Networks, vol. 5, pp. 755–764, 1992.

[47] E. B. Baum and D. Haussler, “What size net gives valid generaliza-
tion?,” in Advances in Neural Information Processing Systems 1, D. S.
Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 81–90.

[48] P. Courrieu, “A convergent generator of neural networks,”Neural
Networks, vol. 6, no. 6, pp. 835–844, 1993.

[49] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, pp. 251–257, 1991.

[50] J. Luo, “A bias architecture with rank-expanding algorithm for neural
networks supervised learning problem,” inProc. World Congr. Neural
Networks, vol. 3, San Diego, CA, June 1994, pp. 742–747.

[51] L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger,
and J. C. Bezdek, “A comparison of neural-network and fuzzy clustering
techniques in segmenting magnetic resonance images of the brain,”
IEEE Trans. Neural Networks, vol. 3, pp. 672–682, Sept. 1992.

[52] N. Karunanithi and D. Whitley, “Prediction of software reliability using
feedforward and recurrent neural nets,” inProc. Int. Joint Conf. Neural
Networks, vol. 1, Baltimore, MD, June 1992, pp. 800–805.

[53] S. J. McKenna, I. W. Ricketts, A. Y. Cairns, and K. A. Hussein,
“Cascade-correlation neural networks for the classification of cervical
cells,” in Inst. Elec. Eng. Colloquium on Neural Networks for Image
Processing Applicat., London, U.K., Oct. 1992, pp. 5/1–4.

[54] N. Simon, H. Corporaal, and E. Kerckhoffs, “Variations on the cascade-
correlation learning architecture for fast convergence in robot control,”
in Proc. 5th Int. Conf. Neural Networks Applicat., Nimes, France, Nov.
1992, pp. 455–464.

[55] T. R. Shultz and W. C. Schmidt, “A cascade-correlation model of
balance scale phenomena,” inProc. 13th Annu. Conf. Cognitive Sci.
Soc., Hillsdale, NJ, 1991, pp. 635–640.

[56] D. G. Luenberger,Linear and Nonlinear Programming. Reading, MA:
Addison-Wesley, 2nd ed., 1989.

[57] J. Park and I. Sandberg, “Universal approximation using radial basis
function networks,”Neural Computa., vol. 3, pp. 246–257, 1991.

[58] G. P. Drago and S. Ridella, “Convergence properties of cascade cor-
relation in function approximation,”Neural Comput. Applicat., vol. 2,
pp. 142–147, 1994.

[59] A. R. Barron, “Universal approximation bounds for superpositions of
a sigmoidal function,”IEEE Trans. Inform. Theory, vol. 39, no. 3, pp.
930–945, May 1993.

[60] L. K. Jones, “A simple lemma on greedy approximation in Hilbert
space and convergence rates for projection pursuit regression and neural-
network training,”Ann. Statist., vol. 20, no. 1, pp. 608–613, 1992.

[61] , “On a conjecture of Huber concerning the convergence of
projection pursuit regression,”Ann. Statist., vol. 15, no. 2, pp. 880–882,
1987.

[62] C. Darken, M. Donahue, L. Gurvits, and E. Sontag, “Rate of approxima-
tion results motivated by robust neural-network learning,” Tech. Rep.,
Siemens Corporate Res., Inc., Princeton, NJ, Apr. 1994.

[63] V. Ku̇rková and B. Beliczynski, “Incremental approximation by one-
hidden-layer neural networks,” inProc. Int. Conf. Artificial Neural
Networks, vol. 1, Paris, France, Oct. 1995, pp. 505–510.

[64] T. T. Jervis and W. J. Fitzgerald, “Optimization schemes for neural
networks,” Cambridge Univ. Eng. Dept., U.K., Tech. Rep. CUED/F-
INFENG/TR 144, 1993.

[65] C. S. Squires and J. W. Shavlik, “Experimental analysis of aspects
of the cascade-correlation learning architecture,” Comput. Sci. Dept.,
Univ. Wisconsin-Madison, Madison, WI, Machine Learning Res. Group
Working Paper 91-1, 1991.

[66] R. S. Crowder, “Cascor.c, C implementation of the cascade-correlation
learning algorithm,” 1990.

[67] R. A Jacobs, “Increased rates of convergence through learning rate
adaptation,”Neural Networks, vol. 1, pp. 295–307, 1988.

[68] T. Y. Kwok and D. Y. Yeung, “Constructive neural networks: Some
practical considerations,” inPro. IEEE Int. Conf. Neural Networks, vol.
1, Orlando, FL, June 1994, pp. 198–203.

[69] V. K. Rohatgi,Statistical Inference. New York: Wiley, 1984.
[70] D. L. Donoho and I. M. Johnstone, “Projection-based approximation

and a duality with kernel methods,”Ann. Statist., vol. 17, no. 1, pp.
58–106, 1989.

[71] P. J. Huber, Robust Statistics. New York: Wiley, 1981.
[72] E. Kreyszig,Introductory Functional Analysis with Applications. New

York: Wiley 1989.
[73] D. H. Griffel, Applied Functional Analysis. Chichester, U.K.: Ellis

Horwood, 1981.

Tin-Yau Kwok received the Ph.D. degree in com-
puter science from the Hong Kong University of
Science and Technology.

He is currently an Assistant Professor in the Hong
Kong Baptist University. His research interests in-
clude the theory and applications of artificial neural
networks, pattern recognition, machine learning, and
data mining.

Dit-Yan Yeung (S’82–M’90) received the
B.Sc.(Eng.) degree in electrical engineering and
the M.Phil. degree in computer science from the
University of Hong Kong, and the Ph.D. degree in
computer science from the University of Southern
California, Los Angeles.

He is currently an Associate Professor in the
Hong Kong University of Science and Technology.
His current research interests include neural
computation, statistical learning theory, and
handwriting recognition.

