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Objective Priors: An Introduction for
Frequentists1

Malay Ghosh

Abstract. Bayesian methods are increasingly applied in these days in the
theory and practice of statistics. Any Bayesian inference depends on a likeli-
hood and a prior. Ideally one would like to elicit a prior from related sources
of information or past data. However, in its absence, Bayesian methods need
to rely on some “objective” or “default” priors, and the resulting posterior
inference can still be quite valuable.

Not surprisingly, over the years, the catalog of objective priors also has
become prohibitively large, and one has to set some specific criteria for the
selection of such priors. Our aim is to review some of these criteria, compare
their performance, and illustrate them with some simple examples. While for
very large sample sizes, it does not possibly matter what objective prior one
uses, the selection of such a prior does influence inference for small or moder-
ate samples. For regular models where asymptotic normality holds, Jeffreys’
general rule prior, the positive square root of the determinant of the Fisher
information matrix, enjoys many optimality properties in the absence of nui-
sance parameters. In the presence of nuisance parameters, however, there are
many other priors which emerge as optimal depending on the criterion se-
lected. One new feature in this article is that a prior different from Jeffreys’
is shown to be optimal under the chi-square divergence criterion even in the
absence of nuisance parameters. The latter is also invariant under one-to-one
reparameterization.

Key words and phrases: Asymptotic expansion, divergence criterion, first-
order probability matching, Jeffreys’ prior, left Haar priors, location family,
location–scale family, multiparameter, orthogonality, reference priors, right
Haar priors, scale family, second-order probability matching, shrinkage ar-
gument.

1. INTRODUCTION

Bayesian methods are increasingly used in recent
years in the theory and practice of statistics. Their im-
plementation requires specification of both a likelihood
and a prior. With enough historical data, it is possible
to elicit a prior distribution fairly accurately. However,
even in its absence, Bayesian methods, if judiciously
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used, can produce meaningful inferences based on the
so-called “objective” or “default” priors.

The main focus of this article is to introduce certain
objective priors which could be potentially useful even
for frequentist inference. One such example where fre-
quentists are yet to reach a consensus about an “opti-
mal” approach is the construction of confidence inter-
vals for the ratio of two normal means, the celebrated
Fieller–Creasy problem. It is shown in Section 4 of
this paper how an “objective” prior produces a cred-
ible interval in this case which meets the target cov-
erage probability of a frequentist confidence interval
even for small or moderate sample sizes. Another situ-
ation, which has often become a real challenge for fre-
quentists, is to find a suitable method for elimination
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of nuisance parameters when the dimension of the pa-
rameter grows in direct proportion to the sample size.
This is what is usually referred to as the Neyman–Scott
phenomenon. We will illustrate in Section 3 with an
example of how an objective prior can sometimes over-
come this problem.

Before getting into the main theme of this paper,
we recount briefly the early history of objective priors.
One of the earliest uses is usually attributed to Bayes
(1763) and Laplace (1812) who recommended using a
uniform prior for the binomial proportion p in the ab-
sence of any other information. While intuitively quite
appealing, this prior has often been criticized due to
its lack of invariance under one-to-one reparameteriza-
tion. For example, a uniform prior for p in the binomial
case does not result in a uniform prior for p2. A more
compelling example is that a uniform prior for σ , the
population standard deviation, does not result in a uni-
form prior for σ 2, and the converse is also true. In a
situation like this, it is not at all clear whether there can
be any preference to assign a uniform prior to either σ

or σ 2.
In contrast, Jeffreys’ (1961) general rule prior,

namely, the positive square root of the determinant of
the Fisher information matrix, is invariant under one-
to-one reparameterization of parameters. We will moti-
vate this prior from several asymptotic considerations.
In particular, for regular models where asymptotic nor-
mality holds, Jeffreys’ prior enjoys many optimality
properties in the absence of nuisance parameters. In
the presence of nuisance parameters, this prior suf-
fers from many problems—marginalization paradox,
the Neyman–Scott problem, just to name a few. In-
deed, for the location–scale models, Jeffreys himself
recommended alternate priors.

There are several criteria for the construction of ob-
jective priors. The present article primarily reviews two
of these criteria in some detail, namely, “divergence
priors” and “probability matching priors,” and finds
optimal priors under these criteria. The class of di-
vergence priors includes “reference priors” introduced
by Bernardo (1979). The “probablity matching priors”
were introduced by Welch and Peers (1963). There
are many generalizations of the same in the past two
decades. The development of both these priors rely
on asymptotic considerations. Somewhat more briefly,
I have discussed also a few other priors including the
“right” and “left” Haar priors.

The paper does not claim the extensive thorough and
comprehensive review of Kass and Wasserman (1996),
nor does it aspire to the somewhat narrowly focused,

but a very comprehensive review of probability match-
ing priors as given in Ghosh and Mukerjee (1998),
Datta and Mukerjee (2004) and Datta and Sweeting
(2005). A very comprehensive review of reference pri-
ors is now available in Bernardo (2005), and a uni-
fied approach is given in the recent article of Berger,
Bernardo and Sun (2009).

While primarily a review, the present article has been
able to unify as well as generalize some of the pre-
viously considered criteria, for example, viewing the
reference priors as members of a bigger class of diver-
gence priors. Interestingly, with some of these criteria
as presented here, it is possible to construct some al-
ternatives to Jeffreys’ prior even in the absence of nui-
sance parameters.

The outline of the remaining sections is as follows.
In Section 2 we introduce two basic tools to be used re-
peatedly in the subsequent sections. One such tool in-
volving asymptotic expansion of the posterior density
is due to Johnson (1970), and Ghosh, Sinha and Joshi
(1982), and is discussed quite extensively in Ghosh,
Delampady and Samanta (2006) and Datta and Muk-
erjee (2004). The second tool involves a shrinkage ar-
gument suggested by Dawid and used extensively by
J. K. Ghosh and his co-authors. It is shown in Section 3
that this shrinkage argument can also be used in deriv-
ing priors with the criterion of maximizing the distance
between the prior and the posterior. The distance mea-
sure used includes, but is not limited to, the Kullback–
Leibler (K–L) distance considered in Bernardo (1979)
for constructing two-group “reference priors.” Also, in
this section we have considered a new prior different
from Jeffreys even in the one-parameter case which
is also invariant under one-to-one reparameterization.
Section 4 addresses construction of priors under prob-
ability matching criteria. Certain other priors are intro-
duced in Section 5, and it is pointed out that some of
these priors can often provide exact and not just as-
ymptotic matching. Some final remarks are made in
Section 6.

Throughout this paper the results are presented more
or less in a heuristic fashion, that is, without paying
much attention to the regularity conditions needed to
justify these results. More emphasis is placed on the
application of these results in the construction of ob-
jective priors.

2. TWO BASIC TOOLS

An asymptotic expansion of the posterior density be-
gan with Johnson (1970), followed up later by Ghosh,
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Sinha and Joshi (1982), and many others. The result
goes beyond that of the theorem of Bernstein and Von
Mises which provides asymptotic normality of the pos-
terior density. Typically, such an expansion is centered
around the MLE (and occasionally the posterior mode),
and requires only derivatives of the log-likelihood with
respect to the parameters, and evaluated at their MLE’s.
These expansions are available even for heavy-tailed
densities such as Cauchy because finiteness of mo-
ments of the distribution is not needed. The result goes
a long way in finding asymptotic expansion for the pos-
terior moments of parameters of interest as well as in
finding asymptotic posterior predictive distributions.

The asymptotic expansion of the posterior resembles
that of an Edgeworth expansion, but, unlike the latter,
this approach does not need use of cumulants of the
distribution. Finding cumulants, though conceptually
easy, can become quite formidable, especially in the
presence of multiple parameters, demanding evaluation
of mixed cumulants.

We have used this expansion as a first step in the
derivation of objective priors under different criteria.
Together with the shrinkage argument as mentioned
earlier in the Introduction, and to be discussed later in
this section, one can easily unify and extend many of
the known results on prior selection. In particular, we
will see later in this section how some of the reference
priors of Bernardo (1979) can be found via application
of these two tools. The approach also leads to a some-
what surprising result involving asymptotic expansion
of the distribution function of the MLE in a fairly gen-
eral setup, and is not restricted to any particular family
of distributions, for example, the exponential family,
or the location–scale family. A detailed exposition is
available in Datta and Mukerjee (2004, pages 5–8).

For simplicity of exposition, we consider primarily
the one-parameter case. Results needed for the multi-
parameter case will occasionally be mentioned, and, in
most cases, these are straightforward, albeit often cum-
bersome, extensions of one-parameter results. More-
over, as stated in the Introduction, the results will be
given without full rigor, that is, without any specific
mention of the needed regularity conditions.

We begin with X1, . . . ,Xn|θ i.i.d. with common
p.d.f. f (X|θ). Let θ̂n denote the MLE of θ . The likeli-
hood function is denoted by Ln(θ) = ∏n

1 f (Xi |θ) and
let �n(θ) = logLn(θ). Let ai = n−1[di�n(θ)/dθi]

θ=θ̂n
,

i = 1,2, . . . , and let În = −a2, the observed per unit
Fisher information number. Consider a twice differen-
tiable prior π . Let Tn = √

n(θ − θ̂n)Î
1/2
n , and let π∗

n (t)

denote the posterior p.d.f. of Tn given X1, . . . ,Xn.

Then, under certain regularity conditions, we have the
following result.

THEOREM 1. π∗
n (t) = φ(t)[1+n−1/2γ1(t;X1, . . . ,

Xn) + n−1γ2(t;X1, . . . ,Xn)] + Op(n−3/2), where
φ(t) is the standard normal p.d.f., γ1(t;X1, . . . ,Xn) =
a3t

3/(6Î
3/2
n ) + (t/Î

1/2
n )π ′(θ̂n)/π(θ̂n) and

γ2(t;X1, . . . ,Xn)

= 1

24Î 2
n

a4t
4 + 1

72Î 3
n

a2
3 t6 + 1

2În

t2 π ′′(θ̂n)

π(θ̂n)

+ 1

6Î 2
n

a3t
4 π ′(θ̂n)

π(θ̂n)
− a4

8Î 2
n

− 15a2
3

72Î 3
n

− 1

2În

π ′′(θ̂n)

π(θ̂n)
− a3

2Î 2
n

π ′(θ̂n)

π(θ̂n)
.

The proof is given in Ghosh, Delampdy and Samanta
(2006, pages 107–108). The statement involves a few
minor typos which can be corrected easily. We outline
here only a few key steps needed in the proof.

We begin with the posterior p.d.f.,

π(θ |X1, . . . ,Xn)
(2.1)

= exp[�n(θ)]π(θ)
/∫

exp[�n(θ)]π(θ) dθ.

Substituting t = √
n(θ − θ̂n)Î

1/2
n , the posterior p.d.f. of

Tn is given by

π∗
n (t) = C−1

n exp[�n{θ̂n + t (nÎn)
−1/2} − �n(θ̂n)]

· π{θ̂n + t (nÎn)
−1/2},

where Cn =
∫

exp[�n{θ̂n + t (nÎn)
−1/2}(2.2)

−�n(θ̂n)]
·π{θ̂n + t (nÎn)

−1/2}dt.

The rest of the proof involves a Taylor expansion
of exp[�n{θ̂n + t (nÎn)

−1/2} and π{θ̂n + t (nÎn)
−1/2}

around θ̂n up to a desired order, and collecting the co-
efficients of n−1/2, n−1, etc. The other component is
evaluation of Cn via momets of the N(0, 1) distribu-
tion.

REMARK 1. The above result is useful in finding
certain expansions for the posterior moments as well.
In particular, noting θ = θ̂n + (nÎn)

−1/2tn, it follows
that the asymptotic expansion of the posterior mean of
θ is given by

E(θ |X1, . . . ,Xn)
(2.3)

= θ̂n + n−1
{

a3

2Î 2
n

+ t
π ′(θ̂n)

Înπ(θ̂n)

}
+ Op(n−3/2).
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Also, V (θ |X1, . . . ,Xn) = (nÎn)
−1 + Op(n−3/2).

A multiparameter extension of Theorem 1 is as fol-
lows. Suppose that θ = (θ1, . . . , θp)T is the parameter
vector and θ̂n is the MLE of θ . Let

ajr = −Înjr = n−1 ∂2�n(θ)

∂θj ∂θr

∣∣∣∣
θ=θ̂n

,

ajrs = n−1 ∂3�n(θ)

∂θj ∂θr ∂θs

∣∣∣∣
θ=θ̂n

and În = ((Înjr )). Then retaining only up to the
O(n−1/2) term, the posterior of Wn = √

n(θ − θ̂n) is
given by

π∗
n (w) = (2π)−1/2 exp[−(1/2)wT Înw]

·
[

1 + n−1/2

{ p∑
j=1

wj

(
∂ logπ

∂θj

)∣∣∣∣
θ=θ̂n

(2.4)

+ 1

6

∑
j,r,s

wjwrwsajrs

}

+ Op(n−1)

]
.

Next we present the basic shrinkage argument of
J. K. Ghosh discussed in detail in Datta and Mukher-
jee (2004). The prime objective here is evaluation
of E[q(X, θ)|θ ] = λ(θ), say, where X and θ can
be real- or vector-valued. The idea is to find first∫

λ(θ)π̄m(θ) dθ through a sequence of priors {π̄m(θ)}
defined on a compact set, and then shrinking the prior
to degeneracy at some interior point, say, θ of the com-
pact set. The interesting point is that one never needs
explicit specification of π̄m(θ) in carrying out this eval-
uation. We will see several illustrations of this in this
article.

First, we present the shrinkage argument in a nut-
shell. Consider a proper prior π̄(·) with a compact
rectangle as its support in the parameter space, and
π̄(·) vanishes on the boundary of support, while re-
maining positive in the interior. The support of π̄(·)
is the closure of the set. Consider the posterior of θ un-
der π̄(·) and, hence, obtain Eπ̄ [q(X, θ)|X]. Then find
E[{Eπ̄(q(X, θ)|X)}|θ ] = λ(θ) for θ in the interior of
the support of π̄(·). Finally, integrate λ(·) with respect
to π̄(·), and then allow π̄(·) to converge to the degen-
erate prior at the true value of θ at an interior point
of the support of π(θ). This yields E[q(X, θ)|θ ]. The
calculation assumes integrability of q(X, θ) over the

joint distribution of X and θ . Such integrability allows
change in the order of integration.

When executed up to the desired order of approxima-
tion, under suitable assumptions, these steps can lead to
significant reduction in the algebra underlying higher
order frequentist asymptotics. The simplification arises
from two counts. First, although the Bayesian approach
to frequentist asymptotics requires Edgeworth type as-
sumptions, it avoids an explicit Edgeworth expansion
involving calculation of approximate cumulants. Sec-
ond, as we will see, it helps establish the results in an
easily interpretable compact form. The following two
sections will demonstrate multiple usage of these two
basic tools.

3. OBJECTIVE PRIORS VIA MAXIMIZATION OF
THE DISTANCE BETWEEN THE PRIOR AND THE

POSTERIOR

3.1 Reference Priors

We begin with an alternate derivation of the ref-
erence prior of Bernardo. Following Lindley (1956),
Bernardo (1979) suggested a Kullback–Leibler (K–L)
divergence between the prior and the posterior, namely,
E[log π(θ |X)

π(θ)
], where expectation is taken over the joint

distribution of X and θ . The target is to find a prior
π which maximizes the above distance. It is shown in
Berger and Bernardo (1989) that if one does this maxi-
mization for a fixed n, this may lead to a discrete prior
with finitely many jumps, a far cry from a diffuse prior.
Hence, one needs an asymptotic maximization.

First write E[log π(θ |X)
π(θ)

] as

E

[
log

π(θ |X)

π(θ)

]

=
∫ ∫

log
π(θ |X)

π(θ)
π(θ |X)mπ(X)dθ dX

(3.1)

=
∫ ∫

log
π(θ |X)

π(θ)
Ln(θ)π(θ) dX dθ

=
∫

π(θ)E

[
log

π(θ |X)

π(θ)

∣∣∣∣θ
]
dθ,

where X = (X1, . . . ,Xn), Ln(θ) = ∏n
1 f (Xi |θ), the

likelihood function, and mπ(X) denotes the marginal
of X after integrating out θ . The integrations are car-
ried out with respect to a prior π having a compact
support, and subsequently passing on to the limit as
and when necessary.

Without any nuisance parameters, Bernardo (1979)
showed somewhat heuristically that Jeffreys’ prior
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achieves the necessary maximization. A more rigor-
ous proof was supplied later by Clarke and Barron
(1990, 1994). We demonstrate heuristically how the
shrinkage argument can also lead to the reference pri-
ors derived in Bernardo (1979). To this end, we first
consider the one-parameter case for a regular family of
distributions. We rewrite

E

[
log

π(θ |X)

π(θ)

]
=

∫
π(θ)E[logπ(θ |X)|θ ]dθ

(3.2)
−

∫
π(θ) logπ(θ) dθ.

Next we write

Eπ̄ [logπ(θ |X)|X] =
∫

logπ(θ |X)π̄(θ |X)dθ.

From the asymptotic expansion of the posterior, one
gets

logπ(θ |X) = (1/2) log(n) − (1/2) log(2π)

− n
(θ − θ̂n)

2

2
În + (1/2) log(În)

+ Op(n−1/2).

Since n(θ−θ̂n)2

2 În converges a posteriori to a χ2
1 dis-

tribution as n → ∞, irrespective of a prior π , by the
Bernstein–Von Mises and Slutsky’s theorems, one gets

Eπ̄ [logπ(θ |X)]
= (1/2) log(n) − (1/2) log(2πe)(3.3)

+ (1/2) log(În) + Op(n−1/2).

Since the leading term in the right-hand side of (3.3)
does not involve the prior π̄ , and În converges almost
surely (Pθ ) to I (θ), applying the shrinkage argument,
one gets from (3.3)

E[logπ(θ |X)|θ ]
= (1/2) log(n) − (1/2) log(2πe)(3.4)

+ log(I 1/2(θ)) + O(n−1/2).

In view of (3.2), considering only the leading terms in
(3.4), one needs to find a prior π which maximizes∫

log{ I 1/2(θ)
π(θ)

}π(θ) dθ . The integral being nonpositive
due to the property of the Kullback–Leibler informa-
tion number, its maximum value is zero, which is at-
tained for π(θ) = I 1/2(θ), leading once again to Jef-
freys’ prior.

The multiparameter generalization of the above re-
sult without any nuisance parameters is based on the

asymptotic expansion

E[logπ(θ |X)|θ ]
= (p/2) log(n) − (p/2) log(2πe)

+
∫

log{|I (θ)|1/2/π(θ)}π(θ) dθ

+ O(n−1/2),

and maximization of the leading term yields once again
Jeffreys’ general rule prior π(θ) = |I (θ)|1/2.

In the presence of nuisance parameters, however,
Jeffreys’ general rule prior is no longer the distance
maximizer. We will demonstrate this in the case when
the parameter vector is split into two groups, one
group consisting of the parameters of interest, and the
other involving the nuisance parameters. In particular,
Bernardo’s (1979) two-group reference prior will be in-
cluded as a special case.

To this end, suppose θ = (θ1, θ2), where θ1 (p1 × 1)
is the parameter of interest and θ2 (p2 × 1) is the nui-
sance parameter. We partition the Fisher information
matrix I (θ) as

I (θ) =
(

I11(θ) I12(θ)

I21(θ) I22(θ)

)
.

First begin with a general conditional prior π(θ2|θ1) =
φ(θ) (say). Bernardo (1979) considered φ(θ) =
|I22(θ)|1/2. The marginal prior π(θ1) for θ1 is then ob-
tained by maximizing the distance E[log π(θ1|X)

π(θ1)
]. We

begin by writing

log
π(θ1|X)

π(θ1)
= log

π(θ |X)

π(θ)
− log

π(θ2|θ1,X)

π(θ2|θ1)
.(3.5)

Writing π(θ) = π(θ1)φ(θ) and |I (θ)| = |I22(θ)| ·
|I11.2(θ)|, where I11.2(θ) = I11(θ) − I12(θ)I−1

22 (θ) ·
I21(θ), the asymptotic expansion and the shrinkage ar-
gument together yield

E

[
log

π(θ |X)

π(θ)

]

= (p/2) log(n) − (p/2) log(2πe)

+
∫

π(θ1)

(3.6)

·
{∫

φ(θ)

· log
|I22(θ)|1/2|I11.2(θ)|1/2

π(θ1)φ(θ)
dθ2

}
dθ1

+ O(n−1/2)
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and

E

[
log

π(θ2|θ1,X)

π(θ2|θ1)

]

= (p2/2) log(n) − (p2/2) log(2πe)
(3.7)

+
∫

π(θ1)

{∫
φ(θ) log

|I22(θ)|1/2

φ(θ)
dθ2

}
dθ1

+ O(n−1/2).

From (3.5)–(3.7), retaining only the leading term,

E

[
log

π(θ1|X)

π(θ1)

]

≈ (p1/2) log(n) − (p1/2) log(2πe)
(3.8)

+
∫

π(θ1)

·
{∫

φ(θ) log
|I11.2(θ)|1/2

π(θ1)
dθ2

}
dθ1.

Writing logψ(θ1) = ∫
φ(θ) log |I11.2(θ)|1/2 dθ2, once

again by property of the Kullback–Leibler information
number, it follows that the maximizing prior π(θ1) =
ψ(θ1).

We have purposely not set limits for these integrals.
An important point to note [as pointed out in Berger
and Bernardo (1989)] is that evaluation of all these in-
tegrals is carried out over an increasing sequence of
compact sets Ki whose union is the entire parameter
space. This is because most often we are working with
improper priors, and direct evaluation of these integrals
over the entire parameter space will simply give +∞
which does not help finding any prior. As an illustra-
tion, if the parameter space is R × R+ as is typically
the case for location–scale family of distributions, then
one can take the increasing sequence of compact sets
as [−i, i] × [i−1, i], i ≥ 2. All the proofs are usually
carried out by taking a sequence of priors πi with com-
pact support Ki , and eventually making i → ∞. This
important point should be borne in mind in the actual
derivation of reference priors. We will now illustrate
this for the location–scale family of distributions when
one of the two parameters is the parameter of interest,
while the other one is the nuisance parameter.

EXAMPLE 1 (Location–scale models). Suppose
X1, . . . ,Xn are i.i.d. with common p.d.f. σ−1f ((x −
μ)/σ), where μ ∈ (−∞,∞) and σ ∈ (0,∞). Consider
the sequence of priors πi with support [−i, i]×[i−1, i],
i = 2,3, . . . . We may note that I (μ,σ ) = σ−2(c1 c2

c2 c3

)
,

where the constants c1, c2 and c3 are functions of

f and do not involve either μ or σ . So, if μ is
the parameter of interest, and σ is the nuisance pa-
rameter, following Bernardo’s (1979) prescription,
one begins with the sequence of priors πi2(σ |μ) =
ki2σ

−1 where, solving 1 = ki2
∫ i
i−1 σ−1 dσ , one gets

ki2 = (2 log i)−1. Next one finds the prior πi1(μ) =
ki1 exp[∫ i

−i ki2σ
−1 log(σ−1) dσ ] which is a constant

not depending on either μ or σ . Hence, the resulting
joint prior πi(μ,σ ) = πi1(μ)πi2(σ |μ) ∝ σ−1, which
is the desired reference prior. Incidentally, this is Jef-
freys’ independence prior rather than Jeffreys’ general
rule prior, the latter being proportional to σ−2. Con-
versely, when σ is the parameter of interest and μ is
the nuisance parameter, one begins with πi2(μ|σ) =
(2i)−1 and then, following Bernardo (1979) again,
one finds πi1(σ ) = ci1 exp[∫ i

i−1(2i)−1 log(1/σ)]dμ] ∝
σ−1. Thus, once again one gets Jeffreys’ independence
prior. We will see in Section 5 that Jeffreys’ indepen-
dence prior is a right Haar prior, while Jeffreys’ gen-
eral rule prior is a left Haar prior for the location–scale
family of distributions.

EXAMPLE 2 (Noncentrality parameter). Let X1,

. . . ,Xn|μ,σ be i.i.d. N(μ,σ 2), where μ real and
σ(> 0) are both unknown. Suppose the parameter
of interest is θ = μ/σ , the noncentrality parameter.
With the reparameterization (θ, σ ) from (μ,σ ), the
likelihood is rewritten as L(θ,σ ) ∝ σ−n exp[− 1

2σ 2 ·∑n
i=1(Xi − θσ )2]. Then the per observation Fisher in-

formation matrix is given by I (θ, σ ) = ( 1 θ/σ

θ/σ (θ2+2)/σ 2

)
.

Consider once again the sequence of priors πi with
support [−i, i] × [i−1, i], i = 2,3, . . . . Again, fol-
lowing Bernardo, πi2(σ |θ) = ki2σ

−1, where ki2 =
(2 log i)−1. Noting that I11.2(θ, σ ) = 1−θ2/(θ2 +2) =
2/(θ2 + 2), one gets πi1(θ) = ki1 exp[∫ i

−i log(
√

2/

(θ2 + 2)1/2) dσ ] ∝ (θ2 + 2)−1/2. Hence, the refer-
ence prior in this example is given by πR(θ, σ ) ∝
(θ2 + 2)−1/2σ−1. Due to its invariance property (Datta
and Ghosh, 1996), in the original (μ,σ ) parameteri-
zation, the two-group reference prior turns out to be
πR(μ,σ) ∝ σ−1(μ2 + 2σ 2)−1/2.

Things simplify considerably if θ1 and θ2 are orthgo-
nal in the Fisherian sense, namely, I12(θ) = 0 (Huzur-
bazaar, 1950; Cox and Reid, 1987). Then if I11(θ)

and I22(θ) factor respectively as h11(θ1)h12(θ2) and
h21(θ1)h22(θ2), as a special case of a more general re-
sult of Datta and Ghosh (1995c), it follows that the
two-group reference prior is given by h

1/2
11 (θ1)h

1/2
22 (θ2).

EXAMPLE 3. As an illustration of the above, con-
sider the celebrated Neyman–Scott problem (Berger
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and Bernardo, 1992a, 1992b). Consider a fixed ef-
fects one-way balanced normal ANOVA model where
the number of observations per cell is fixed, but the
number of cells grows to infinity. In symbols, let
Xi1, . . . ,Xik|θi be mutually independent N(θi, σ

2),
k ≥ 2, i = 1, . . . , n, all parameters being assumed un-
known. Let S = ∑n

i=1
∑k

j=1(Xij − X̄i)
2/(n(k − 1)).

Then the MLE of σ 2 is given by (k − 1)S/k which
converges in probability [as n → ∞ to (k − 1)σ 2/k],
and hence is inconsistent. Interestingly, Jeffreys’ prior
in this case also produces an inconsistent estimator of
σ 2, but the Berger–Bernardo reference prior does not.

To see this, we begin with Fisher Information matrix
I (θ1, . . . , θn, σ ) = k Diag(σ−2, . . . , σ−2, (1/2)nσ−4).
Hence, Jeffreys’ prior πJ (θ1, . . . , θn, σ

2) ∝ (σ 2)−n/2−1

which leads to the marginal posterior πJ (σ 2|X) ∝
(σ 2)−nk/2−1 exp[−n(k − 1)S/(2σ 2)] of σ 2, X denot-
ing the entire data set. Then the posterior mean of σ 2 is
given by n(k − 1)S/(nk − 2), while the posterior mode
is given by n(k − 1)S/(nk + 2). Both are inconsistent
estimators of σ 2, as these converge in probability to
(k − 1)σ 2/k as n → ∞.

In contrast, by the result of Datta and Ghosh (1995c),
the two-group reference prior πR(θ1, . . . , θn, σ

2) ∝
(σ 2)−1. This leads to the marginal posterior πR(σ 2|
X) ∝ (σ 2)−n(k−1)/2−1 exp[−n(k − 1)S/(2σ 2)] of σ 2.
Now the posterior mean is given by n(k − 1)S/(n(k −
1) − 2), while the posterior mode is given by n(k −
1)S/(n(k − 1) + 2). Both are consistent estimators
of σ 2.

EXAMPLE 4 (Ratio of normal means). Let X1
and X2 be two independent N(θμ,μ) random vari-
ables, where the parameter of interest is θ . This is
the celebrated Fieller–Creasy problem. The Fisher in-

formation matrix in this case is I (θ,μ) = (
μ2 μθ

μθ 1+θ2 ).

With the transformation φ = μ(1 + θ2)1/2, one ob-
tains I (θ,φ) = Diag(φ2(1+θ2)−2,1). Again, by Datta
and Ghosh (1995c), the two-group reference prior
πR(θ,φ) ∝ (1 + θ2)−1.

EXAMPLE 5 (Random effects model). This exam-
ple has been visited and revisited on several occasions.
Berger and Bernardo (1992b) first found reference pri-
ors for variance components in this problem when the
number of observations per cell is the same. Later, Ye
(1994) and Datta and Ghosh (1995c, 1995d) also found
reference priors for this problem. The case involving
unequal number of observations per cell was consid-
ered by Chaloner (1987) and Datta, Ghosh and Kim
(2002).

For simplicity, we consider here only the case with
equal number of observations per cell. Let Yij =
m + αi + eij , j = 1, . . . , n, i = 1, . . . , k. Here m is
an unknown parameter, while αi ’s and eij are mu-
tually independent with αi ’s i.i.d. N(0, σ 2

α ) and eij

i.i.d. N(0, σ 2). The parameters m, σ 2
α and σ 2 are all

unknown. We write Ȳi = ∑n
j=1 Yij /n, i = 1, . . . , k,

and Ȳ = ∑k
i=1 Ȳi/k. The minimal sufficient statistic

is (Ȳ , T , S), where T = n
∑k

i=1(Ȳi − Ȳ )2 and S =∑k
i=1

∑n
j=1(Yij − Ȳi)

2.
The different parameters of interest that we con-

sider are m, σ 2
α/σ 2 and σ 2. The common mean m

is of great relevance in meta analysis (cf. Morris and
Normand, 1992). Ye (1994) pointed out that the vari-
ance ratio σ 2

α/σ 2 is of considerable interest in genetic
studies. The parameter is also of importance to animal
breeders, psychologists and others. Datta and Ghosh
(1995d) have discussed the importance of σ 2, the er-
ror variance. In order to find reference priors for each
one of these parameters, we first make the one-to-one
transformation from (m,σ 2

α , σ 2) to (m, r, u), where
r = σ−2 and u = σ 2/(nσ 2

α + σ 2). Thus, σ 2
α/σ 2 =

(1 − u)/(nu), and the likelihood L(m, r,u) can be ex-
pressed as

L(m, r,u)

= rnk/2uk/2 exp[−(r/2){nku(Ȳ − m)2 + uT + S}].
Then the Fisher information matrix simplifies to
I (m, r, u) = k Diag(nru,n/(2r2),1/(2u2). From The-
orem 1 of Datta and Ghosh (1995c), it follows now
that when m, r and u are the respective parame-
ters of interest, while the other two are nuisance
parameters, the reference priors are given respec-
tively by π1R(m, r, u) = 1, π2R(m, r, u) = r−1 and
π3R(m, r, u) = u−1.

3.2 General Divergence Priors

Next, back to the one-parameter case, we consider
the more general distance (Amari, 1982; Cressie and
Read, 1984)

Dπ =
[
1 − E

{
π(θ |X)

π(θ)

}−β]/{β(1 − β)},
(3.9)

β < 1,

which is to be interpreted as its limit when β → 0. This
limit is the K–L distance as considered in Bernardo
(1979). Also, β = 1/2 gives the Bhattacharyya–Hellin-
ger (Bhattacharyya, 1943; Hellinger, 1909) distance,
and β = −1 leads to the chi-square distance (Clarke
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and Sun, 1997, 1999). In order to maximize Dπ with
respect to a prior π , one re-expresses (3.9) as

Dπ =
[
1 −

∫ ∫
πβ+1(θ)π−β(θ |X)Ln(θ) dX dθ

]
/{β(1 − β)}

(3.10)

=
[
1 −

∫
πβ+1(θ)E[{π−β(θ |X)}|θ ]dθ

]
/{β(1 − β)}.

Hence, from (3.10), maximization of Dπ amounts to
minimization (maximization) of∫

πβ+1(θ)E[{π−β(θ |X)}|θ ]dθ(3.11)

for 0 < β < 1 (β < 0). First consider the case 0 <

|β| < 1. From Theorem 1, the posterior of θ is

π(θ |X) =
√

nÎ
1/2
n

(2π)1/2 exp
[
−n

2
(θ − θ̂n)

2În

]
(3.12)

· [1 + Op(n−1/2)].
Thus,

π−β(θ |X)

= n−β/2(2π)β/2Î−β/2
n(3.13)

· exp
[
nβ

2
(θ − θ̂n)

2În

]
[1 + Op(n−1/2)].

Following the shrinkage argument, and noting that con-

ditional on θ , În
p→ I (θ), while n(θ − θ̂n)

2În
d→ χ2

1 , it
follows heuristically from (3.13)

E[π−β(θ |X)]
= n−β/2(2π)β/2[I (θ)]−β/2(1 − β)−1/2(3.14)

· [1 + Op(n−1/2)].
Hence, from (3.14), considering only the leading term,
for 0 < β < 1, minimization of (3.11) with respect to π

amounts to minimization of
∫ [π(θ)/I 1/2(θ)]βπ(θ) dθ

with respect to π subject to
∫

π(θ) dθ = 1. A sim-
ple application of Holder’s inequality shows that this
minimization takes place when π(θ) ∝ I 1/2(θ). Simi-
larly, for −1 < β < 0, π(θ) ∝ I 1/2(θ) provides the de-
sired maximization of the expected distance between
the prior and the posterior. The K–L distance, that is,
when β → 0, has already been considered earlier.

REMARK 2. Equation (3.14) also holds for β <

−1. However, in this case, it is shown in Ghosh, Mergel

and Liu (2011) that the integral
∫ {π(θ)/I 1/2(θ)}−β ·

π(θ) dθ is uniquely minimized with respect to π(θ) ∝
I 1/2(θ), and there exists no maximizer of this inte-
gral when

∫
π(θ) dθ = 1. Thus, in this case, there does

not exist any prior which maximizes the posterior-prior
distance.

REMARK 3. Surprisingly, Jeffreys’ prior is not
necessarily the solution when β = −1 (the chi-square
divergence). In this case, the first-order asymptotics
does not work since πβ+1(θ) = 1 for all θ . How-
ever, retaining also the Op(n−1) term as given in The-
orem 1, Ghosh, Mergel and Liu (2011) have found
in this case the solution π(θ) ∝ exp[∫ θ 2g3(t)−I ′(t)

4I (t)
dt],

where g3(t) = E[−d3 logp(X1|t)
dt3 |t]. We shall refer to

this prior as πGML(θ). We will show by examples that
this prior may differ from Jeffreys’prior. But first we
will establish a hitherto unknown invariance property
of this prior under one-to-one reparameterization.

THEOREM 2. Suppose that φ is a one-to-one
twice differentiable function of θ . Then πGML(φ) =
CπGML(θ)| dθ

dφ
|, where C(> 0), the constant of propor-

tionality, does not involve any parameters.

PROOF. Without loss of generality, assume that φ

is a nondecreasing function of θ . By the identity

g3(φ) = I ′(φ) + E

[(
d2 logf

dφ2

)(
d logf

dφ

)]
,

π ′
GML(φ)/πGML(φ) reduces to

π ′
GML(φ)/πGML(φ)

(3.15)

= I ′(φ) + 2E[(d2 logf/dφ2)(d logf/dφ)]
4I (φ)

.

Next, from the relation I (φ) = I (θ)(dθ/dφ)2, one gets
the identities

I ′(φ) = I ′(θ)

(
dθ

dφ

)3

(3.16)
+ 2I (θ)(dθ/dφ)(d2θ/dφ2);(

d2 logf

dφ2

)(
d logf

dφ

)

=
{
d2 logf

dθ2

(
dθ

dφ

)2

+ d logf

dθ
· d2θ

dφ2

}
(3.17)

·
(

d logf

dθ
· dθ

dφ

)
.
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From (3.15)–(3.17), one gets, after simplification,

π ′
GML(φ)/πGML(φ)

= π ′
GML(θ)

πGML(θ)

dθ

dφ
+ d2θ/dφ2

dθ/dφ
.(3.18)

Now, on integration, it follows from (3.18) πGML(φ) =
CπGML(φ)(dθ/dφ), which proves the theorem. �

EXAMPLE 6. Consider the one-parameter expo-
nential family of distributions with p(X|θ) =
exp[θX − ψ(θ) + h(X)]. Then g3(θ) = I ′(θ) so that
π(θ) ∝ exp[1

4

∫ I ′(θ)
I (θ)

dθ ] = I 1/4(θ), which is differ-

ent from Jeffreys’ I 1/2(θ) prior. Because of the in-
variance result proved in Theorem 2, in particular,
for the Binomial(n,p) problem, noting that p =
exp(θ)/[1 + exp(θ)], one gets πGML(p) ∝ p−3/4(1 −
p)−3/4, which is a Beta(1

4 , 1
4) prior, different from Jef-

freys’ Beta(1
2 , 1

2) prior, Laplace’s Beta(1,1) prior or
Haldane’s improper Beta(0,0) prior. Similarly, for the
Poisson (λ) case, one gets πGML(λ) ∝ λ−1/4, again
different from Jeffreys’ πJ (λ) ∝ λ−1/2 prior. How-
ever, for the N(θ,1) distribution, since I (θ) = 1 and
g3(θ) = I ′(θ) = 0, πGML(θ) = c(> 0), a constant,
which is the same as Jeffreys’ prior. It may be pointed
out also that for the one-parameter exponential family,
for the chi-square divergence, πGML differs from Harti-
gan’s (1998) maximum likelihood prior πH (θ) = I (θ).

EXAMPLE 7. For the one-parameter location fam-
ily of distributions with p(X|θ) = f (X − θ), where f

is a p.d.f., both g3(θ) and I (θ) are constants implying
I ′(θ) = 0. Hence, πGML(θ) is of the form πGML(θ) =
exp(kθ) for some constant k. However, for the special
case of a symmetric f , that is, f (X) = f (−X) for all
X, g3(θ) = 0, and then πGML(θ) reduces once again to
π(θ) = c, which is the same as Jeffreys’ prior.

EXAMPLE 8. For the general scale family of dis-
tributions with p(X|θ) = θ−1f (X

θ
), θ > 0, where f is

a p.d.f., I (θ) = c1
θ2 for some constant c1(> 0), where

g3(θ) = c2
θ3 for some constant c2. Then πGML(θ) ∝

exp(c log θ) = θc for some constant c. In particular,
when p(X|θ) = θ−1 exp(−X

θ
),πGML(θ) ∝ θ−3/2, dif-

ferent from Jeffreys’ πJ (θ) ∝ θ−1 for the general scale
family of distributions.

The multiparameter extension of the general diver-
gence prior has been explored in the Ph.D. dissertation
of Liu (2009). Among other things, he has shown that
in the absence of any nuisance parameters, for |β| < 1,
the divergence prior is Jeffreys’ prior. However, on the
boundary, namely, β = −1, priors other than Jeffreys’
prior emerge.

4. PROBABILITY MATCHING PRIORS

4.1 Motivation and First-Order Matching

As mentioned in the Introduction, probability match-
ing priors are intended to achieve Bayes-frequentist
synthesis. Specifically, these priors are required to pro-
vide asymptotically the same coverage probability of
the Bayesian credible intervals with the correspond-
ing frequentist counterparts. Over the years, there have
been several versions of such priors-quantile matching
priors, matching priors for distribution functions, HPD
matching priors and matching priors associated with
likelihood ratio statistics. Datta and Mukerjee provided
a detailed account of all these priors. In this article I
will be concerned only with quantile matching priors.

A general definition of quantile matching priors is
as follows: Suppose X1, . . . ,Xn|θ i.i.d. with common
p.d.f. f (X|θ), where θ is a real-valued parameter. As-
sume all the needed regularity conditions for the as-
ymptotic expansion of the posterior around θ̂n, the
MLE of θ . We continue with the notation of the pre-
vious section. For 0 < α < 1, let θπ

1−α(X1, . . . ,Xn) ≡
θπ

1−α denote the (1−α)th asymptotic posterior quantile
of θ based on the prior π , that is,

P π [θ ≤ θπ
1−α|X1, . . . ,Xn]

(4.1)
= 1 − α + Op(n−r )

for some r > 0. If now P [θ ≤ θπ
1−α|θ ] = 1 − α +

Op(n−r ), then some order of probability matching is
achieved. If r = 1, we call π a first-order probability
matching prior. If r = 3/2, we call π a second-order
probability matching prior.

We first provide an intuitive argument for why Jef-
freys’ prior is a first-order probability matching prior
in the absence of nuisance parameters. If X1, . . . ,Xn|θ
i.i.d. N(θ,1) and π(θ) = 1, −∞ < θ < ∞, then the
posterior π(θ |X1, . . . ,Xn) is N(X̄n, n

−1). Now writ-
ing z1−α as the 100(1 − α)% quantile of the N(0,1)

distribution, one gets

P
[√

n(θ − X̄n) ≤ z1−α|X1, . . . ,Xn

)
(4.2)

= 1 − α = P
[√

n(X̄n − θ) ≥ −z1−α|θ]
,

so that the one-sided credible interval X̄n + z1−α/
√

n

for θ has exact frequentist coverage probability 1 − α.
The above exact matching does not always hold.

However, if X1, . . . ,Xn|θ are i.i.d., then θ̂n|θ is asymp-
totically N(θ, (nI (θ))−1). Then, by the delta method,
g(θ̂n)|θ ∼ N[g(θ), (g′(θ))2(nI (θ))−1]. So if g′(θ) =
I 1/2(θ) so that g(θ) = ∫ θ

I 1/2(t) dt ,
√

n[g(θ̂n) −
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g(θ)]|θ is asymptotically N(0,1). Hence, from (4.2),
with the uniform prior π(φ) = 1 for φ = g(θ), cov-
erage matching is asymptotically achieved for φ. This
leads to the prior π(θ) = dφ

dθ
= g′(θ) = I 1/2(θ) for θ .

Datta and Mukerjee (2004, pages 14–21) proved the
result in a formal manner. They used the two basic tools
of Section 3. In the absence of nuisance parameters,
they showed that a first-order matching prior for θ is a
solution of the differential equation

d

dθ
(π(θ)I−1/2(θ)) = 0,(4.3)

so that Jeffreys’ prior is the unique first-order matching
prior. However, it does not always satisfy the second-
order matching property.

4.2 Second-Order Matching

In order that the matching is accomplished up to
O(n−3/2) (second-order matching), one needs an as-
ymptotic expansion of the posterior distribution func-
tion up to the O(n−1) term, and to set up a second dif-
ferential equation in addition to (4.3). This equation is
given by (cf. Mukerjee and Dey, 1993; Mukerjee and
Ghosh, 1997)

1

3

d

dθ
[π(θ)I−2(θ)g3(θ)] + d2

dθ2 [π(θ)I−1(θ)]
(4.4)

= 0,

where, as before, g3(θ) = −E[d3 logf (X|θ)

dθ3 |θ ]. If Jef-
frey’s prior satisfies (4.4), then it is the unique second-
order matching prior. While for the location and scale
family of distributions, this is indeed the case, this is
not true in general. Of course, in such an instance, there
does not exist any second-order matching prior.

To see this, for πJ (θ) = I 1/2(θ), (4.4) reduces to

1

3

d

dθ
[I−3/2(θ)g3(θ)] + d2

dθ2 [I−1/2(θ)] = 0,

which requires 1
3I−3/2(θ)g3(θ) + d

dθ
(I−1/2(θ)) to be

a constant free from θ . After some algebra, the above
expression simplifies to (1/6)E[(d logf

dθ
)3|θ ]/I 3/2(θ).

It is easy to check now that for the one-parameter
location and scale family of distributions, the above
expression does not depend on θ . However, for the
one-parameter exponential family of distributions with
canonical parameter θ , the same holds if and only if
I ′(θ)/I 3/2(θ) does not depend on θ , or, in other words,
I (θ) = exp(cθ) for some constant c. Another interest-
ing example is given below.

EXAMPLE 9. (X1,X2)
T ∼ N2[(0

0

)
,
(1 ρ
ρ 1

)]. One can

verify that I (ρ) = (1 + ρ2)/(1 − ρ2)2 and L1,1,1 =
−2ρ(3+ρ2)

(1−ρ2)3 so that L1,1,1/I
3/2(ρ) is not a constant.

Hence, πJ is not a second-order matching prior, and
there does not exist any second-order matching prior
in this example.

4.3 First-Order Quantile Matching Priors in the
Presence of Nuisance Parameters

The parameter of interest is still real-valued, but
there may be one or more nuisance parameters. To fix
ideas, suppose θ = (θ1, . . . , θp), where θ1 is the para-
meter of interest, while θ2, . . . , θp are the nuisance pa-
rameters. As shown by Welch and Peers (1963) and
later more rigorously by Datta and Ghosh (1995a) and
Datta (1996), writing I−1 = ((I jk)), the probability
matching equation is given by

p∑
j=1

∂

∂θj

{π(θ)I j1(I 11)−1/2} = 0.(4.5)

EXAMPLE 1 (Continued). First consider μ as the
parameter of interest, and σ the nuisance parameter.
Since each element of the inverse of the Fisher in-
formation matrix is a constant multiple of σ 2, any
prior π(μ,σ) ∝ g(σ), g arbitrary, satisfies (4.5). Con-
versely, when σ is the parameter of interest, and μ is
the nuisance parameter, any prior π(μ,σ) ∝ σ−1g(μ)

satisfies (4.5).
A special case considered in Tibshirani (1989) is of

interest. Here θ1 is orthogonal to (θ2, . . . , θp) in the
Fisherian sense, that is, I j1 = 0 for j = 2,3, . . . , p.

With orthogonality, (4.5) simplifies to

∂

∂θ1
{π(θ)I

−1/2
11 } = 0

(since I 11 = I−1
11 ). This leads to π(θ) = I

1/2
11 h(θ2, . . . ,

θp), where h is arbitrary. Often a second-order match-
ing prior removes the arbitrariness of h. We will see
an example later in this section. However, this need not
always be the case, and, indeed, as seen earlier in the
one parameter case, second-order matching priors may
not always exist. We will address this issue later in this
section.

A special choice is h ≡ 1. The resultant prior π(θ) =
I

1/2
11 bears some intuitive appeal. Since under orthogo-

nality,
√

n(θ̂1n − θ1)|θ ∼ N(0, I−1
11 (θ)), one may ex-

pect I
1/2
11 (θ) to be a first-order probability matching

prior. This prior is only a member within the class of
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priors π(θ) = I
1/2
11 h(θ2, . . . , θp), as found by Tibshi-

rani (1989), and admittedly need not be second-order
matching even when the latter exists. A recent article
by Staicu and Reid (2008) has proved some interest-
ing properties of the prior π(θ) = I

1/2
11 (θ). This prior

is also considered in Ghosh and Mukerjee (1992).
For a symmetric location–scale family of distribu-

tions, that is, when f (X) = f (−X), c2 = 0, that is, μ

and σ are orthogonal. Now, when μ is the parameter
of interest and σ is the nuisance parameter, the class of
first-order matching priors π1(μ,σ ) is characterized by
h1(σ ), where h1 is arbitrary. Similarly, when σ is the
parameter of interest and μ is the nuisance parameter,
the class of first-order matching priors is characterized
by π2(μ,σ ) = σ−1h2(μ), where g2 is arbitrary. The
intersection of the two classes leads again to the unique
prior π(μ,σ) = σ−1.

EXAMPLE 2 (Continued). Let X1, . . . ,Xn|μ,σ be
i.i.d. N(μ,σ 2), and θ = μ/σ is again the parameter of
interest. In order to find a parameter φ which is orthog-
onal to θ , we rewrite the p.d.f. in the form

f (X|θ, σ )
(4.6)

= (2πσ 2)−1/2 exp
[
− 1

2σ 2 (X − θσ )2
]
.

Then the Fisher information matrix

I (θ, σ ) =
[(

1 θ/σ

θ/σ σ−2(θ2 + 2)

)]
.

It turns out now if we reparameterize from (θ, σ ) to
(θ,φ), where φ = σ(θ2 + 2)1/2, then θ and φ are or-
thogonal with the corresponding Fisher information
matrix given by I (θ,φ) = Diag[2(θ2 +2)−1, φ−2(θ2 +
2)]. Hence, the class of first-order matching pri-
ors when θ is the parameter of interest is given by
π(θ,φ) = (θ2 + 2)−1/2h(φ), where h is arbitrary.

4.4 Second-Order Quantile Matching Priors in the
Presence of Nuisance Parameters

When θ1 is the parameter of interest, and (θ2, . . . , θp)

is the vector of nuisance parameters, the general class
of second-order quantile matching priors is character-
ized in (2.4.11) and (2.4.12) of Datta and Mukerjee
(2004, page 12). For simplicity, we consider only the
case when θ1 is orthogonal to (θ2, . . . , θp). In this case
a first-order quantile matching prior π(θ1, θ2, . . . , θp) ∝
I

1/2
11 (θ)h(θ2, . . . , θp) is also second-order matching if

and only if h satisfies (cf. Datta and Mukerjee, 2004,

page 27) the differential equation

p∑
s=2

p∑
u=2

∂

∂θu

{
I

−1/2
11 I suE

(
∂3 logf

∂θ2
1 ∂θs

)
h
∣∣∣θ}

+ (h/6)
∂

∂θ1

{
I

−3/2
11 E

((
∂ logf

∂θ1

)3∣∣∣θ)}
(4.7)

= 0.

We revisit Examples 1–5 and provide complete, or at
least partial, characterization of second-order quantile
matching priors.

EXAMPLE 1 (Continued). Let f be symmetric so
that μ and σ are orthogonal. First let μ be the parame-
ter of interest and σ the nuisance parameter. Then since
both the terms in (4.7) are zeroes, every first-order
quantile matching prior of the form σ−1h(σ) = q(σ ),
say, is also second-order matching. This means that
an arbitrary prior of the form π(μ,σ) is second-order
matching as long as it is only a function of σ . On the
other hand, if σ is the parameter of interest and μ is
the nuisance parameter, since the second term in (4.7)
is zero, a first-order quantile matching prior of the form
σ−1h(μ) is also second-order matching if and only
if h(μ) is a constant. Thus, the unique second-order
quantile matching prior in this case is proportional to
σ−1, which is Jeffreys’ independence prior.

EXAMPLE 2 (Continued). Recall that in this case
writing θ = μ/σ , and φ = σ(θ2 + 2)1/2, the Fisher in-
formation matrix I (θ,φ) = Diag[2(θ2 + 2)−1,

φ−2(θ2 + 2)]. Also, E[( ∂ logf
∂θ

)3|θ,φ] = − ∂θ(θ2+3)

(θ2+2)3

and E(
∂3 logf

∂θ2∂φ
|θ,φ) = (4/φ)(θ2 + 2)−2. Hence, (4.7)

holds if and only if h(φ) = φ−1. This leads to the
unique second-order quantile matching prior π(θ,φ) ∝
(θ2 + 2)−1/2. Back to the original (μ,σ ) parameteri-
zation, this leads to the prior π(μ,σ) ∝ σ−1, Jeffreys’
independence prior.

EXAMPLE 3 (Continued). Consider once again the
Neyman–Scott example. Since the Fisher informa-
tion matrix I (θ1, . . . , θn, σ

2) = k Diag(σ−2, . . . , σ−2,

nσ−2), σ 2 is orthogonal to (θ1, . . . , θn). Now, the
class of second-order matching priors is given by
σ−2h(μ1, . . . ,μn), where h is arbitrary. Simple alge-
bra shows that in this case both the first and second
terms in (4.7) are zeroes so that every first-order quan-
tile matching prior is also second-order matching.

EXAMPLE 4 (Continued). From Tibshirani (1989),
it follows that the class of first-order quantile matching
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priors for θ is of the form (1 + θ2)−1h(φ), where h

is arbitrary. Once again, since both the first and sec-
ond terms in (4.7) are zeroes, every first-order quantile
matching prior is also second-order matching.

EXAMPLE 5 (Continued). Again from Tibshirani
(1989), the class of second-order matching priors when
m, r and u are the parameters of interest are given re-
spectively by h1(r, u), r−1h2(m,u) and u−1h3(m, r),
where h1, h2 and h3 are arbitrary nonnegative func-
tions. Also, the prior πS(r, u) ∝ (ru)−3/2 is second-
order matching when m is the parameter of interest.
On the other hand, any first-order matching prior is
also second-order matching when either r or u is the
parameter of interest.

It may be of interest to find an example where a
reference prior is not a second-order matching prior.
Consider the gamma p.d.f. f (x|μ,λ) = (λλ/�(λ)) ·
exp[−λy/μ]yλ−1μ−λ, where the mean μ is the pa-
rameter of interest. The Fisher information matrix is
given by Diag(λμ−2,

d2 log�(λ)

dλ2 − 1/λ). Then the two-
group reference prior of Bernardo (1979) is given by

μ−1[d2 log�(λ)

dλ2 − (1/λ)]1/2, while the unique second-

order quantile matching prior is given by λμ−1 ·
[d2 log�(λ)

dλ2 − (1/λ)].
In some of these examples, especially for the loca-

tion and location–scale families, one gets exact rather
than asymptotic matching. This is especially so when
the matching prior is a right-invariant Haar prior. We
will see some examples in the next section.

5. OTHER PRIORS

5.1 Invariant Priors

Very often objective priors are derived via some in-
variance criterion. We illustrate with the location–scale
family of distributions.

Let X have p.d.f. p(x|μ,σ) = σ−1f ((x − μ)/σ),
−∞ < μ < ∞, 0 < σ < ∞, where f is a p.d.f.
Then, as found in Section 4, the Fisher information
matrix I (μ,σ ) is of the form I (μ,σ ) = σ−2(c1 c2

c2 c3

)
.

Hence, Jeffreys’ general rule prior πJ (μ,σ ) ∝ σ−2.
This prior, as we will see in this section, corresponds
to a left-invariant Haar prior. In contrast, Jeffreys’ inde-
pendence prior πI (μ,σ ) ∝ σ−1 corresponds to a right-
invariant Haar prior.

In order to demonstrate this, consider a group of lin-
ear transformations G = {ga,b − ∞ < a < ∞, b > 0},
where ga,b(x) = a + bx. The induced group of trans-
formations on the parameter space will be denoted

by Ḡ, where Ḡ = {ḡa,b}, where ḡa,b(μ,σ ) = (a +
bμ,bσ). The general theory of locally compact groups
states that there exist two measures η1 and η2 on Ḡ

such that η1 is left-invariant and η2 is right-invariant.
What this means is that for all ḡ ∈ Ḡ and A a subset of
G, η1(ḡA) = η1(A) and η2(Aḡ) = η2(A), where ḡA =
{ḡḡ∗ : ḡ∗ ∈ A} and Aḡ = {ḡ∗ḡ : ḡ∗ ∈ A}. The measures
η1 and η2 are referred to respectively as left- and right-
invariant Haar measures. For the location–scale family
of distributions, the left- and right-invariant Haar priors
turn out to be πL(μ,σ) ∝ σ−2 and πR(μ,σ) ∝ σ−1,
respectively (cf. Berger, 1985, pages 406–407; Ghosh,
Delampady and Samanta, 2006, pages 136–138).

The right-Haar prior usually enjoys more optimal-
ity properties than the left-Haar prior. Some optimal-
ity properties of left-Haar priors are given in Datta
and Ghosh (1995b). In Example 1, for the location–
scale family of distributions, the right-Haar prior is
Bernardo’s reference prior when either μ or σ is the pa-
rameter of interest, while the other parameter is the nui-
sance parameter. Also, it is shown in Datta, Ghosh and
Mukerjee (2000) that for the location–scale family of
distributions, the right-Haar prior yields exact match-
ing of the coverage probabilities of Bayesian credible
intervals and the corresponding frequentist confidence
intervals when either μ or σ is the parameter of inter-
est, while the other parameter is the nuisance parame-
ter.

For simplicity, we demonstrate this only for the nor-
mal example. Let X1, . . . ,Xn|μ,σ 2 be i.i.d. N(μ,σ 2),
where n ≥ 2. With the right-Haar prior π2(μ,σ ) ∝
σ−1, the marginal posterior distribution of μ is Stu-
dent’s t with location parameter X̄ = ∑n

i=1 Xi/n, scale
parameter S/

√
n, where (n − 1)S2 = ∑n

i=1(Xi − X̄)2,
and degrees of freedom n − 1. Hence, if μ1−α denotes
the 100(1 − α)th percentile of this marginal posterior,
then

1 − α = P(μ ≤ μ1−α|X1, . . . ,Xn)

= P
[√

n(μ − X̄)/S

≤ √
n(μ1−α − X̄)/S|X1, . . . ,Xn

]
= P

[
tn−1 ≤ √

n(μ1−α − X̄)/S
]
,

so that
√

n(μ1−α − X̄)/S = tn−1,1−α , the 100(1−α)th
percentile of tn−1. Now

P(μ ≤ μ1−α|μ,σ)

= P
[√

n(X̄ − μ)/S ≥ −tn−1,1−α|μ,σ
] = 1 − α

= P(μ ≤ μ1−α|X1, . . . ,Xn).
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This provides the exact coverage matching probability
for μ.

Next, with the same set up, when σ 2 is the pa-
rameter of interest, its marginal posterior is Inverse
Gamma((n−1)/2, (n−1)S2/2). Now, if σ 2

1−α denotes
the 100(1 − α)th percentile of this marginal posterior,
then σ 2

1−α = (n − 1)S2/χ2
n−1;1−α , where χ2

n−1;1−α is

the 100(1 − α)th percentile of the χ2
n−1 distribution.

Now

P(σ 2 ≤ σ 2
1−α|μ,σ)

= P [(n − 1)S2/σ 2 ≤ χ2
n−1;1−α|μ,σ ] = 1 − α,

showing once again the exact coverage matching.
The general definition of a right-invariant Haar den-

sity on Ḡ which we will denote by hr must satisfy∫
Aḡ0

hr(x) dx = ∫
A hr(x) dx, where Aḡ = {ḡ∗ḡ : ḡ∗ ∈

A}. Similarly, a left invariant Haar density on Ḡ which
we will denote by hl must satisfy

∫
ḡA hl(x) dx =∫

A hl(x) dx, where ḡA = {ḡḡ∗ : ḡ∗ ∈ A}. An alternate
representation of the right- and left-Haar densities are
given by P hr (Aḡ) = P hr (A) and P hl (ḡA) = P hl (A),
respectively.

It is shown in Halmos (1950) and Nachbin (1965)
that the right- and left-invariant Haar densities exist
and are unique up to a multiplicative constant. Berger
(1985) provides calculation of hr and hl in a very gen-
eral framework. He points out that if Ḡ is isomorphic
to the parameter space �, then one can construct right-
and left-invariant Haar priors on the parameter space
�. A very substantial account of invariant Haar densi-
ties is available in Datta and Ghosh (1995b). Severini,
Mukerjee and Ghosh (2002) have demonstrated the ex-
act matching property of right invariant Haar densities
in a prediction context under fairly general conditions.

5.2 Moment Matching Priors

Here we discuss a new matching criterion which
we will refer to as the “moment matching criterion.”
For a regular family of distributions, the classic ar-
ticle of Bernstein and Von Mises (see, e.g., Fergu-
son, 1996, page 141; Ghosh, Delampady and Samanta,
2006, page 104) proved the asymptotic normality of
the posterior of a parameter vector centered around the
maximum likelihood estimator or the posterior mode
and variance equal to the inverse of the observed Fisher
information matrix evaluated at the maximum likeli-
hood estimator or the posterior mode. We utilize the
same asymptotic expansion to find priors which can
provide high order matching of the moments of the
posterior mean and the maximum likelihood estimator.

For simplicity of exposition, we shall primarily con-
fine ourselves to priors which achieve the matching of
the first moment, although it is easy to see how higher
order moment matching is equally possible.

The motivation for moment matching priors stems
from several considerations. First, these priors lead to
posterior means which share the asymptotic optimal-
ity of the MLE’s up to a high order. In particular, if
one is interested in asymptotic bias or MSE reduction
of the MLE’s through some adjustment, the same ad-
justment applies directly to the posterior means. In this
way, it is possible to achieve Bayes-frequentist syn-
thesis of point estimates. The second important aspect
of these priors is that they provide new viable alterna-
tives to Jeffreys’ prior even for real-valued parameters
in the absence of nuisance parameters motivated from
the proposed criterion. A third motivation, which will
be made clear later in this section, is that with moment
matching priors, it is possible to construct credible re-
gions for parameters of interest based only on the pos-
terior mean and the posterior variance, which match
the maximum likelihood based confidence intervals to
a high order of approximation. We will confine our-
selves primarily to regular families of distributions.

Let X1,X2, . . . ,Xn|θ be independent and identically
distributed with common density function f (x|θ),
where θ ∈ �, some interval in the real line. Consider a
general class of priors π(θ), θ ∈ � for θ . Throughout,
it is assumed that both f and π satisfy all the needed
regularity conditions as given in Johnson (1970) and
Bickel and Ghosh (1990).

Let θ̂n denote the maximum likelihood estimator of
θ . Under the prior π , we denote the posterior mean of θ

by θ̂B
n . The formal asymptotic expansion given in Sec-

tion 2 now leads to θ̂B
n = θ̂n + n−1(

a3

2Î 2
n

+ 1
În

π ′(θ̂n)

π(θ̂n)
) +

Op(n−3/2), where a3 and În are defined in Theorem 1.
The law of large numbers and consistency of the MLE

now give n(θ̂B
n − θ̂n)

P→ (
−g3(θ)

2I 2(θ)
+ 1

I (θ)
π ′(θ)
π(θ)

). With the

choice π(θ) = exp[−1
2

∫ θ g3(t)
I (t)

dt], one gets θ̂B
n − θ̂n =

Op(n−3/2). We will denote this prior as πM(θ).
Ghosh and Liu (2011) have shown that if φ is a one-

to-one function of θ , then the moment matching prior
πM(φ) for φ is given by πM(φ) = πM(θ)| dθ

dφ
|3/2. We

now see an application of this result.

EXAMPLE 6 (Continued). Consider the regular
one-parameter exponential family of densities given by
f (x|θ) = exp[θx − ψ(θ) + h(x)]. For the canonical
parameter θ , noting that I (θ) = ψ ′′(θ) and g3(θ) =
ψ ′′′(θ) = I ′(θ), πM(θ) = exp[1

2

∫
I ′(θ)/I (θ) dθ] =
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I 1/2(θ), which is Jeffreys’ prior. On the other hand,
for the population mean φ = ψ ′(θ) which is a strictly
increasing function of θ [since ψ ′′(θ) = V (X|θ) > 0],
the moment matching prior πM(φ) = I (φ). In partic-
ular, for the binomial proportion p, one gets the Hal-
dane prior πH(p) ∝ p−1(1 − p)−1, which is the same
as Hartigan’s (1964, 1998) maximum likelihood prior.
However, for the canonical parameter θ = logit(p),
whereas we get Jeffreys’ prior, Hartigan (1964, 1998)
gets the Laplace uniform(0,1) prior.

REMARK 4. It is now clear that a fundamental dif-
ference between priors obtained by matching probabil-
ities and those obtained by matching moments is the
lack of invariance of the latter under one-to-one repa-
rameterization. It may be interesting to find conditions
under which a moment matching prior agrees with Jef-
freys’ prior I 1/2(θ) or the uniform constant prior. The
former holds if and only if g3(θ) = I ′(θ), while the
latter holds if and only if g3(θ) = 0.

The if part of the above results are immediate from
the definition of πM(θ). To prove the only if parts,
note that if πM(θ) = I 1/2(θ), first taking logarithms,
and then differentiating with respect to θ , one gets
I ′(θ)
2I (θ)

= g3(θ)
2I (θ)

so that g3(θ) = I ′(θ). On the other hand,
if π(θ) = c, then taking logarithms, and then differen-
tiating with respect to θ , one gets g3(θ) = 0.

The above approach can be extended to the matching
of higher moments as well. Noting that Vπ(θ |X1, . . . ,

Xn) = Eπ [(θ − θ̂n)
2|X1, . . . ,Xn)]− (θ̂B

n − θ̂n)
2, it fol-

lows immediately that under the moment matching
prior πM , Vπ(θ |X1, . . . ,Xn) = (nÎn)

−1 + Op(n−2).
This fact helps construction of credible intervals for
θ , the parameter of interest, centered at the posterior
mean and scaled by the posterior standard deviation
which enjoys the same asymptotic properties as the
credible interval centered at the MLE and scaled by
the square root of the reciprocal of the observed Fisher
information number.

6. SUMMARY AND CONCLUSION

As mentioned in the Introduction, this article pro-
vides a selective review of objective priors reflecting
my own interest and familiarity with the topics. I am
well aware that many important contributions are left
out. For instance, I have discussed only the two-group
reference priors of Bernardo (1979). A more appeal-
ing later contribution by Berger and Bernardo (1992b)
provided an algorithm for the construction of multi-
group reference priors when these groups are arranged

in accordance to their order of importance. In particu-
lar, the one-at-a-time reference priors, as advocated by
these authors, has proved to be quite useful in practice.
Ghosal (1997, 1999) provided the construction of ref-
erence priors in nonregular cases, while a formal defin-
ition of reference priors encompassing both regular and
nonregular cases has recently been proposed by Berger,
Bernardo and Sun (2009).

Regarding probability matching priors, we have dis-
cussed only the quantile matching criterion. There are
several others, possibly equally important probability
matching criteria. Notable among these are the highest
posterior density matching criterion as well as match-
ing via inversion of test statistics, such as the likelihood
ratio test statistic, Rao statistic or the Wald statistic. Ex-
tensive discussion of such matching priors is given in
Datta and Mukerjee (2004). Datta et al. (2000) con-
structed matching priors via the prediction criterion,
and related exact results in this context are available in
Fraser and Reid (2002). The issue of matching priors in
the context of conditional inference has been discussed
quite extensively in Reid (1996).

A different class of priors called “the maximum like-
lihood prior” was developed by Hartigan (1964, 1998).
Roughly speaking, these priors are found by maximiz-
ing the expected distance between the prior and the
posterior under a truncated Kullback–Leibler distance.
Like the proposed moment matching priors, the maxi-
mum likelihood prior densities, when they exist, result
in posterior means asymptotically negligible from the
MLE’s. I have alluded to some of these priors as a com-
parison with other priors as given in this paper.

With the exception of the right- and left-invariant
Haar priors, the derivation of the remaining priors are
based essentially on the asymptotic expansion of the
posterior density as well as the shrinkage argument of
J. K. Ghosh. This approach provides a nice unified tool
for the development of objective priors. I believe very
strongly that many new priors will be found in the fu-
ture by either a direct application or slight modification
of these tools.

The results of this article show that Jeffreys’ prior
is a clear winner in the absence of nuisance parame-
ters for most situations. The only exception is the chi-
square divergence where different priors may emerge.
But that corresponds only to one special case, namely,
the boundary of the class of divergence priors, while
Jeffreys’ prior continues its optimality in the interior.
In the presence of nuisance parameters, my own rec-
ommendation is to find two- or multi-group reference
priors following the algorithm of Berger and Bernardo
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(1992a), and then narrow down this class of priors by
finding their intersection with the class of probabil-
ity matching priors. This approach can even lead to a
unique objective prior in some situations. Some sim-
ple illustrations are given in this article. I also want to
point out the versatility of reference priors. For exam-
ple, for nonregular models, Jeffreys’ general rule prior
does not work. But as shown in Ghosal (1997) and
Berger, Bernardo and Sun (2009), one can extend the
definition of reference priors to cover these situations
as well.

The examples given in this paper are purposely quite
simplistic to aid understanding mainly of readers not
familiar at all with the topic. Quite rightfully, they can
be criticized as somewhat stylized. Both reference and
probability matching priors, however, have been devel-
oped for more complex problems of practical impor-
tance. Among others, I may refer to Berger and Yang
(1994), Berger, De Oliveira and Sanso (2001), Ghosh
and Heo (2003), Ghosh, Carlin and Srivastava (1994)
and Ghosh, Yin and Kim (2003). The topics of these
papers include time series models, spatial models and
inverse problems, such as linear calibration and prob-
lems in bioassay, in particular, slope ratio and parallel
line assays. One can easily extend this list. A very use-
ful source for all these papers is Bernardo (2005).
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