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Objective Functions for Training New Hidden
Units in Constructive Neural Networks
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Abstract—In this paper, we study a number of objective A. Matching the Network Complexity to the Problem

functions for training new hidden units in constructive algorithms Th th . hes to tackle thi bl
for multilayer feedforward networks. The aim is to derive a ere are three major approacnes 1o tackie this probiem.

class of objective functions the computation of which and the The first involves using a larger than needed network and
corresponding weight updates can be done i®(N) time, where training it until an acceptable solution is found. After this,
N is the number of training patterns. Moreover, even though some hidden units or weights are removed if they are no
input weight freezing is applied during the process for compu- |5nqer actively used. Methods using this approach are called
tational efficiency, the convergence property of the constructive - . .

algorithms using these objective functions is still preserved. We pruning algquthms..The second Qpproach, which corresponds
also propose a few computational tricks that can be used to im- to ConStructIVGilgorlthms, starts with a small network and then
prove the optimization of the objective functions under practical grows additional hidden units and weights until a satisfactory
situations. Their relative performance in a set of two-dimensional - solution is found. Review for pruning algorithms can be found
regression problems is also discussed. in [1], while that for constructive algorithms in [2]-[4].

Index Terms— Cascade-correlation, constructive algorithms,  The constructive approach has a number of advantages over

convergence, input weight freezing, quickprop. the pruning approach. First, for constructive algorithms, it is
straightforward to specify an initial netwotkwhereas for
|. INTRODUCTION pruning algorithms, one does not know in practice how big

the initial network should be. Second, constructive algorithms
I N recent years, many neural-network models have begf)ays search for small network solutions first. They are thus

proposed for pattern classification, function approximatiog,ore computationally economical than pruning algorithms, in
and regression problems. Among them, the class of multilaygich the majority of the training time is spent on networks
feedforward networks is perhaps the most popular. Stand@igher than necessary. Third, as many networks with different
backpropagation performs gradient descent only in the weighf e may pe capable of implementing acceptable solutions,
space of a network with fixed topology. In general, it is usefllngiryctive algorithms are likely to find smaller network
only when the network architecture (i.e., model) is chosely) tions than pruning algorithms. Smaller networks are more
correctly. Too small a network cannot learn the problem wellgicient in forward computation and can be described by a
but a size too large will lead to over-generalization and thugmpier set of rules. Functions of individual hidden units may
poor performance. This can be easily understood by analogy;{g, pe more easily visualized. Moreover, by searching for
the problem of curve fitting using polynomials. Consider a dald, | networks, the amount of training data required for good
set generated from a smooth underlying function with additi‘ﬁ’eneralization may be reduced. Fourth, pruning algorithms
noise on the outputs. A polynomial with too few coefficientasua"y measure the change in error when a hidden unit or
will be unable to capture the 'underlying fun.ction' from Whid\’}veight in the network is removed. However, such changes
the data was generated, while a polynomial with 00 many, only be approximated for computational efficiency, and

coefficients will fit the noise in the data and again result in @, may introduce large errors, especially when many are
poor representation of the underlying function. For an optimg{ |, pruned. '

number of coefficients, the fitted polynomial will give the best 1o third approach isegularization [5]-[7]. However

representation of the function and also the best predictions fag, arization cannot alter the network structure, which must
new data. A similar situation arises in the application of neurgl, specified in advance by the user. Although in principle
networks, where it is again necessary to maich the netwqpg ,se of regularization should allow the network to be

complexity to the problem being solved. Algorithms that cagyerly |arge, in practice using an overly large network makes
find an appropriate network architecture automatically are thHEtimization of the regularized error function with respect

highly desirable. to its network weights more computationally intensive and
difficult. Moreover, there is a delicate balance, controlled

by a regularization parameter, between the error term and
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more disciplined and long respected method is cross-validatiwained only once, here in constructive algorithms, training
[8]. However, this approach is usually very slow for nonlineamust be repeated every time hidden units are added. Hence,
models like neural networks, because a large number of nonlaomputational efficiency, in terms of both time and space,
ear optimization problems must be repeated. Recently, sevdratomes an important issue. Most optimization routines do
researchers [9]-[12] have incorporated Bayesian methods intt scale up well when the number of weighitsis large.
neural-network learning. Regularization can then be accofer example, Newton’'s method requires computation of the
plished by using appropriate priors that favor small netwoikessian matrix, entailing a space requirementogk?) and
weights (such as the normal [10] or Laplace [13] distribution} time requirement o®(k?) in each iteration. Quasi-Newton
and the regularization parameter can be automatically setethods still have a space requirementif:?), but do not
However, Bayesian inference mechanisms must often assumguire evaluating the Hessian matrix and are implementable
asymptotic normality of the posterior distributions, which main ways which only requireD(k?) arithmetic operations in
break down when the number of weights in the network each iteration. The price to pay is that instead of having
large compared to the training set sfZ€his scenario is more the quadratic local convergence of Newton’s method, quasi-
likely to occur in overly large networks, further escalating thBlewton methods only exhibit a local superlinear convergence
problem of determining an appropriate initial network for useate. Conjugate gradient methods do not require storage or
in regularization. maintenance of the Hessian, but their local convergence rate is
Hence, in this paper, we will focus mainly on constructiveoughly linear only. Simple gradient descent methods, though
algorithms. Moreover, we will be particularly interested irthey only requireO(k) space and time for each iteration, are
regression problems, in which networks with linear outputotoriously slow when the network size is large [33]. Thus,
units are the most common. Note that classification problenmsshort, techniques to improve computational efficiency are
can be considered as a special case of regression problesssential in practical constructive algorithms, and these will
Some constructive methods, such as those found in [15]-[1B§ discussed below.
that canonly be applied to classification problems will not be On the other hand, a frequently overlooked issue concern-

discussed here. ing constructive algorithms is their convergence properties.
The question of convergence can be stated as follows: Can
B. How to Train New Hidden Units the constructive algorithm produce a convergent sequence of

h h , bl involved in the desi Bftwork functions{ f,} that, in the limit, approximates the
ere are t ree major probiems Invoived in the design rget functionf as closely as desired? In other words, does
constructive algorithms:

the sequencd f,} so generated strongly convefg® f as

1) How to connect How to connect the new hidden unit,, _, 2 Apparently, the universal approximation capatflity
to the existing network? of a network structure is necessary for the convergence of

2) How to train: How to determine the (new and existing)its constructive algorithm. However, we will see in Section Il
weights in the network after connections to the Ne\hy this may not be sufficient.
hidden unit are made? Improving Computational ComplexityA common tech-

3) When to stop When to stop the addition of new hiddemjque used in constructive algorithms (like [39]-[43])
units, or, in other words, what is the optimal number oy simplify the optimization problem and thus improve
hidden units to be installed in the network? computational complexity is to assume that the hidden units

The first issue has direct implications to the resultamfiready existing in the network are useful in modeling part of

network architecture. It is well known that no single clasthe target function. Hence, we can keep the weights feeding
of network architectures is ideal for all problems [19], anghto these hidden units fixedhput weight freezing and allow

so different connection strategies for the new hidden uniéély the weights connected to the new hidden unit and the
are suitable for different problems. But a comprehensi@itput units to vary. The number of weights to be optimized,

comparison of different architectures is still lacking. and the time and space requirements for each iteration, can

The third issue on model selection may be addressed usthgs be greatly reduced. This reduction is especially significant

different techniques, such as by comparing evidence inwhen there are already many hidden units installed in the
Bayesian framework [9], [14], or, in a non-Bayesian framaietwork.

work, by the use of some information criteria [20]-[25] or data Training of the adaptable weights may then be performed
resampling methods [26]-[28]. This is still an active researdly backpropagation as usual [42], but the computational
topic. Interested readers may see the discussions in [26], [2@fguirement may be further reduced by proceeding in a layer-
and [30]. by-layer manner. First, the weights feeding into the new hidden

In this paper, we will focus on the second issue. In prirunit are trainedifiput training). They are then kept constant

ciple, it is fairly straightforward as one can simply train thend the weights connecting the hidden units to the outputs are
whole network again (as in [31] and [32]). However, while

in neural networks with fixed architecture the weights aresp sequence £, } stronglyconverge$34] to f if lim,, — o || £ — fu|| = 0,
where|| - || is the norm for the function space being considered.

2As an example, MacKay [14] reported that the Gaussian approximation in*A class of networks is capable ahiversal approximatiorif it is broad
the evidence framework seemed to break down significantiVitk < 3+1, enough to contain the target functignor a good enough approximation ff
where N is the number of training patterns aidis the number of weights See, for example, [35]-[38] for universal approximation results on multilayer
in the network. perceptrons and radial basis function networks, respectively.
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trained Gutput training. In this way, only one layer of weights network functions can be described by the set
needs to be optimized each time. There is never any need to

backpropagate the error signals and hence is much faster. _ ~
e = ) - > F=U7#
During input training, the weights feeding into the new et}
hidden unit are trained to optimize an objective function. The
following objective functions have been used. where
1) Projection index [44] that finds “interesting” projections

2)

3)

4)

5)

deviating from the Gaussian form. However, this is _ _ (T ,
probably more suitable for exploratory data analysis [45] Fu=q Il Jnl@) = Z fiv(aj o +65)
rather than for regression or classification problems, as

projections of the Gaussian form may also be useful as J

feature detectors. aj € R, 3;,0; € R

The same error criterion, such as the squared error

criterion, as used in output training [40]. In this methodwi,[h a; being the weights connecting the inputs to tta

tf:rlt\rllvelggtsrlsve?crn|ayr?rﬁrﬁ Upddati(; |tnhtu\rlcr,1 bly kerepm den unit,3; the weight connecting this hidden unit to the
all the other weights tunchanged, ar € whale p Oqeé;&tput, and~ the hidden unit transfer function. In a certain
is cycled many times. However, it will be shown later i

. Lot ) Munction space (such as tli& space), universal approximation
this paper.that suph a criterion is inferior to the Otherrsésults state that wher satisfies certain mild conditions
proposed in Section Il

The covariance between the residual error and the néne.g., bounded and nonconstant [49J;, will be dense in

W . . o
. . L . . i.e., for any given tar functiénin th
hidden unit activation, as in the cascade-correlatltmat space, i.e., for any given target functifrin the space,
architecture [39] and its variants. Without loss of gen-

ere exists a sequence of network functiohs,} in F
erality, we assume that there is only one output unit

ﬁ#ch that{f,} strongly converges tg’. Notice that under
the network. New hidden units are added one at a ti flus formulation, all parameters (weights) in ay in the
in a greedy manner by maximizing

i=1

r@%quence are freely adjustable. However, when input weight
freezing is used, the new network estimglg constructed
from f,_1, cannot change the input weights of the hidden
Senccor = Z(EP — E)H, - H)‘ @ units assogiate_d witrfn_l._ _T_his restriction may then impede
the approximation capabilities of the sequergg}. A major
aim of this paper is to find objective functions such that the
convergence property will be preserved when these functions
are used in the constructive algorithms. Recently, there are
also some results on the convergence issue. We will postpone
the discussion of them to Section IIl.

p

where p ranges over the training patterns,, is the
activation of the new hidden unit for pattegn £, is
the residual error for patterp before the new hidden

unit is added, andd and E are the corresponding I hat th din th definiti
values averaged over all patterns. Note that if ther(%A so, note that the norm used in the convergence definition

are N training patterns, then the time complexities foP ould be baseq on the vyhole input space, nptjust on the train-
computing (1) and its weight update are both(fN) ing patterns as is done in [48] and [50]. This is because one
only. However, the design o is ratherad hoc As 'S usually more interested in the generalization performance
mentioned in [39], early versions of the architecture usdgther than performance on the training set, and a perfect recall

a true correlation measure, but the versionsgf..o, in ﬁfdtge tralmngHset is always posablssmp}ply by hav;ng dmo_re
(1) works better in most situations. idden units. Hence, “convergence,” in the sense of reducing

An objective function based on the use of projectioﬂ1e training error to zero [48], [50], is inadequate.
matrices [46]. This can be formally derived, but both o _
the computation of this objective function and eack. Organization of this Paper

weight update requir@(N?) multiplications. The space  Motivated by the success of the cascade-correlation ar-
requirement is als®(N?). Ideally, thisN, the number chitecture in a variety of problems [51]-[55], the obscure
of training patterns, should be large for good genettesign of the objective function and the importance of having
alization performance, and should also scale up witlbnvergence properties for constructive algorithms, we discuss
problem complexity [47]. Hence, this objective functionn Section Il a class of objective functions for training new
may soon become infeasible for larger-scale problenidden units in constructive algorithms, all of which have
Moreover, its complex form makes it vulnerable to the time complexity of O(N) without compromising the con-
problem of local optima in the optimization process. vergence property. A comparison with related works on the
Another veryad hocobjective function proposed in [48]. issue of convergence will be discussed in Section IIl. Practical

Effect on the Convergence Propertinput weight freez- problems in optimizing the objective functions, together with
ing, though highly beneficial in improving computationabome suggested remedies, will be discussed in Section IV.
efficiency, unfortunately also affects the convergence propeixperimental comparison in using these objective functions for
of the constructive algorithm. Consider, without loss o series of regression problems will be described in Section V,
generality, feedforward networks with one hidden layer, whosellowed by some concluding remarks in the last section.
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Proofs of the mathematical results and extension to the cdmeperformed by using gradient descent or, when the output
of nonlinear output units are in the Appendix. unit is linear and squared error criterion is used, by computing
the pseudo-inverse.

Il. DESIGN OF THE OBJECTIVE FUNCTIONS

In the following, we assume that the network has only onAe' Derivation for.5; and 5

linear output unit. The case for nonlinear output units is dealt We first address the problem in Step 1). _
with in Appendix B. Extension to multiple output units is Proposition 1: For afixedg € I' (||g]| # 0)_,6the expression
straightforward. Moreover, we will focus on tHe space, i.e., |If — (fn—1 + Bg)|| achieves its minimum iff
the space of all square integrable functions. &@ar € L?, the (en_1,g)
inner product(u,v) is defined by pB=p"= ]];7”72 2
Moreover, with3* and 3* as defined in (2)||f — (fn—1 +
w,v) = | u(z)v(z)du(z N | " ;
o = [ wnlost) B9l <1 — Gos + 79l Vg €T, if
2 2
wherey is the (positive) input environment measusé;is the <6"—1792"> > <6"—1’29> Vgerl.
whole input space which is a bounded measurable subset in llgnll 9]l
th'e d-dimensional Euclidean spad¥. The norm inL? space (Proofs are in Appendix A.)
will be denoted ag| - [|. o Thus, Proposition 1 suggests that the objective function to
A network, _ha_vmgn — 1 hidden umts dlrectly connected topg optimized during input training is
the output unit, implements the functigh _; given by

<6n—lvgn>2
lonl? ®)

However, in practice, (3) can only be calculated when the
exact functional form ot,,_; is available, which is obviously
impossible as the trug is unknown. A consistehtestimate

of (3) using information from the training set is

faa() = 3 B01(2)

where g; represents the function implemented by thi
hidden unit. Note that thesg;’s may only be indirectly

connected to the input units through intermediate hidden units, (% 3 EpHp)2

and thus the network is not restricted to having only one single T % 2

hidden layer. Moreoveg,,_; = f — f,—1 is the residual error N Lup*ip

function for the current network with—1 hidden units. , whereH,, is the activation of the new hidden unit for pattern

Addition of a new hidden unit proceeds in two steps:  ;, and E, is the corresponding residual error before this new
1) Input training: Findg, and g,, such that the resultant hidden unit is added. Dropping the factﬁrwhich is common
linear combination of;,, with the current network, i.e., for all candidate hidden unit functions, we obtain the following

frn—1 + Brgn, gives minimum residual errdfe,||. objective function:

2) Output training: Keepingy, g2, - - -, g,, fixed, adjust the 5
values of3y, 32, -, B, SO as to minimize the residual S, — (Ep EyH,) @)
error. L >, H2

Note that, as will be shown latef,, can be found as a by-
product in Step 1), without requiring backpropagation of error.
This 3,, can then be used as an initial value in performinai
Step 2). a5

Step 1) is performed by maximizing an objective functionAwi o Hw;
overg, from a set’. ThisI", having finite or infinite number of OH OH
elements, contains all hidden unit functions that can possibly [Z H:- ZEpa—p > E,H,- ZHpa—p]
be implemented. It thus depends on the particular constructive P P i P P Wi
algorithm that specifies how the new hidden unit is connected 2
to the existing network, how the net input to the hidden unit . <Z EPHP>/<Z Hﬁ) .
is computed, and the transfer function of the new hidden unit, P P
etc. Step 2) is used to ensure tifat f,, remains orthogonal to
the subspace spanned &y ¢-, - - - , g,,. This minimization can

The corresponding update equation for connection weight
feeding into this new hidden unit is

Notice that the time complexities in computing this objective
function and each weight update are ©fN). Moreover,

®An inner product{34] in a real linear spac® is a real function defined for storage requirement is minimal as ti&’s and H,’s need
every pair of elements, v € R and is denoted byu, v), with the following ot pe stored.

properties:
1) (w,u) > 0 where{u,u) = 0 if and only if u = 0; b)lgll = 0 implies g(z) = 0 V2 € X, which should obviously be
2) (u,v) = (v,u); excluded.
3) (Au,v) = Mu,v), AER; "Consistency follows as the estimate is a continuous function of the sample
4) (u,v 4+ w) = (u,v) + (u, w). product moments.
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The weight 5,, connecting the new hidden unit to the If we restrict the target function to be an exact summa-
output unit is also determined as a by-product, given Hlion of basis functions fronl", then we have the following
B =2, EpHy/ 3, Hg as determined in (2). Compared tgoroposition.

[40] in which the same criterion is used for both the input Proposition 3: If the target function is of the form in (5),
and output training phases, they have to (randomly) fix @n< ||g|| < & Vg € I', and the network is constructed as in
initial guess for3,, before input training can proceed. HenceCorollary 1, then

the hidden unit found is likely to be suboptimal, and so the

input and output training phases have to be iterated for several llenl? < —
times, significantly lengthening the optimization process. In nlleo||? + by

our approa_ch, however_, the optir_rlaj for th_e new hidd_en unit_where B; = bmmaxj_....m [vj].

is automatically determined and its value is not required du”ngNote that n

input training. Moreover, the weight update process in [40]

can be regarded as a variant of the coordinate descent method b; =m max |v|||g;]| < b max |u;| = by
[56], which is known to have poor convergence properties. J=Lrem J=hm
Simulation results in Section V also confirm that this methoathich implies

b3|eol|?
! (8)

used without iteration is inferior. B2 o |2 52 o2
The convergence property of the constructive algorithm FI70 5 < AT
using (3) as the objective function during input training, with nlleoll + 07 7 nlleoll? + %
input weight freezing in effect, is assured by the foIIowing_e” the bound fof|c,||2 in () is smaller than that in (8).

theorem. Of course, this does not necessarily mean that the network

G ; 2

Theorem 1 Given Spang(%r)f IS d_ense; de and¥g € L' sequence f,.} constructed using; as the objective function
0 <|lgll B b of sohmell).e - 1f gn is se eite as to maximize, iy converge faster than that usingh, as it also depends
(en—1,9)"/llgll*, thenlim, oo [|f — full = O. on how tight the bounds in (6) and (8) are. Nevertheless,

Requiring the. set of _h|dden unit fun'ctlons to satisty th,gm irical results in Section V tend to support this difference
denseness requirement is not hard, as is supported by varigu onvergence rates

universal approximation results for feedforward networks [36],
[38], [49], [57]. Moreover, the boundedness assumptioffgdif I

' . . B. Derivation for and
holds for continuous transfer functions on bounded domains. o Sws“’r' 53 _
Hence, Theorem 1 shows that the sequence of networks sghe objective function Scasco: used in the cascade-
constructed incrementally strongly converges to the targe@rrelation architecture can also be derived from the above
function. results. But let us first introduce a few notations.

If we further restrict the target functioff to be anexact ~ Let H = L' N L* Foru,v € M, define

summation of basis functions fro, i.e., of the form
(u,v) = /X (u(z) — w(@))(v(z) — 0(z)) du(z)  (9)

= LgF 5
f ;UJ 9; ®) where
for someg; € I, then, similar to [58], we can obtain the w(x) = L/ w(z) du(z)
following convergence rate. wX) Jx
Proposition 2: If the target function is an exact summation o(z) = L/ v(z) dp(z).
of basis functions fromI as in (5) and the network is (X)) Jx

constructed as in Theorem 1, then Obviously, (u,v) is a semi inner produdin . Here we use

b%leoll? 5 the notation(, -} for various spaces, which should be clear
nlleoll2 + bfc (6) from context. The corresponding seminorm is also denoted as
. -1l
wher2e by Elmmaxj=1,~~,m |lvjlllg;|l- Or, in other words, = To convert this semi inner product into an inner product,
llenll® = O()- consider the sef of all constant-valued functions iK. The

Because of the boundedness assumptidiy{)f the denom- quotient space/J is the set with elements
inator in (3) can be dropped without affecting convergence.

llenl” <

Corollary 1: With the conditions in Theorem 1, if, is plu)=uv+J={utw:we J}
selected as to maximize, 1, 9)°, thenlim,—co [If = ful = for eachu € #. For ¢(u), p(v) € H/J, define
0.
And we arrive at the second objective function (Pp(w), p(v)) = (u,v) (10)
2 where (u,v) is as defined in (9). Obviously{p(u), ¢(v))
So= D EuH,| . (7)  defines an inner product i/.J. We then have the following
P corollary.

Again’ the time Com_pleXitieS in computing this ObjeCtive 8A semi inner productliffers from an inner product in thdt:, «) may be
function and each weight update are @fN). zero even whem # 0.
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Corollary 2: With the conditions in Theorem 1, if, is Besides, in (12)q, has to be learned together with the new

selected as to maximize hidden unitg,,, while in our case, the parameters of the new
($len_1), Pgn))? hidden unit are first learned and then the output layer weights.

60 : E Training is thus performed for only one layer of weights at a

In time, making optimization of the objective function simpler.

then lim,, . ||¢(f) — ¢(fn)]| = O. Moreover, the objective function to be minimized in [59]

Hence, asf and f, differ by at most a constant whenand [60] is different from that developed in the previous
n — oo, f, — f if a constant (bias) term is included insection, and thus results in [59] and [60] cannot be directly
the expansion off,,. The corresponding objective function toapplied here.
be maximized is On the other hand, while results in [59] and [60] and those

= =\ 2 we studied here are in the context of thé space (or more
(EP(EP_E)(}{I’_H)) (11) general Hilbert spaces), Darkenal.[62] extended the bounds
Ep(Hp—H)Q on the rate of approximation to broader classes of spaces, in-
_ i P
where H is the average value of the new hidden unit ovecr|Ud|ngL spaces wheré < p < oc. However, they are more

L = . interested in showing thexistenceof a convergent network
all training patterns andv is the corresponding average for

. . . . . sequence, while we are more interested in the convergence
the residual error. Again, only)(N) time is required for . o .

. . . properties of specific methods that are able to deliver such
computing (11) and its weight update.

. . . sequences.
‘.JS'”g Corollary 1, we can drop the denominator in (11) andeDrago and Ridella [58] also studied the convergence prop-
arrive at the fourth objective function . . o .

erties of usingS..scor @S the objective function for func-

2 tion approximation, but only for the case when the hidden
<Z(EP—E)(HP—H)> unit transfer function is the hyperbolic tangent function and
P uniform environment measure. Our work here poses little
restriction on the input environment measure or the hidden unit
lransfer function, so long as the hidden unit transfer function is
bounded and the requirements for universal approximation are
met. Moreover, a number of other objective functions, besides

Recall that the objective functions; and S, are derived Scascor: are derived and discussed. _
by assuming thatf,_; is fixed at each step when the new Recently, Kirkova and Beliczynski [63] also devised the
hidden unit g, is optimized. In derivingSs and S, S, criterion in this paper as an objective function. However,

by using the quotient space, however, we have basicampir convergence proof follows from that in [59], and hence

used the knowledge that the bias to the output unit will Hﬁ restricted to target functions that are in the convex closure

corrected during output training, and hence the mean vaIL%st'

of E, and H, may be ignored during input training. This is

sometimes beneficial, as is illustrated by the simulation results IV. SOME PRACTICAL CONCERNS
in Section V.

Sz =

which is the square of......- Again, when the target function
is restricted to be an exact summation of basis functio
from I', the convergence rates fék or Sc.scor @S Objective
functions areO(%).

A. Practical Problems

IIl. RELATED WORK ON THE CONVERGENCEISSUE Before discussing the simulation results, we first discuss a

The convergence issue of constructive algorithms has bdew practical problems in optimizing the objective functions.
discussed in [59] and [60], originally in the context of pro- Problem with the Objective Functionin the following, we
jection pursuit regression [60], [61]. When the norms of théenote any objective function obtained in the previous section
elementg; in I are bounded (i.ellg|| < b as we also assumedsimply by S. Its first and second partial derivatives with respect
in Theorem 1), convergence is shown in [59] when the target the connection weight; will be denoted byS;, and Sy, ,
function f is in the closure of the convex hull @f. However, respectively.
when the norm is bounded, the convex closure is no longerAs learning proceeds, hidden units are added to the network
equal to the span df. Thus convergence to all? functions and the residual errorB;,,’s decrease with time. Observe that
is not guaranteed, whereas in our case, Theorem 1 holds $015;, and S;, are continuous with respect i,, and
all L? functions.

Moreover, in both [59] and [60], the iterative sequence of §=28, =8,=0
network estimates is formed from a convex combination of the ,
previous network functiorf,,_; and the new basis function, When all the£,’s are zero. Hence

fn = anfn—l + (1 - an)gn (12) S — 0’ SZU? - 0’ SZ’? -0

where0 < «,, < 1. Whereas in our approach, the ngwis asE, — 0 Vp. This may pose a problem when the residual
formed from full linear combination of the old and new hiddewrrors are small but still not acceptable. If gradient-ascent al-
unit functions. The weights connecting the old hidden units ggorithms that use only first-order information (such as standard
the output unit are thus not constrained as a group, as in (123ckpropagation) are used in the optimizatian,is changed
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at each step by an amount Equation (18) thus implies
Aw; = 1Sy, (13) Swlll
Sw:[0]

wherer) is the learning rate. AS, is small, learning basically L . .
comes to a halt. By using optimization algorithms that ué@hlch satisfies the conditions for (15) to be applied. The next

second-order information, we may be able to do a better jo“ﬁ?ight update, using (15) and (16), is then

Henc_e, in the ex_periments, th_e quigkprop_ learning algorithm Aw;[1] = IWSQUZ- [0] ~ 0.
[33] is used to implement this optimization. However, the
problem is still not solved completely. Movement in the weight space is thus very slow.

Problem with the Quickprop AlgorithmThe quickprop al-  This problem, however, is usually not that severe. Although
gorithm is a second-order method. It assumes that the functithg next weight change is small, and even if the conditions
S, to be optimized is locally quadratic with respect to eader (15) to be applied continue to be satisfied, it can build up
weight, and the Hessian matrix of in weight space is gradually given a sufficient number of training epochs. This
diagonal. Although these assumptions are quite “risky,” th@n be seen clearly by applying (15) repeatedly
technique works well in practice [33], [64].

Denotings;, attimet by S, [t], the change for weighi; Aw;[t] = " Awilt—n]. (19)
at time ¢ is given by: Thus, asu > 1, the difference betweefy, [t] and S., [t—1]
S’ 4 will finally be large enough for the quadratic approximation

Aw;lt] = Aw;[t—1] (14) to be applied.

However, in constructive neural-network algorithms, train-
where Aw;[t—1] is the weight update at time— 1. ing is usually limited by apatienceparameter [39], which

There are cases when weight update by (14) is not us@eans that the function to be optimized has to be improved by

For example, since quickprop changes weights based on whdertain fraction within a certain number of training epochs.

happened during the previous weight update, (13) is usedRgtience helps to end each learning phase when progress is
compute the first step. Another situation is when the currefXcessively slow and thus saves time. Moreover, it is also
slope with respect te; is in the same direction as that of the?XPerimentally shown to be able to improve generalization
previous slope, and its magnitude is close to or even lar avoiding overfitting of the training data [65]. However,

than the previous one. In this case, the next weight updatdfi€ value of this patience parameter is usually small. Hence,
given by waiting for the weight slopes to slowly build up as in (19)

is not possible under such situations. More drastic action is
Aw;[t] = pAw;[t-1], p> 1. (15) needed to get out of the plateau in limited time. This situation
is particularly acute in our case, as we have shown in the last
Although the aim of this restriction is to improve thesection that when the residual errors are small, both the first
stability of the algorithm, it may be problematic when oneand second derivatives of the objective function are likely to
is exploring in a plateatin the error surface. Consider the be small.
direction in the weight space. Taking the gradient ascent step

51, [1=1] - 55, 1

in (13) att = 0 B. Remedies
w;[1] = w;[0] + 7S, [0] To alleviate the problems mentioned above, we aim at
! increasing the slope of the objective function to be optimized
with when the residual errors are small, such that the region to be
searched is less likely to be a plateau. On the other hand, if we
Aw;[0] = 1S, [0]- (16)  are so unfortunate that quickprop really searches in a plateau,
. . ) we aim at finding a better method to get out of it quickly.
Now, using Taylor series expansion and (16) To avoid the first problem, Fahlman [33] suggested to adjust
S, [1] 8%, [0] 4 Aw;[0]S%, [0] S,,, by adding a small offset to the values %% However,
S (0] = S 0] this distorts the true surface 6f, and, as noted by Crowder

[66], this “confuses the correlation machinery” and cannot
= S [0] + 750, 1015, 0] (17) solve the problem.

5%, [0] Transforming the Objective Functionfo increase the
=1+nS,,[0] (18) slope of S when the residual errors are small, we transform
S by a (possibly nonlinear) functional: C — C, whereC is

where Sy [t] denotesSy, at timet. If w;[0] falls in the region the space of all real-valued continuous functions
of a plateau, then

S =1t(S)
S/ [0]~0, S ][0]=o0.
“ . such that

9A plateau is a region where the first and second derivatives of the function .
to be optimized with respect to all the parameters are nearly zero. S,ZUZ_ > S{UZ_
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A affect the convergence rates of the constructive algorithm, as
given in (6) and (8).
Modification to the Quickprop AlgorithmFor the second
, problem of enabling a faster escape from the plateau, a simple
1(8) (2) 1(8) = 2§ solution is to take large steps. From Section IV-A, we saw that
the problem arises from always using the gradient ascent step
when conditions to (15) are satisfied. To alleviate this, we take
the quadratic approximation in (14) when the changes in all
weight directions are very small, even under those conditions.
Following the analysis in Section IV-A, by taking the
guadratic ascent step

1(S) = S

5., 1]
5,101 - 57,11
S0, 0)(8%,, [0] + 1S, [0]57%, [0])
= ~nS%, 0157, 10]

0 1 S(2) g = =Sul0] <77+ 5”1[ ])

Fig. 1. Plot of several choices of. It is simple to verify that wher}S;; [0]| < +1), as when

w;[0] falls on a plateau, this will be of greater magnitude than

whensS is small. Moreover, we require the function ® — ® the gradient ascent step.
in

Awi[l] = Aw;[0]

t(s) =S5

(tSNUE}, {Hp)) = HSUEp} {Hp}) V- SIMULATION
In this section, we compare the generalization performance

to be strictly increasing. This is desirable so that locations gf se\/eral networks constructed using the objective functions
the local and global optima of are the same as those §f Sy in (4), S in (7), S5 in (11), their modified versions (by
An obvious choice oft is taking the square rootfcascor in (1), the objective function
tS)=aS, a>1. Stujita Used by Fujita in [46], and the squared error critetfon
Ssqr used in [40]. Comparison is performed on a set of
This amounts to scaling up th& dimension, or equivalently regression functions originally used in [40]. Preliminary study
increasing the learning rate However, increasing too much on the improvements in generalization performance by the
may cause oscillation, while increasing only a little may nahodifications discussed in Section IV-B has also been reported

be useful in improving the situation. in [68], in the context of chaotic time series prediction.
Another simple choice is
S=1$)=V5. A. Setup
5 The networks under comparison all have linear output units
Now S/, = QL and henceS’, > S’ whenS < 0.25. and a single layer of hyperbolic tangent hidden units. Hidden

Thus, the slope is scaled up whSnls smaII The smalleS units are added up to a maximum number of 15. Input training

is, the larger is the scaling of the slope (Fig. 1). Even whes is performed by using the modified quickprop algorithm as de-

large, which make§’ smaller thanS!, , it is not a problem scribed in Section 1V-B, while output “training” is performed

because then qwckprop will be ma|nly using the quadratity computing the pseudoinverse exactly.

approximation (14). The regression problems used are the two-dimensional
Of course, there are other choicestpkuch as functions which have been used in [40]. They are as follows.

#(5) = 5%7 k1 * Simple interaction function:
which basically changes the switch-over point whéfg > F O (w1, w2) = 10.391((21 — 0.4)(w2 — 0.6) +0.36).
S!,.. But the basic idea of all these schemes is to dynamically
alter the slope of the objective function during learning. This is
similar to the idea of adaptive learning rate in backpropagation 2 2 e 2

. = 24.234(r<(0.75 — r
[64], [67]. However, we demonstrate here that a simple change foe ) (r*(0.75 = 1))
in the objective function to be optimized can achieve the
same goal, without requiring modification to the learning

algorithm or continual updating of the learning rate which
9 P 9 9 1ONotice that unlike the other objective functiorfs,. is always measured

m(.:urs_ addltlonall eomputatlonal bwd?n' Fmal_ly’ notice th% the output nodes and is minimized instead of being maximized during both
this kind of modification to the objective functions does nate input and output training phases.

+ Radial function:

r? = (z1 — 0.5)% + (w2 — 0.5)%.
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Fig. 3. f: radial.

* Harmonic function:

Tz, 20) = 42.659((2 4 1) /20 + Re(2®))
z=x1 +ix2 — 0.5(1 +1)

O, RNWaEOO N

or equivalently, witht; = z; — 0.5,%2 = 22 — 0.5

FO (@1, 22) = 42.659(0.1+1 (0.05+31 - 103373 +573) ).
« Additive function:
FO ey, 20) = 1.3356(1.5(1 — 21)
+ ¥ L sin(3n (2, — 0.6)?)
+ @203 gin(4r (25 — 0.9)2)).

. . . . Fig. 6. £(®): complicated interaction.
e Complicated interaction function:
FON a1, 22) = 1.9(1.35 + ¢ sin(13(x; — 0.6)%)

S The noiseless training set has 225 points, and is generated from
X e~ sin(7x,)).

the uniform distributionU/[0, 1]°. The same set of abscissa

Plots of these functions are shown in Figs. 2—6. values {'s) is used for experiments with all five functions. The
We employ the same basic setup as in [40]. Two sets i@t set, of size 10000, is generated from a regularly spaced

training data, one noiseless and the other noisy, are generatgil on [0,1F, and is also the same for all five functions.
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TABLE |
MEAN SIGNAL-TO-NOISE RATIOS FOR THE FIVE REGRESSIONPROBLEMS
FO F@ F& Jis F®
SNR || 3.731 | 3.966 | 3.368 | 3.978 | 4.015

The noisy training set is generated by adding independent and
identically distributed (i.i.d.) Gaussian noise, with mean zero
and standard deviation 0.25, to the noiseless training set. Its
size is thus also 225. Whereas results in [40] are based on only
one specific set of training data, we want to get information
on the variability due to the location of thes. Hence, in the
simulations below, we perform 100 independent trials each
generating a different set of training data. The mean signal-
to-noise ratios (SNR'’s) for the five noisy functions are shown
in Table I.

As in [40], the fraction of variance unexplained (FVU) on
the test set is used for comparison. It is defined as

FVU — Eﬁ\;l(f(ﬂfi) - fn(ﬂlfi))2

S (flw) = )2

wheref = £ 3 f(x;). Note that the FVU is proportional

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

to the commonly used mean squared error. Moreover, as. 7.

mentioned in Section I-B, in this paper we focus on how
to determine the network weights after hidden unit addition,
rather than on the issue of determining the optimal number
of hidden units to be installed in the network. Hence, in the
following, we assume that some perfect criterion has been used
to handle this issue and we will use for comparison the lowest
testing FVU among the 15 networks ranging from one to 15

hidden units in each trial.

B. Results

Boxplots for the best attainable testing (generalization)
FVU’'s averaged over 100 independent trials are shown in
Figs. 8 and 9. In each boxplot, the horizontal line in the
interior of the box is located at the median. The height of
the box is equal to the interquartile distance, or 1QD, which
is the difference between the third quartile of the data and the
first quartile. Thewhiskers(the dotted lines extending from
the top and bottom of the box) extend to the extreme values
or a distancel.5 x IQD from the center, whichever is less. *
Data points which fall outside the whiskers are indicated by
horizontal lines.

The corresponding means and medians are shown in
Tables Il and Ill. A pairwise comparison of the generalization
performance for different objective functions, on a test by teste
basis, by using the sign test [69] at a 95% level of significance,
is also reported in Tables IV-XIIl. Each method (A, say)
in the row is compared with each method (B, say) in the
column. An asterisk in the corresponding entry indicates that
the generalization performance of method Asignificantly
better than that of B.

lllustration for Theorem 1.

The following observations can be made.

Poor results are obtained for the harmonic functjé#
using all the objective functions tested. This is, however,
in line with the results by Donoho and Johnstone [70].
They studied the least-square approximation errors of
ridge approximation and kernel approximation, which are
approximation techniques analogous to feedforward neu-
ral networks with a single hidden layer of sigmoidal units
and a single hidden layer of radial basis function units, re-
spectively. Focusing on the two-dimensional input space
with respect to the Gaussian measure, they showed that
ridge approximation is better for radial functions while
kernel approximation is better for harmonic functions.
Hence, in this case, networks of size larger than 15 may
be needed for successive approximation and results for
this problem are not conclusive.

The testing performance &, is poor for all the prob-
lems. But it can be significantly improved by using the
modified versiony/S,. Similar improvement also holds
for S; andS3. This shows that transforming the objective
functions as discussed in Section 1V-B1 is beneficial.
For the noiseless data/S; has the smallest testing
FVU's for the simple interaction functiorf(!) and the
radial function f?, and the second smallest for the
additive functionf(¥. Its superiority over other objective
functions is also confirmed by the pairwise comparison
(Tables 1V, V, and VII). However, it is a bit inferior for
the complicated interaction functioff>. From Fig. 8(e),
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one can see a humber of outliers with high testing FVU’s
for v/S3. Moreover, the spreads of the testing FVU's for
/S5 are also comparatively larger than the other objective
functions in most datasets. This probably indicates that
superiority of /53 is marred by its sensitivity to the
particular set of training data used.

The testing performance of; is much better tha§,, and
/S is generally better thar/S,. Except for the com-
plicated interaction functiorf(®, \/S5 is also better than
Scascor- HENce, the claim in Section 1l on the difference
in convergence rate is consistent with our experimental
results.

The superiority ofS3 over S1, and+/Ss over+/S, also
supports the claim in Section Il that ignoring the bias to
the output unit during input training is beneficial.

is also poor, as is expected following the discussion in
Section I, suggesting that optimization based<. has

to be repeated several times for satisfactory results, as has
been done in [40].

VS1 and S...o have comparable testing performance.
Moreover, the spreads of the testing FVU’'s are also
comparable.

For the noisy data, differences in performance between
different objective functions become smaller. But, still
V/S1, S3 and 4/S; stand out among the others, as is
evident from the pairwise comparison.

VI. CONCLUSION

In this paper, we study a number of objective functions

Stujiza Nas competitive performance only for the simpléor training new hidden units in constructive neural-network
interaction function, and is significantly worse than moséarning algorithms. The aim is to derive a class of objective
other objective functions for all other functions. Thidunctions whose value and the corresponding weight updates

is probably because of the complicated form .S,
making it hard to be optimized. The performancesgf;

can be computed i®(N) time, whereN is the number of
training patterns. Moreover, even though input weight freezing
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is used in the constructive algorithm for computational effi- Besides, we also propose a few computational tricks that
ciency, we require that the convergence property be preservea be used to improve the optimization of these objec-

This class of objective functions includes: tive functions. Specifically, we address the problem of slow
.5 = (Zp E,H,)?/ Zp H2 convergence in plateaus of the objgctiye functiqn, which is

« Sy = (3 E,H,)? cagsed by both the form of the objectlv_e function a_nd _the

« 8 =(% ”(E _E)H,—H))?/Y (H,—H)? quickprop algorithm. A simple transformation of the objective

pr TP b PP function to be optimized, although theoretically identical to

* Vo= |2p EPHPV\/ Ep Hz% the original one, may lead to significantly improved results

o /5 = |22, EpHpl in the numerical optimization process. Handling of plateaus

. _ P A / 2 in quickprop is also modified, which is especially important
Vs = [L,(Ep=E)(H, = H)I//3, (Hy=H) for constructive neural-network learning algorithms using the

* Seascor = |Zp(EP — E)(H, - H)|. patience parameter.

The results here are not tied to a particular network archi-|n general, the generalization performance of networks using
tecture (the cascade-correlation architecture), and are usefigferent objective functions can be influenced by a number
to situations when complete retraining of the whole netwowds factors. First, most constructive algorithms (such as those
is infeasible after hidden unit addition. Moreover, the corstudied in this paper) use a greedy approach, by grabbing the
structive algorithm can easily be generalized to adding lagest possible residual error every time a new hidden unit is
group of hidden units, instead of just one, to the networkdded. However, being the nature of any greedy approach,
simultaneously, by requiring this group to optimize these sameeen if the “best” hidden unit function, as judged by the
objective functions. “best” objective function, is selected at each step, this does
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TABLE I
CoMPARISON OF MEAN TESTING FVU's IN 100 TRIALS ON NOISELESS TRAINING SETS (MEDIANS ARE IN BRACKETS)

S1 VS 52 V52 S3 V83 Secascor Sfujita Ssqr

fo 0.02096 0.01117 0.09528 0.02435 0.00293 0.00258 0.02483 0.00369 0.00693

(0.02049) | (0.01006) | (0.04882) | (0.02242) | (0.00234) | (0.00204) | (0.02335) | (0.00250) | (0.00506)

@ 0.02917 0.02799 0.42609 0.03083 0.01972 0.01818 0.02668 0.04712 0.03829

(0.02925) | (0.02746) | (0.43811) | (0.02994) | (0.01819) | (0.01702) | (0.02626) | (0.03845) | (0.03461)

S 0.26904 0.24738 0.54700 0.27514 0.30569 0.28812 0.26503 0.44422 0.57347

(0.26449) | (0.23830) | (0.51089) | (0.26555) | (0.25403) | (0.25964) | (0.26219) | (0.43758) | (0.59375)

FAS 0.03555 0.03680 0.63554 0.03055 0.02710 0.02959 0.03054 0.06977 0.18468

(0.02898) | (0.03241) | (0.68748) | (0.02710) | (0.02224) | (0.02633) | (0.02702) | (0.05821) | (0.19432)

F® 0.12088 0.11126 0.61000 0.13404 0.15967 0.16739 0.12114 0.24607 0.29447

(0.12022) | (0.11180) | (0.58597) | (0.13158) | (0.11616) | (0.12822) | (0.12078) | (0.23344) | (0.29685)

TABLE Il
COMPARISON OF MEAN TESTING FVU’s oN Noisy TRAINING SETS

S1 V51 S2 v S2 S3 V83 Scascor Sfujita Ssqr

i 0.06980 0.05940 0.16909 0.07067 0.04582 0.04432 0.07092 0.04836 0.04969

(0.07985) | (0.07181) | (0.11176) | (0.07977) | (0.05640) | (0.05421) | (0.07903) | (0.06050) | (0.06160)

@ 0.07347 0.06951 0.45520 0.07275 0.06564 0.06426 0.06915 0.08587 0.07997

(0.08150) | (0.07943) | (0.45535) | (0.08169) | (0.07621) | (0.07445) | (0.07876) | (0.08348) | (0.08298)

@ 0.31637 0.30770 0.51487 0.31702 0.29254 0.33864 0.30941 0.46683 0.63408

(0.30799) | (0.29644) | (0.50011) | (0.31273) | (0.26530) | (0.27951) | (0.31104) | (0.46308) | (0.64252)

@ 0.08546 0.08453 0.66685 0.07980 0.07820 0.08010 0.08302 0.12513 0.20317

(0.08953) | (0.08834) | (0.70169) | (0.08605) | (0.08705) | (0.08704) | (0.08589) | (0.11231) | (0.19736)

f® 0.17353 0.16175 0.70805 0.18254 0.20077 0.20082 0.17613 0.29649 0.35143

(0.17164) | (0.16872) | (0.76016) | (0.17416) | (0.17426) | (0.18430) | (0.17336) | (0.31078) | (0.34696)

not necessarily guarantee that the final network will have theThird, practical optimization algorithms are prone to the
best performance. local optimum problem. This plagues all objective functions
Second, the objective functions used here are sample vieging investigated here, but some are more vulnerable than
sions of their theoretical counterparts, basing on informatidhe others, probably because of their complex functional
available from the training set. Their accuracy compared ferm. Algorithms for finding global optima, such as simu-
the true population version is thus dependent on whether {féd annealing, may of course be used, but the demand on
training set has sufficiently sampled the whole input space, affimPutational resources will be much higher.
whether the noise in the training data has severely corrupted
its true value, etc. In the latter case when large errors are to be
expected, it may be reasonable to use robust versions of Klep
objective functions [71]. Also, in some constructive algorithms”
(such as the cascade-correlation architecture [39]), the numbelProposition 1: For a fixedg € I' (||g|| # 0), the expression
of input weights to the new hidden unit keeps on increasintyf — (fn—1 + B9)|| achieves its minimum iff
In this case, regularization methods that add a penalty term to
the original objective function may be beneficial.

APPENDIX

roofs

* <6n—lvg>
R =pfF =217
P=0= e
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TABLE IV TABLE VI
NOISELESSf(l). HERE, s, STANDS FOR NoiseLess f(3)
Srascorv Sf FOR Sfujita AND s5 FOR Ssqr

s l V1 l 32 l V32

” |$1|\/§T szl\/s_zlss o] s,ﬂ H s3 | V33 | se | sf
31 * * *
s1 * * *
\/ﬁ N . . . \/ﬁ * * * * * *
82 *
82
\/3_2— N \/5 * * *
83 * * *
33 * * * * * *
\/ﬁ * * * * * * * \/Q * * *
Sec * * *
Sc *
85 * * * * * * ss * *
84 * * * * * 8s
TABLE VII
TABLE V NoiseLess f(1)
NolIseLEss f(2)
” 81 \/3T82\/583|\/§ Sc 3!’3.;"
L |olvife|[w|o[wle]o].]
81 * * *
81 * * * * \/31‘ . . .
* * * * *
VO o
32 \/E * * * * *
\/E * * * 83 * * * * * * *®
83 * * * * * * * \/5 . . N N N
\/§ * * * * * * * * s N . . N N
S¢ * * * * *
8y * *
Sf * S *
S *
TABLE VIII
_ ) NoiseLess f(5)
Moreover, with 3} and g* as defined above|f — (f.—1 +
829l < I = Gues + B*0)|| Vg € T, if L [a]w]el[wm]a]lw]ealols]
2 2
Ch—_ Cp— * * * * *
< n 17.92n> Z < n 172g> VgEF 8
||gn|| ||g|| \/ﬁ * * * * ¥ * * *
Proof. Consider the case when all elementdirare of o
unit norm
\/'3_2 * * *
— 2 2
Alg) = |f = faill® = IIf = (fam1 + B9l - . N -
2 2
= <Gn—17.g> - (<6n—lvg> - /3) . /s N
33 * *
For a fixedg, the stated expression is minimized iff N . - R
Se
— *
/3 - /3 - <en—17.g> sf * *
with s .

Ama,x(g) = <6n—17 g>2

From the setl’, the stated expression is minimized when  Proof: Let f. denote the version of, before output
Amax(g) is maximized over ally € T'. The result follows training

when the assumption of unit norm is dropped. O lenotl2 = llenll? = 1 = Facall® = If = Full?
Theorem 1: Givenspan(I') is dense inL? andVg € I',0 < ol e not ) o )
llgll < b for someb € R. If g, is selected as to maximize 2 |f = fa=ill® = [If = full

(en—1,9)*/llgll?, thenlimy, oo [|f — fall = 0. = {en-1,92)%/llgal1? (20)
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TABLE IX
Noisy f(1)
L lalvalelvalolwm]e]s]:]

£ *
VET * * * *
LP)
_\/'37 *
s3 * * * * * * *
V3 * * * * * * * *
8¢ *
ss * * * * * *
Ss * * * * *

TABLE X

Noisy f(2)

IL l 81 | V31 | s2 l V52 | s3 V33 | sc sy | S ”

31 *
Ve * * * * *
82
33 * * * * * * *
‘/35 * * * * * * * *
Se * * * * *
sy *
8, *

TABLE XI

Noisy £(3)
2 * * *
\/ﬁ * * *
so *
\/55 * * *
s3 * * * * * *> * *
\/35 * * *
Sc * * *
85 * *
Ss

which is greater than zero apan(T') is dense (Lemma 3.3-7°
of [72]). So,{||e,||*} is strictly decreasing, and bounded below

by zero, thus it converges. That & > 0,3/ > 0 such that
whenm > n > N

llenll* = llemll* = [llenll* = llem|*] <.
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TABLE XlI
Noisy f(1)

[ Llallellalll
31 * * *
VAT * * *
s2
N * * * * * *
33 * * * * *
\/9—3 * * * *
P * * *
sy * *
8s *

TABLE XillI
Noisy f(5)

[lallalw ]
31 * * *
VoL * * * * * * * *
52
\/ﬁ * * *
33 * * *
Ner * * *
Sc * * *
sy * *
EN *

As e, is orthogonal tospan{gi, g2, --,9m} (Fig. 7), there-
fore

||6n - 6m||2 = ||Cn||2 - ||6m||2 <e€

i.e., {e,} is a Cauchy sequence. Becauké is complete,
Je € L? such thate, — e. From the fact that,, maximizes
(20) and0 < ||g|| < b Vg € I, therefore

lim {e,,9)*/||lg|*> =0= lim {e,,g) =0, VgeTl.

As strong convergence implies weak convergence, hence
(e,g9) =0 Vg € I', which implies||¢|| = 0. O

Proposition 2: If the target function is an exact summation
of basis functions froml® as in (5), and the network is
onstructed as in Theorem 1, then

b3 lleol |

2
e < —F——5—5
H nH ”HGOHQ b?‘

whereby = mmax;=1,...m |v;|l|g}]]-
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Proof: The proof follows that of [58]. Assume that the Proof: The proof is basically the same as that for Propo-

target functionf = E}”zl v;g; whereg? € I'. Consider sition 2, except now we have
. llen—1ll?
9 - ] _ > - -
J=(f en1) j;{{}?fmm(g],en 1)z
= (€n-1+ fn—1,€n— n— 2
{en—1 2f 1, Cn—1) I llen—all
= [len—1l g=1,m m . imax v
j=1l,---m
. . and
as f,,—1 is orthogonal toe,,_;. But .J is also equal to 9 9
2 2 > <6n—lvgn> > <6n—lvgn>
llen—1ll” = flen]l” = 7 2
m llgnll
> vilg) en1). (21) o llenalt®
i=1 = (bm max lv;])?
j=1l,---m
Hence, at least one of the terms in the summation of (21) must _ llen—a* 0
be greater than or equal f,,—1]|?/m, i.e., o
) Lemma 1: H/J is complete.
max (g}, ent) 2 llen—1]] Pr_oof: Suppose{¢(g,)} is a_Cauchy sequence #/.J.
J=Lyem m There is a subsequence for which
L en— ne1l? -
< _Imax Ung;(H(gJ " 1> > ||G 1” ||¢(gni)_¢(gni+1)” <27, 1=1,23,-n <Nt
g=Lem g7 1 m ich imoliesilo: — v | = [l (6 — ) — (610 s — 0 —i
. ) which implies||v; —v; 1] = ||(vi — %) — (vig1 —vig1)]] < 2
— max {97+ en—1)] llen—1]| for somew; € ¢(g,,). Thus{v; — ;} is a Cauchy sequence
i=Leem gt~ m  1ax v lllg7]l in H. Since’H is complete3v € H s.t. |[(v; — &) — v|| — 0,
o with & = lim; .. v; — % = 0. Hence,||v; — v|| — 0. It
= M follows that¢(g,, ) converges t@(v) in /J. But if a Cauchy
by sequence has a convergent subsequence, then the full sequence
] converges. Thug{/J is complete. O
Hence, from (20) in Theorem 1, we have Lemma 2: If span(I') is dense inH, thenspan(['/J) is
. dense inH/J.
||en—1||2 _ ||en||2 > ||6n—1|| ] (22) Proof: For givend)(u) € H/J ande > 0, if span(F) is
- Y dense inH, Jv € span(l') s.t.
2 [p(v) = dll = [lv —ull <€
Substituting|le,||* = 47, (22) becomes by choosingu, v s.t. @ = 7 = 0. Now, ¢(v) € span(I)/J =
span(I'/J). Hencespan(I'/J) is dense it /J. O
Zn 2 Zn—1+1+ PR B. Nonlinear Output Units
In this section, we consider the case when the output
By induction, we have unit transfer function is nonlinear. Nonlinear output units are
commonly used in pattern classification tasks to restrict output
nly values to ranges such as [0,1] o£1,1]. In the following,
Zn 2 M+ 20+ Z PRk we denote the function implemented by the network @s,),
=0"7 wherer is Fréchet differentiablé! The corresponding residual
. ) error functione,, becomesf — 7(f,).
Transforming back tdje,[|*, we get Proposition 4: For a fixedg € I' with ||7/(f._1)g|| # 0,

the expressiot| f — 7( f,—1 + B¢)|| achieves its minimum iff

(f=7(fa=1): 7' (fn=1)9)
|7/ (fa-1)gll?

under first-order approximation using Taylor series expansion.
Proposition 3: If the target function is of the form in (5), Moreover, with3* as defined in (23)

0< < b Vg €I', and the network is constructed as in .
AR 1f =7t + Brgn)ll S 1f = 7(fum1 + Bo)ll, Vg €T

Corollary 1, then
11Given X andY are normed spaces. Suppgée X — Y is defined on

b3 lleol|?

2
[ < ——"—F5 75

- B=p*= (23)

EchGOHQ a neighborhood of € X. We sayf(h) = o(h) if ||f(R)||/||k]] — O as
llenll? < e h — 0. A continuous linear operatat : X — Y is said to be thé=rechet
nlleol|? + bf derivative[73] of f : X — Y at the point: € X if

f(x+h)= f(xz)+ Lh + o(h)
whereb; = bmmaxj—i,... m |v;] ash — 0. We write L = f'(x).
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iff [5]
<6n—177_/(fn—1)QN>2 <GN—177J(fn—l)g>2

7/ (fr=1)gnl[? |7 (fr—-1)gll?
Proof: Consider the case when ajl € I' satisfy the
condition

> Vgel.

(6]

7' (fa1)gll = 1 (24)

Alg) = Nf = 7(fa-0IP = If = 7(faz1 + Bg)II?
= 2(f,7(fa—1 4 B9) = 7(fa-1)) = [I7(fa—1 + B>
+ I (fa)lI?.
Ignoring higher-order terms in Taylor series expansion
T(fa—1 + B9) = 7(fa—1) + 7'(fa—1)Bg. By linearity of

(7]

(8]

9]

7/ and (24), therefore [10]
A(g) 2 (f = 7(fre1), 7' (fu-1)g)? [11]
- (<f - T(fn—l)a'r/(fn—l)g> - /3)2 [12]

= (en-1,7 (fae1)9) = (a1, 7' (fac1)g) — B2
Hence, for a fixedg, the stated expression is minimized13]
(subject to the approximation in truncating the full TaonTM]
series) iff

B =p*

<6n—177/(fn—1)g>

[15]
with

Amax(g) = <6n—177_/(fn—1)g>2- [16]
From the setl’, the stated expression is minimized whenp,,
Anmax(g) i1s maximized over ally € T'. Result follows by
removing the restriction (24).

Next, we compute the Echet derivativer’. Let 1) be the [18]
output unit transfer function. Ther( f,,)z = ¥(f.(z)), and

19

r(fut B = 7(f)e = B((fa + D)@ = ()

= h(@)¢'(fu(2)) + o(h(2)). [20]

Thus, (7'(fn)h)(x) = h(x)y'(fo(2)), and the corresponding [21]
objective function to be maximized for nonlinear output units
is

~~

[22]
X 23

wheres);, is the derivative of the output unit transfer function
for patternp. In the special case when the output unit transf?ﬁ 4]
function is linear,7(f,) = f., Proposition 4 reduces to
Proposition 1, and, reduces ta5;. However, unlike the case [25]
for linear output, convergence proof cannot be derived becaL@ﬁ
approximation by Taylor series expansion is used.
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