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Abstract

Hypernasal speech is a common symptom across several neurological disorders; however it has a 

variable acoustic signature, making it difficult to quantify acoustically or perceptually. In this 

paper, we propose the nasal cognate distinctiveness features as an objective proxy for hypernasal 

speech. Our method is motivated by the observation that incomplete velopharyngeal closure 

changes the acoustics of the resultant speech such that alveolar stops /t/ and /d/ map to the alveolar 

nasal /n/ and bilabial stops /b/ and /p/ map to bilabial nasal /m/. We propose a new family of 

features based on likelihood ratios between the plosives and their respective nasal cognates. These 

features are based on an acoustic model that is trained only on healthy speech, and evaluated on a 

set of 75 speakers diagnosed with different dysarthria subtypes and exhibiting varying levels of 

hypernasality. Our results show that the family of features compares favorably with the clinical 

perception of speech-language pathologists subjectively evaluating hypernasality.
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1. INTRODUCTION

Hypernasality refers to the perception of excessive nasal resonance during speech 

production. It results from an inability to properly modulate airflow between the nasal and 

oral cavities due to velopharyngeal dysfunction (VPD) and arises from a cleft lip and palate, 

or dysarthria secondary to neurological disorders such as Parkinson’s disease [1], 

amyotrophic lateral sclerosis [2], Huntington’s disease [3], and ataxia [4].

Detecting and assessing hypernasality are complex tasks that require inferring the ratio of 

resonances across the pharyngeal, oral, and nasal cavities. A disproportionately high amount 

of nasal resonance is regarded as atypical and hyper-nasal. This presents a challenging 

estimation task, vulnerable to co-modulating variables including word choice, the particular 

geometry of an individual’s resonating cavities, and other covarying dysarthria symptoms 

(e.g. vocal quality). This results in a highly nonlinear and complex mapping between the 

percept and the actual acoustic nasal resonance [5], [6].
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Current techniques for measuring velopharyngeal function in-clinic employ perception, 

imaging, and instrumentation. The current state of the art is clinical perception of 

hypernasality by trained speech-language pathologists [7], however there is a growing body 

of work suggesting clinical perception is susceptible to the co-modulating variables 

mentioned above and listener expertise [8]. Reliable perceptual measures of hypernasality 

require evaluation from multiple clinicians [9] or intensive training according to specific 

protocols [10]. Direct imaging of the velopharyngeal closing mechanism can provide 

information about velopharyngeal gap size and shape using X-Ray or multiview 

videofluoroscopy [11], however these are invasive techniques and not common practice in-

clinic. Nasalence is a score on a scale from 0–100 measured by a nasometer worn over the 

face [12]. While nasalance shows moderate correlation with perceptual judgment of 

hypernasality [13], it requires a specialized device and a trained clinician to be read and 

understood.

Existing work in assessing hypernasality directly from speech signals is primarily focused 

on extracting formant statistics or other spectral features (e.g. the spectral flattening, 

amplitude reduction, and bandwith increases that accompany nasalization [14], 1/3rd octave 

band analysis [15], and the voice low tone to high tone ratio [16]). While these methods have 

all demonstrated some effectiveness in measuring hypernasality, the complex spectral 

signature of nasalization is difficult to capture with a simple representation. There is also a 

body of work on measuring nasality using machine learning [17], [18], [19], but these 

methods are all trained on single-disorder data, so it is difficult to assess if they learn 

acoustics specific to hypernasality or other co-modulating variables.

In contrast to the existing work in hypernasality assessment, and motivated by existing work 

on objective phone-level intelligibility measures, we propose a more comprehensive acoustic 

representation that does not require disease-specific training data. We observe that the 

unwanted nasalization of phonemes characteristic of hypernasal speech can make certain 

plosives sound more like nasal sonorants that share the same place of articulation. To that 

end, we propose the nasal cognate distinctiveness (NCD) family of features. We train an 

acoustic model on healthy English speech. We calculate the feature values by evaluating the 

likelihood ratio between the plosives and their respective nasal cognates. These features 

compare favorably with clinical ratings of hypernasality provided by speech-language 

pathologists for data from 75 speakers diagnosed with different neurological diseases 

(Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and cerebellar 

ataxia).

2. NASAL DISTINCTIVENESS FEATURES

2.1. Motivation and Overview

A characteristic of hypernasal speech is the unintentional production of “nasal cognates,” 

nasal sonorants sharing the same place of articulation as certain voiced plosives, when 

production of the corresponding plosive is intended. This transformation means that the 

voiced alveolar stop /d/ will sound like the alveolar nasal /n/ and the voiced bilabial stop /b/ 

will sound like the bilabial nasal /m/. [20] Similarly, the un-voiced counterparts of these 

stops /t/ and /p/ frequently are present in phonetic environments where they are proceeded or 
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followed by vowels, or proceeded by nasal consonants [21], which means they also can 

share a propensity to be mapped to the same nasal cognates [20]. Predictable phenomena 

such as this suggest that perceptually-motivated, phoneme-level objective measures of 

hypernasality are warranted.

Existing phoneme-level objective measures have been developed targeting more general 

speech intelligibility assessment, such as the Goodness of Pronunciation algorithm (GoP) 

[22]. The GoP assesses the pronunciation of a speaker on a phoneme-by-phoneme basis as 

the log ratio of the probability of the uttered phoneme segment given the correct phoneme 

from an aligned transcript to the maximum across all phonemes of the uttered segment given 

a phoneme,

GOP(p) = log P(O | p)
maxq ∈ QP(O |q) / O

where O is the observation with frame count |O|, p is the transcript-determined phone, and Q 
is the full set of phonemes in the language. These probabilities are assessed using an 

automatic speech recognition (ASR) acoustic model trained on healthy native speech. 

Similar approaches have been used to measure intelligibility in dysarthric speech [23].

2.2. Feature Computation

In Fig. 1 we provide an overview of the proposed approach. We assume that we have an 

input speech segment and corresponding transcript for analysis. Furthermore, we assume 

that the input utterances have several instances of the phonemes of interest (/p/ /b/, /t/, /d/). 

Similar to the Goodness of Pronunciation feature, the Nasal Cognate Distinctiveness feature 

computation begins with an ASR acoustic model trained on healthy speech. This acoustic 

model is used to both force-align the speech to the transcript to sample the plosives and 

estimate the likelihood ratios between the plosives and their nasal cognates with which the 

NCD features are computed. Finally, the individual instances of each phoneme are averaged 

to generate average NCD features.1

2.2.1. Acoustic Model—To train our acoustic model, we extract a set of observation 

feature vectors from each training speech sample. The input speech sampling rate is 16 kHz. 

We analyze the speech at a frame rate of 10 ms and denote the acoustic features for frame i 
by Oi. For our implementation we used a triphone model trained with a Gaussian Mixture 

Model-Hidden Markov Model on 960 hours of healthy native English speech data from the 

LibriSpeech corpus [24]. We use the Kaldi toolkit training scripts for training the model. The 

input features to the ASR model are 39-dimensional second order Mel-Frequency Cepstral 

Coefficient (MFCC) with utterance-level cepstral mean variance normalization and Linear 

Discriminant Analysis transformation (same approach as in [25]).

1Code is available at https://github.com/michaelsaxon/ncd
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2.2.2. NCD Feature Computation—The NCD is formulated for phoneme p ∈ S = 

[/t/,/d/,/p/,/b/], frame Oi ∈ O, the observation corresponding with p based on forced 

alignment to the transcript,

NCD(p, O) = ∑i log
P(Oi | p)

P(Oi | cog(p)) / O

where cog(p) is a “cognate mapping function” that maps the stops in the set S to their 

corresponding nasal cognate, and |O| is the total number of frames in observation O.

The probabilities in the numerator and denominator of the formula are assessed using the 

Viterbi alignments in the ASR model. To assess the denominator probability the cog(p) 

function is called first, swapping the given plosive with its cognate in the triphone context.

Given a set of recordings of a speaker reading from a set of transcripts, the four NCD 

features are evaluated as follows. First, the transcripts are force-aligned at the phoneme level 

using the ASR model. With this alignment the N C D(p) feature can be computed for each 

all phonemes p ∈ S in the input utterances. This produces a set of many output NCD values, 

with each corresponding to an occurrence of one of the four phonemes in consideration in 

the transcripts. The NCD values are then averaged within the four phonemes to return four 

output features, NCD for /t/, /d/, /p/, and /b/.

3. RESULTS

The method was evaluated using a dataset of 75 speakers with a variety of dysarthria 

subtypes exhibiting a range of hypernasality severities. The dysarthria is secondary to 

Parkinson’s disease (N=38), Huntington’s disease (N=6), amyotrophic lateral sclerosis 

(N=15), and cerebellar ataxia (N=16). Each speaker spoke five phonetically rich test 

sentences. The sentences were: “the supermarket chain shut down because of poor 

management”, “much more money must be donated to make this department succeed”, “in 

this famous coffee shop they serve the best doughnuts in town”, “the chairman decided to 

pave over the shopping center garden”, and “the standards committee met this afternoon in 

an open meeting.”

We evaluate the NCD features against clinical perception of hypernasality, as measured by 

speech language pathologists (SLPs). There is considerable evidence that the inter-rater 

reliability between clinicians evaluating hypernasality is susceptible to other co-modulating 

variables [9]. As a result, we recruit a group of 15 SLPs to asses each speaker’s degree of 

nasality on a 1–7 scale and average their scores - we use the average of the 15 clinical 

ratings as our ground truth. The inter-rater reliability of the SLPs was moderate, with a 

Pearson Correlation Coefficient of 0.66 and an average inter-clinician mean absolute error of 

1.44 on the 7-point scale. A group of 5 healthy control speakers, speaking the same 

sentences was also included; all were assigned the minimum nasality score of 1.
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3.1. Individual Feature Analysis

Figure 2 contains box plots for the four phoneme NCD features. The speakers were divided 

into four groups based on nasality severity for this analysis: control, mild, moderate, and 

severe. To perform the separation the real range of non-control assessed nasality was divided 

roughly in three, with the mild nasality N ∈ [1.3, 2.7), moderate N ∈ [2.7, 4.1) and severe N 
∈ [4.1, 5.6].

The feature trends very convincingly move for the voiceless phonemes /t/ and /p/, with the 

control and mild nasality speakers exhibiting the highest values of Nasal Cognate 

Distinctness. The moderate nasality speakers then exhibit lower feature values and the severe 

nasality speakers exhibit the lowest. The means, medians, and quartiles for all of the values 

decrease as nasality increases across groups. These expected trends are not all exhibited in 

the voiced phonemes /d/ and /b/, however. For both phonemes the means, medians, and 

quartiles hardly move at all or do not move together between the mild and moderate nasality 

groups. For /b/, the moderate nasality NCD feature range even spans the entire range of 

values exhibited by all other groups. Despite these inconsistencies, for all phonemes the 

NCD score completely separates the control range from the severe nasality range.

3.2. Predicting the Nasality Score

Multiple regression analysis was used to test if the NCD measure for the four nasal cognates 

predicted the average clinician nasality ratings. The results of the regression analysis 

indicated that the four predictors explained 47% of the variance (R = 0.687, F (4, 79) = 

16.798, p < 0.05). It was found that the NCD for /t/ significantly predicted the hypernasality 

rating (β = −0.316, p < 0.05), as did the NCD for /p/ (β = −0.278, p < 0.05).

Figure 3 shows model-predicted nasality in Table 1 against the SLP-assessed clinical 

hypernasality measure.

3.3. Discussion

The NCD features are formulated as a log probability ratio between the expected class of a 

given transcript plosive and its nasal cognate. Increasingly positive values correspond with a 

higher confidence that the speaker has correctly articulated the plosive rather than its nasal 

cognate, and values closer to zero or negative represent plosives that sound more like their 

nasal cognate than the intended stop. This directionality is exhibited as expected in the 

phoneme-by-phoneme analysis of the feature, where across speaker classes the NCD of a 

given phoneme decreases as nasality increases.

Figure 2 shows that the NCD features very clearly separate the control and severe nasality 

groups with all phonemes. However, for the voiced phonemes /d/ and /b/ the moderate and 

mild means and medians are close and the quartile ranges overlap considerably. Performance 

is worst for /b/, which exhibits both high cross-group overlap of the quartile ranges and 

insignificance as a predictor of the subjective hypernasality scores in the multiple regression 

analysis.

When considering these inter-phone performance inconsistencies, differences in the phonetic 

environments in which the test phonemes appear are noteworthy. In the five test 
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sentences, /t/ appears 18 times, /d/ 9 times, /p/ 6 times and /b/ only 3 times. Of these 

appearances, /t/ has 8 word-internal appearances, 7 word-final appearances, and 3 word-

initial appearances. The phoneme /d/ has 5 word-initial appearances, 3 word-internal 

appearances, and 1 word-final appearance. The phoneme /p/ has 4 word-internal appearances 

and 2 word-initial appearances, and /b/ exclusively has 3 word-initial appearances. It is 

likely that these disparities in overall occurrence and word-internal occurrence play an 

important role in explaining the performance disparity.

Additionally, it is important to note that the NCD features are intended to assess a physical 

phenomenon, the realized allophones, not the underlying phonemes themselves. The 

phonetic transcriptions provided for HMM-based ASR systems fall somewhere between 

broad phonetic transcriptions and allophonic narrow transcriptions, allowing for possible 

confusion scenarios. For example, a /t/ may be realized in English as [t], [r], or [?] 

depending on phonetic environment. All three could be compared to [n] in the NCD model 

even though the glottal stop [?] is unaffected by VPD and shares no place of articulation 

with [n].

The NCD features tend to be high-variance because they require reliable phoneme-level 

alignment to compute; higher frequency phonemes exhibit reduced variability through 

averaging. Accordingly, in this study the more frequent phonemes are more useful predictors 

of hypernasality. This suggests that future datasets to evaluate methods like NCD should 

include a higher frequency of plosive consonants balanced across the categories, in 

consistent environments in which the correct allophones are reliably produced.

4. CONCLUSION

In this paper, we proposed the nasal cognate distinctiveness features as an objective and 

noninvasive proxy for hypernasal speech. The features are motivated by the simple 

observation that alveolar stops /t/ and /d/ map to the alveolar nasal /n/ and the bilabial 

stops /p/ and /b/ map to bilabial nasal /m/ when the energized column of air is shunted into 

the nasal passage during speech production. The feature is measured by first training an 

acoustic model on healthy speech and, for a test speaker, evaluating the likelihood ratio 

between the plosives and their respective nasal cognates. For healthy speakers that exhibit no 

signs of hypernasality, this ratio is large and decreases with increasing levels of 

hypernasality. This is confirmed on speech samples from 75 speakers diagnosed with 

different dysarthria subtypes and exhibiting varying levels of hypernasality. The results show 

that the features are strongly correlated with clinical perception.

As we saw in Fig. 2, some of the features are variable. Future work will focus on 

characterizing and mitigating this variability. This mitigation will require collecting samples 

of disordered speech that contain a more balanced representation of the phonemes under 

evaluation, enabling more adequate representation of /b/, /d/, and /p/, and allowing similar 

analysis of /k/, /g/, and their cognate, /n/. This study has shown that standard phonetically 

diverse sentences are suboptimal for nasality assessment tasks. Future participants should be 

asked to produce sets of utterances that contain multiple attempts at the precise allophones 

that have nasal cognates.
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In addition, alignment of the speech at the phoneme level can be challenging for speech 

from speakers with impaired articulation. To that end, in the future we will investigate 

integrating these ASR-based, alignment-reliant methods alongside new, strictly acoustic 

methods for hypernasality estimation that do not rely on alignment. Future work will more 

directly target predication of the SLP-assessed nasality ratings.
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Fig. 1. 
High-level overview of the NCD feature system.
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Fig. 2. 
Box plots for the NCD feature distribution separated by nasality severity. The y-axis in each 

plot represents the NCD feature value for the phoneme under consideration.
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Fig. 3. 
Output of the linear regression model predicting nasality using /t/, /d/, /p/, and /b/ as shown 

in Table 1.
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Table 1.

Summary of Linear Regression Analyses for Variables Predicting Clinical Hypernasality Scores from the NCD 

Measures (N=80). *p < 0.05, **p < 0.001

Factor B SE B β p

/t/ −0.225 .093 −0.316* 0.018

/d/ −0.061 .043 −0.201 0.163

/p/ −0.077 .030 −0.278* 0.013

/b/ 0.000 .016 0.002 0.987

R2 0.473

F 16.798**
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